WO2020253556A1 - 透镜系统、摄像装置及移动体 - Google Patents

透镜系统、摄像装置及移动体 Download PDF

Info

Publication number
WO2020253556A1
WO2020253556A1 PCT/CN2020/094712 CN2020094712W WO2020253556A1 WO 2020253556 A1 WO2020253556 A1 WO 2020253556A1 CN 2020094712 W CN2020094712 W CN 2020094712W WO 2020253556 A1 WO2020253556 A1 WO 2020253556A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
object side
lens group
lens system
image
Prior art date
Application number
PCT/CN2020/094712
Other languages
English (en)
French (fr)
Inventor
中辻达也
松永滋彦
足立朋子
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202080003349.4A priority Critical patent/CN112334813A/zh
Publication of WO2020253556A1 publication Critical patent/WO2020253556A1/zh
Priority to US17/469,887 priority patent/US20220057601A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/003Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having two lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/04Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having two components only
    • G02B9/06Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having two components only two + components
    • G02B9/08Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having two components only two + components arranged about a stop
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/16Optical objectives specially designed for the purposes specified below for use in conjunction with image converters or intensifiers, or for use with projectors, e.g. objectives for projection TV
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components

Definitions

  • the invention relates to a lens system, an imaging device and a moving body.
  • Patent Document 1 discloses an imaging lens which is a negative look-ahead lens and has a relatively small F number and a relatively wide angle.
  • Patent Document 2 discloses an imaging lens with a relatively small F number and a relatively wide angle.
  • Patent Document 1 Japanese Patent No. 5538702 Specification
  • Patent Document 2 Japanese Patent No. 6111798 Specification
  • the lens system includes in order from the object side to the image side: a positive first lens group, an aperture stop, and a positive second lens group.
  • the first lens group and the second lens group move from the image side to the object side while the distance between the first lens group and the second lens group on the optical axis is fixed.
  • the first lens group includes three or more lenses, including one or more cemented lenses and one lens having a meniscus aspherical shape convex toward the object side in order from the object side.
  • the second lens group includes four or more lenses, including one or more cemented lenses and one lens having a meniscus aspherical shape recessed toward the object side in order from the object side.
  • the lens system satisfies the following conditional formula:
  • f is the focal length of the entire system
  • f1 is the focal length of the first lens group
  • TL is the lens surface closest to the object side of the first lens group in the infinite focus state when the back focal length is converted into air.
  • the distance of the image plane on the optical axis; Y is the maximum image height.
  • EPD is the exit pupil distance
  • Y is the maximum image height
  • f_1asp is the focal length of the lens having a meniscus aspheric shape included in the first lens group
  • f_2asp is the focal length of the lens having a meniscus aspheric shape included in the second lens group.
  • CR_r1 is the radius of curvature of the object side of the lens closest to the image side of the first lens group
  • CR_r2 is the radius of curvature of the image side of the lens closest to the image side of the first lens group.
  • An imaging device includes the above-mentioned lens system.
  • the imaging device includes an imaging element.
  • the moving body according to one aspect of the present invention includes the above-mentioned lens system and moves.
  • the moving body may be an unmanned aircraft.
  • FIG. 1 also shows the lens structure, optical member F, and image surface IMA of the lens system 100 in the first embodiment.
  • FIG. 2 shows spherical aberration, astigmatism, and distortion aberration of the lens system 100 in an infinite focus state.
  • FIG. 3 also shows the lens structure, optical member F, and image plane IMA of the lens system 200 in the second embodiment.
  • FIG. 4 shows the spherical aberration, astigmatism, and distortion aberration of the lens system 200 in an infinite focus state.
  • FIG. 5 also shows the lens structure, optical member F, and image plane IMA of the lens system 300 in the third embodiment.
  • FIG. 6 shows spherical aberration, astigmatism, and distortion aberration of the lens system 300 in an infinite focus state.
  • FIG. 7 shows the lens structure, optical member F, and image surface IMA of the lens system 400 in the fourth embodiment at the same time.
  • FIG. 8 shows spherical aberration, astigmatism, and distortion aberration of the lens system 400 in an infinite focus state.
  • FIG. 9 schematically shows an example of a mobile body system 10 including an unmanned aircraft (UAV) 40 and a controller 50.
  • UAV unmanned aircraft
  • FIG. 10 shows an example of the functional blocks of UAV40.
  • FIG. 11 is an external perspective view showing an example of the stabilizer 3000.
  • the lens system of one embodiment includes, from the object side to the image side, a positive first lens group, an aperture stop, and a positive second lens group in order.
  • the first lens group includes three or more lenses, including one or more cemented lenses and one lens having a meniscus aspherical shape convex toward the object side in order from the object side.
  • the second lens group includes four or more lenses, including one or more cemented lenses and one lens having a meniscus aspherical shape recessed toward the object side in order from the object side.
  • the lens system satisfies the following conditional formula:
  • f is the focal length of the entire system
  • f1 is the focal length of the first lens group
  • TL is the closest object of the first lens group in the infinite focus state on the optical axis when the back focal length is converted to air.
  • Y is the maximum image height.
  • each lens can effectively share the correction of on-axis and off-axis aberrations on each surface while maintaining a shorter back focus relative to the size of the imaging sensor.
  • a lens structure with a short back focal length since the incident angle to each lens surface becomes larger, and the deflection angle caused by the incident and emergence of the lens causes a large amount of aberration, various aberrations are easily changed. Big.
  • the aspheric lenses of the first lens group and the second lens group are arranged substantially symmetrically, each aberration can be suppressed while effectively performing aspheric images. Difference correction.
  • Conditional expression 1 specifies the ratio of the refractive power of the first lens group to the entire lens system. If the upper limit of Conditional Expression 1 is exceeded, the refractive power of the first lens group is relatively enhanced, and although this contributes to miniaturization, correction of off-axis aberrations may become difficult. On the other hand, if the lower limit of the conditional expression is exceeded, the refractive power of the first lens group is relatively weakened, which leads to an increase in the size of the lens. In order to improve performance while maintaining the small size, it is required to increase the sensitivity of each lens. It is difficult to manufacture.
  • Conditional expression 2 defines the relationship between the total length of the lens system and the maximum image height when focusing on an infinite subject. If the upper limit of conditional expression 2 is exceeded, although it is advantageous for aberration correction, it is difficult to shorten the total length of the lens system. On the other hand, if the lower limit of the conditional expression is exceeded, the total length of the lens system relative to the maximum image height becomes shorter, and it becomes difficult to maintain aberration performance.
  • the lens system of this embodiment may satisfy the following conditional expression 3:
  • EPD is the exit pupil distance
  • Y is the maximum image height
  • Conditional expression 3 defines the relationship between the exit pupil position and the maximum image height when focusing on an infinite subject. If the upper limit of conditional expression 3 is exceeded, since the exit pupil position is far from the imaging surface, it is difficult to miniaturize the overall length. On the other hand, if the lower limit of the conditional expression is exceeded, since the exit pupil distance is too short with respect to the maximum image height, the incident angle of off-axis rays increases, and off-axis aberration is likely to occur. In addition, because it deviates from the limitation of the incident angle of the imaging element, it is easy to cause dimming in the surroundings.
  • the lens system of this embodiment can satisfy Conditional Equation 4 and Conditional Equation 5.
  • f_1asp is the focal length of the lens having a meniscus aspheric shape included in the first lens group
  • f_2asp is the focal length of the lens having a meniscus aspheric shape included in the second lens group.
  • Conditional expression 4 and conditional expression 5 define the relationship between the focal length of the entire system, the focal length of the aspheric lens of the first lens group, and the focal length of the aspheric lens of the second lens group. If the upper limit of conditional expression 4 and conditional expression 5 is exceeded, the refractive power of the aspheric lens of each lens group is too strong, the substantially symmetrical system configuration is destroyed, and aberration correction becomes difficult. In addition, the eccentric sensitivity of the aspherical portion becomes higher, and the manufacturing difficulty becomes higher.
  • the lens system of this embodiment can satisfy conditional expression 6:
  • CR_r1 is the radius of curvature of the object side of the lens closest to the image side of the first lens group
  • CR_r2 is the radius of curvature of the image side of the lens closest to the image side of the first lens group.
  • Conditional expression 6 defines the relationship between the radius of curvature of the object side surface of the lens closest to the stop side of the first lens group and the second lens group. If the lower limit of Conditional Expression 6 is exceeded, the balance between spherical aberration and curvature of field will be broken, and aberration correction will become difficult. In addition, performance degradation during eccentricity becomes greater.
  • a lens having substantially no refractive power may be included in addition to the constituent elements listed.
  • Diaphragms, filters, glass covers, and other mechanical elements that have substantially refractive power such as non-lens optical elements and/or lens flanges, imaging elements, and shake correction mechanisms.
  • non-lens optical elements and/or lens flanges such as non-lens optical elements and/or lens flanges, imaging elements, and shake correction mechanisms.
  • non-lens optical elements and/or mechanism elements having substantially refractive power may be included.
  • Lm represents a lens. Among them, m behind L is a natural number. m represents the m-th lens from the object side. In each embodiment, Lm is a symbol assigned to indicate the m-th lens from the object side. In the description of each embodiment, it does not mean that the lens assigned the symbol Lm is the same lens as the lens assigned the same symbol Lm in the other embodiments.
  • the multiple surfaces of the lens system are identified using a natural number i as the surface number i. From the object side, the first surface of the optical element is set as the first surface, and then the surface numbers are added in the order in which light rays pass through the surface of the optical element.
  • STO in the surface number represents the opening surface of the aperture stop S.
  • Di represents the distance on the optical axis between the i-th surface and the i+1-th surface.
  • the lens system includes a lens having a lens surface formed as an aspheric surface.
  • the surface number of the lens surface formed as an aspherical surface is indicated by "*".
  • the aspheric shape is defined by the following formula, where "x” is the distance from the apex of the lens surface in the direction of the optical axis; “y” is the height from the optical axis in the direction perpendicular to the optical axis; “c” is the apex of the lens
  • the paraxial curvature at the position; " ⁇ ” is the conic constant (cone constant); "A”, “B”, “C”, and “D” are the 4th, 6th, 8th, and 10th aspheric coefficients respectively.
  • x is also called the sag amount.
  • Y is also called image height.
  • C is the reciprocal of the radius of curvature.
  • F focal length.
  • Fno means F number.
  • represents the half angle of view.
  • Y represents the maximum image height (IH).
  • Dex represents the exit pupil position in the infinite focus state.
  • R represents the radius of curvature. In the radius of curvature shown in the lens data, “INF” represents a plane.
  • Nd stands for refractive index.
  • FIG. 1 also shows the lens structure, optical member F, and image surface IMA of the lens system 100 in the first embodiment.
  • the lens system 100 is composed of a first lens group 110 having a positive refractive power, an aperture stop S, and a second lens group 120 having a positive refractive power in order from the object side.
  • the first lens group 110, the aperture stop S, and the second lens group 120 can move in the optical axis direction as a whole to perform focusing.
  • the first lens group 110 and the second lens group 120 move from the image side to the object side with a fixed interval on the optical axis.
  • the first lens group 110 is composed of a cemented lens obtained by cementing a negative lens L1 and a positive lens L2, a positive lens L3, and a positive lens L4.
  • the second lens group 120 is composed of a cemented lens that cements a positive lens L5 and a negative lens L6, a negative lens L7, a negative lens L8, and a positive lens L9.
  • the optical member F is provided between the lens system 100 and the image plane IMA.
  • the optical member F is a filter, a cover plate, and the like. The light passing through the lens system 100 and the optical member F is incident on the image plane IMA.
  • Table 1 shows lens data of the lens system 100.
  • Di, Nd, and Vd are shown corresponding to the surface number i.
  • the surface interval Di of the surface number 17 is a value when focusing at infinity.
  • Table 2 shows the surface numbers, the conic constant ⁇ , and the aspheric coefficients A, B, C, and D of the surfaces having the aspheric shape.
  • E-i represents an exponential expression with a base of 10, that is, "10-i”. Among them, i is an integer.
  • Table 3 shows the focal length f, Fno, half angle of view ⁇ , maximum image height Y, and exit pupil position Dex of the entire system of the lens system 100 in the infinite focus state.
  • the first lens group 110 consists of a double-concave negative lens L1 and a positive lens L2 cemented negative refractive power cemented lens, a convex surface facing the object side positive aspheric meniscus lens L3, the object side has a larger radius of curvature than the image side
