WO2020238982A1 - 透镜系统、摄像装置及移动体 - Google Patents

透镜系统、摄像装置及移动体 Download PDF

Info

Publication number
WO2020238982A1
WO2020238982A1 PCT/CN2020/092687 CN2020092687W WO2020238982A1 WO 2020238982 A1 WO2020238982 A1 WO 2020238982A1 CN 2020092687 W CN2020092687 W CN 2020092687W WO 2020238982 A1 WO2020238982 A1 WO 2020238982A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens system
imaging
image
negative
Prior art date
Application number
PCT/CN2020/092687
Other languages
English (en)
French (fr)
Inventor
松永滋彦
陈永华
凑笃郎
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Publication of WO2020238982A1 publication Critical patent/WO2020238982A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the invention relates to a lens system, an imaging device and a moving body.
  • Patent Document 1 Japanese Patent No. 5718528
  • Patent Document 2 Japanese Patent No. 6085060
  • a lens system includes in order from the object side: a positive first lens with a convex surface on the object side, a negative second lens with a concave image side on the image side, a negative third lens with a concave image side on the image side, and an object A positive fourth lens with a convex side, a negative fifth lens, and a sixth lens with a concave image side.
  • the material of the fourth lens is glass.
  • the material of the first lens, the second lens, the third lens, the fifth lens and the sixth lens is plastic.
  • An imaging device includes the above-mentioned lens system.
  • the imaging device includes an imaging element.
  • the moving body according to one aspect of the present invention includes the above-mentioned lens system and moves.
  • the moving body may be an unmanned aircraft.
  • the lens system it is possible to provide a lens system that suppresses changes in the focal position due to changes in temperature.
  • FIG. 1 shows the lens configuration of the lens system 100 in the first embodiment together with the filter F and the image plane IMA.
  • FIG. 2 shows spherical aberration, astigmatism, and distortion aberration of the lens system 100 in a state of focusing on an infinity subject.
  • FIG. 3 shows the lens configuration of the lens system 200 in the second embodiment together with the filter F and the image plane IMA.
  • FIG. 4 shows spherical aberration, astigmatism, and distortion aberration of the lens system 200 in a state of focusing on an infinity subject.
  • FIG. 5 shows the lens configuration of the lens system 300 in the third embodiment together with the filter F and the image plane IMA.
  • FIG. 6 shows spherical aberration, astigmatism, and distortion aberration of the lens system 300 in a state of focusing on an infinity subject.
  • FIG. 7 shows the lens configuration of the lens system 400 in the fourth embodiment together with the filter F and the image plane IMA.
  • FIG. 8 shows spherical aberration, astigmatism, and distortion aberration of the lens system 400 in a state of focusing on an infinity subject.
  • FIG. 9 schematically shows an example of a mobile body system 10 including an unmanned aircraft (UAV) 40 and a controller 50.
  • UAV unmanned aircraft
  • FIG. 10 shows an example of the functional blocks of UAV40.
  • FIG. 11 is an external perspective view showing an example of the stabilizer 3000.
  • the lens system of one embodiment includes, from the object side, a positive first lens with a convex surface on the object side, a negative second lens with a concave surface on the image side, and a negative third lens with a concave image side.
  • the lens a positive fourth lens with a convex surface on the object side, a negative fifth lens, and a sixth lens with a concave surface on the image side.
  • the material of the fourth lens is glass.
  • the materials of the first lens, the second lens, the third lens, the fifth lens and the sixth lens are plastic.
  • conditional expression 1 conditional expression 2 and conditional expression 3 are satisfied.
  • plastic lenses have a greater change in refractive index than glass lenses. Therefore, when it is assumed to be used in a state where the focus is fixed, and when the lens system does not have a focusing mechanism, it is necessary to optically suppress changes in performance due to changes in temperature, particularly changes in focus position.
  • Conditional expression 1 defines the relationship between the focal length of the fourth lens made of glass whose refractive index changes little with temperature and the focal length of the entire system. If the upper limit of conditional expression 1 is exceeded, the refractive power of the fourth lens made of glass becomes weak, and the refractive power of plastic lenses other than the fourth lens becomes relatively strong. Therefore, the change in the focus position when the temperature changes is likely to increase. If the lower limit of Conditional Expression 1 is exceeded, the refractive power of the fourth lens becomes relatively strong. Therefore, aberration correction becomes difficult, and at the same time performance fluctuations due to assembly errors become larger. By satisfying conditional expression 1, it is possible to suppress changes in the focal position of the entire lens system due to changes in temperature. Furthermore, aberration correction becomes easy, and performance fluctuations due to assembly errors can be suppressed.
  • Conditional expression 2 specifies the refractive index of the second lens at the d-line. By satisfying conditional expression 2, it is possible to achieve downsizing of the lens system and good aberration correction.
  • Conditional expression 3 specifies the relationship between the focal length of the entire system and the maximum image height. By satisfying conditional expression 3, the angle of view of the lens can be narrowed, and a distant subject can be magnified for shooting.
  • conditional expression 4 Taking fi as the focal length of the i-th lens, conditional expression 4 is satisfied.
  • Conditional expression 4 defines the relationship between the focal length of the fourth lens and the focal lengths of other lenses.
  • conditional expression 5 Taking f1 as the focal length of the first lens, conditional expression 5 is satisfied.
  • Conditional expression 5 specifies the relationship between the focal length of the first lens and the focal length of the entire system. If the upper limit of Conditional Expression 5 is exceeded, the refractive power of the first lens becomes weak, and the lens system is enlarged. If the lower limit of Conditional Expression 5 is exceeded, the refractive power of the first lens becomes too strong, and therefore, it is difficult to correct the axial aberration in particular.
  • conditional expression 6 Taking TT as the total optical length, conditional expression 6 is satisfied.
  • Conditional expression 6 specifies the relationship between the total optical length and the focal length of the entire system. By satisfying conditional expression 6, a small lens system with good aberration correction can be realized.
  • lenses and apertures that have substantially no refractive power may also be included.
  • Filters, glass cover sheets and other non-lens optical elements with substantial refractive power and/or mechanical elements such as lens flanges, imaging elements, and shake correction mechanisms.
  • non-lens optical elements and/or mechanical elements having substantially refractive power may be included.
  • Lm represents a lens.
  • m after L is a natural number.
  • m represents the m-th lens from the object side.
  • Lm is a symbol assigned to show the m-th lens from the object side.
  • the lens to which the symbol Lm is assigned does not mean that the lens to which the same symbol Lm is assigned in the other embodiments is the same lens.
  • the multiple surfaces of the lens system are identified by the surface number i, where i is a natural number. From the object side, the first surface of the optical element is taken as the first surface, and then the surface numbers are added in the order in which the light passes through the surface of the optical element. "STO" in the surface number indicates the opening surface of the aperture stop S. "Di” represents the interval on the optical axis between the i-th surface and the i+1-th surface.
  • the lens system may include a lens having a lens surface formed as an aspheric surface.
  • the surface number of the lens surface formed on the aspherical surface is indicated by "*".
  • the aspheric shape is defined by the following formula, where "x” is the distance from the apex of the lens surface in the direction of the optical axis; “y” is the height from the optical axis in the direction perpendicular to the optical axis; “c” is the apex of the lens
  • the paraxial curvature at, "An” is the aspheric coefficient of order n; " ⁇ ” is the conic constant (cone constant).
  • represents the sum of n.
  • x is also called the sag amount.
  • Y is also called image height.
  • C is the reciprocal of the radius of curvature.
  • F focal length.
  • Fno means F number.
  • represents the half angle of view.
  • Y represents the maximum image height (IH).
  • TT represents the total optical length (the distance from the lens surface closest to the object side to the image surface) when focusing on an infinite subject.
  • R represents the radius of curvature. In the radius of curvature indicated by the lens data, “INF” indicates a plane.
  • Nd stands for refractive index.
  • FIG. 1 shows the lens structure, optical member F, and image surface IMA of the lens system 100 in the first embodiment.
  • the lens system 100 is composed of a first lens L1, an aperture stop S, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6.
  • the first lens L1, the fourth lens L4, and the sixth lens L6 are positive lenses.
  • the second lens L2, the third lens L3, and the fifth lens L5 are negative lenses.
  • the optical component F is provided between the lens system 100 and the image plane IMA.
  • the optical component F is, for example, an optical filter and a cover plate. The light passing through the lens system 100 and the optical component F is incident on the image surface IMA.
  • Table 1 shows lens data of lenses included in the lens system 100.
  • Di, Nd, and Vd are shown corresponding to the surface number i.
  • Table 5 shows the focal length f, Fno, half angle of view ⁇ , maximum image height Y, and total optical length TT of the entire system of the lens system 100 in a state of focusing on an infinite subject.
  • the lens system 100 includes, in order from the object side, a positive first lens L1 with a convex surface on the object side, a negative second lens L2 with a concave image side, and a third negative lens L3 with a concave image side surface.
  • the material of the fourth lens L4 is glass, and the material of lenses other than the fourth lens L4 is plastic. That is, the materials of the first lens L1, the second lens L2, the third lens L3, the fifth lens L5, and the sixth lens L6 are plastic.
  • FIG. 2 shows spherical aberration, astigmatism, and distortion aberration of the lens system 100 in a state of focusing on an infinity subject.
  • the dash-dotted line shows the value of the C line (656.27 nm)
  • the solid line shows the value of the d line (587.56 nm)
  • the broken line shows the value of the g line (435.84 nm).
  • the solid line shows the value of the sagittal image surface of the d-line
  • the broken line shows the value of the meridional image surface of the d-line.
  • the solid line represents the value of the d-line.
  • FIG. 3 shows the lens structure, optical member F, and image surface IMA of the lens system 200 in the second embodiment.
  • the lens system 200 is composed of a first lens L1, an aperture stop S, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6.
  • the first lens L1, the fourth lens L4, and the sixth lens L6 are positive lenses.
  • the second lens L2, the third lens L3, and the fifth lens L5 are negative lenses.
  • the optical component F is provided between the lens system 200 and the image plane IMA.
  • the optical component F is, for example, an optical filter and a cover plate. The light passing through the lens system 200 and the optical component F is incident on the image surface IMA.
  • Table 6 shows lens data of lenses included in the lens system 200.
  • Di, Nd, and Vd are shown corresponding to the surface number i.
  • Tables 7 to 9 show the surface numbers, the conic constant ⁇ , and the aspheric coefficient An of the surfaces having the aspheric shape.