  • the shape of the positive lens L4 is constituted. According to this configuration, the negative component comes first, and in a lens system with a small lens diameter, spherical aberration and off-axis aberration can be corrected well. In addition, by using a glass material with a larger Abbe number for the positive lens L2 of the cemented lens than the negative lens L1 of the cemented lens, the on-axis chromatic aberration and off-axis chromatic aberration are well corrected.
  • the second lens group 120 consists of a positive refractive power cemented lens that is a biconvex positive lens L5 and a biconcave negative lens L6, a negative aspheric meniscus lens L7 with a concave surface facing the object side, and a negative lens with a concave surface facing the object side.
  • a meniscus lens L8 and a positive meniscus lens L9 with a concave surface facing the object side are composed.
  • FIG. 2 shows spherical aberration, astigmatism, and distortion aberration in the infinite focus state of the lens system 100.
  • the one-dot chain line represents the value of the C line (656.27 nm)
  • the solid line represents the value of the d line (587.56 nm)
  • the broken line represents the value of the g line (435.84 nm).
  • the solid line represents the value of the sagittal image surface of the d-line
  • the one-dot chain line represents the value of the meridian image surface of the d-line.
  • the distortion aberration represents the value of d-line. From the various aberration diagrams, it is obvious that various aberrations in the lens system 100 are well corrected and have excellent imaging performance.
  • FIG. 3 also shows the lens structure, optical member F, and image plane IMA of the lens system 200 in the second embodiment.
  • the lens system 200 is composed of a first lens group 210 having a positive refractive power, an aperture stop S, and a second lens group 220 having a positive refractive power in order from the object side.
  • the first lens group 210, the aperture stop S, and the second lens group 220 can move in the optical axis direction as a whole to perform focusing.
  • the first lens group 210 and the second lens group 220 move from the image side to the object side with a fixed interval on the optical axis.
  • the first lens group 210 is composed of a cemented lens obtained by cementing a negative lens L1 and a positive lens L2, a positive lens L3, and a positive lens L4.
  • the second lens group 220 is composed of a cemented lens obtained by cementing a positive lens L5, a positive lens L6, and a negative lens L7, a negative lens L8, a negative lens L8, a negative lens L9, and a positive lens L10.
  • the optical member F is provided between the lens system 200 and the image plane IMA.
  • the optical member F is a filter, a cover plate, and the like. The light passing through the lens system 200 and the optical member F is incident on the image plane IMA.
  • Table 4 shows lens data of the lens system 200.
  • Di, Nd, and Vd are shown corresponding to the surface number i.
  • the surface interval Di of the surface number 19 is a value when focusing at infinity.
  • Table 5 shows the surface numbers, the conic constant ⁇ , and the aspheric coefficients A, B, C, and D of the surfaces having an aspherical shape.
  • E-i represents an exponential expression with a base of 10, that is, "10-i”. Among them, i is an integer.
  • Table 6 shows the focal length f, Fno, half angle of view ⁇ , maximum image height Y, and exit pupil position Dex of the entire system of the lens system 200 in the infinite focus state.
  • the first lens group 210 consists of a double-concave negative lens L1 and a positive lens L2 cemented negative refractive power cemented lens, a convex surface facing the object side positive aspheric meniscus lens L3, the object side has a larger radius of curvature than the image side
  • the shape of the positive lens L4 is constituted. According to this configuration, the negative component comes first, and in a lens system with a small lens diameter, spherical aberration and off-axis aberration can be corrected well. In addition, by using a glass material having a larger Abbe number than the negative lens L1 of the cemented lens as the positive lens L2 of the cemented lens, the axial chromatic aberration and the off-axis chromatic aberration can be corrected well.
  • the second lens group 220 is composed of a double-convex positive lens L5, a double-convex positive lens L6 and a double-concave negative lens L7, a positive refractive power cemented lens, a negative aspheric meniscus lens L8 with a concave surface facing the object side, A negative meniscus lens L9 with a concave surface facing the object side and a positive meniscus lens L10 with a concave surface facing the object side are constituted.
  • the biconvex positive lens L5 near the aperture stop S, the refractive power of the cemented lens can be divided. As a result, sensitivity can be suppressed, which contributes to reduction of aberrations caused by manufacturing errors.
  • the meniscus aspheric lens L8 it is possible to appropriately correct aberrations for light of each angle of view, and it is possible to correct axial aberrations and off-axis aberrations in a balanced manner.
  • a glass material whose Abbe number is larger than that of the negative lens L7 of the cemented lens as the positive lens L6 of the cemented lens the axial chromatic aberration and the off-axis chromatic aberration can be corrected well.
  • FIG. 4 shows spherical aberration, astigmatism, and distortion aberration in the infinite focus state of the lens system 200.
  • the dashed-dotted line represents the value of the C line (656.27 nm)
  • the solid line represents the value of the d line (587.56 nm)
  • the broken line represents the value of the g line (435.84 nm).
  • the solid line represents the value of the sagittal image surface of the d-line
  • the dash-dotted line represents the value of the meridional image surface of the d-line.
  • the distortion aberration represents the value of d-line. From the various aberration diagrams, it is obvious that various aberrations in the lens system 200 are well corrected and have excellent imaging performance.
  • FIG. 5 also shows the lens structure, optical member F, and image plane IMA of the lens system 300 in the third embodiment.
  • the lens system 300 is composed of a first lens group 310 having positive refractive power, an aperture stop S, and a second lens group 320 having positive refractive power in order from the object side.
  • the first lens group 310, the aperture stop S, and the second lens group 320 can move in the optical axis direction as a whole to perform focusing.
  • the first lens group 310 and the second lens group 320 move from the image side to the object side with a fixed interval on the optical axis.
  • the first lens group 310 is composed of a cemented lens that cements a negative lens L1 and a positive lens L2, a positive lens L3, and a positive lens L4.
  • the second lens group 320 is composed of a cemented lens that cements a positive lens L5 and a negative lens L6, a negative lens L7, a negative lens L8, and a cemented lens that cements a negative lens L9 and a positive lens L10.
  • the optical member F is provided between the lens system 300 and the image plane IMA.
  • the optical member F is a filter, a cover plate, and the like. The light passing through the lens system 300 and the optical member F is incident on the image plane IMA.
  • Table 7 shows lens data of the lens system 300.
  • Di, Nd, and Vd are shown corresponding to the surface number i.
  • the surface interval Di of the surface number 18 is a value when focusing at infinity.
  • Table 8 shows the surface numbers, the conic constant ⁇ , and the aspheric coefficients A, B, C, and D of the surfaces having the aspheric shape.
  • E-i represents an exponential expression with a base of 10, that is, "10-i”. Among them, i is an integer.
  • Table 9 shows the focal length f, Fno, half angle of view ⁇ , maximum image height Y, and exit pupil position Dex of the entire system of the lens system 300 in the infinite focus state.
  • the first lens group 310 consists of a double-concave negative lens L1 and a positive lens L2 cemented negative refractive power cemented lens, a convex surface facing the object side positive aspheric meniscus lens L3, the object side has a larger radius of curvature than the image side
  • the shape of the positive lens L4 constitutes.
  • the negative component comes first, and in a lens system with a small lens diameter, spherical aberration and off-axis aberration can be corrected well.
  • a glass material with a larger Abbe number than the negative lens L1 of the cemented lens as the positive lens L2 of the cemented lens, the axial chromatic aberration and the off-axis chromatic aberration can be corrected well.
  • the second lens group 320 consists of a positive refractive power cemented lens that is a biconvex positive lens L5 and a biconcave negative lens L6, a negative aspheric meniscus lens L7 with a concave surface facing the object side, and a negative lens with a concave surface facing the object side.
  • the meniscus lens L8, the double-concave negative lens L9, and the double-convex positive lens L10 are composed of a cemented lens with positive refractive power.
  • the refractive power is divided by the negative meniscus lenses L7 and L8 whose concave surface faces the object side, and the lens closest to the image side of the second lens group 320 is set as a biconcave negative lens L9 and a biconvex positive lens
  • the L10 cemented positive refractive power cemented lens helps to reduce as much as possible the aberrations caused by each negative lens deflection angle and reduce the aberrations of the second lens group 320 as a whole.
  • the meniscus aspheric lens L7 it is possible to appropriately correct aberrations for light of each viewing angle, and it is possible to correct the on-axis aberrations and off-axis aberrations in a balanced manner.
  • a glass material having a larger Abbe number than the negative lens L6 of the cemented lens is used for the positive lens L5 of the cemented lens, so that axial chromatic aberration and off-axis chromatic aberration can be corrected well.
  • FIG. 6 shows spherical aberration, astigmatism, and distortion aberration in the infinite focus state of the lens system 300.
  • the one-dot chain line represents the value of the C line (656.27 nm)
  • the solid line represents the value of the d line (587.56 nm)
  • the broken line represents the value of the g line (435.84 nm).
  • the solid line represents the value of the sagittal image surface of the d-line
  • the one-dot chain line represents the value of the meridian image surface of the d-line.
  • the distortion aberration represents the value of d-line. From the various aberration diagrams, it is obvious that various aberrations in the lens system 300 are well corrected and have excellent imaging performance.
  • FIG. 7 shows the lens structure, optical member F, and image surface IMA of the lens system 400 in the fourth embodiment at the same time.
  • the lens system 400 is composed of a first lens group 410 having a positive refractive power, an aperture stop S, and a second lens group 420 having a positive refractive power in order from the object side.
  • the first lens group 410, the aperture stop S, and the second lens group 420 can move in the optical axis direction as a whole to perform focusing.
  • the first lens group 410 and the second lens group 420 move from the image side to the object side with a fixed interval on the optical axis.
  • the first lens group 410 is composed of a cemented lens obtained by cementing a negative lens L1 and a positive lens L2, a positive lens L3, and a positive lens L4.
  • the second lens group 420 is composed of a cemented lens obtained by cementing a positive lens L5, a negative lens L6, and a negative lens L7, a negative lens L8, a negative lens L9, and a positive lens L10.
  • the optical member F is provided between the lens system 400 and the image plane IMA.
  • the optical member F is a filter, a cover plate, and the like. The light passing through the lens system 400 and the optical member F is incident on the image plane IMA.
  • Table 10 shows lens data of the lens system 400.
  • Di, Nd, and Vd are shown corresponding to the surface number i.
  • the surface interval Di of the surface number 18 is a value when focusing at infinity.
  • Table 11 shows the surface numbers, the conic constant ⁇ , and the aspheric coefficients A, B, C, and D of the surfaces having an aspherical shape.
  • E-i represents an exponential expression with a base of 10, that is, "10-i”. Among them, i is an integer.
  • Table 12 shows the focal length f, Fno, half angle of view ⁇ , maximum image height Y, and exit pupil position Dex of the entire system of the lens system 400 in the infinite focus state.
  • the first lens group 410 is composed of a double-concave negative lens L1 and a positive lens L2 with a negative refractive power cemented lens, and a positive aspheric meniscus lens L3 with a convex surface facing the object side.
  • the object side has a larger radius of curvature than the image side.
  • the shape of the positive lens L4 constitutes. According to this configuration, the negative component comes first, and in a lens system with a small lens diameter, spherical aberration and off-axis aberration can be corrected well.
  • a glass material having a larger Abbe number than the negative lens L1 of the cemented lens as the positive lens L2 of the cemented lens, the axial chromatic aberration and the off-axis chromatic aberration can be corrected well.
  • the second lens group 420 is composed of three cemented lenses with positive refractive power that cement a biconvex positive lens L5, a biconcave negative lens L6 and a biconcave negative lens L7, and a negative aspheric meniscus lens with a concave surface facing the object side L8, a negative meniscus lens L9 with a concave surface facing the object side, and a positive meniscus lens 10 with a concave surface facing the object side.
  • a cemented lens is provided near the aperture stop S, and by using a meniscus aspheric lens L8, it is possible to appropriately correct aberrations for light of each angle of view, and to balance on-axis and off-axis aberrations.
  • a glass material with a very high Abbe number for one of the three cemented lenses on-axis chromatic aberration and off-axis chromatic aberration can be corrected well.
  • FIG. 8 shows spherical aberration, astigmatism, and distortion aberration in the infinite focus state of the lens system 400.
  • the one-dot chain line represents the value of the C line (656.27 nm)
  • the solid line represents the value of the d line (587.56 nm)
  • the broken line represents the value of the g line (435.84 nm).
  • the solid line represents the value of the sagittal image surface of the d-line
  • the one-dot chain line represents the value of the meridian image surface of the d-line.
  • the distortion aberration represents the value of d-line. From the various aberration diagrams, it is obvious that various aberrations in the lens system 400 are well corrected and have excellent imaging performance.
  • Table 13 shows the numerical values involved in each conditional expression in the first to fourth embodiments.
  • the lens system according to this embodiment can be applied to lens systems for imaging devices such as digital cameras and video cameras.
  • the lens system according to this embodiment can be applied to a lens system that does not have a zoom mechanism.
  • the lens system according to this embodiment can also be applied to a lens system having a zoom mechanism.
  • the lens system according to this embodiment can be applied to an imaging lens included in a non-interchangeable lens type imaging device.
  • the lens system according to this embodiment can be applied to interchangeable lenses of interchangeable lens cameras such as single-lens reflex cameras.
  • FIG. 9 schematically shows an example of a mobile body system 10 including an unmanned aircraft (UAV) 40 and a controller 50.
  • the UAV 40 includes a UAV main body 1101, a universal joint 1110, a plurality of camera devices 1230, and a camera device 1220.
  • the imaging device 1220 includes a lens device 1160 and an imaging unit 1140.
  • the lens device 1160 includes the above-mentioned lens system.
  • the UAV40 is an example of a moving body that includes the imaging device having the above-mentioned lens system and moves.
  • the mobile body refers to a concept that includes other airplanes that move in the air, vehicles that move on the ground, and ships that move on water in addition to UAVs.
  • the UAV main body 1101 includes a plurality of rotors.
  • the UAV main body 1101 makes the UAV 40 fly by controlling the rotation of a plurality of rotors.
  • the UAV main body 1101 uses, for example, four rotors to fly the UAV 40.
  • the number of rotors is not limited to four.
  • UAV40 can also be a fixed-wing aircraft without rotors.
  • the imaging device 1230 is an imaging camera that captures a subject included in a desired imaging range.
  • the plurality of imaging devices 1230 are sensing cameras that photograph the surroundings of the UAV 40 in order to control the flight of the UAV 40.
  • the camera 1230 may be fixed on the UAV main body 1101.
  • the two camera devices 1230 can be installed on the nose of the UAV 40, that is, on the front.
  • the other two camera devices 1230 can be installed on the bottom surface of the UAV 40.
  • the two camera devices 1230 on the front side can be paired to function as a so-called stereo camera.
  • the two imaging devices 1230 on the bottom side can also be paired to function as a stereo camera.
  • the three-dimensional spatial data around the UAV 40 can be generated based on images captured by the plurality of camera devices 1230.
  • the distance to the subject captured by the plurality of imaging devices 1230 can be determined by the stereo cameras of the plurality of imaging devices 1230.
  • the number of camera devices 1230 included in the UAV 40 is not limited to four.
  • the UAV40 only needs to include at least one camera 1230.
  • the UAV40 may be equipped with at least one camera 1230 on the nose, tail, side, bottom and top of the UAV40.
  • the imaging device 1230 may also have a single focus lens or a fisheye lens.
  • the plurality of imaging devices 1230 may be simply collectively referred to as imaging devices 1230.
  • the controller 50 includes a display unit 54 and an operation unit 52.
  • the operation unit 52 receives an input operation for controlling the posture of the UAV 40 from the user.
  • the controller 50 transmits a signal for controlling the UAV 40 in accordance with the user's operation received by the operation unit 52.
  • the controller 50 receives an image taken by at least one of the camera 1230 and the camera 1220.
  • the display section 54 displays the image received by the controller 50.
  • the display part 54 may be a touch panel.
  • the controller 50 may receive input operations from the user through the display part 54.
  • the display unit 54 can receive a user operation or the like in which the user specifies the position of the subject to be photographed by the imaging device 1220.
  • the imaging unit 1140 generates and records image data of an optical image formed by the lens device 1160.
  • the lens device 1160 may be integrally provided on the imaging unit 1140.
  • the lens device 1160 may be a so-called interchangeable lens.
  • the lens device 1160 can be detachably installed in the imaging unit 1140.
  • the universal joint 1110 has a supporting mechanism that movably supports the camera 1220.
  • the camera device 1220 is mounted on the UAV main body 1101 through a universal joint 1110.
  • the universal joint 1110 rotatably supports the imaging device 1220 around the pitch axis.
  • the universal joint 1110 rotatably supports the imaging device 1220 around the roll axis.
  • the universal joint 1110 rotatably supports the camera device 1220 around the yaw axis.
  • the universal joint 1110 may rotatably support the camera device 1220 around at least one of the pitch axis, the roll axis, and the yaw axis.
  • the universal joint 1110 can rotatably support the imaging device 1220 around the pitch axis, the roll axis, and the yaw axis, respectively.
  • the universal joint 1110 may also hold the imaging unit 1140.
  • the universal joint 1110 may also hold the lens device 1160.
  • the universal joint 1110 can rotate the imaging unit 1140 and the lens device 1160 around at least one of the yaw axis, the pitch axis, and the roll axis, thereby changing the imaging direction of the imaging device 1220.
  • FIG. 10 shows an example of the functional blocks of UAV40.
  • the UAV 40 includes an interface 1102, a control unit 1104, a memory 1106, a universal joint 1110, a camera unit 1140, and a lens device 1160.
  • the interface 1102 communicates with the controller 50.
  • the interface 1102 receives various instructions from the controller 50.
  • the control unit 1104 controls the flight of the UAV 40 in accordance with instructions received from the controller 50.
  • the control unit 1104 controls the universal joint 1110, the imaging unit 1140, and the lens device 1160.
  • the control unit 1104 may be composed of a microprocessor such as a CPU or an MPU, and a microcontroller such as an MCU.
  • the memory 1106 stores programs and the like necessary for the control unit 1104 to control the gimbal 1110, the imaging unit 1140, and the lens device 1160.
  • the memory 1106 may be a computer-readable recording medium.
  • the memory 1106 may include at least one of flash memory such as SRAM, DRAM, EPROM, EEPROM, and USB memory.
  • the storage 1106 may be provided in the housing of the UAV40. It can be set to be detachable from the UAV40 housing.
  • the universal joint 1110 includes a control part 1112, a driver 1114, a driver 1116, a driver 1118, a driving part 1124, a driving part 1126, a driving part 1128, and a supporting mechanism 1130.
  • the driving part 1124, the driving part 1126, and the driving part 1128 may be motors.
  • the supporting mechanism 1130 supports the imaging device 1220.
  • the supporting mechanism 1130 movably supports the imaging device 1220 in the imaging direction.
  • the supporting mechanism 1130 rotatably supports the imaging unit 1140 and the lens device 1160 around the yaw axis, the pitch axis, and the roll axis.
  • the support mechanism 1130 includes a rotation mechanism 1134, a rotation mechanism 1136, and a rotation mechanism 1138.
  • the rotation mechanism 1134 rotates the imaging unit 1140 and the lens device 1160 around the yaw axis through the drive unit 1124.
  • the rotation mechanism 1136 rotates the imaging unit 1140 and the lens device 1160 around the tilt axis through the drive unit 1126.
  • the rotation mechanism 1138 rotates the imaging unit 1140 and the lens device 1160 around the roll axis through the drive unit 1128.
  • the control unit 1112 outputs to the driver 1114, the driver 1116, and the driver 1118 in accordance with the operation command of the universal joint 1110 from the control unit 1104 an operation command indicating the respective rotation angle.
  • the driver 1114, the driver 1116, and the driver 1118 drive the driving unit 1124, the driving unit 1126, and the driving unit 1128 in accordance with an operation command indicating the rotation angle.
  • the rotation mechanism 1134, the rotation mechanism 1136, and the rotation mechanism 1138 are driven and rotated by the driving unit 1124, the driving unit 1126, and the driving unit 1128, respectively, thereby changing the postures of the imaging unit 1140 and the lens device 1160.
  • the imaging unit 1140 uses light passing through the lens system 1168 to perform imaging.
  • the imaging unit 1140 includes a control unit 1222, an imaging element 1221, and a memory 1223.
  • the control unit 1222 may be composed of a microprocessor such as a CPU or an MPU, a microcontroller such as an MCU, and the like.
  • the control unit 1222 controls the imaging unit 1140 and the lens device 1160 in accordance with the operation instructions for the imaging unit 1140 and the lens device 1160 from the control unit 1104.
  • the control unit 1222 outputs a control command to the lens device 1160 to the lens device 1160 according to the signal received from the controller 50.
  • the control instruction may be an instruction to vibrate the lens system 1168 or an instruction to detect the temperature of the lens system 1168.
  • the memory 1223 may be a computer-readable recording medium, and may include at least one of flash memory such as SRAM, DRAM, EPROM, EEPROM, and USB memory.
  • the memory 1223 may be provided inside the housing of the imaging unit 1140.
  • the camera unit 1140 can be configured to be detachable from the housing.
  • the imaging element 1221 is held inside the housing of the imaging unit 1140, generates image data of an optical image formed by the lens device 1160, and outputs the image data to the control unit 1222.
  • the control unit 1222 stores the image data output from the imaging element 1221 in the memory 1223.
  • the control unit 1222 may output the image data to the memory 1106 through the control unit 1104 for storage.
  • the lens device 1160 includes a control unit 1162, a memory 1163, a driving mechanism 1161, and a lens system 1168.
  • the lens system according to the above embodiment can be applied as the lens system 1168.
  • the control unit 1162 can drive the lens system 1168 in accordance with a control command from the control unit 1222.
  • the driving mechanism 1161 can move the plurality of lens groups and the aperture stop included in the lens system 1168 in the direction of the optical axis according to a control command from the control unit 1162, thereby adjusting the focus of the lens system 1168.
  • the driving mechanism 1161 can control the aperture stop included in the lens system 1168 according to a control command from the control unit 1162.
  • the driving mechanism 1161 can vibrate the lens system 1168 in accordance with a control command from the control unit 1162.
  • the driving mechanism 1161 includes, for example, an actuator and the like.
  • the image formed by the lens system 1168 of the lens device 1160 is captured by the imaging unit 1140.
  • the lens device 1160 may be integrally provided on the imaging unit 1140.
  • the lens device 1160 may be a so-called interchangeable lens.
  • the lens device 1160 can be detachably installed in the imaging unit 1140.
  • the imaging device 1230 includes a control unit 1232, a control unit 1234, an imaging element 1231, a memory 1233, and a lens 1235.
  • the control unit 1232 may be composed of a microprocessor such as a CPU or an MPU, and a microcontroller such as an MCU.
  • the control unit 1232 controls the imaging element 1231 in accordance with the operation command of the imaging element 1231 from the control unit 1104.
  • the control unit 1234 may be composed of a microprocessor such as a CPU or an MPU, and a microcontroller such as an MCU.
  • the control unit 1234 can adjust the focus of the lens 1235 in accordance with the operation instruction for the lens 1235.
  • the control unit 1234 can control the aperture stop of the lens 1235 in accordance with an operation command for the lens 1235.
  • the memory 1233 may be a computer-readable recording medium.
  • the memory 1233 may include at least one of flash memory such as SRAM, DRAM, EPROM, EEPROM, and USB memory.
  • the imaging element 1231 generates image data of an optical image formed by the lens 1235 and outputs it to the control unit 1232.
  • the control unit 1232 stores the image data output from the imaging element 1231 in the memory 1233.
  • the UAV 40 includes a control unit 1104, a control unit 1112, a control unit 1222, a control unit 1232, a control unit 1234, and a control unit 1162.
  • the processing executed by a plurality of the control unit 1104, the control unit 1112, the control unit 1222, the control unit 1232, the control unit 1234, and the control unit 1162 may be executed by any one control unit.
  • the processing executed by the control unit 1104, the control unit 1112, the control unit 1222, the control unit 1232, the control unit 1234, and the control unit 1162 may also be executed by one control unit.
  • the UAV 40 includes a memory 1106, a memory 1223, and a memory 1233.
  • the information stored in at least one of the storage 1106, the storage 1223, and the storage 1233 may be stored in one or more other storages among the storage 1106, the storage 1223, and the storage 1233.
  • the imaging device 1220 includes the lens device 1160 having the lens system according to the above-mentioned embodiment, so that it is possible to provide a compact imaging function with high optical performance.
  • FIG. 11 is an external perspective view showing an example of the stabilizer 3000.
  • the stabilizer 3000 is another example of a moving body.
  • the camera unit 3013 included in the stabilizer 3000 may include an imaging device having the same structure as the imaging device 1220.
  • the camera unit 3013 may include a lens device having the same structure as the lens device 1160.
  • the stabilizer 3000 includes a camera unit 3013, a universal joint 3020, and a handle 3003.
  • the universal joint 3020 rotatably supports the camera unit 3013.
  • the universal joint 3020 has a translation shaft 3009, a roll shaft 3010, and a tilt shaft 3011.
  • the universal joint 3020 rotatably supports the camera unit 3013 centered on the translation shaft 3009, the roll shaft 3010, and the tilt shaft 3011.
  • the universal joint 3020 is an example of a supporting mechanism.
  • the camera unit 3013 is an example of an imaging device.
  • the camera unit 3013 has a slot 3014 into which a memory is inserted.
  • the universal joint 3020 is fixed on the handle 3003 by a bracket 3007.
  • the handle 3003 has various buttons for operating the universal joint 3020 and the camera unit 3013.
  • the handheld portion 3003 includes a shutter button 3004, a recording button 3005, and an operation button 3006. By pressing the shutter button 3004, a still image can be recorded by the camera unit 3013. By pressing the recording button 3005, a moving image can be recorded by the camera unit 3013.
  • the device holder 3001 is fixed on the handle 3003.
  • the device holder 3001 holds mobile devices 3002 such as smart phones.
  • the mobile device 3002 is communicably connected with the stabilizer 3000 through a wireless network such as WiFi. Thereby, the image taken by the camera unit 3013 can be displayed on the screen of the mobile device 3002.
  • the camera unit 3013 also includes the lens system according to the above-mentioned embodiment, so that it is possible to provide a compact imaging function with high optical performance.
  • the UAV40 and the stabilizer 3000 have been cited and explained.
  • the camera device having the same structure as the camera device 1220 can be mounted on a moving body other than the UAV40 and the stabilizer 3000.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种图像尺寸较大并且光学性能较高的小型透镜系统(100),透镜系统(100)从物侧到像侧包括:正的第一透镜组(110)、孔径光阑(S)、正的第二透镜组(120),从无穷远聚焦状态向近物聚焦状态进行聚焦时,第一透镜组(110)与第二透镜组(120)在光轴上的间隔固定的状态下,从像侧向物侧移动,第一透镜组(110)包括三个以上的透镜,从物侧开始依次包括一个以上的胶合透镜以及向物侧凸起的一个弯月形非球面形状的透镜(L3),第二透镜组(120)包括四个以上的透镜,从物侧开始依次包括一个以上的胶合透镜以及向物侧凹陷的一个弯月形非球面形状透镜(L7),关于整个系统的焦距f、第一透镜组(110)的焦距f1、无穷远聚焦时的第一透镜组(110)的最靠近物侧透镜面至像面的光轴上的距离TL(后焦距以空气换算长度计)及最大像高Y,满足0.5<f/f1<1.1及1.9<TL/Y<2.4。