  • "Ei" represents an exponential expression with a base of 10, that is, “10 -i ". Among them, i is an integer.
  • Table 10 shows the focal length f, Fno, half angle of view ⁇ , maximum image height Y, and total optical length TT of the entire system of the lens system 200 in a state of focusing on an infinite subject.
  • the lens system 200 includes, in order from the object side, a positive first lens L1 with the object side facing the convex surface on the object side, a negative second lens L2 with the image side facing the concave surface on the image side, and a negative third lens L3 with the image side facing the concave surface on the image side.
  • the positive fourth lens L4 whose object side faces the convex surface on the object side
  • the negative fifth lens L5, and the positive sixth lens L6 whose image side faces the concave surface on the image side.
  • the material of the fourth lens is glass, and the material of the other lenses is plastic.
  • the material of the fourth lens L4 is glass, and the material of lenses other than the fourth lens L4 is plastic. That is, the materials of the first lens L1, the second lens L2, the third lens L3, the fifth lens L5, and the sixth lens L6 are plastic.
  • FIG. 4 shows spherical aberration, astigmatism, and distortion aberration of the lens system 200 in a state of focusing on an infinity subject.
  • the dash-dotted line shows the value of the C line (656.27 nm)
  • the solid line shows the value of the d line (587.56 nm)
  • the broken line shows the value of the g line (435.84 nm).
  • the solid line shows the value of the sagittal image surface of the d-line
  • the broken line shows the value of the meridional image surface of the d-line.
  • the solid line shows the value of the d-line. It is obvious from the various aberration diagrams that the various aberrations in the lens system 200 are well corrected and have excellent imaging performance.
  • FIG. 5 shows the lens configuration of the lens system 300 in the third embodiment together with the filter F and the imaging element.
  • the lens system 300 is composed of a first lens L1, an aperture stop S, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6.
  • the first lens L1, the fourth lens L4, and the sixth lens L6 are positive lenses.
  • the second lens L2, the third lens L3, and the fifth lens L5 are negative lenses.
  • the optical component F is provided between the lens system 300 and the image plane IMA.
  • the optical component F is, for example, an optical filter and a cover plate. The light passing through the lens system 300 and the optical component F is incident on the image surface IMA.
  • Table 11 shows lens data of lenses included in the lens system 300.
  • Di, Nd, and Vd are shown in correspondence with the surface numbers.
  • Tables 12 to 14 show the surface numbers, the conic constant ⁇ , and the aspheric coefficient An of the surfaces having the aspheric shape.
  • "Ei" represents an exponential expression with a base of 10, that is, “10 -i ". Among them, i is an integer.
  • Table 15 shows the focal length f, Fno, half angle of view ⁇ , maximum image height Y, and total optical length TT of the entire system of the lens system 300 in a state of focusing on an infinite subject.
  • the lens system 300 includes, in order from the object side, a positive first lens L1, a negative second lens L2 with an image side facing a concave surface on the image side, a negative third lens L3 with an image side facing concave on the image side,
  • the positive fourth lens L4, the negative fifth lens L5, and the positive sixth lens L6 whose image side faces the image side concave surface have the object side facing the object side convex surface.
  • the material of the fourth lens L4 is glass, and the material of lenses other than the fourth lens L4 is plastic. That is, the materials of the first lens L1, the second lens L2, the third lens L3, the fifth lens L5, and the sixth lens L6 are plastic.
  • FIG. 6 shows spherical aberration, astigmatism, and distortion aberration of the lens system 300 in a state of focusing on an infinity subject.
  • the dash-dotted line shows the value of the C line (656.27 nm)
  • the solid line shows the value of the d line (587.56 nm)
  • the broken line shows the value of the g line (435.84 nm).
  • the solid line shows the value of the sagittal image surface of the d-line
  • the broken line shows the value of the meridional image surface of the d-line.
  • the solid line shows the value of the d-line. It is obvious from the various aberration diagrams that the various aberrations in the lens system 300 are well corrected and have excellent imaging performance.
  • FIG. 7 shows the lens configuration of the lens system 400, the filter F, and the imaging element IMA in the fourth embodiment.
  • the lens system 400 is composed of a first lens L1, an aperture stop S, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6.
  • the first lens L1 and the fourth lens L4 are positive lenses.
  • the second lens L2, the third lens L3, the fifth lens L5, and the sixth lens L6 are negative lenses.
  • the optical component F is provided between the lens system 400 and the image plane IMA.
  • the optical component F is, for example, an optical filter and a cover plate. The light passing through the lens system 400 and the optical component F is incident on the image surface IMA.
  • Table 16 shows lens data of lenses included in the lens system 400.
  • Di, Nd, and Vd are shown corresponding to the surface number i.
  • Tables 17 to 19 show the surface numbers, the conic constant ⁇ , and the aspheric coefficient An of the surfaces having an aspherical shape.
  • “Ei” represents an exponential expression with a base of 10, that is, “10 -i ". Among them, i is an integer.
  • Table 20 shows the focal length f, Fno, the half angle of view ⁇ , the maximum image height Y, and the total optical length TT of the entire system of the lens system 400 in a state of focusing on an infinite subject.
  • the lens system 400 starts from the object side in order from the object side toward the object side convex surface of the positive first lens L1, the image side facing the image side concave surface of the negative second lens L2, the image side facing the image side concave surface of the negative third lens L3
  • a positive fourth lens L4 whose object side faces a convex surface on the object side
  • a negative fifth lens L5, and a positive sixth lens L6 whose image side faces a concave surface on the image side.
  • the material of the fourth lens is glass, and the material of lenses other than the fourth lens L4 is plastic. That is, the materials of the first lens L1, the second lens L2, the third lens L3, the fifth lens L5, and the sixth lens L6 are plastic.
  • FIG. 8 shows spherical aberration, astigmatism, and distortion aberration of the lens system 400 in a state where the lens system 400 is focused on an infinity subject.
  • the dash-dotted line shows the value of the C line (656.27 nm)
  • the solid line shows the value of the d line (587.56 nm)
  • the broken line shows the value of the g line (435.84 nm).
  • the solid line shows the value of the sagittal image surface of the d-line
  • the broken line shows the value of the meridional image surface of the d-line.
  • the solid line shows the value of the d-line. It is obvious from the various aberration diagrams that the various aberrations in the lens system 400 are well corrected and have excellent imaging performance.
  • Table 21 shows the numerical values involved in each conditional expression in the first to fourth embodiments.
  • Conditional 1 0.397 1.821 3.122 0.568 1.133
  • Example 2 0.420 1.821 3.415 0.609 1.171
  • Example 3 0.388 1.821 3.161 0.573 1.173
  • Example 4 0.396 1.821 3.122 0.566 1.133
  • Table 22 shows the focal length f and fi (i is a natural number from 1 to 6) related to each conditional expression.
  • Example 1 12.8 7.271 -9.780 -10.954 5.082 -7.76 1,394.36
  • Example 2 14 8.520 -13.124 -14.699 5.882 -6.69 67.95
  • Example 3 9.8 5.611 -7.321 -8.388 3.804 -5.31 54.72
  • Example 4 12.8 7.240 -9.687 -10.896 5.074 -7.84 -999.98
  • Table 23 shows the refractive index Nd4, the maximum image height IH, and the total optical length TT related to each conditional expression.
  • Example 1 1.82115 4.100 14.500
  • Example 2 1.82115 4.100 16.400
  • Example 3 1.82115 3.100 11.500
  • Example 4 1.82115 4.100 14.500
  • a lens system with high resolution can be provided. Furthermore, it is possible to provide a lens system that suppresses changes in the focal position caused by temperature changes. Moreover, a smaller, inexpensive, and narrow viewing angle lens system can be provided.
  • the lens system according to this embodiment can be applied to an imaging lens system for imaging devices such as digital cameras and video cameras.
  • the lens system according to this embodiment can be applied to a lens system that does not have a focusing mechanism.
  • the lens system according to this embodiment can also be applied to a lens system having a focusing mechanism.
  • the lens system according to this embodiment can be applied to a lens system that does not have a zoom mechanism.
  • the lens system according to this embodiment can also be applied to a lens system having a zoom mechanism.
  • the lens system according to this embodiment can be applied to a lens system included in a non-replaceable lens imaging device.
  • the lens system according to this embodiment can be applied to interchangeable lenses of interchangeable lens cameras such as single-lens reflex cameras.
  • a moving body system which is an example of a system including the lens system according to this embodiment.
  • FIG. 9 schematically shows an example of a mobile body system 10 including an unmanned aerial vehicle (UAV) 40 and a controller 50.
  • the UAV 40 includes a UAV main body 1101, a universal joint 1110, a plurality of camera devices 1230, and a camera device 1220.
  • the imaging device 1220 includes a lens device 1160 and an imaging unit 1140.
  • the lens device 1160 includes the above-mentioned lens system.
  • UAV40 is an example of a mobile body that moves including the imaging device having the above-mentioned lens system.
  • the concept of moving objects also includes other aircraft moving in the air, vehicles moving on the ground, and ships moving on the water.
  • the UAV main body 1101 includes a plurality of rotors.
  • the UAV main body 1101 makes the UAV 40 fly by controlling the rotation of a plurality of rotors.
  • the UAV body 1101 uses, for example, four rotating wings to fly the UAV 40.
  • the number of rotors is not limited to four.
  • UAV40 can also be a fixed-wing aircraft without rotors.
  • the imaging device 1230 is an imaging camera for imaging a subject included in a desired imaging range.
  • the plurality of imaging devices 1230 are sensor cameras that capture images of the surroundings of the UAV 40 in order to control the flight of the UAV 40.
  • the camera 1230 may be fixed on the UAV main body 1101.
  • the two camera devices 1230 can be installed on the nose of the UAV 40, that is, the front. Furthermore, the other two camera devices 1230 may be provided on the bottom surface of the UAV 40.
  • the two camera devices 1230 on the front side can be paired to function as a so-called stereo camera.
  • the two imaging devices 1230 on the bottom side can also be paired to function as a stereo camera.
  • the three-dimensional spatial data around the UAV 40 can be generated based on images captured by the plurality of camera devices 1230.
  • the distance to the subject captured by the multiple imaging devices 1230 can be determined by a stereo camera composed of the multiple imaging devices 1230.
  • the number of camera devices 1230 included in the UAV 40 is not limited to four.
  • the UAV40 only needs to include at least one camera 1230.
  • the UAV40 may also include at least one camera 1230 on the nose, tail, sides, bottom and top of the UAV40.
  • the imaging device 1230 may have a single focus lens or a fisheye lens.
  • the plurality of imaging devices 1230 may be collectively referred to as only imaging devices 1230.
  • the controller 50 includes a display part 54 and an operation part 52.
  • the operation unit 52 receives an input operation for controlling the gesture of the UAV 40 from the user.