Description

透镜系统、摄像装置及移动体 技术领域
本发明涉及一种透镜系统、摄像装置及移动体。
背景技术
专利文献1中公开有一种摄像镜头,其为负先行镜头,且F数相对较小并且相对广角。专利文献2中公开有一种F数相对较小并且相对广角的成像镜头。
专利文献1日本特许第5638702号说明书
专利文献2日本特许第6111798号说明书
发明内容
发明所要解决的技术问题:
需要一种图像尺寸较大并且具有较高光学性能的小型透镜系统。还期望一种包含含后焦距的光学全长较短的透镜系统。
用于解决问题的技术手段:
本发明的一个方面所涉及的透镜系统从物侧至像侧依次包括:正的第一透镜组、孔径光阑、正的第二透镜组。从无穷远聚焦状态向近物聚焦状态进行聚焦时,第一透镜组与第二透镜组在光轴上的间隔固定的状态下从像侧向物侧移动。第一透镜组包括三个以上的透镜,从物侧开始依次包括一个以上的胶合透镜以及一个具有向物侧凸起的弯月形非球面形状的透镜。第二透镜组包括四个以上的透镜,从物侧开始依次包括一个以上的胶合透镜以及一个具有向物侧凹陷的弯月形非球面形状的透镜。透镜系统满足以下条件式:
0.5<f/f1<1.1
1.9<TL/Y<2.4
其中,f为整个系统的焦距;f1为第一透镜组的焦距;TL为将后焦距以空气换算长度计的情况下,无穷远聚焦状态的第一透镜组的最靠近物侧的透镜面至像面在光轴上的距离;Y为最大像高。
可以满足以下条件式:
1.3<EPD/Y<1.7
其中,EPD为出瞳距离;Y为最大像高。
可以满足以下条件式:
|f/f_1asp|<1.0
|f/f_2asp|<1.0
其中,f_1asp为第一透镜组所包括的具有弯月形非球面形状的透镜的焦距;f_2asp为第二透镜组所包括的具有弯月形非球面形状的透镜的焦距。
可以满足以下条件式:
|CR_r1/CR_r2|>5
其中,CR_r1为第一透镜组的最靠近像侧的透镜的物侧面的曲率半径;CR_r2为第一透镜组的最靠近像侧的透镜的像侧面的曲率半径。
本发明的一个方面所涉及的摄像装置包括上述透镜系统。摄像装置包括摄像元件。
本发明的一个方面所涉及的移动体包括上述透镜系统并移动。
移动体可以是无人驾驶航空器。
根据上述透镜系统,能够提供一种图像尺寸较大并且具有较高的光学性能的小型透镜系统。
上述发明内容并未列举出本发明的全部特征。这些特征组的子集可以构成发明。
附图说明
图1同时示出了第一实施例中的透镜系统100的透镜结构、光学构件F及像面IMA。
图2示出了无穷远聚焦状态的透镜系统100的球面像差、像散及畸变像差。
图3同时示出了第二实施例中的透镜系统200的透镜结构、光学构件F及像面IMA。
图4示出了无穷远聚焦状态的透镜系统200的球面像差、像散及畸变像差。
图5同时示出了第3实施例中的透镜系统300的透镜结构、光学构件F及像面IMA。
图6示出了无穷远聚焦状态的透镜系统300的球面像差、像散及畸变像差。
图7同时示出了第四实施例中的透镜系统400的透镜结构、光学构件F及像面IMA。
图8示出了无穷远聚焦状态的透镜系统400的球面像差、像散及畸变像差。
图9示意性地示出了包括无人驾驶航空器(UAV)40及控制器50的移动体系统10的一个示例。
图10示出了UAV40的功能块的一个示例。
图11是示出了稳定器3000的一个示例的外观立体图。
符号说明:
10               移动体系统
40               UAV
50               控制器
52               操作部
54               显示部
1101             UAV主体
1102             接口
1104             控制部
1106             存储器
1110               万向节
1112               控制部
1114、1116、1118   驱动器
1124、1126、1128   驱动部
1130               支撑机构
1134、1136、1138   旋转机构
1140               摄像部
1160               镜头装置
1161               驱动机构
1162               控制部
1163               存储器
1168               透镜系统
1220、1230         摄像装置
1221               摄像元件
1222               控制部
1223               存储器
1231               摄像元件
1232               控制部
1233               存储器
1234               控制部
1235               镜头
100、200、300、400 透镜系统
110、210、310、410 第一透镜组
120、220、320、420 第二透镜组
3000               稳定器
3001               器件固定器
3002               移动设备
3003               手持部
3004               快门按钮
3005               录像按钮
3006               操作按钮
3007               支架
3009               平移轴
3010               滚转轴
3011               倾斜轴
3013               相机单元
3014               插槽
3020               万向节
具体实施方式
以下,通过发明的实施方式来说明本发明,但是以下的实施方式并不限定权利要求书的发明。此外,实施方式中所说明的所有特征组合对于发明的解决方案未必是必须的。对本领域普通技术人员来说,显然可以对以下实施方式加以各种变更或改良。从权利要求书的描述显而易见的是,加以了这样的变更或改良的方式都可包含在本发明的技术范围之内。
权利要求书、说明书、说明书附图以及说明书摘要中包含作为著作权所保护对象的事项。任何人只要如专利局的文档或者记录所表示的那样进行这些文件的复制,著作权人则不会提出异议。但是,在除此以外的情况下,保留一切的著作权。
结合图1至图8公开了透镜系统的实施例。如各实施例所示,一实施方式的透镜系统从物侧至像侧依次包括:正的第一透镜组、孔径光阑、正的第二透镜组。从无穷远聚焦状态向近物聚焦状态进行聚焦时,第一透镜组与第二透镜组在光轴上的间隔固定的状态下从像侧向物侧移动。第一透镜组包括三个以上的透镜,从物侧开始依次包括一个以上的胶合透镜以及一个具有向物侧凸起的弯月形非球面形状的透镜。第二透镜组包括四个以上的透镜,从物侧开始依次包括一个以上的胶合透镜以及一个具有向物侧凹陷的弯月形非球面形状的透镜。透镜系统满足以下条件式:
0.5<f/f1<1.1…(条件式1)
1.9<TL/Y<2.4…(条件式2)
其中,f为整个系统的焦距;f1为第一透镜组的焦距;TL为将后焦距以空气换算长度计的情况下,在光轴上从无穷远对焦状态的第一透镜组的最靠近物侧的透镜面至像面的距离;Y为最大像高。
通过采用上述结构,在相对于摄像传感器尺寸维持了更短的后焦距的状态下,各个透镜可有效地分担对各个面上的轴上及轴外像差的校正。另外,在后焦距较短的透镜结构中,由于向各个透镜面的入射角变大,并且由透镜入射与出射所产生的偏角差导致像差发生量较大,因而各种像差容易变大。与此相对,根据本实施方式的透镜系统,由于第一透镜组与第二透镜组的非球面透镜分别实质上对称地设置,因此在抑制各像差的同时,能够有效地进行非球面的像差校正。
条件式1对第一透镜组与透镜系统整体的屈光力之比进行规定。如果超出条件式1的上限,则第一透镜组的屈光力相对地增强,虽然这有助于小型化,但是轴外像差的校正会变得困难。另一方面,如果超出条件式的下限,则第一透镜组的屈光力相对地减弱,这会导致透镜的大型化,为了在保持小型的条件下提高性能则要求提高各个透镜的灵敏度,这增大了制造难度。
此外,通过满足以下条件式1-1,以使上述效果更为显著。
0.65<f/f1<1.0…(条件式1-1)
条件式2对聚焦于无穷远被摄体时的透镜系统的全长与最大像高的关系进行规定。如果超出条件式2的上限,虽然有利于像差校正,但是难以缩短透镜系统的全长。另 一方面,如果超出条件式的下限,则相对于最大像高透镜系统的全长变短,并且难以维持像差性能。
此外,通过满足条件式2-1,以使上述效果更为显著。
2.1<TL/Y<2.3…(条件式2-1)
本实施方式的透镜系统可以满足以下条件式3:
1.3<EPD/Y<1.7…(条件式3)
其中,EPD为出瞳距离;Y为最大像高。
条件式3对聚焦于无穷远被摄体时的出瞳位置与最大像高的关系进行规定。如果超出条件式3的上限,则由于出瞳位置远离撮像面,因此难以使全长小型化。另一方面,如果超出条件式的下限,则由于相对于最大像高出瞳距离过短,因此轴外光线的入射角增大,容易发生轴外像差。另外,由于脱离了摄像元件的入射角限制,容易导致周围的减光。
此外,通过满足条件式3-1,以使上述效果更为显著。
1.4<EPD/Y<1.6…(条件式3-1)
本实施方式的透镜系统可以满足条件式4及条件式5:
|f/f_1asp|<1.0…(条件式4)
|f/f_2asp|<1.0…(条件式5)
其中,f_1asp为第一透镜组所包括的具有弯月形非球面形状的透镜的焦距;f_2asp为第二透镜组所包括的具有弯月形非球面形状的透镜的焦距。
条件式4及条件式5对整个系统的焦距与第一透镜组的非球面透镜的焦距及第二透镜组的非球面透镜的焦距的关系进行规定。如果超出条件式4及条件式5的上限,则各个透镜组的非球面透镜的屈光力过强,大致对称的系统构成会被破坏,像差校正变得较困难。另外,非球面部的偏心灵敏度变高,制造难度变高。
此外,通过满足条件式4-1及条件式5-1,以使上述效果更为显著。
|f/f_1asp|<0.8…(条件式4-1)
|f/f_2asp|<0.6…(条件式5-1)
本实施方式的透镜系统可以满足条件式6:
|CR_r1/CR_r2|>5…(条件式6)
其中,CR_r1为第一透镜组的最靠近像侧的透镜的物侧面的曲率半径;CR_r2为第一透镜组的最靠近像侧的透镜的像侧面的曲率半径。
条件式6对第一透镜组及第二透镜组的最靠近光阑侧透镜的物侧面的曲率半径的关系进行规定。如果超出条件式6的下限,则会破坏球面像差与像面弯曲的平衡,像差校正变得较困难。另外,偏心时的性能劣化变大。
此外,通过满足条件式6-1,以使上述效果更为显著。
|CR_r1/CR_r2|>10…(条件式6-1)
此外,在本说明书中当使用“由~组成”、“由~构成”、“由~构成的”这些术语时,表示在所列举的构成元件的基础上,可以包括实质上不具有屈光力的透镜、光阑、滤光片及玻璃盖片等实质上具有屈光力的非透镜光学元件及/或者透镜凸缘、摄像元件及抖动校正机构等机构要素。例如,当使用“由X组成”、“由X构成”、“由X构成的”这些术语时,表示在X的基础上,可以包括实质上具有屈光力的非透镜光学元件及/或者机构要素。
以下,对透镜系统的实施方式所涉及的实施例的透镜结构进行说明。首先,对透镜系统的各实施例的说明中所使用的符号的意思进行说明。