  • the controller 50 transmits a signal for controlling the UAV 40 based on the user operation received by the operation unit 52.
  • the controller 50 receives an image taken by at least one of the camera 1230 and the camera 1220.
  • the display section 54 displays the image received by the controller 50.
  • the display portion 54 may be a touch panel.
  • the controller 50 can receive input operations from the user through the display unit 54.
  • the display unit 54 can receive a user operation or the like that the user designates the position of the subject to be captured by the imaging device 1220.
  • the imaging unit 1140 generates and records image data of an optical image formed by the lens device 1160.
  • the lens device 1160 may be integrally provided with the imaging unit 1140.
  • the lens device 1160 may be a so-called interchangeable lens.
  • the lens device 1160 is detachably installed in the imaging unit 1140.
  • the universal joint 1110 includes a supporting mechanism that movably supports the camera device 1220.
  • the imaging device 1220 is mounted on the UAV main body 1101 through a universal joint 1110.
  • the universal joint 1110 rotatably supports the imaging device 1220 around the pitch axis.
  • the universal joint 1110 rotatably supports the imaging device 1220 around the roll axis.
  • the universal joint 1110 rotatably supports the camera device 1220 around the yaw axis.
  • the universal joint 1110 rotatably supports the camera device 1220 around at least one of the pitch axis, the roll axis, and the yaw axis.
  • the universal joint 1110 rotatably supports the camera device 1220 around the pitch axis, the roll axis, and the yaw axis, respectively.
  • the universal joint 1110 can hold the imaging unit 1140.
  • the universal joint 1110 can hold the lens device 1160.
  • the universal joint 1110 can change the imaging direction of the imaging device 1220 by rotating the imaging unit 1140 and the lens device 1160 around at least one of the yaw axis, the pitch axis, and the roll axis.
  • FIG. 10 shows an example of the functional blocks of UAV40.
  • the UAV 40 includes an interface 1102, a control unit 1104, a memory 1106, a universal joint 1110, a camera unit 1140, and a lens device 1160.
  • the interface 1102 communicates with the controller 50.
  • the interface 1102 receives various commands from the controller 50.
  • the control unit 1104 controls the flight of the UAV 40 according to instructions received by the controller 50.
  • the control unit 1104 controls the universal joint 1110, the imaging unit 1140, and the lens device 1160.
  • the control unit 1104 may be constituted by a microprocessor such as a CPU or an MPU, a microcontroller such as an MCU, or the like.
  • the memory 1106 stores programs and the like necessary for the control unit 1104 to control the gimbal 1110, the imaging unit 11404, and the lens device 1160.
  • the memory 1106 may be a computer-readable recording medium.
  • the memory 1106 may include at least one of flash memory such as SRAM, DRAM, EPROM, EEPROM, and USB memory.
  • the storage 1106 may be disposed in the casing of the UAV40. It can be configured to be detachable from the UAV40 housing.
  • the universal joint 1110 includes a control part 1112, a driver 1114, a driver 1116, a driver 1118, a driving part 1124, a driving part 1126, a driving part 1128, and a support mechanism 1130.
  • the driving part 1124, the driving part 1126, and the driving part 1128 may be motors.
  • the supporting mechanism 1130 supports the imaging device 1220.
  • the supporting mechanism 1130 can movably support the shooting direction of the camera 1220.
  • the supporting mechanism 1130 rotatably supports the imaging unit 1140 and the lens device 1160 with the yaw axis, the pitch axis and the roll axis as the center.
  • the support mechanism 1130 includes a rotation mechanism 1134, a rotation mechanism 1136, and a rotation mechanism 1138.
  • the rotation mechanism 1134 uses the drive unit 1124 to rotate the imaging unit 1140 and the lens device 1160 around the yaw axis.
  • the rotation mechanism 1136 uses the drive unit 1126 to rotate the imaging unit 1140 and the lens device 1160 around the pitch axis.
  • the rotation mechanism 1138 uses the drive unit 1128 to rotate the imaging unit 1140 and the lens device 1160 around the roll axis.
  • the control unit 1112 outputs to the driver 1114, the driver 1116, and the driver 1118 operation commands indicating the respective rotation angles in accordance with the operation commands of the universal joint 1110 from the control unit 1104.
  • the driver 1114, the driver 1116, and the driver 1118 drive the driving unit 1124, the driving unit 1126, and the driving unit 1128 in accordance with an operation command indicating the rotation angle.
  • the rotation mechanism 1134, the rotation mechanism 1136, and the rotation mechanism 1138 are driven to rotate by the driving unit 1124, the driving unit 1126, and the driving unit 1128, respectively, to change the postures of the imaging unit 1140 and the lens device 1160.
  • the imaging unit 1140 performs imaging by light passing through the lens system 1168.
  • the imaging unit 1140 includes a control unit 1222, an imaging element 1221, and a memory 1223.
  • the control unit 1222 may be constituted by a microprocessor such as a CPU or an MPU, a microcontroller such as an MCU, or the like.
  • the control unit 1222 controls the imaging unit 1140 and the lens device 1160 in accordance with the operation instructions for the imaging unit 1140 and the lens device 1160 from the control unit 1104.
  • the control unit 1222 outputs a control command to the lens device 1160 to the lens device 1160 based on the signal received from the controller 50.
  • the control command may be a command to vibrate the lens system 1168 or a command to detect the temperature of the lens system 1168.
  • the memory 1223 may be a computer-readable recording medium, and may also include at least one of flash memory such as SRAM, DRAM, EPROM, EEPROM, and USB memory.
  • the memory 1223 may be provided inside the housing of the imaging unit 1140. It can be configured to be detachable from the housing of the imaging unit 1140.
  • the imaging element 1221 is held inside the housing of the imaging unit 1140, generates image data of an optical image formed by the lens device 1160, and outputs the image data to the control unit 1222.
  • the control unit 1222 stores the image data output from the imaging element 1221 in the memory 1223.
  • the control unit 1222 can output and store image data in the memory 1106 through the control unit 1104.
  • the lens device 1160 includes a control unit 1162, a memory 1163, a driving mechanism 1161, and a lens system 1168.
  • the lens system 1168 can apply the lens system according to the above-mentioned embodiment.
  • the control unit 1162 can vibrate the lens system 1168 in accordance with a control command from the control unit 1222.
  • the driving mechanism 1161 vibrates the lens system 1168.
  • the driving mechanism 1161 includes, for example, an actuator and the like.
  • the image formed by the lens system 1168 of the lens device 1160 is captured by the imaging unit 1140.
  • the lens device 1160 can be integrated with the imaging unit 1140.
  • the lens device 1160 may be a so-called interchangeable lens.
  • the lens device 1160 is detachably installed on the imaging unit 1140.
  • the imaging device 1230 includes a control unit 1232, a control unit 1234, an imaging element 1231, a memory 1233, and a lens 1235.
  • the control unit 1232 may be constituted by a microprocessor such as a CPU or an MPU, a microcontroller such as an MCU, or the like.
  • the control unit 1232 controls the imaging element 1231 in accordance with an operation command to the imaging element 1231 from the control unit 1104.
  • the control unit 1234 may be composed of a microprocessor such as a CPU or an MPU, a microcontroller such as an MCU, or the like.
  • the control unit 1234 may control the focus of the lens 1235 according to the operation instruction to the lens 1235.
  • the control unit 1234 can control the aperture stop of the lens 1235 according to an operation instruction to the lens 1235.
  • the memory 1233 may be a computer-readable recording medium.
  • the memory 1233 may include at least one of flash memory such as SRAM, DRAM, EPROM, EEPROM, and USB memory.
  • the imaging element 1231 generates image data of an optical image formed by the lens 1235 and outputs it to the control unit 1232.
  • the control unit 1232 stores the image data output from the imaging element 1231 in the memory 1233.
  • the UAV 40 includes a control unit 1104, a control unit 1112, a control unit 1222, a control unit 1232, a control unit 1234, and a control unit 1162.
  • the processing performed by a plurality of the control unit 1104, the control unit 1112, the control unit 1222, the control unit 1232, the control unit 1234, and the control unit 1162 can be executed by any one of the control units.
  • the processing performed by the control unit 1104, the control unit 1112, the control unit 1222, the control unit 1232, the control unit 1234, and the control unit 1162 can be executed by one control unit.
  • the UAV 40 includes a memory 1106, a memory 1223, and a memory 1233.
  • the information stored in at least one of the storage 1106, the storage 1223, and the storage 1233 may be stored in one or more other storages among the storage 1106, the storage 1223, and the storage 1233.
  • the imaging device 1220 can obtain an image in which blurring due to temperature changes is suppressed by including the lens device 1160 having the lens system according to the above-mentioned embodiment. Furthermore, it is possible to obtain an image with high resolution even when zooming in on a distant subject. Moreover, the camera unit 3013 is small and inexpensive.
  • the stabilizer which is an example of a system including the lens system according to the above-mentioned embodiment.
  • FIG. 11 is an external perspective view showing an example of the stabilizer 3000.
  • the stabilizer 3000 is another example of a moving body.
  • the camera unit 3013 included in the stabilizer 3000 may include an imaging device having the same configuration as the imaging device 1220.
  • the camera unit 3013 may include a lens device having the same configuration as the lens device 1160.
  • the stabilizer 3000 includes a camera unit 3013, a universal joint 3020, and a handle 3003.
  • the universal joint 3020 rotatably supports the camera unit 3013.
  • the universal joint 3020 includes a translation (PAN) axis 3009, a roll (ROLL) axis 3010, and a pitch (TILT) axis 3011.
  • the universal joint 3020 centers on the translation axis 3009, the roll axis 3010, and the pitch axis 3011, and supports the camera unit 3013 rotatably.
  • the universal joint 3020 is an example of a supporting mechanism.
  • the camera unit 3013 is an example of an imaging device.
  • the camera unit 3013 has a card slot 3014 for inserting a memory.
  • the universal joint 3020 is fixed to the handle 3003 via a bracket 3007.
  • the handle 3003 has various buttons for operating the universal joint 3020 and the camera unit 3013.
  • the handle 3003 includes a shutter button 3004, a recording button 3005, and an operation button 3006.
  • the camera unit 3013 can record a still image by pressing the shutter button 3004.
  • the camera unit 3013 can record moving images by pressing the video button 3005.
  • the equipment holder 3001 is fixed to the handle 3003.
  • the device holder 3001 supports mobile devices 3002 such as smart phones.
  • the mobile device 3002 may be communicably connected with the stabilizer 3000 via a wireless network such as WiFi.
  • a wireless network such as WiFi.
  • the image taken by the camera unit 3013 can be displayed on the screen of the mobile device 3002.
  • the camera unit 3013 can obtain an image with suppressed blur due to temperature changes by including the lens system related to the above-mentioned embodiment. Furthermore, it is possible to obtain an image with high resolution even when zooming in on a distant subject. Moreover, the camera unit 3013 is small and inexpensive.
  • the UAV 40 and the stabilizer 3000 have been described as examples of moving objects.
  • the camera device having the same configuration as the camera device 1220 can be mounted on a moving body other than the UAV 40 and the stabilizer 3000.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

期望一种具有高分辨力的同时,抑制随着温度的变化而焦点位置变化的透镜系统。透镜系统从物体侧依次包括:物体侧为凸面的正的第一透镜、像侧为凹面的负的第二透镜、像侧为凹面的负的第三透镜、物体侧为凸面的正的第四透镜、负的第五透镜、像侧为凹面的第六透镜;第四透镜的材质为玻璃,第一透镜、第二透镜、第三透镜、第五透镜以及第六透镜的材质为塑料;将F作为整个系统的焦距,f4作为第四透镜的焦距,Nd4作为第四透镜在d线的折射率,IH作为最大像高,满足条件式0.3<f4/f<0.7,Nd4>1.7,f/IH>2.5。

Description

透镜系统、摄像装置及移动体
本申请要求于2019-05-29递交的、申请号为JP2019-100348的日本专利申请的优先权,其内容一并在此作为参考。
技术领域
本发明涉及一种透镜系统、摄像装置及移动体。
背景技术
近年来,随着摄像元件高像素化的发展,对镜头提出了更高分辨率、更小型化的要求。进而,对远处被摄体进行放大的要求也在提高。而且,要求抑制随着温度的变化而造成的焦点位置的变化。下列文献中公开了一种摄像镜头,其对由于窄视角或者温度变化而造成的焦点位置的变化进行了抑制。
专利文献1日本专利第5718528号公报
专利文献2日本专利第6085060号公报
发明内容
需要一种透镜系统,其具有高分辨率、小型,而且具有可放大远处的被摄体的窄视角,同时抑制随着温度的变化而造成的焦点位置的变化。
本发明的一个方面所涉及的透镜系统从物体侧依次包括:物体侧为凸面的正的第一透镜、像侧为凹面的负的第二透镜、像侧为凹面的负的第三透镜、物体侧为凸面的正的第四透镜、负的第五透镜、像侧为凹面的第六透镜。第四透镜的材质为玻璃。第一透镜、第二透镜、第三透镜、第五透镜以及第六透镜的材质为塑料。将f作为整个系统的焦距,f4作为第四透镜的焦距,Nd4作为第四透镜在d线中的折射率,IH作为最大像高,满足条件式
0.3<f4/f<0.7
Nd4>1.7
f/IH>2.5。
将fi作为第i透镜的焦距,可满足条件式
|f4|<|fi|。
将f1作为第1透镜的焦距,可满足条件式
0.45<f1/f<0.7。
将TT作为光学全长,可满足条件式
0.95<TT/f<1.3。
本发明的一个方面所涉及的摄像装置包括上述透镜系统。摄像装置包括摄像元件。
本发明的一个方面所涉及的移动体包括上述透镜系统并移动。
移动体可以为无人驾驶航空器。
根据上述透镜系统,可提供一种抑制随着温度的变化而造成的焦点位置的变动的透镜系统。
上述发明概要并未列举出本发明的全部特征。这些特征组的子组合也可以构成发明。
附图说明
图1将第一实施例中的透镜系统100的透镜构成与滤光镜F以及像面IMA一同示出。
图2示出在对焦于无限远被摄体的状态下的透镜系统100的球面像差、像散以及畸变像差。
图3将第二实施例中透镜系统200的透镜构成与滤光镜F以及像面IMA一同示出。
图4示出在对焦于无限远被摄体的状态下的透镜系统200的球面像差、像散以及畸变像差。
图5将第三实施例中透镜系统300的透镜构成与滤光镜F以及像面IMA一同示出。
图6示出在对焦于无限远被摄体的状态下的透镜系统300的球面像差、像散以及畸变像差。
图7将第四实施例中透镜系统400的透镜构成与滤光镜F以及像面IMA一同示出。
图8示出在对焦于无限远被摄体的状态下的透镜系统400的球面像差、像散以及畸变像差。
图9示意性的示出包括无人驾驶航空器(UAV)40以及控制器50的移动体系统10的一个示例。
图10示出UAV40的功能块的一个示例。
图11是示出稳定器3000的一个示例的外观立体图。
具体实施方式
以下,通过发明的实施方式来说明本发明,但是以下的实施方式并不限定权利要求书所涉及的发明。此外,实施方式中所说明的所有特征组合对于发明的解决方案未必是必须的。对本领域普通技术人员来说,显然可以对以下实施方式加以各种变更或改良。从权利要求书的描述显而易见的是,加以了这样的变更或改良的方式都可包含在本发明的技术范围之内。
权利要求书、说明书、说明书附图以及说明书摘要中包含作为著作权所保护对象的事项。任何人只要如专利局的文档或者记录所表示的那样进行这些文件的复制,著作权人则不会提出异议。但是,在除此以外的情况下,保留一切的著作权。
透镜系统的实施例与图1至图7相关联地进行了公开。如各实施例所示,一个实施方式的透镜系统从物体侧依次包括:物体侧为凸面的正的第一透镜、像侧为凹面的负的第二透镜、像侧为凹面的负的第三透镜、物体侧为凸面的正的第四透镜、负的第五透镜、像侧为凹面的第六透镜。第四透镜的材质为玻璃。第一透镜、第二透镜、第三透镜、第五透镜以及第六透镜的材质为塑料。将f作为整个系统的焦距,f4作为第四透镜的焦距,Nd4作为第四透镜在d线的折射率,IH作为最大像高,满足条件式1、条件式2以及条件式3。
0.3<f4/f<0.7(条件式1)
Nd4>1.7(条件式2)
f/IH>2.5(条件式3)。
通过上述透镜系统所具备的结构,能够较廉价的实现较小型而且具有高分辨力、抑制随着温度的变化而造成的焦点位置的变化的透镜系统。
一般而言,随着温度的变化,塑料透镜相比玻璃透镜,折射率的变化更大。因此,当假定在焦点固定的状态下使用时,以及当透镜系统不具有聚焦机构时等,需要光学性地抑制随着温度的变化而造成的性能变化,特别是焦点位置的变化。
条件式1规定了随着温度的变化而折射率变化较小的玻璃材质的第四透镜的焦距和整个系统的焦距的关系。如果超过条件式1的上限,则玻璃材质的第四透镜的折射力变弱,第四透镜以外的塑料透镜的折射力相对地变强。因此,温度变化时的焦点位置的变化易变大。如果超过条件式1的下限,则第四透镜的折射力相对变强。因此,像差校正变难,同时由于组装误差而造成的性能波动变大。通过满足条件式1,能够抑制随着温度的变化而造成的整个透镜系统的焦点位置的变化。而且,像差校正变得容易,能够抑制由于组装误差而产生的性能波动。
条件式2规定了第二透镜在d线的折射率。通过满足条件式2,能够实现透镜系统的 小型化和良好的像差校正。
条件式3规定了整个系统的焦距和最大像高的关系。通过满足条件式3,可使透镜的视角变窄,放大远处的被摄体进行拍摄。
期望满足条件式1-1。
0.35<f4/f<0.6(条件式1-1)
通过满足条件式1-1,上述效果更加显著。
将fi作为第i透镜的焦距,满足条件式4。
|f4|<|fi|(条件式4)
条件式4规定了第四透镜的焦距与其他透镜的焦距的关系。通过满足条件式4,塑料材质的各透镜的折射力变弱。因此,能够抑制随着温度变化而造成的各透镜的焦距的变化。由此,能够抑制整个透镜系统的焦点位置的变化。
将f1作为第1透镜的焦距,满足条件式5。
0.45<f1/f<0.7(条件式5)。
条件式5规定了第一透镜的焦距与整个系统的焦距的关系。如果超过条件式5的上限,则第一透镜的折射力变弱,并导致透镜系统的大型化。如果超过条件式5的下限,则第一透镜的折射力变得过强,因而,特别是轴向像差难以校正。
期望满足条件式5-1。
0.5<f1/f<0.7(条件式5-1)
将TT作为光学全长,满足条件式6。
0.95<TT/f<1.3(条件式6)
条件式6规定了光学全长与整个系统的焦距的关系。通过满足条件式6,可实现小型的且像差良好校正的透镜系统。
在本说明书中等使用术语“由...构成”“由...组成”“由...组成的”时,除了列举的构成元件外,还可包括实质上不具有折射力的透镜、光圈、滤光镜以及玻璃盖片等实质具有折射力的非透镜光学元件以及/或者透镜凸缘、摄像元件以及抖动校正机构等机构元件。例如,在使用术语“由A构成”“由A组成”“由A组成的”时,除了A,还可包含实质具有折射力的非透镜光学元件以及/或者机构元件。
其次,对透镜系统的实施方式所涉及的实施例的透镜构成进行说明。首先,对在透镜系统的各实施例的说明中使用的符号等的意思进行说明。
“Lm”表示透镜。这里,L之后的m是自然数。m表示从物体侧开始的第m个透镜。 在各实施例中,Lm是为示出从物体侧开始的第m个透镜而分配的符号。在各实施例的说明中,分配了符号Lm的透镜并不意味着与在其他的实施例中分配了相同的符号Lm的透镜是同一个透镜。
透镜系统具有的多个面通过面编号i识别,其中i为自然数。从物体侧来看,将光学元件的最初的面作为第一面,之后以光线通过光学元件的面的顺序对面编号进行累加。在面编号中“STO”表示孔径光阑S的开孔面。“Di”表示在第i个面和第i+1个面之间在光轴上的间隔。
透镜系统有时包含具有形成为非球面的透镜面的透镜。形成于非球面的透镜面的面编号标注“*”进行表示。非球面形状由下式定义,其中“x”为在光轴方向上距透镜面顶点的距离;“y”为在与光轴垂直的方向上距光轴的高度;“c”为透镜的顶点处的近轴曲率;“An”为n阶的非球面系数;“κ”为圆锥常数(锥常数)。
x=cy 2/(1+(1-(1+κ)c 2y 2) 1/2)+∑An×y n
∑表示n的和。另外,“x”也称为下垂量。“y”也称为像高。“c”为曲率半径的倒数。
“f”表示焦距。“Fno”表示F数。“ω”表示半视场角。“Y”表示最大像高(IH)。“TT”表示对焦于无限远被摄体时的光学全长(从最靠近物体侧的透镜面到像面的距离)。“R”表示曲率半径。在透镜数据所表示的曲率半径中,“INF”表示平面。“Nd”表示折射率。“Vd”表示阿贝数。折射率Nd及阿贝数Vd为在d线(λ=587.6nm)的值。
图1将第一实施例中的透镜系统100的透镜结构、光学构件F及像面IMA一同示出。透镜系统100由第一透镜L1、孔径光阑S、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6构成。第一透镜L1、第四透镜L4以及第六透镜L6为正透镜。第二透镜L2、第三透镜L3以及第五透镜L5为负透镜。光学部件F设置于透镜系统100和像面IMA之间。光学部件F例如为光学滤光镜和盖板等。通过透镜系统100以及光学部件F的光入射至像面IMA。
表1示出透镜系统100具有的透镜的透镜数据。在表1中,Di、Nd及Vd与面编号i相对应地进行表示。
【表1】
面编号 R D Nd Vd
1* 4.894 2.862 1.54401 56.00
2* -16.727 0.000    
STO INF 0.112    
4* -195.153 0.519 1.63495 23.90
5* 6.486 0.657    
6* 28.421 0.500 1.63495 23.90
7* 5.593 0.344    
8* 5.434 1.777 1.82115 24.06
9* -15.981 0.220    
10* -43.263 1.200 1.63495 23.90
11* 5.681 1.856    
12* 7.202 0.982 1.54401 56.00
13* 6.921 1.542    
14 INF 0.300 1.51680 64.20
15 INF 0.500    
16 INF 0.500 1.51680 64.20
17 INF 0.630    
在表2到表4中,示出了具有非球面形状的面的面编号和圆锥常数κ和非球面系数An。关于圆锥常数κ和非球面系数An的值,“E-i”表示以10为底数的指数表达,即“10 -i”。其中,i为整数。
【表2】
面编号 K A3 A4 A5 A6 A7
1 -4.01166E-01 0.00000E+00 1.50699E-05 0.00000E+00 -2.45674E-05 0.00000E+00
2 5.14647E+00 0.00000E+00 9.41364E-04 0.00000E+00 -4.45348E-06 0.00000E+00
4 1.00000E+01 0.00000E+00 -1.09741E-03 0.00000E+00 9.75224E-04 0.00000E+00
5 7.96551E+00 0.00000E+00 -5.99181E-03 0.00000E+00 1.24917E-03 0.00000E+00
6 1.01344E+00 0.00000E+00 -2.95237E-03 0.00000E+00 3.02967E-03 0.00000E+00
7 1.89530E+00 0.00000E+00 -5.12925E-03 0.00000E+00 2.78439E-03 0.00000E+00
8 -2.34834E+00 0.00000E+00 2.41175E-04 0.00000E+00 -3.06876E-05 0.00000E+00
9 -9.42703E+00 0.00000E+00 6.68639E-04 0.00000E+00 -1.31159E-03 0.00000E+00
10 1.00000E+01 -4.44195E-04 2.26685E-03 -1.73940E-03 3.93217E-04 6.98030E-05
11 5.00528E+00 -4.33734E-04 -4.10646E-03 -4.02691E-05 1.03295E-03 4.70926E-05
12 1.06000E+00 -1.96850E-04 -1.35337E-02 1.37569E-04 8.19774E-04 -2.14223E-06
13 3.52104E+00 -1.07109E-04 -1.42335E-02 -6.19256E-04 1.14551E-03 3.61473E-05
【表3】
面编号 A8 A9 A10 A11 A12 A13
1 7.11588E-06 0.00000E+00 -2.56779E-06 0.00000E+00 3.50295E-07 0.00000E+00
2 -1.78455E-04 0.00000E+00 7.57260E-05 0.00000E+00 -1.13366E-05 0.00000E+00
4 -6.46543E-04 0.00000E+00 2.03056E-04 0.00000E+00 -2.16970E-05 0.00000E+00
5 -7.60145E-04 0.00000E+00 6.07347E-06 0.00000E+00 6.81544E-05 0.00000E+00
6 -1.54778E-03 0.00000E+00 2.45963E-04 0.00000E+00 2.58706E-05 0.00000E+00
7 -1.47074E-03 0.00000E+00 3.63262E-04 0.00000E+00 -4.19530E-05 0.00000E+00
8 2.74682E-05 0.00000E+00 3.92651E-05 0.00000E+00 -1.75143E-05 0.00000E+00
9 6.60824E-04 0.00000E+00 -1.52362E-04 0.00000E+00 1.41573E-05 0.00000E+00
10 1.88758E-04 -4.01034E-05 -9.56669E-05 1.52553E-05 2.41774E-06 -6.07370E-07
11 -3.06883E-04 -1.28255E-05 -5.44056E-06 -9.63077E-06 4.91943E-06 7.89252E-07
12 9.31014E-05 1.26854E-05 -4.26590E-05 -6.85684E-07 4.21066E-06 -1.49933E-07
13 -7.41636E-05 1.64815E-06 -2.54722E-06 -1.68158E-07 -5.38250E-08 1.75603E-09