“Lm”表示透镜。其中,L后面的m是自然数。m表示从物侧开始的第m个透镜。在各实施例中,Lm是为了表示从物侧开始的第m个透镜而分配的符号。在各实施例的说明中,并不意味着分配了符号Lm的透镜与其他的实施例中分配了相同符号Lm的透镜是相同的透镜。
透镜系统所具有的多个面是以自然数i作为面编号i来进行识别的。从物侧来看将光学元件的最初的面设为第一面,之后,以光线通过光学元件的面的顺序对面编号进行累加。面编号中的“STO”表示孔径光阑S的开孔面。“Di”表示第i个面与第i+1个面之间在光轴上的间隔。
有时透镜系统包括具有形成为非球面的透镜面的透镜。对形成为非球面的透镜面的面编号标注“*”进行表示。非球面形状由下式定义,其中“x”为在光轴方向上距透镜面顶点的距离;“y”为在与光轴垂直的方向上距光轴的高度;“c”为透镜的顶点处的近轴曲率;“κ”为圆锥常数(锥常数);“A”、“B”、“C”、“D”分别为4阶、6阶、8阶、10阶等非球面系数。
x=cy2/(1+(1-(1+κ)c2y2)1/2)+Ay4+By6+Cy8+Dy10
此外,“x”也称为下垂量。“y”也称为像高。“c”是曲率半径的倒数。
“f”表示焦距。“Fno”表示F数。“ω”表示半视场角。“Y”表示最大像高(IH)。“Dex”表示无穷远聚焦状态的出瞳位置。“R”表示曲率半径。在透镜数据所示的曲率半径中,“INF”表示平面。“Nd”表示折射率。“Vd”表示阿贝数。折射率Nd及阿贝数Vd是d线(λ=587.6nm)上的值。
图1同时示出了第一实施例中的透镜系统100的透镜结构、光学构件F及像面IMA。透镜系统100从物侧开始依次由具有正屈光力的第一透镜组110、孔径光阑S、具有正屈光力的第二透镜组120构成。第一透镜组110、孔径光阑S、第二透镜组120可整体在光轴方向上移动来进行聚焦。从无穷远聚焦状态向近物聚焦状态进行聚焦时,第一透镜组110与第二透镜组120在光轴上的间隔固定的状态下从像侧向物侧移动。
第一透镜组110由将负透镜L1与正透镜L2胶合的胶合透镜、正透镜L3、正透镜L4构成。第二透镜组120由将正透镜L5与负透镜L6胶合的胶合透镜、负透镜L7、负透镜L8、正透镜L9构成。光学构件F设置在透镜系统100与像面IMA之间。例如, 光学构件F是滤光片和盖板等。通过透镜系统100及光学构件F的光入射到像面IMA上。
表1示出透镜系统100的透镜数据。在表1中,Di、Nd及Vd与面编号i相对应地进行表示。面编号17的面间隔Di是无穷远聚焦时的值。
【表1】
面编号 R Di Nd Vd
1 -41.048 3.471 1.64769 33.84
2 24.129 3.439 1.65844 50.85
3 -999.416 0.500    
4* 17.563 2.678 1.85135 40.10
5* 25.968 1.255    
6 651.860 2.287 1.90366 31.31
7 -64.544 2.500    
STO INF 2.500    
9 24.428 3.762 1.62041 60.34
10 -15.136 1.000 1.58144 40.89
11 35.470 10.772    
12* -12.921 2.000 1.85135 40.10
13* -14.330 2.416    
14 -12.924 1.000 1.59270 35.45
15 -38.903 0.500    
16 -194.401 6.434 1.80450 39.64
17 -34.924 11.137    
18 INF 1.850 1.51680 64.17
19 INF 0.500    
20 INF 0.000    
表2示出具有非球面形状的面的面编号、圆锥常数κ、非球面系数A、B、C及D。关于圆锥常数κ及非球面系数A、B、C及D的值,“E-i”表示以10为底的指数表达即“10-i”。其中,i为整数。
【表2】
面编号 K A B C D
4 0 9.012383E-06 5.965115E-08 5.325365E-10 4.104448E-12
5 0 3.120840E-05 9.322345E-08 1.664094E-09 -2.172365E-12
12 0 -9.558084E-06 3.707987E-07 1.588494E-09 1.839615E-11
13 0 8.589075E-06 1.648185E-07 2.482105E-09 3.805681E-12
表3示出无穷远聚焦状态的透镜系统100的整个系统的焦距f、Fno、半视角ω、最大像高Y及出瞳位置Dex。
【表3】
f 43.92
Fno 4.04
ω 32.07
Y 27.5
Dex -40.83
第一透镜组110由将双凹的负透镜L1与正透镜L2胶合的负的屈光力的胶合透镜、凸面朝向物侧的正的非球面弯月形透镜L3、物侧的曲率半径大于像侧的形状的正透镜L4构成。根据这一构成,负成分先行,在透镜直径较小的透镜系统中,能够对球面像差与轴外像差进行良好的校正。另外,通过将与胶合透镜的负透镜L1相比阿贝数较大的玻璃材料用于胶合透镜的正透镜L2,从而对轴上色差与轴外色差进行了良好的校正。
第二透镜组120由将双凸的正透镜L5与双凹的负透镜L6胶合的正屈光力的胶合透镜、凹面朝向物侧的负的非球面弯月形透镜L7、凹面朝向物侧的负的弯月形透镜L8、凹面朝向物侧的正的弯月形透镜L9构成。通过在孔径光阑S附近设置胶合透镜,并且使用弯月形非球面透镜,从而能够对各个视角光线适当地进行像差校正,对轴上像差及轴外像差均衡地进行校正。另外,通过将与胶合透镜的负透镜L6相比阿贝数较大的玻璃材料用于胶合透镜的正透镜L5,从而对轴上色差与轴外色差进行了良好的校正。
图2示出了在透镜系统100的无穷远聚焦状态下的球面像差、像散、畸变像差。在球面像差中,单点划线表示C线(656.27nm)的值,实线表示d线(587.56nm)的值,虚线表示g线(435.84nm)的值。在像散中,实线表示d线的弧矢像面的值,单点划线表示d线的子午像面的值。畸变像差表示d线的值。从各像差图来看,显然透镜系统100中各种像差得以良好地校正,并且具有优异的成像性能。
图3同时示出了第二实施例中的透镜系统200的透镜结构、光学构件F及像面IMA。透镜系统200从物侧开始依次由具有正屈光力的第一透镜组210、孔径光阑S、具有正屈光力的第二透镜组220构成。第一透镜组210、孔径光阑S、第二透镜组220可整体在光轴方向上移动来进行聚焦。从无穷远聚焦状态向近物聚焦状态进行聚焦时,第一透镜组210与第二透镜组220在光轴上的间隔固定的状态下从像侧向物侧移动。
第一透镜组210由将负透镜L1与正透镜L2胶合的胶合透镜、正透镜L3、正透镜L4构成。第二透镜组220由将正透镜L5、正透镜L6与负透镜L7胶合的胶合透镜、负透镜L8、负透镜L8、负透镜L9、正透镜L10构成。光学构件F设置在透镜系统200与像面IMA之间。例如,光学构件F是滤光片和盖板等。通过透镜系统200及光学构件F的光入射到像面IMA上。
表4示出透镜系统200的透镜数据。在表4中,Di、Nd及Vd与面编号i相对应地进行表示。面编号19的面间隔Di是无穷远聚焦时的值。
【表4】
面编号 R Di Nd Vd
1 -42.266 1.764 1.64769 33.84
2 25.596 4.884 1.65844 50.85
3 481.939 0.553    
4* 21.931 2.486 1.85135 40.10
5* 36.378 0.929    
6 726.302 2.245 1.90366 31.31
7 -71.911 2.500    
STO INF 2.500    
9 69.052 2.295 1.62041 60.34
10 -134.899 0.500    
11 21.711 3.462 1.62041 60.34
12 -19.675 1.000 1.58144 40.89
13 19.279 9.859    
14* -12.056 1.500 1.85135 40.10
15* -14.758 3.159    
16 -12.999 1.000 1.59270 35.45
17 -27.583 0.500    
18 -141.431 6.285 1.80450 39.64
19 -34.079 10.230    
20 INF 1.850 1.51680 64.17
21 INF 0.500    
22 INF 0.000    
表5示出具有非球面形状的面的面编号、圆锥常数κ、非球面系数A、B、C及D。关于圆锥常数κ及非球面系数A、B、C及D的值,“E-i”表示以10为底的指数表达即“10-i”。其中,i为整数。
【表5】
面编号 K A B C D
4 0 -2.887757E-05 -2.513719E-07 -6.886484E-10 -5.769160E-12
5 0 -1.906549E-05 -2.985467E-07 1.019584E-10 -1.225721E-11
14 0 8.829368E-05 1.116987E-06 -1.114277E-08 4.896112E-11
15 0 8.005222E-05 6.703712E-07 -5.660545E-09 1.834284E-11
表6示出无穷远聚焦状态的透镜系统200的整个系统的焦距f、Fno、半视角ω、最大像高Y及出瞳位置Dex。
【表6】
f 43.46
Fno 4.08
ω 32.25
Y 27.5
Dex -40.73
第一透镜组210由将双凹的负透镜L1与正透镜L2胶合的负的屈光力的胶合透镜、凸面朝向物侧的正的非球面弯月形透镜L3、物侧的曲率半径大于像侧的形状的正透镜 L4构成。根据这一构成,负成分先行,在透镜直径较小的透镜系统中,能够对球面像差与轴外像差良好地进行校正。另外,通过使用与胶合透镜的负透镜L1相比阿贝数较大的玻璃材料作为胶合透镜的正透镜L2,从而对轴上色差与轴外色差良好地进行校正。
第二透镜组220由将双凸的正透镜L5、双凸的正透镜L6与双凹的负透镜L7胶合的正屈光力的胶合透镜、凹面朝向物侧的负的非球面弯月形透镜L8、凹面朝向物侧的负的弯月形透镜L9、凹面朝向物侧的正的弯月形透镜L10构成。通过在孔径光阑S附近配置双凸的正透镜L5,从而能够将胶合透镜的光焦度分割。由此,能够对灵敏度进行抑制,有助于降低由制造误差所产生的像差。另外,通过使用弯月形非球面透镜L8,从而对各个视角光线适当地进行像差校正,能够对轴上像差及轴外像差均衡地进行校正。另外,通过使用与胶合透镜的负透镜L7相比阿贝数较大的玻璃材料作为胶合透镜的正透镜L6,从而对轴上色差与轴外色差良好地进行校正。
图4示出了在透镜系统200的无穷远聚焦状态下的球面像差、像散、畸变像差。在球面像差中,点划线表示C线(656.27nm)的值,实线表示d线(587.56nm)的值,虚线表示g线(435.84nm)的值。在像散中,实线表示d线的弧矢像面的值,点划线表示d线的子午像面的值。畸变像差表示d线的值。从各像差图来看,显然透镜系统200中各种像差得以良好地校正,并且具有优异的成像性能。
图5同时示出了第三实施例中的透镜系统300的透镜结构、光学构件F及像面IMA。透镜系统300从物侧开始依次由具有正屈光力的第一透镜组310、孔径光阑S、具有正屈光力的第二透镜组320构成。第一透镜组310、孔径光阑S、第二透镜组320可整体在光轴方向上移动来进行聚焦。从无穷远聚焦状态向近物聚焦状态进行聚焦时,第一透镜组310与第二透镜组320是在光轴上的间隔固定的状态下从像侧向物侧移动。
第一透镜组310由将负透镜L1与正透镜L2胶合的胶合透镜、正透镜L3、正透镜L4构成。第二透镜组320由将正透镜L5与负透镜L6胶合的胶合透镜、负透镜L7、负透镜L8、将负透镜L9与正透镜L10胶合的胶合透镜构成。光学构件F设置在透镜系统300与像面IMA之间。例如,光学构件F是滤光片和盖板等。通过透镜系统300及光学构件F的光入射到像面IMA上。
表7示出透镜系统300的透镜数据。在表7中,Di、Nd及Vd与面编号i相对应地进行表示。面编号18的面间隔Di是无穷远聚焦时的值。
【表7】
面编号 R Di Nd Vd
1 -28.225 1.749 1.67270 32.17
2 18.665 3.871 1.90366 31.31
3 -276.960 0.500    
4* 28.733 1.500 1.85135 40.10
5* 34.297 0.805    
6 235.159 2.970 1.49700 81.61
7 -23.283 2.500    
STO INF 2.500    
9 25.422 4.192 1.65844 50.85
10 -18.114 1.615 1.60342 38.01
11 27.403 8.168    
12* -13.003 1.414 1.85135 40.10
13* -14.907 4.059    
14 -14.510 1.000 1.67270 32.17
15 -33.548 0.500    
16 -88.598 1.000 1.67270 32.17
17 1777.846 7.076 1.90366 31.31
18 -35.898 12.250    
19 INF 1.850 1.51680 64.17
20 INF 0.500    
21 INF 0.000    
表8示出具有非球面形状的面的面编号、圆锥常数κ、非球面系数A、B、C及D。关于圆锥常数κ及非球面系数A、B、C及D的值,“E-i”表示以10为底的指数表达即“10-i”。其中,i为整数。
【表8】
面编号 K A B C D
4 0 -1.080558E-04 -9.226342E-07 -2.234997E-09 5.043859E-11
5 0 -9.335328E-05 -9.867443E-07 9.281796E-10 4.215635E-11
12 0 1.867752E-04 1.204329E-06 -1.790357E-08 7.093948E-11
13 0 1.641269E-04 1.098956E-06 -1.325460E-08 4.426935E-11
表9示出无穷远聚焦状态的透镜系统300的整个系统的焦距f、Fno、半视角ω、最大像高Y及出瞳位置Dex。
【表9】
f 44.82
Fno 4.09
ω 31.53
Y 27.5
Dex -43.64
第一透镜组310由将双凹的负透镜L1与正透镜L2胶合的负的屈光力的胶合透镜、凸面朝向物侧的正的非球面弯月形透镜L3、物侧的曲率半径大于像侧的形状的正透镜L4构成。根据这一构成,负成分先行,在透镜直径较小的透镜系统中,能够对球面像 差与轴外像差良好地进行校正。配置与胶合透镜的负透镜L1相比阿贝数较大的玻璃材料作为胶合透镜的正透镜L2,从而能够对轴上色差与轴外色差良好地进行校正。
第二透镜组320由将双凸的正透镜L5与双凹的负透镜L6胶合的正屈光力的胶合透镜、凹面朝向物侧的负的非球面弯月形透镜L7、凹面朝向物侧的负的弯月形透镜L8、双凹的负透镜L9与双凸的正透镜L10的正屈光力的胶合透镜构成。通过凹面朝向物侧的负的弯月形透镜L7及L8将光焦度分割,并且将第二透镜组320的最靠近像侧的透镜设为将双凹的负透镜L9与双凸的正透镜L10胶合的正屈光力的胶合透镜,从而有助于尽可能地减小各个负透镜偏角所产生的像差,以及降低第二透镜组320整体的像差。另外,通过使用弯月形非球面透镜L7,从而对各个视角光线适当地进行像差校正,能够对轴上像差及轴外像差均衡地进行校正。另外,通过将与胶合透镜的负透镜L6相比阿贝数较大的玻璃材料用于胶合透镜的正透镜L5,从而对轴上色差及轴外色差良好地进行校正。
图6示出了在透镜系统300的无穷远聚焦状态下的球面像差、像散、畸变像差。在球面像差中,单点划线表示C线(656.27nm)的值,实线表示d线(587.56nm)的值,虚线表示g线(435.84nm)的值。在像散中,实线表示d线的弧矢像面的值,单点划线表示d线的子午像面的值。畸变像差表示d线的值。从各像差图来看,显然透镜系统300中各种像差得以良好地校正,并且具有优异的成像性能。
图7同时示出了第四实施例中的透镜系统400的透镜结构、光学构件F及像面IMA。透镜系统400从物侧开始依次由具有正屈光力的第一透镜组410、孔径光阑S、具有正屈光力的第二透镜组420构成。第一透镜组410、孔径光阑S、第二透镜组420可整体在光轴方向上移动来进行聚焦。从无穷远聚焦状态向近物聚焦状态进行聚焦时,第一透镜组410与第二透镜组420是在光轴上的间隔固定的状态下从像侧向物侧移动。
第一透镜组410由将负透镜L1与正透镜L2胶合的胶合透镜、正透镜L3、正透镜L4构成。第二透镜组420由将正透镜L5与负透镜L6与负透镜L7胶合的胶合透镜、负透镜L8、负透镜L9、正透镜L10构成。光学构件F设置在透镜系统400与像面IMA之间。例如,光学构件F是滤光片和盖板等。通过透镜系统400及光学构件F的光入射到像面IMA上。
表10示出透镜系统400的透镜数据。在表10中,Di、Nd及Vd与面编号i相对应地进行表示。面编号18的面间隔Di是无穷远聚焦时的值。
【表10】
面编号 R Di Nd Vd
1 -37.501 2.679 1.64769 33.84
2 28.146 3.462 1.65844 50.85
3 -143.706 0.500    
4* 17.954 2.664 1.85135 40.10
5* 26.325 1.296    
6 -618.747 2.241 1.90366 31.31
7 -61.260 2.500    
STO INF 2.500    
9 25.362 3.677 1.62041 60.34
10 -17.576 1.000 1.60342 38.01
11 63.156 1.000 1.43700 95.10
12 39.971 9.965    
13* -14.239 2.000 1.85135 40.10
14* -16.714 3.500    
15 -13.412 1.000 1.59270 35.45
16 -40.859 0.500    
17 -97.660 6.937 1.80450 39.64
18 -29.088 10.230    
19 INF 1.850 1.51680 64.17
20 INF 0.500    
21 INF 0.000    
表11示出具有非球面形状的面的面编号、圆锥常数κ、非球面系数A、B、C及D。关于圆锥常数κ及非球面系数A、B、C及D的值,“E-i”表示以10为底的指数表达即“10-i”。其中,i为整数。
【表11】
面编号 K A B C D
4 0 -1.248885E-08 -5.258632E-08 6.502243E-10 -5.868655E-12
5 0 1.495460E-05 -6.710121E-08 1.819948E-09 -1.746664E-11
13 0 -5.038487E-05 5.359059E-07 -3.841265E-09 3.755353E-11
14 0 -2.082916E-05 2.636605E-07 1.292921E-10 7.463921E-12
表12示出无穷远聚焦状态的透镜系统400的整个系统的焦距f、Fno、半视角ω、最大像高Y及出瞳位置Dex。
【表12】
f 45.23
Fno 4.07
ω 31.24
Y 27.5
Dex -42.64
第一透镜组410由将双凹的负透镜L1与正透镜L2胶合的负的屈光力的胶合透镜、凸面朝向物侧的正的非球面弯月形透镜L3、物侧的曲率半径大于像侧的形状的正透镜 L4构成。根据这一构成,负成分先行,在透镜直径较小的透镜系统中,能够对球面像差与轴外像差良好地进行校正。另外,通过使用与胶合透镜的负透镜L1相比阿贝数较大的玻璃材料作为胶合透镜的正透镜L2,从而对轴上色差与轴外色差良好地进行校正。
第二透镜组420由将双凸的正透镜L5与双凹的负透镜L6与双凹的负透镜L7胶合的正屈光力的三个胶合透镜、凹面朝向物侧的负的非球面弯月形透镜L8、凹面朝向物侧的负的弯月形透镜L9、凹面朝向物侧的正的弯月形透镜10构成。在孔径光阑S附近设置胶合透镜,通过使用弯月形非球面透镜L8,从而能够对各个视角光线适当地进行像差校正,并且能够对轴上像差及轴外像差均衡地进行校正。另外,通过将阿贝数非常高的玻璃材料用于三个胶合透镜中的其中一个,从而对轴上色差与轴外色差良好地进行校正。
图8示出了在透镜系统400的无穷远聚焦状态下的球面像差、像散、畸变像差。在球面像差中,单点划线表示C线(656.27nm)的值,实线表示d线(587.56nm)的值,虚线表示g线(435.84nm)的值。在像散中,实线表示d线的弧矢像面的值,单点划线表示d线的子午像面的值。畸变像差表示d线的值。从各像差图来看,显然透镜系统400中各种像差得以良好地校正,并且具有优异的成像性能。
表13示出第一实施例至第四实施例中的各个条件式所涉及的数值。
【表13】
  条件式1 条件式2 条件式3 条件式4 条件式5 条件式6
实施例1 0.86 2.18 1.48 0.79 0.10 10.10
实施例2 0.66 2.18 1.48 0.72 0.42 10.10
实施例3 0.99 2.18 1.59 0.24 0.25 10.10
实施例4 0.87 2.18 1.55 0.78 0.25 10.10
本实施方式所涉及的透镜系统能够应用于数码相机、摄像机等摄像装置用的透镜系统。本实施方式所涉及的透镜系统能够应用于不具有变焦机构的透镜系统。本实施方式所涉及的透镜系统也能够应用于具有变焦机构的透镜系统。本实施方式所涉及的透镜系统能够应用于非更换镜头式的摄像装置所包括的摄像镜头。本实施方式所涉及的透镜系统能够应用于单反相机等更换镜头式相机的可互换镜头。
以下,作为包括本实施方式所涉及的透镜系统的系统的一个示例,对一移动体系统进行说明。
图9示意性地示出了包括无人驾驶航空器(UAV)40及控制器50的移动体系统10的一个示例。UAV40包括UAV主体1101、万向节1110、多个摄像装置1230以及摄像装置1220。摄像装置1220包括镜头装置1160及摄像部1140。镜头装置1160包括上述透镜系统。UAV40是包括具有上述透镜系统的摄像装置并移动的移动体的一个示例。移动体是指除了UAV以外包含在空中移动的其他的飞机、在地面移动的车辆、在水上移动的船舶等的概念。
UAV主体1101具备多个旋翼。UAV主体1101通过控制多个旋翼的旋转而使UAV40飞行。UAV主体1101使用例如四个旋翼来使UAV40飞行。旋翼的数量不限于四个。UAV40也可以是没有旋翼的固定翼机。