【表4】
面编号 A14 A15 A16 A17 A18
1 -2.07755E-08 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
2 3.62703E-07 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
4 -2.10870E-07 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
5 -1.28788E-05 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
6 -7.31407E-06 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
7 1.94335E-06 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
8 2.14526E-06 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
9 -5.77389E-08 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
10 2.46645E-06 -4.92583E-07 -4.75775E-08 0.00000E+00 0.00000E+00
11 1.00816E-06 5.62496E-08 -3.20786E-07 0.00000E+00 0.00000E+00
12 2.73039E-07 2.13850E-08 -8.28090E-08 0.00000E+00 4.35712E-09
13 1.32503E-07 -1.07731E-09 -1.48565E-08 5.83393E-11 4.52609E-10
表5示出在对焦于无限远被摄体的状态下的透镜系统100的整个系统的焦距f、Fno、半视场角ω、最大像高Y以及光学全长TT。
【表5】
f 12.80
Fno 2.85
ω 17.27
Y 4.1
TT 14.50
透镜系统100从物体侧依次包括:物体侧面朝向物体侧凸面的正的第一透镜L1、像侧面朝向像侧凹面的负的第二透镜L2、像侧面朝向像侧凹面的负的第三透镜L3、物体侧面朝向物体侧凸面的正的第四透镜L4、负的第五透镜L5、像侧面朝向像侧凹面的正的第六透镜L6。第四透镜L4的材质为玻璃,第四透镜L4以外的透镜的材质为塑料。即,第一透镜L1、第二透镜L2、第三透镜L3、第五透镜L5以及第六透镜L6的材质为塑料。
图2示出在对焦于无限远被摄体的状态下的透镜系统100的球面像差、像散、畸变像差。在球面像差中,点划线示出C线(656.27nm)的值,实线示出d线(587.56nm)的值,虚线示出g线(435.84nm)的值。在像散中,实线示出d线的弧矢像面的值,虚线示出d线的子午像面的值。在畸变像差中,实线表示d线的值。从各像差图显而易见的是,实施例1的透镜系统100中各像差得以良好地校正,并且具有优异的成像性能。
图3将第二实施例中的透镜系统200的透镜结构、光学构件F及像面IMA一同示出。透镜系统200由第一透镜L1、孔径光阑S、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6构成。第一透镜L1、第四透镜L4以及第六透镜L6为正透镜。第二透镜L2、第三透镜L3以及第五透镜L5为负透镜。光学部件F设置于透镜系统200和像面IMA之间。光学部件F例如为光学滤光镜和盖板等。通过透镜系统200以及光学部件F的光入射至像面IMA。
表6示出透镜系统200具有的透镜的透镜数据。在表六中,Di、Nd及Vd与面编号i相对应地进行表示。
【表6】
面编号 R D Nd Vd
1* 5.652 2.900 1.54401 56.00
2* -21.607 0.000    
STO INF 0.080    
4* 35.094 0.678 1.63495 23.90
5* 6.736 0.809    
6* 38.171 0.601 1.63495 23.90
7* 7.512 0.296    
8* 6.925 3.126 1.82115 24.06
9* -13.119 0.220    
10* -15.142 0.992 1.63495 23.90
11* 6.133 1.949    
12* 6.771 1.406 1.54401 56.00
13* 7.675 1.413    
14 INF 0.300 1.51680 64.20
15 INF 0.500    
16 INF 0.500 1.51680 64.20
17 INF 0.630    
从表7至表9示出具有非球面形状的面的面编号和圆锥常数κ和非球面系数An。关于圆锥常数κ和非球面系数An的值,“E-i”表示以10为底数的指数表达,即“10 -i”。其中,i为整数。
【表7】
面编号 K A3 A4 A5 A6 A7
1 -4.46504E-01 0.00000E+00 1.11704E-05 0.00000E+00 -3.14203E-05 0.00000E+00
2 7.25653E+00 0.00000E+00 2.69195E-04 0.00000E+00 -4.56374E-05 0.00000E+00
4 1.00000E+01 0.00000E+00 -1.25118E-03 0.00000E+00 8.74560E-04 0.00000E+00
5 8.09941E+00 0.00000E+00 -5.63620E-03 0.00000E+00 1.33708E-03 0.00000E+00
6 1.00000E+01 0.00000E+00 -3.62762E-03 0.00000E+00 3.17165E-03 0.00000E+00
7 3.86745E+00 0.00000E+00 -3.81851E-03 0.00000E+00 2.68148E-03 0.00000E+00
8 -1.76957E+00 0.00000E+00 3.38633E-04 0.00000E+00 -7.80242E-06 0.00000E+00
9 -4.88832E-02 0.00000E+00 9.09034E-04 0.00000E+00 -1.21301E-03 0.00000E+00
10 -6.15207E-01 -4.58315E-04 1.90262E-03 -1.66662E-03 5.46764E-04 1.63220E-04
11 5.61359E+00 -3.49418E-04 -5.12826E-03 3.29886E-04 1.19907E-03 4.68173E-05
12 2.33348E+00 -5.81109E-04 -9.99758E-03 -4.43161E-04 6.51907E-04 -6.51712E-06
13 3.95085E+00 8.74291E-04 -1.07960E-02 -7.59441E-04 9.73794E-04 2.46703E-05
【表8】
面编号 A8 A9 A10 A11 A12 A13
1 1.09442E-05 0.00000E+00 -2.47061E-06 0.00000E+00 2.78156E-07 0.00000E+00
2 -1.64969E-04 0.00000E+00 7.91845E-05 0.00000E+00 -1.11962E-05 0.00000E+00
4 -6.72732E-04 0.00000E+00 2.02900E-04 0.00000E+00 -2.00966E-05 0.00000E+00
5 -7.54647E-04 0.00000E+00 -5.07028E-06 0.00000E+00 6.36915E-05 0.00000E+00
6 -1.43944E-03 0.00000E+00 2.41070E-04 0.00000E+00 1.40055E-05 0.00000E+00
7 -1.45417E-03 0.00000E+00 3.75714E-04 0.00000E+00 -4.00008E-05 0.00000E+00
8 -6.24324E-05 0.00000E+00 4.00909E-05 0.00000E+00 -9.26818E-06 0.00000E+00
9 6.67186E-04 0.00000E+00 -1.57205E-04 0.00000E+00 1.20310E-05 0.00000E+00
10 2.18718E-04 -3.75165E-05 -9.85371E-05 1.05048E-05 4.79064E-08 -1.40770E-06
11 -3.26506E-04 -7.17030E-06 -1.39319E-06 -6.95337E-06 4.34494E-06 1.11954E-07
12 9.55520E-05 1.26399E-05 -4.30884E-05 -9.25473E-07 4.15200E-06 -1.44908E-07
13 -6.53910E-05 3.98553E-06 -2.15095E-06 -3.36098E-07 -9.75476E-08 -5.29855E-09
【表9】
面编号 A14 A15 A16 A17 A18
1 -1.31772E-08 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
2 3.64735E-07 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
4 -2.07941E-08 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
5 -1.08804E-05 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
6 -5.81931E-06 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
7 3.52921E-07 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
8 6.91168E-07 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
9 3.01134E-07 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
10 2.36717E-06 -3.73032E-07 9.46681E-08 0.00000E+00 0.00000E+00
11 4.96971E-07 -9.89778E-08 -9.62238E-08 0.00000E+00 0.00000E+00
12 2.84181E-07 2.68973E-08 -8.15678E-08 0.00000E+00 3.89186E-09
13 1.31504E-07 -6.42725E-11 -1.43708E-08 2.38499E-10 4.04495E-10
表10示出在对焦于无限远被摄体的状态下的透镜系统200的整个系统的焦距f、Fno、半视场角ω、最大像高Y以及光学全长TT。
【表10】
f 14.00
Fno 2.84
ω 15.86
Y 4.1
TT 16.40
透镜系统200从物体侧开始依次包括物体侧面朝向物体侧凸面的正的第一透镜L1、像侧面朝向像侧凹面的负的第二透镜L2、像侧面朝向像侧凹面的负的第三透镜L3、物体侧朝向物体侧凸面的正的第四透镜L4、负的第五透镜L5、像侧面朝向像侧凹面的正的第六透镜L6。第四透镜的材质为玻璃,其他透镜的材质为塑料。第四透镜L4的材质为玻璃,第四透镜L4以外的透镜的材质为塑料。即,第一透镜L1、第二透镜L2、第三透镜L3、第五透镜L5以及第六透镜L6的材质为塑料。
图4示出在对焦于无限远被摄体的状态下的透镜系统200的球面像差、像散以及畸变像差。在球面像差中,点划线示出C线(656.27nm)的值,实线示出d线(587.56nm)的值,虚线示出g线(435.84nm)的值。在像散中,实线示出d线的弧矢像面的值,虚线示出d线的子午像面的值。在畸变像差中,实线示出d线的值。从各像差图显而易见的是,透镜系统200中各像差得以良好地校正,并且具有优异的成像性能。
图5将第三实施例中透镜系统300的透镜构成与滤光镜F以及摄像元件一同示出。透镜系统300由第一透镜L1、孔径光阑S、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6构成。第一透镜L1、第四透镜L4以及第六透镜L6为正透镜。第二透镜L2、第三透镜L3以及第五透镜L5为负透镜。光学部件F设置于透镜系统300和像面IMA之间。光学部件F例如为光学滤光镜和盖板等。通过透镜系统300以及光学部件F的光入射至像面IMA。
表11示出透镜系统300具有的透镜的透镜数据。在表11中,Di、Nd以及Vd与面编号相对应地进行表示。
【表11】
面编号 R D Nd Vd
1* 3.915 2.451 1.54401 56.00
2* -11.001 0.000    
STO INF 0.141    
4* -29.711 0.450 1.63495 23.90
5* 5.607 0.348    
6* 36.350 0.470 1.63495 23.90
7* 4.661 0.323    
8* 4.188 1.351 1.82115 24.06
9* -10.917 0.200    
10* -27.501 0.890 1.63495 23.90
11* 3.933 1.316    
12* 5.779 0.954 1.54401 56.00
13* 6.747 0.677    
14 INF 0.300 1.51680 64.20
15 INF 0.500    
16 INF 0.500 1.51680 64.20
17 INF 0.630    
从表12至表14示出具有非球面形状的面的面编号和圆锥常数κ和非球面系数An。关于圆锥常数κ和非球面系数An的值,“E-i”表示以10为底数的指数表达,即“10 -i”。其中,i为整数。
【表12】
面编号 K A3 A4 A5 A6 A7
1 -4.34094E-01 0.00000E+00 1.45327E-04 0.00000E+00 -1.08903E-05 0.00000E+00
2 -9.06832E+00 0.00000E+00 1.12572E-03 0.00000E+00 -2.21947E-05 0.00000E+00
4 0.00000E+00 0.00000E+00 -4.36204E-04 0.00000E+00 1.10606E-03 0.00000E+00
5 1.00000E+01 0.00000E+00 -8.02468E-03 0.00000E+00 1.25526E-03 0.00000E+00
6 7.36939E+00 0.00000E+00 -2.26774E-03 0.00000E+00 2.30407E-03 0.00000E+00