摄像装置1230为对包含在所期望的摄像范围内的被摄体进行拍摄的摄像用相机。多个摄像装置1230是为了控制UAV40的飞行而对UAV40的周围进行拍摄的传感用相机。摄像装置1230可以固定在UAV主体1101上。
两个摄像装置1230可以设置于UAV40的机头、即正面。并且,其它两个摄像装置1230可以设置于UAV40的底面。正面侧的两个摄像装置1230可以成对,起到所谓的立体相机的作用。底面侧的两个摄像装置1230也可以成对,起到立体相机的作用。可以根据由多个摄像装置1230所拍摄的图像来生成UAV40周围的三维空间数据。到由多个摄像装置1230拍摄的被摄体的距离能够被多个摄像装置1230的立体相机所确定。
UAV40所包括的摄像装置1230的数量不限于四个。UAV40包括至少一个摄像装置1230即可。UAV40也可以在UAV40的机头、机尾、侧面、底面及顶面分别具备至少一个摄像装置1230。摄像装置1230也可以具有单焦点镜头或鱼眼镜头。在UAV40所涉及的说明中,有时将多个摄像装置1230简单地统称为摄像装置1230。
控制器50包括显示部54与操作部52。操作部52接收来自用户的对UAV40的姿态进行控制的输入操作。控制器50根据操作部52所接收的用户的操作发送对UAV40进行控制的信号。
控制器50接收摄像装置1230及摄像装置1220中的至少一个所拍摄的图像。显示部54显示控制器50接收到的图像。显示部54可以是触控面板。控制器50可以通过显示部54接收来自用户的输入操作。显示部54可以接收用户指定摄像装置1220要拍摄的被摄体的位置的用户操作等。
摄像部1140生成由镜头装置1160成像的光学图像的图像数据并进行记录。镜头装置1160可以一体地设在摄像部1140上。镜头装置1160可以是所谓的可更换镜头。镜头装置1160可以可拆装地设置于摄像部1140。
万向节1110具有可移动地支撑摄像装置1220的支撑机构。摄像装置1220通过万向节1110安装在UAV主体1101上。万向节1110以俯仰轴为中心可旋转地支撑摄像装置1220。万向节1110以滚转轴为中心可旋转地支撑摄像装置1220。万向节1110以偏航轴为中心可旋转地支撑摄像装置1220。万向节1110可以以俯仰轴、滚转轴及偏航轴中的至少一个轴为中心可旋转地支撑摄像装置1220。万向节1110可以分别以俯仰轴、滚转轴及偏航轴为中心可旋转地支撑摄像装置1220。万向节1110也可以对摄像部1140进行保持。万向节1110也可以对镜头装置1160进行保持。万向节1110可以以偏航轴、俯仰轴及滚转轴中的至少一个为中心使摄像部1140及镜头装置1160旋转,从而改变摄像装置1220的摄像方向。
图10示出了UAV40的功能块的一个示例。UAV40包括接口1102、控制部1104、存储器1106、万向节1110、摄像部1140以及镜头装置1160。
接口1102与控制器50进行通信。接口1102从控制器50接收各种指令。控制部1104根据从控制器50接收的指令对UAV40的飞行进行控制。控制部1104对万向节1110、摄像部1140以及镜头装置1160进行控制。控制部1104可以由CPU或者MPU等微处理器、MCU等微控制器等组成。存储器1106存储控制部1104对万向节1110、摄像部1140以及镜头装置1160进行控制时所需的程序等。
存储器1106可以为计算机可读记录介质。存储器1106可以包括SRAM、DRAM、EPROM、EEPROM及USB存储器等闪存中的至少一个。存储器1106可以设置在UAV40的壳体内。可以设置成可从UAV40的壳体上拆卸下来。
万向节1110包括控制部1112、驱动器1114、驱动器1116、驱动器1118、驱动部1124、驱动部1126、驱动部1128及支撑机构1130。驱动部1124、驱动部1126以及驱动部1128可以是电动机。
支撑机构1130对摄像装置1220进行支撑。支撑机构1130在摄像方向上可移动地支撑摄像装置1220。支撑机构1130以偏航轴、俯仰轴及滚转轴为中心可旋转地支撑摄像部1140以及镜头装置1160。支撑机构1130包括旋转机构1134、旋转机构1136以及旋转机构1138。旋转机构1134通过驱动部1124使摄像部1140及镜头装置1160以偏航轴为中心旋转。旋转机构1136通过驱动部1126使摄像部1140及镜头装置1160以俯仰轴为中心旋转。旋转机构1138通过驱动部1128使摄像部1140及镜头装置1160以滚转轴为中心旋转。
控制部1112按照来自控制部1104的万向节1110的动作指令向驱动器1114、驱动器1116及驱动器1118输出用于表示各自旋转角度的动作指令。驱动器1114、驱动器1116及驱动器1118根据用于表示旋转角度的动作指令使驱动部1124、驱动部1126以及驱动部1128进行驱动。旋转机构1134、旋转机构1136以及旋转机构1138分别由驱动部1124、驱动部1126以及驱动部1128进行驱动而旋转,从而改变摄像部1140及镜头装置1160的姿态。
摄像部1140是利用穿过透镜系统1168的光进行拍摄。摄像部1140包括控制部1222、摄像元件1221以及存储器1223。控制部1222可以由CPU或者MPU等微处理器、MCU等微控制器等组成。控制部1222按照来自控制部1104的对于摄像部1140及镜头装置1160的动作指令来控制摄像部1140及镜头装置1160。控制部1222根据从控制器50接收到的信号将对镜头装置1160的控制指令输出至镜头装置1160。控制指令可以是使透镜系统1168振动的指令或者对透镜系统1168的温度进行检测的指令。
存储器1223可以为计算机可读记录介质,可以包括SRAM、DRAM、EPROM、EEPROM及USB存储器等闪存中的至少一个。存储器1223可以设置在摄像部1140的壳体的内部。摄像部1140可以设置成可从壳体上拆卸下来。
摄像元件1221保持在摄像部1140的壳体的内部,生成通过镜头装置1160成像的光学图像的图像数据,并且输出至控制部1222。控制部1222将从摄像元件1221输出的图像数据存储在存储器1223中。控制部1222也可以通过控制部1104将图像数据输出至存储器1106中进行存储。
镜头装置1160包括控制部1162、存储器1163、驱动机构1161以及透镜系统1168。可以应用上述实施方式所涉及的透镜系统作为透镜系统1168。
控制部1162可以根据来自控制部1222的控制指令对透镜系统1168进行驱动。驱动机构1161可以根据来自控制部1162的控制指令使透镜系统1168所包括的多个透镜组及孔径光阑在光轴方向上移动,从而对透镜系统1168的焦点进行调节。驱动机构1161可以根据来自控制部1162的控制指令对透镜系统1168所包括的孔径光阑进行控制。驱动机构1161可以根据来自控制部1162的控制指令使透镜系统1168振动。驱动机构1161包括例如致动器等。镜头装置1160的透镜系统1168成像的像由摄像部1140拍摄。
镜头装置1160可以一体地设在摄像部1140上。镜头装置1160可以是所谓的可更换镜头。镜头装置1160可以可拆装地设置于摄像部1140。
摄像装置1230包括控制部1232、控制部1234、摄像元件1231、存储器1233以及镜头1235。控制部1232可以由CPU或者MPU等微处理器、MCU等微控制器等组成。控制部1232按照来自控制部1104的、摄像元件1231的动作指令控制摄像元件1231。
控制部1234可以由CPU或者MPU等微处理器、MCU等微控制器等组成。控制部1234可以按照针对镜头1235的动作指令对镜头1235的焦点进行调节。控制部1234可以按照针对镜头1235的动作指令对镜头1235所具有的孔径光阑进行控制。
存储器1233可以为计算机可读记录介质。存储器1233可以包括SRAM、DRAM、EPROM、EEPROM及USB存储器等闪存中的至少一个。
摄像元件1231生成通过镜头1235成像的光学图像的图像数据,并且输出至控制部1232。控制部1232将从摄像元件1231输出的图像数据存储在存储器1233中。
在本实施方式中,UAV40包括控制部1104、控制部1112、控制部1222、控制部1232、控制部1234及控制部1162。不过,由控制部1104、控制部1112、控制部1222、控制部1232、控制部1234及控制部1162中的多个执行的处理可以由任意一个控制部执行。由控制部1104、控制部1112、控制部1222、控制部1232、控制部1234及控制部1162执行的处理也可以由一个控制部执行。在本实施方式中,UAV40包括存储器1106、存储器1223及存储器1233。存储在存储器1106、存储器1223及存储器1233中至少一个中的信息可以存储在存储器1106、存储器1223及存储器1233中的其他的一个或者多个存储器中。
摄像装置1220包括具有上述实施方式所涉及的透镜系统的镜头装置1160,从而能够提供小型并且具有较高的光学性能的摄像功能。
以下,作为包括上述实施方式所涉及的透镜系统的系统的一个示例,对一稳定器进行说明。
图11是示出了稳定器3000的一个示例的外观立体图。稳定器3000是移动体的另一个示例。例如,稳定器3000所具备的相机单元3013可以包括与摄像装置1220相同结构的摄像装置。相机单元3013可以包括与镜头装置1160相同结构的镜头装置。
稳定器3000包括相机单元3013、万向节3020及手持部3003。万向节3020可旋转地支撑相机单元3013。万向节3020具有平移轴3009、滚转轴3010及倾斜轴3011。万向节3020以平移轴3009、滚转轴3010及倾斜轴3011为中心可旋转地支撑相机单元3013。万向节3020是支撑机构的一个示例。
相机单元3013是摄像装置的一个示例。相机单元3013具有插入存储器的插槽3014。万向节3020通过支架3007固定在手持部3003上。
手持部3003具有对万向节3020、相机单元3013进行操作的各种按钮。手持部3003包括快门按钮3004、录像按钮3005及操作按钮3006。通过按下快门按钮3004,从而能够通过相机单元3013对静止图像进行记录。通过按下录像按钮3005,从而能够通过相机单元3013对动态图像进行记录。
器件固定器3001固定在手持部3003上。器件固定器3001对智能电话等移动设备3002进行保持。移动设备3002通过WiFi等无线网络与稳定器3000可通信地连接。由此,能够使相机单元3013拍摄的图像显示在移动设备3002的屏幕上。
在稳定器3000中,相机单元3013也包括上述实施方式所涉及的透镜系统,从而能够提供小型并且具有较高的光学性能的摄像功能。
以上,作为移动体的一个示例,列举说明了UAV40及稳定器3000。具有与摄像装置1220相同结构的摄像装置可以安装在UAV40及稳定器3000以外的移动体上。
对于权利要求书、说明书及附图中所示的装置、系统、程序及方法中的动作、次序、步骤及阶段等各个处理的执行顺序,只要未明确指出“比...先”、“在...之前”等,或者不是在后面的处理中要使用到前面的处理的输出时,就可以以任意的顺序加以实施。关于权利要求书、说明书以及说明书附图中的操作流程,为方便起见而使用“首先”、“接着”等进行了说明,但并不意味着必须按照这样的顺序实施。