7 1.00000E+01 0.00000E+00 -5.81088E-03 0.00000E+00 2.11343E-03 0.00000E+00
8 2.25794E+00 0.00000E+00 1.73440E-04 0.00000E+00 1.66027E-04 0.00000E+00
9 -2.11361E+00 0.00000E+00 8.54312E-04 0.00000E+00 -1.13688E-03 0.00000E+00
10 3.52605E-01 -1.14901E-03 4.71156E-03 -2.00386E-03 1.50637E-04 -1.65273E-04
11 1.00000E+01 -5.69463E-04 -5.29800E-03 1.75705E-03 9.09158E-04 -3.77808E-04
12 2.46591E+00 1.23211E-03 -2.10943E-02 2.05057E-03 1.45212E-03 -5.16899E-05
13 1.69762E+00 2.85775E-03 -2.24076E-02 2.39355E-03 1.20537E-03 -1.70135E-04
【表13】
面编号 A8 A9 A10 A11 A12 A13
1 -2.15915E-06 0.00000E+00 -1.72719E-06 0.00000E+00 2.32300E-07 0.00000E+00
2 -1.99083E-04 0.00000E+00 6.37771E-05 0.00000E+00 -1.20918E-05 0.00000E+00
4 -6.17975E-04 0.00000E+00 1.80943E-04 0.00000E+00 -3.15242E-05 0.00000E+00
5 -8.93216E-04 0.00000E+00 3.59880E-06 0.00000E+00 5.20504E-05 0.00000E+00
6 -1.56683E-03 0.00000E+00 2.52834E-04 0.00000E+00 6.27330E-05 0.00000E+00
7 -1.75320E-03 0.00000E+00 4.39879E-04 0.00000E+00 -3.43568E-06 0.00000E+00
8 6.38644E-05 0.00000E+00 8.06925E-06 0.00000E+00 -6.54353E-06 0.00000E+00
9 6.40291E-04 0.00000E+00 -1.41787E-04 0.00000E+00 -7.25771E-07 0.00000E+00
10 3.57409E-05 -1.04172E-04 -9.89599E-05 2.35534E-05 8.81209E-06 1.07654E-06
11 -5.29742E-04 -7.27194E-05 -1.37006E-05 -4.86425E-06 8.20379E-06 3.82440E-06
12 5.16965E-05 5.62884E-06 -4.11109E-05 1.00651E-06 4.76757E-06 9.96130E-08
13 -5.60610E-05 1.31817E-05 8.27598E-07 -3.97870E-08 -2.43136E-07 -9.21152E-08
【表14】
面编号 A14 A15 A16 A17 A18
1 -2.75667E-08 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
2 1.05929E-06 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
4 2.51911E-06 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
5 -1.00601E-05 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
6 -1.28604E-05 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
7 -9.21794E-06 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
8 1.68075E-06 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
9 4.89635E-06 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
10 2.03162E-06 -1.35196E-06 8.93925E-07 0.00000E+00 0.00000E+00
11 2.43392E-06 1.05270E-07 -1.13997E-06 0.00000E+00 0.00000E+00
12 2.95160E-07 -4.37441E-08 -1.13685E-07 0.00000E+00 8.63040E-09
13 1.07163E-07 8.00896E-09 -6.61587E-09 2.09167E-09 -7.09937E-10
表15示出在对焦于无限远被摄体状态下的透镜系统300的整个系统的焦距f、Fno、半视场角ω、最大像高Y以及光学全长TT。
【表15】
f 9.80
Fno 2.44
ω 17.06
Y 3.1
TT 11.50
透镜系统300从物体侧依次包括物体侧面朝向物体侧凸面的正的第一透镜L1、像侧面朝向像侧凹面的负的第二透镜L2、像侧面朝向像侧凹面的负的第三透镜L3、物体侧朝向物体侧凸面的正的第四透镜L4、负的第五透镜L5、像侧面朝向像侧凹面的正的第六透镜L6。第四透镜L4的材质为玻璃,第四透镜L4以外的透镜的材质为塑料。即,第一透镜L1、第二透镜L2、第三透镜L3、第五透镜L5以及第六透镜L6的材质为塑料。
图6示出在对焦于无限远被摄体状态的透镜系统300的球面像差、像散以及畸变像差。在球面像差中,点划线示出C线(656.27nm)的值,实线示出d线(587.56nm)的值,虚线示出g线(435.84nm)的值。在像散中,实线示出d线的弧矢像面的值,虚线示出d线的子午像面的值。在畸变像差中,实线示出d线的值。从各像差图显而易见的是,透镜系统300中各像差得以良好地校正,并且具有优异的成像性能。
图7将第四实施例中透镜系统400的透镜构成、滤光镜F以及摄像元件IMA一同示出。透镜系统400由第一透镜L1、孔径光阑S、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6构成。第一透镜L1以及第四透镜L4为正透镜。第二透镜L2、第三透镜L3、第五透镜L5以及第六透镜L6为负透镜。光学部件F设置于透镜系统400和像面IMA之间。光学部件F例如为光学滤光镜和盖板等。通过透镜系统400以及光学部件F的光入射至像面IMA。
表16示出透镜系统400具有的透镜的透镜数据。在表16中,Di、Nd及Vd与面编号i相对应地进行表示。
【表16】
面编号 R D Nd Vd
1* 4.909 2.900 1.54401 56.00
2* -16.117 0.000    
STO INF 0.114    
4* -151.986 0.507 1.63495 23.90
5* 6.484 0.647    
6* 30.406 0.500 1.63495 23.90
7* 5.644 0.341    
8* 5.449 1.785 1.82115 24.06
9* -15.727 0.220    
10* -47.607 1.200 1.63495 23.90
11* 5.674 1.856    
12* 7.401 0.969 1.54401 56.00
13* 6.964 1.532    
14 INF 0.300 1.51680 64.20
15 INF 0.500    
16 INF 0.500 1.51680 64.20
17 INF 0.630    
从表17至表19示出具有非球面形状的面的面编号和圆锥常数κ和非球面系数An。关于圆锥常数κ和非球面系数An的值,“E-i”表示以10为底数的指数表达,即“10 -i”。其中,i为整数。
【表17】
面编号 K A3 A4 A5 A6 A7
1 -4.07312E-01 0.00000E+00 6.50087E-06 0.00000E+00 -2.46915E-05 0.00000E+00
2 5.37794E+00 0.00000E+00 9.31501E-04 0.00000E+00 1.47369E-06 0.00000E+00
4 1.00000E+01 0.00000E+00 -1.12724E-03 0.00000E+00 9.81014E-04 0.00000E+00
5 7.94479E+00 0.00000E+00 -5.97800E-03 0.00000E+00 1.24706E-03 0.00000E+00
6 5.43834E-01 0.00000E+00 -2.95458E-03 0.00000E+00 3.02219E-03 0.00000E+00
7 1.89927E+00 0.00000E+00 -5.12536E-03 0.00000E+00 2.78315E-03 0.00000E+00
8 -2.36749E+00 0.00000E+00 2.32757E-04 0.00000E+00 -2.46283E-05 0.00000E+00
9 -9.22271E+00 0.00000E+00 6.65104E-04 0.00000E+00 -1.30606E-03 0.00000E+00
10 1.00000E+01 -4.41009E-04 2.23539E-03 -1.74804E-03 3.79727E-04 6.84855E-05
11 4.91363E+00 -4.35232E-04 -3.98294E-03 -6.00360E-05 1.01885E-03 4.75727E-05
12 1.00765E+00 -2.79972E-04 -1.36551E-02 1.65701E-04 8.13052E-04 -1.53661E-06
13 3.58490E+00 -3.24313E-04 -1.42970E-02 -6.60696E-04 1.15988E-03 3.73822E-05
【表18】
面编号 A8 A9 A10 A11 A12 A13
1 6.74973E-06 0.00000E+00 -2.50691E-06 0.00000E+00 3.41885E-07 0.00000E+00
2 -1.78680E-04 0.00000E+00 7.52173E-05 0.00000E+00 -1.13610E-05 0.00000E+00
4 -6.46294E-04 0.00000E+00 2.02966E-04 0.00000E+00 -2.17059E-05 0.00000E+00
5 -7.61977E-04 0.00000E+00 7.51249E-06 0.00000E+00 6.80953E-05 0.00000E+00
6 -1.54714E-03 0.00000E+00 2.46883E-04 0.00000E+00 2.56730E-05 0.00000E+00
7 -1.46799E-03 0.00000E+00 3.63456E-04 0.00000E+00 -4.17648E-05 0.00000E+00
8 2.43507E-05 0.00000E+00 3.83965E-05 0.00000E+00 -1.68326E-05 0.00000E+00
9 6.54846E-04 0.00000E+00 -1.51535E-04 0.00000E+00 1.44075E-05 0.00000E+00
10 1.92422E-04 -3.86362E-05 -9.55136E-05 1.50775E-05 2.28062E-06 -6.14815E-07
11 -3.01312E-04 -9.67600E-06 -4.90273E-06 -9.81047E-06 4.68924E-06 6.59068E-07
12 9.43495E-05 1.30423E-05 -4.26341E-05 -7.06560E-07 4.19723E-06 -1.54143E-07
13 -7.43081E-05 1.59386E-06 -2.56231E-06 -1.73132E-07 -5.52832E-08 1.27532E-09
【表19】
面编号 A14 A15 A16 A17 A18
1 -2.03307E-08 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
2 3.83797E-07 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
4 -2.14192E-07 0.00000E+00 0.00000E+00 0.000000E+00 0.00000E+00
5 -1.28936E-05 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
6 -7.32145E-06 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
7 1.85821E-06 0.000000E+00 0.00000E+00 0.00000E+00 0.00000E+00
8 2.05097E-06 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
9 -1.11157E-07 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
10 2.46514E-06 -4.76420E-07 -5.34198E-08 0.00000E+00 0.00000E+00
11 9.79230E-07 8.48415E-08 -3.05397E-07 0.00000E+00 0.00000E+00
12 2.72144E-07 2.13666E-08 -8.27176E-08 0.00000E+00 4.38752E-09
13 1.32434E-07 -1.06135E-09 -1.48417E-08 6.27719E-11 4.52608E-10
表20示出在对焦于无限远被摄体状态下的透镜系统400的整个系统的焦距f、Fno、 半视场角ω、最大像高Y以及光学全长TT。
【表20】
f 12.80
Fno 2.84
ω 17.27
Y 4.1
TT 14.50
透镜系统400从物体侧开始依次由物体侧面朝向物体侧凸面的正的第一透镜L1、像侧面朝向像侧凹面的负的第二透镜L2、像侧面朝向像侧凹面的负的第三透镜L3、物体侧面朝向物体侧凸面的正的第四透镜L4、负的第五透镜L5、像侧面朝向像侧凹面的正的第六透镜L6构成。第四透镜的材质为玻璃,第四透镜L4以外的透镜的材质为塑料。即,第一透镜L1、第二透镜L2、第三透镜L3、第五透镜L5以及第六透镜L6的材质为塑料。
图8示出在对焦于无限远被摄体状态下的透镜系统400的球面像差、像散以及畸变像差。在球面像差中,点划线示出C线(656.27nm)的值,实线示出d线(587.56nm)的值,虚线示出g线(435.84nm)的值。在像散中,实线示出d线的弧矢像面的值,虚线示出d线的子午像面的值。在畸变像差中,实线示出d线的值。从各像差图显而易见的是,透镜系统400中各像差得以良好地校正,并且具有优异的成像性能。
表21示出各条件式在第一实施例至第四实施例中所涉及的数值。
【表21】
  条件式1 条件式2 条件式3 条件式5 条件式6
实施例1 0.397 1.821 3.122 0.568 1.133
实施例2 0.420 1.821 3.415 0.609 1.171
实施例3 0.388 1.821 3.161 0.573 1.173
实施例4 0.396 1.821 3.122 0.566 1.133
表22示出与各条件式相关的焦距f以及fi(i为从1到6的自然数)。
【表22】
  f f1 f2 f3 f4 f5 f6
实施例1 12.8 7.271 -9.780 -10.954 5.082 -7.76 1394.36
实施例2 14 8.520 -13.124 -14.699 5.882 -6.69 67.95
实施例3 9.8 5.611 -7.321 -8.388 3.804 -5.31 54.72
实施例4 12.8 7.240 -9.687 -10.896 5.074 -7.84 -999.98
表23示出与各条件式相关的折射率Nd4、最大像高IH以及光学全长TT。
【表23】
  Nd4 IH TT
实施例1 1.82115 4.100 14.500
实施例2 1.82115 4.100 16.400
实施例3 1.82115 3.100 11.500
实施例4 1.82115 4.100 14.500
根据本实施方式所涉及的透镜系统,可提供具有较高分辨力的透镜系统。而且,可提供抑制随温度变化而造成的焦点位置变化的透镜系统。而且,可提供较小型、廉价、窄视角的透镜系统。
本实施方式所涉及的透镜系统可适用于数码相机、摄像机等摄像装置的摄像用透镜系统。本实施方式所涉及的透镜系统可适用于不具有聚焦机构的透镜系统。本实施方式所涉及的透镜系统也可适用于具有聚焦机构的透镜系统。本实施方式所涉及的透镜系统可适用于不具有变焦机构的透镜系统。本实施方式所涉及的透镜系统也可适用于具有变焦机构的透镜系统。本实施方式所涉及的透镜系统可适用于镜头非更换式的摄像装置所具备的透镜系统。本实施方式所涉及的透镜系统可适用于单反相机等镜头更换式相机的更换镜头。
其次,对移动体系统进行说明,其为包括本实施方式涉及的透镜系统的系统的一个示例。
图9概略示出包括无人驾驶航空器(UAV)40和控制器50的移动体系统10的一个示例。UAV40包括UAV主体1101、万向节1110、多个摄像装置1230以及摄像装置1220。摄像装置1220包括镜头装置1160以及摄像部1140。镜头装置1160包括上述透镜系统。UAV40为移动体的一个示例,该移动体包括具有上述透镜系统的摄像装置而移动。移动体的概念除UAV之外,还包括在空中移动的其他飞机、在地面上移动的车辆、在水上移动的船舶等。
UAV主体1101包括多个旋翼。UAV主体1101通过控制多个旋翼的旋转而使UAV40飞行。UAV本体1101例如采用四个旋转翼而使UAV40飞行。旋翼的数量不限于四个。UAV40也可以是没有旋翼的固定翼机。
摄像装置1230为对包含在所期望的摄像范围内的被摄体进行摄像的摄像用相机。多个摄像装置1230是为了控制UAV40的飞行而对UAV40的周围进行摄像的传感用相机。摄像装置1230可以固定在UAV主体1101上。
两个摄像装置1230可以设置于UAV40的机头、即正面。进而,其它两个摄像装置1230可以设置于UAV40的底面。正面侧的两个摄像装置1230可以成对,起到所谓立体相机的作用。底面侧的两个摄像装置1230也可以成对,起到立体相机的作用。可以根据由多个摄像装置1230所拍摄的图像来生成UAV40周围的三维空间数据。到由多个摄像装 置1230拍摄到的被摄体的距离可通过由多个摄像装置1230构成的立体相机确定。
UAV40所包括的摄像装置1230的数量不限于四个。UAV40包括至少一个摄像装置1230即可。UAV40也可以在UAV40的机头、机尾、侧面、底面及顶面分别包括至少一个摄像装置1230。摄像装置1230也可以具有单焦点透镜或鱼眼透镜。在UAV40所涉及的说明中,有时会将多个摄像装置1230仅统称为摄像装置1230。
控制器50包括显示部54和操作部52。操作部52从用户收到用于控制UAV40的姿势的输入操作。控制器50基于操作部52收到的用户操作,发送用于控制UAV40的信号。
控制器50接收摄像装置1230及摄像装置1220中的至少一个所拍摄的图像。显示部54显示控制器50所接收的图像。显示部54可为触控式面板。控制器50可通过显示部54,接收来自用户的输入操作。显示部54可接收用户指定摄像装置1220应拍摄的被摄体的位置这一用户操作等。
摄像部1140生成由镜头装置1160成像的光学图像的图像数据并进行记录。镜头装置1160可与摄像部1140一体地设置。镜头装置1160可以为所谓的可更换透镜。镜头装置1160可拆卸地设置于摄像部1140。
万向节1110包括活动地支撑摄像装置1220的支撑机构。摄像装置1220通过万向节1110安装于UAV主体1101。万向节1110以俯仰轴为中心可旋转地支撑摄像装置1220。万向节1110以滚转轴为中心可旋转地支撑摄像装置1220。万向节1110以偏航轴为中心可旋转地支撑摄像装置1220。万向节1110以俯仰轴、滚转轴以及偏航轴中的至少一个为中心,可旋转地支撑摄像装置1220。万向节1110分别以俯仰轴、滚转轴以及偏航轴为中心,可旋转地支撑摄像装置1220。万向节1110可对摄像部1140进行保持。万向节1110可对镜头装置1160进行保持。万向节1110可通过以偏航轴、俯仰轴以及滚转轴中的至少一个为中心使摄像部1140以及镜头装置1160旋转从而改变摄像装置1220的摄像方向。
图10示出UAV40的功能块的一个示例。UAV40包括接口1102、控制部1104、存储器1106、万向节1110、摄像部1140以及镜头装置1160。
接口1102与控制器50通信。接口1102接收来自控制器50的各种指令。控制部1104根据控制器50接收的指令来控制UAV40的飞行。控制部1104控制万向节1110、摄像部1140以及镜头装置1160。控制部1104可以由CPU或MPU等微处理器、MCU等微控制器等构成。存储器1106存储控制部1104对万向节1110、摄像部11404以及镜头装置1160进行控制所需的程序等。
存储器1106可以为计算机可读记录介质。存储器1106可以包括SRAM、DRAM、 EPROM、EEPROM及USB存储器等闪存中的至少一个。存储器1106可设置于UAV40的壳体。其可以设置成可从UAV40的壳体拆卸下来。
万向节1110包括控制部1112、驱动器1114、驱动器1116、驱动器1118、驱动部1124、驱动部1126、驱动部1128以及支撑机构1130。驱动部1124、驱动部1126以及驱动部1128可以为电机。
支撑机构1130支撑摄像装置1220。支撑机构1130可活动地支撑摄像装置1220的拍摄方向。支撑机构1130以偏航轴、俯仰轴以及滚转轴为中心,可旋转地支撑摄像部1140以及镜头装置1160。支撑机构1130包含旋转机构1134、旋转机构1136以及旋转机构1138。旋转机构1134使用驱动部1124以偏航轴为中心使摄像部1140以及镜头装置1160旋转。旋转机构1136使用驱动部1126以俯仰轴为中心使摄像部1140以及镜头装置1160旋转。旋转机构1138使用驱动部1128以滚转轴为中心使摄像部1140以及镜头装置1160旋转。
控制部1112根据来自控制部1104的万向节1110的操作指令,向驱动器1114、驱动器1116以及驱动器1118输出显示各自旋转角度的操作指令。驱动器1114、驱动器1116以及驱动器1118根据显示旋转角度的操作指令使驱动部1124、驱动部1126以及驱动部1128驱动。旋转机构1134、旋转机构1136以及旋转机构1138分别被驱动部1124、驱动部1126以及驱动部1128驱动而旋转,来改变摄像部1140以及镜头装置1160的姿势。
摄像部1140由通过透镜系统1168的光来进行摄像。摄像部1140包括控制部1222、摄像元件1221以及存储器1223。控制部1222可以由CPU或MPU等微处理器、MCU等微控制器等构成。控制部1222根据来自控制部1104的对于摄像部1140以及镜头装置1160的操作指令来控制摄像部1140以及镜头装置1160。控制部1222基于从控制器50所接收的信号,将对镜头装置1160的控制指令输出至镜头装置1160。控制指令可以为使透镜系统1168振动的指令、检测透镜系统1168的温度的指令。
存储器1223可以是计算机可读记录介质,也可以包括诸如SRAM、DRAM、EPROM、EEPROM和USB存储器等闪存中的至少一种。存储器1223可以设置于摄像部1140的壳体内部。可以设置成可从摄像部1140的壳体拆卸下来。
摄像元件1221保持于摄像部1140的壳体内部,生成通过镜头装置1160成像的光学图像的图像数据,输出至控制部1222。控制部1222将从摄像元件1221输出的图像数据存储于存储器1223。控制部1222可通过控制部1104将图像数据输出并存储于存储器1106。
镜头装置1160包括控制部1162、存储器1163、驱动机构1161以及透镜系统1168。透镜系统1168可应用上述实施方式所涉及的透镜系统。
控制部1162可根据来自控制部1222的控制指令来使透镜系统1168振动。驱动机构1161使透镜系统1168振动。驱动机构1161包括例如致动器等。镜头装置1160的透镜系统1168所成像的像由摄像部1140拍摄。
镜头装置1160可与摄像部1140一体的设置。镜头装置1160可以为所谓的可更换镜头。镜头装置1160可拆卸地设置在摄像部1140上。
摄像装置1230包括控制部1232、控制部1234、摄像元件1231、存储器1233以及镜头1235。控制部1232可以由CPU或MPU等微处理器、MCU等微控制器等构成。控制部1232根据来自控制部1104的对摄像元件1231的操作指令来控制摄像元件1231。
控制部1234可以由CPU或MPU等微处理器、MCU等微控制器等构成。控制部1234可根据对镜头1235的操作指令来控制镜头1235的焦点。控制部1234可根据对镜头1235的操作指令来控制镜头1235具有的孔径光阑。
存储器1233可以为计算机可读记录介质。存储器1233可以包括SRAM、DRAM、EPROM、EEPROM及USB存储器等闪存中的至少一个。
摄像元件1231生成通过镜头1235成像的光学图像的图像数据,并输出至控制部1232。控制部1232将从摄像元件1231输出的图像数据存储于存储器1233。
在本实施方式中,UAV40包括控制部1104、控制部1112、控制部1222、控制部1232、控制部1234以及控制部1162。但是,由控制部1104、控制部1112、控制部1222、控制部1232、控制部1234以及控制部1162中的多个执行的处理可由其中的任一个控制部来执行。由控制部1104、控制部1112、控制部1222、控制部1232、控制部1234以及控制部1162执行的处理可由一个控制部来执行。在本实施方式中,UAV40包括存储器1106、存储器1223以及存储器1233。存储于存储器1106、存储器1223以及存储器1233中的至少一个的信息可存储于存储器1106、存储器1223以及存储器1233中的其他一个或者多个存储器。
摄像装置1220可通过包括具有上述实施方式所涉及的透镜系统的镜头装置1160来获得因温度变化造成的模糊得到抑制的图像。而且,可获得即使放大远处的被摄体分辨力也较高的图像。而且,相机单元3013小型且廉价。
接着,对稳定器进行说明,其为包括上述实施方式所涉及的透镜系统的系统的一个示例。
图11是示出稳定器3000的一个示例的外观立体图。稳定器3000为移动体的其他示例。例如,稳定器3000所包括的相机单元3013可包括与摄像装置1220相同构成的摄像 装置。相机单元3013可包括与镜头装置1160相同构成的镜头装置。
稳定器3000包括相机单元3013、万向节3020以及手柄部3003。万向节3020可旋转地支撑相机单元3013。万向节3020包括平移(PAN)轴3009、滚转(ROLL)轴3010以及俯仰(TILT)轴3011。万向节3020以平移轴3009、滚转轴3010以及俯仰轴3011为中心,可旋转地支撑相机单元3013。万向节3020为支撑机构的一个示例。
相机单元3013为摄像装置的一个示例。相机单元3013具有用于插入存储器的卡槽3014。万向节3020经由支架3007固定于手柄部3003。
手柄部3003具有用于操作万向节3020、相机单元3013的各种按钮。手柄部3003包括快门按钮3004、录像按钮3005以及操作按钮3006。可以通过按下快门按钮3004,由相机单元3013记录静态图像。可以通过按下录像按钮3005,由相机单元3013记录动态图像。
设备支架3001被固定于手柄部3003。设备支架3001支撑智能手机等移动设备3002。移动设备3002可经由WiFi等无线网络与稳定器3000可通信地连接。由此,可以将由相机单元3013拍摄的图像显示于移动设备3002的屏幕。
即使在稳定器3000中,相机单元3013也可通过包括上述实施方式所涉及的透镜系统来获得因温度变化造成的模糊得到抑制的图像。而且,可获得即使放大远处的被摄体分辨力也较高的图像。而且,相机单元3013小型且廉价。
以上,作为移动体的示例,列举UAV40以及稳定器3000进行了说明。具有与摄像装置1220相同构成的摄像装置可安装于UAV40以及稳定器3000之外的移动体。
权利要求书、说明书以及说明书附图中所示的装置、系统、程序和方法中的动作、顺序、步骤、以及阶段等各项处理的执行顺序,只要没有特别明示“在...之前”、“事先”等,且只要前面处理的输出并不用在后面的处理中,即可以以任意顺序实现。关于权利要求书、说明书以及说明书附图中的操作流程,为方便起见而使用“首先”、“接着”等进行了说明,但并不意味着必须按照这样的顺序实施。
【符号说明】
10 移动体系统
40 UAV
50 控制器
52 操作部
54 显示部
1101 UAV主体
1102 接口
1104 控制部
1106 存储器
1110 万向节
1112 控制部
1114、1116、1118 驱动器
1124、1126、1128 驱动部
1130 支撑机构
1134、1136、1138 旋转机构
1140 摄像部
1160 镜头装置
1161 驱动机构
1162 控制部
1163 存储器
1168 透镜系统
1220、1230 摄像装置
1221 摄像元件
1222 控制部
1223 存储器
1231 摄像元件
1232 控制部
1233 存储器
1234 控制部
1235 镜头
100、200、300、400 透镜系统
3000 稳定器
3001 设备支架
3002 移动设备
3003 手柄部
3004 快门按钮
3005 录像按钮
3006 操作按钮
3007 支架
3009 平移轴
3010 滚转轴
3011 俯仰轴
3013 相机单元
3014 插槽
3020 万向节