Claims (7)

  1. 一种透镜系统,其特征在于,从物侧到像侧依次包括正的第一透镜组、孔径光阑、正的第二透镜组,
    从无穷远聚焦状态向近物聚焦状态进行聚焦时,所述第一透镜组与所述第二透镜组在光轴上的间隔固定的状态下从像侧向物侧移动,
    所述第一透镜组包括三个以上的透镜,从物侧开始依次包括一个以上的胶合透镜以及一个具有向物侧凸起的弯月形非球面形状的透镜,
    所述第二透镜组包括四个以上的透镜,从物侧开始依次包括一个以上的胶合透镜以及一个具有向物侧凹陷的弯月形非球面形状的透镜,
    所述透镜系统满足条件式0.5<f/f1<1.1,1.9<TL/Y<2.4,其中,
    f为整个系统的焦距;
    f1为所述第一透镜组的焦距;
    TL为将后焦距以空气换算长度计的情况下,在光轴上从无穷远聚焦状态的所述第一透镜组的最靠近物侧的透镜面至像面的距离;
    Y为最大像高。
  2. 根据权利要求1所述的透镜系统,其特征在于,满足条件式1.3<EPD/Y<1.7,其中,EPD为出瞳距离;Y为最大像高。
  3. 根据权利要求1或者2所述的透镜系统,其特征在于,满足条件式|f/f_1asp|<1.0,|f/f_2asp|<1.0,其中,
    f_1asp为所述第一透镜组所包括的具有所述弯月形非球面形状的透镜的焦距;f_2asp为所述第二透镜组所包括的具有所述弯月形非球面形状的透镜的焦距。
  4. 根据权利要求1或者2所述的透镜系统,其特征在于,满足条件式|CR_r1/CR_r2|>5,其中,
    CR_r1为所述第一透镜组的最靠近像侧的透镜的物侧面的曲率半径;CR_r2为所述第一透镜组的最靠近像侧的透镜的像侧面的曲率半径。
  5. 一种摄像装置,其特征在于,包括根据权利要求1或者2所述的透镜系统以及摄像元件。
  6. 一种移动体,其特征在于,包括根据权利要求1或者2所述的透镜系统并移动。
  7. 根据权利要求6所述的移动体,其特征在于,所述移动体是无人驾驶航空器。
PCT/CN2020/094712 2019-06-18 2020-06-05 透镜系统、摄像装置及移动体 WO2020253556A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080003349.4A CN112334813A (zh) 2019-06-18 2020-06-05 透镜系统、摄像装置及移动体
US17/469,887 US20220057601A1 (en) 2019-06-18 2021-09-09 Lens system, photographing apparatus, and moving body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-112676 2019-06-18
JP2019112676A JP6880379B2 (ja) 2019-06-18 2019-06-18 レンズ系、撮像装置、及び移動体

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/469,887 Continuation US20220057601A1 (en) 2019-06-18 2021-09-09 Lens system, photographing apparatus, and moving body

Publications (1)

Publication Number Publication Date
WO2020253556A1 true WO2020253556A1 (zh) 2020-12-24

Family

ID=73838361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094712 WO2020253556A1 (zh) 2019-06-18 2020-06-05 透镜系统、摄像装置及移动体

Country Status (4)

Country Link
US (1) US20220057601A1 (zh)
JP (1) JP6880379B2 (zh)
CN (1) CN112334813A (zh)
WO (1) WO2020253556A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116360083A (zh) * 2023-04-23 2023-06-30 深圳市道显技术有限公司 沙姆镜头和线激光传感器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110376716B (zh) * 2019-07-18 2024-06-21 小光子(武汉)科技有限公司 一种近距离成像用微型成像镜头

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101592776A (zh) * 2008-05-26 2009-12-02 索尼株式会社 变焦镜头和摄像装置
CN102298200A (zh) * 2010-06-23 2011-12-28 株式会社尼康 成像镜头、配备其的光学设备和用于制造成像镜头的方法
US20120056976A1 (en) * 2010-09-07 2012-03-08 Samsung Electronics Co., Ltd. Wide angle lens system and photographing apparatus
CN108363193A (zh) * 2013-07-29 2018-08-03 株式会社尼康 变倍光学系统和光学设备
CN109116532A (zh) * 2018-10-17 2019-01-01 舜宇光学(中山)有限公司 变焦镜头
CN109164562A (zh) * 2018-11-05 2019-01-08 广东奥普特科技股份有限公司 一种长工作距离倍率可调的定焦线扫机器视觉镜头

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2845247A1 (de) * 1978-10-18 1980-04-30 Schneider Co Optische Werke Objektiv
JPS62138809A (ja) * 1985-12-12 1987-06-22 Canon Inc 大口径比のガウス型レンズ
JP2003329918A (ja) * 2002-05-14 2003-11-19 Mamiya Op Co Ltd 写真レンズ
JP2005316052A (ja) * 2004-04-28 2005-11-10 Tochigi Nikon Corp 結像光学系
CN100520481C (zh) * 2006-06-30 2009-07-29 株式会社理光 变焦透镜,拍摄设备和个人数字助理
JP5115102B2 (ja) * 2007-08-30 2013-01-09 株式会社ニコン レンズ系及び光学装置
JP6016092B2 (ja) * 2012-09-07 2016-10-26 株式会社リコー 結像レンズ、撮像装置および情報装置
JP6544971B2 (ja) * 2015-04-03 2019-07-17 株式会社タムロン 光学系及び撮像装置
JP6582315B2 (ja) * 2017-01-23 2019-10-02 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd レンズ系、撮像装置、移動体及びシステム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101592776A (zh) * 2008-05-26 2009-12-02 索尼株式会社 变焦镜头和摄像装置
CN102298200A (zh) * 2010-06-23 2011-12-28 株式会社尼康 成像镜头、配备其的光学设备和用于制造成像镜头的方法
US20120056976A1 (en) * 2010-09-07 2012-03-08 Samsung Electronics Co., Ltd. Wide angle lens system and photographing apparatus
CN108363193A (zh) * 2013-07-29 2018-08-03 株式会社尼康 变倍光学系统和光学设备
CN109116532A (zh) * 2018-10-17 2019-01-01 舜宇光学(中山)有限公司 变焦镜头
CN109164562A (zh) * 2018-11-05 2019-01-08 广东奥普特科技股份有限公司 一种长工作距离倍率可调的定焦线扫机器视觉镜头

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116360083A (zh) * 2023-04-23 2023-06-30 深圳市道显技术有限公司 沙姆镜头和线激光传感器

Also Published As

Publication number Publication date
CN112334813A (zh) 2021-02-05
JP6880379B2 (ja) 2021-06-02
US20220057601A1 (en) 2022-02-24
JP2020204724A (ja) 2020-12-24

Similar Documents

Publication Publication Date Title
WO2021190312A1 (zh) 透镜系统、摄像装置及移动体
JP6519890B1 (ja) レンズ系、撮像装置、及び移動体
JP6582315B2 (ja) レンズ系、撮像装置、移動体及びシステム
JP6736820B1 (ja) レンズ系、撮像装置、及び移動体
WO2020238982A1 (zh) 透镜系统、摄像装置及移动体
JP2022054357A (ja) レンズ系、撮像装置、及び移動体
US20210247597A1 (en) Lens system and image capturing apparatus
JP6750176B2 (ja) レンズ系、撮像装置、移動体及びシステム
JP6524548B2 (ja) レンズ系、撮像装置、移動体及びシステム
WO2020253556A1 (zh) 透镜系统、摄像装置及移动体
JP6561369B2 (ja) レンズ系、撮像装置、移動体及びシステム
JP6532044B2 (ja) ズームレンズ、撮像装置、移動体及びシステム
WO2021031885A1 (zh) 透镜系统、摄像装置及移动体
JP2021189381A (ja) レンズ系、撮像装置、及び移動体
WO2022213793A1 (zh) 镜头系统、摄像装置及移动体
WO2021190268A1 (zh) 透镜系统、摄像装置及移动体
WO2021190311A1 (zh) 透镜系统、摄像装置及移动体
US20220187568A1 (en) Lens system, photographing apparatus, and movable object
JP2021189382A (ja) レンズ系、撮像装置、及び移動体
JP2022049359A (ja) レンズ系、撮像装置、及び移動体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20825719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20825719

Country of ref document: EP

Kind code of ref document: A1