Claims (7)

  1. 一种透镜系统,其特征在于,从物体侧依次包括物体侧为凸面的正的第一透镜、像侧为凹面的负的第二透镜、像侧为凹面的负的第三透镜、物体侧为凸面的正的第四透镜、负的第五透镜、像侧为凹面的第六透镜,
    所述第四透镜的材质为玻璃,所述第一透镜、所述第二透镜、所述第三透镜、所述第五透镜以及所述第六透镜的材质为塑料;
    将f作为整个系统的焦距,
    f4作为第四透镜的焦距,
    Nd4作为第四透镜在d线的折射率,
    IH作为最大像高,
    满足条件式
    0.3<f4/f<0.7
    Nd4>1.7
    f/IH>2.5。
  2. 根据权利要求1所述的透镜系统,其特征在于,将fi作为第i透镜的焦距,
    满足条件式
    |f4|<fi|。
  3. 根据权利要求1或2所述的透镜系统,其特征在于,将f1作为所述第i透镜的焦距,
    满足条件式
    0.45<f1/f<0.7。
  4. 根据权利要求1或2所述的透镜系统,其特征在于,将TT作为光学全长,满足条件式
    0.95<TT/f<1.3。
  5. 一种摄像装置,其特征在于,包括:根据权利要求1或2所述的透镜系统以及 摄像元件。
  6. 一种移动体,其特征在于,包括:根据权利要求1或2所述的透镜系统并移动。
  7. 根据权利要求6所述的移动体,其特征在于,
    所述移动体为无人驾驶航空器。
PCT/CN2020/092687 2019-05-29 2020-05-27 透镜系统、摄像装置及移动体 WO2020238982A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019100348A JP6720454B1 (ja) 2019-05-29 2019-05-29 レンズ系、撮像装置、及び移動体
JP2019-100348 2019-05-29

Publications (1)

Publication Number Publication Date
WO2020238982A1 true WO2020238982A1 (zh) 2020-12-03

Family

ID=71402403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092687 WO2020238982A1 (zh) 2019-05-29 2020-05-27 透镜系统、摄像装置及移动体

Country Status (2)

Country Link
JP (1) JP6720454B1 (zh)
WO (1) WO2020238982A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113204097A (zh) * 2021-05-08 2021-08-03 浙江舜宇光学有限公司 光学摄像镜头

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111812819B (zh) * 2020-09-10 2020-11-27 瑞泰光学(常州)有限公司 摄像光学镜头
CN113484996B (zh) * 2021-09-07 2021-11-26 江西联益光学有限公司 光学镜头

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104570294A (zh) * 2013-10-18 2015-04-29 三星电机株式会社 镜头模块
CN105425361A (zh) * 2014-09-12 2016-03-23 先进光电科技股份有限公司 光学成像系统
CN106066527A (zh) * 2015-04-22 2016-11-02 株式会社光学逻辑 摄像镜头
CN106547165A (zh) * 2017-01-13 2017-03-29 北京全视凌云科技有限公司 一种用于全景成像的光学系统
CN107329234A (zh) * 2016-04-29 2017-11-07 大立光电股份有限公司 光学影像系统、取像装置及电子装置
CN107367823A (zh) * 2016-05-13 2017-11-21 先进光电科技股份有限公司 光学成像系统
CN108248882A (zh) * 2018-01-19 2018-07-06 东莞市蓝姆光学科技有限公司 一种无人机光学镜片

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101431980B1 (ko) * 2012-09-10 2014-08-20 삼성전기주식회사 촬상 광학계
US9429736B2 (en) * 2012-09-10 2016-08-30 Samsung Electro-Mechanics Co., Ltd. Optical system
TWI448725B (zh) * 2012-10-22 2014-08-11 Largan Precision Co Ltd 影像擷取光學鏡片系統
TWI479191B (zh) * 2013-01-04 2015-04-01 Largan Precision Co Ltd 光學結像系統
TWI477803B (zh) * 2013-03-05 2015-03-21 Largan Precision Co Ltd 攝像系統透鏡組
TWI461779B (zh) * 2013-04-25 2014-11-21 Largan Precision Co Ltd 結像鏡組
JP2015175876A (ja) * 2014-03-13 2015-10-05 富士フイルム株式会社 撮像レンズおよび撮像レンズを備えた撮像装置
JP2015175875A (ja) * 2014-03-13 2015-10-05 富士フイルム株式会社 撮像レンズおよび撮像レンズを備えた撮像装置
KR102009430B1 (ko) * 2014-05-26 2019-08-09 삼성전기주식회사 촬상 광학계
TWI547713B (zh) * 2014-07-30 2016-09-01 大立光電股份有限公司 攝影用光學鏡頭、取像裝置以及電子裝置
JP2016090777A (ja) * 2014-11-04 2016-05-23 Hoya株式会社 撮像光学系
TWI519809B (zh) * 2014-12-05 2016-02-01 大立光電股份有限公司 取像光學鏡片組、取像裝置及電子裝置
CN104808312B (zh) * 2015-01-23 2017-05-10 玉晶光电(厦门)有限公司 光学成像镜头及应用此镜头的电子装置
CN104880809B (zh) * 2015-01-23 2017-07-11 玉晶光电(厦门)有限公司 可携式电子装置与其光学成像镜头
US10274700B2 (en) * 2015-05-21 2019-04-30 Apple Inc. Camera lens system
CN105824102B (zh) * 2016-04-01 2018-12-25 浙江舜宇光学有限公司 摄像镜头及便携式电子装置
TWI607238B (zh) * 2016-08-22 2017-12-01 大立光電股份有限公司 光學攝像系統組、取像裝置及電子裝置
CN111308657B (zh) * 2017-03-13 2022-03-22 浙江舜宇光学有限公司 摄像透镜组
US10908389B2 (en) * 2017-11-09 2021-02-02 Samsung Electro-Mechanics Co., Ltd. Telescopic optical imaging system
JP6526296B1 (ja) * 2018-04-26 2019-06-05 エーエーシー テクノロジーズ ピーティーイー リミテッド 撮像光学レンズ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104570294A (zh) * 2013-10-18 2015-04-29 三星电机株式会社 镜头模块
CN105425361A (zh) * 2014-09-12 2016-03-23 先进光电科技股份有限公司 光学成像系统
CN106066527A (zh) * 2015-04-22 2016-11-02 株式会社光学逻辑 摄像镜头
CN107329234A (zh) * 2016-04-29 2017-11-07 大立光电股份有限公司 光学影像系统、取像装置及电子装置
CN107367823A (zh) * 2016-05-13 2017-11-21 先进光电科技股份有限公司 光学成像系统
CN106547165A (zh) * 2017-01-13 2017-03-29 北京全视凌云科技有限公司 一种用于全景成像的光学系统
CN108248882A (zh) * 2018-01-19 2018-07-06 东莞市蓝姆光学科技有限公司 一种无人机光学镜片

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113204097A (zh) * 2021-05-08 2021-08-03 浙江舜宇光学有限公司 光学摄像镜头
CN113204097B (zh) * 2021-05-08 2022-10-04 浙江舜宇光学有限公司 光学摄像镜头

Also Published As

Publication number Publication date
JP2020194110A (ja) 2020-12-03
JP6720454B1 (ja) 2020-07-08

Similar Documents

Publication Publication Date Title
JP6903850B1 (ja) レンズ系、撮像装置、及び移動体
WO2020238982A1 (zh) 透镜系统、摄像装置及移动体
JP6736820B1 (ja) レンズ系、撮像装置、及び移動体
JP6519890B1 (ja) レンズ系、撮像装置、及び移動体
JP6582315B2 (ja) レンズ系、撮像装置、移動体及びシステム
JP2022054357A (ja) レンズ系、撮像装置、及び移動体
US20220057601A1 (en) Lens system, photographing apparatus, and moving body
US20210247597A1 (en) Lens system and image capturing apparatus
JP6524548B2 (ja) レンズ系、撮像装置、移動体及びシステム
JPWO2018207238A1 (ja) レンズ系、撮像装置、移動体及びシステム
JP6561369B2 (ja) レンズ系、撮像装置、移動体及びシステム
JP6532044B2 (ja) ズームレンズ、撮像装置、移動体及びシステム
WO2021031885A1 (zh) 透镜系统、摄像装置及移动体
JP2021189381A (ja) レンズ系、撮像装置、及び移動体
WO2022213793A1 (zh) 镜头系统、摄像装置及移动体
WO2021190268A1 (zh) 透镜系统、摄像装置及移动体
WO2021190311A1 (zh) 透镜系统、摄像装置及移动体
US20220187568A1 (en) Lens system, photographing apparatus, and movable object
JP2022049359A (ja) レンズ系、撮像装置、及び移動体
JP2021189382A (ja) レンズ系、撮像装置、及び移動体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814753

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20814753

Country of ref document: EP

Kind code of ref document: A1