WO2019097901A1 - 基板処理方法および基板処理装置 - Google Patents

基板処理方法および基板処理装置 Download PDF

Info

Publication number
WO2019097901A1
WO2019097901A1 PCT/JP2018/037581 JP2018037581W WO2019097901A1 WO 2019097901 A1 WO2019097901 A1 WO 2019097901A1 JP 2018037581 W JP2018037581 W JP 2018037581W WO 2019097901 A1 WO2019097901 A1 WO 2019097901A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphoric acid
tank
aqueous solution
supply
substrate
Prior art date
Application number
PCT/JP2018/037581
Other languages
English (en)
French (fr)
Inventor
修 堀口
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Priority to KR1020207013563A priority Critical patent/KR102483802B1/ko
Priority to CN201880073324.4A priority patent/CN111344839A/zh
Publication of WO2019097901A1 publication Critical patent/WO2019097901A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67075Apparatus for fluid treatment for etching for wet etching
    • H01L21/6708Apparatus for fluid treatment for etching for wet etching using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring

Definitions

  • the present invention relates to a method and apparatus for processing a substrate.
  • Substrates to be processed include, for example, substrates for FPD (Flat Panel Display) such as semiconductor wafers, liquid crystal display devices and organic EL (electroluminescence) display devices, substrates for optical disks, substrates for magnetic disks, and magneto-optical disks.
  • substrates for FPD Fluorescence Panel Display
  • Patent Document 1 discloses a substrate processing apparatus and a substrate processing method for selectively etching a silicon nitride film by supplying a phosphoric acid aqueous solution containing silicon to a substrate on which a silicon oxide film and a silicon nitride film are formed. .
  • a substrate processing apparatus and a substrate processing method for selectively etching a silicon nitride film by supplying a phosphoric acid aqueous solution containing silicon to a substrate on which a silicon oxide film and a silicon nitride film are formed. .
  • a phosphoric acid aqueous solution By containing silicon in the phosphoric acid aqueous solution, etching of the silicon oxide film is suppressed, thereby achieving highly selective silicon nitride film etching.
  • the substrate processing apparatus described in Patent Document 1 includes a spin chuck that holds and rotates a substrate, first to third tanks that respectively store a phosphoric acid aqueous solution, and a new liquid supply device.
  • the phosphoric acid aqueous solution is supplied from the first tank to the treatment liquid nozzle, and the phosphoric acid aqueous solution discharged from the treatment liquid nozzle is supplied to the substrate held by the spin chuck.
  • the phosphoric acid aqueous solution is supplied from the second tank to the first tank.
  • the spent phosphoric acid aqueous solution after being supplied to the substrate is collected in the third tank.
  • the phosphoric acid concentration in the recovered aqueous phosphoric acid solution is detected by a phosphoric acid concentration meter.
  • a phosphoric acid concentration adjusting operation is performed on the third tank by supplying phosphoric acid, DIW (deionized water) or nitrogen gas.
  • the silicon concentration in the recovered aqueous phosphoric acid solution is detected by the silicon densitometer.
  • the new solution supply device replenishes the third tank with the phosphoric acid aqueous solution, thereby adjusting the silicon concentration of the phosphoric acid aqueous solution in the third recovery tank to the reference silicon concentration.
  • the new liquid supply device prepares a new liquid (an unused phosphoric acid aqueous solution) whose silicon concentration is variably set according to the detection result of the silicon densitometer, and supplies the new liquid to the third tank Do.
  • a new liquid an unused phosphoric acid aqueous solution
  • the liquid path is switched so as to switch the roles of the second tank and the third tank, and the same operation is repeated.
  • the new solution supply device variably sets the silicon concentration of the new solution to be replenished in accordance with the silicon concentration in the recovered phosphoric acid aqueous solution. Therefore, it is necessary to prepare new solutions with different concentrations each time replenishment is performed.
  • the new solution supply device has a silicon densitometer, and while detecting the silicon concentration with this silicon densitometer, a phosphoric acid aqueous solution (stock solution) and a silicon concentrate are introduced and mixed. The introduction of a new solution disturbs the mixture, and accordingly the measurement results of the silicon densitometer are also disturbed. It takes time to prepare a new solution because it takes a corresponding time for the concentration of silicon in the mixture to become uniform and stable.
  • the liquid recovery to the third tank is stopped, the silicon concentration is measured, and the silicon concentration of the new solution is set accordingly, and then the new solution is prepared. Therefore, the new solution may be prepared in advance. Can not. Therefore, even if it is sufficient to supply a new solution at a reference concentration, a waiting time for new solution preparation occurs. If liquid replenishment to the first tank is delayed due to this waiting time, the productivity of substrate processing is affected.
  • an embodiment of the present invention is a substrate processing method and a substrate processing apparatus capable of stabilizing the concentration of silicon in an aqueous solution of phosphoric acid supplied to a substrate with an inexpensive configuration without impairing the productivity of substrate processing.
  • One embodiment of the present invention provides a substrate processing method of selectively etching the silicon nitride film by supplying a phosphoric acid aqueous solution containing silicon to a substrate where a silicon oxide film and a silicon nitride film are exposed at the surface.
  • the method according to one embodiment of the present invention comprises the steps of: storing a phosphoric acid aqueous solution containing silicon in a specified silicon concentration range in a tank; and supplying a phosphoric acid aqueous solution in the tank to a nozzle; Supplying silicon to process the substrate, recovering the phosphoric acid aqueous solution supplied to the substrate from the nozzle and used for processing the substrate to the tank, and silicon in the tank at a first concentration.
  • the silicon nitride film exposed on the surface of the substrate is selectively etched by treating the substrate with an aqueous solution of phosphoric acid.
  • an aqueous solution of phosphoric acid By controlling the concentration of silicon contained in the phosphoric acid aqueous solution to a specified silicon concentration range, it is possible to suppress the etching of the silicon oxide film exposed on the surface of the substrate, thereby enhancing the selectivity of the silicon nitride film.
  • An aqueous solution of phosphoric acid is supplied from the tank to the nozzle and supplied from the nozzle to the substrate.
  • the spent phosphoric acid aqueous solution used to process the substrate is collected into a tank.
  • the tank is supplied with a first phosphoric acid aqueous solution containing silicon at a first concentration and a phosphoric acid aqueous solution containing silicon at a second concentration.
  • the first phosphoric acid aqueous solution and the second phosphoric acid aqueous solution contain silicon at a first concentration and a second concentration, respectively, and the concentration values thereof may be fixed values, and no change is necessary. This is because, by appropriately determining the respective supply amounts of the first and second aqueous phosphoric acid solutions, the first aqueous phosphoric acid solution, the second aqueous phosphoric acid solution, and the aqueous phosphoric acid solution in the tank are mixed to obtain phosphorus in the specified silicon concentration range. This is because the aqueous acid solution can be stored in the tank.
  • the silicon concentration of the phosphoric acid aqueous solution in the tank can be adjusted by preparing the first phosphoric acid aqueous solution and the second phosphoric acid aqueous solution in advance and supplying only the necessary amount to the tank when necessary. Therefore, since the waiting time for replenishing the phosphoric acid aqueous solution to the tank can be reduced, it is possible to supply the phosphoric acid aqueous solution having a stable silicon concentration to the substrate without impairing the productivity of the substrate processing.
  • the silicon concentration of the first phosphoric acid aqueous solution and the second phosphoric acid aqueous solution can be controlled in real time Does not require such a configuration.
  • the phosphoric acid aqueous solution having the first or second concentration can be prepared by quantifying and mixing each of the stock solution of phosphoric acid aqueous solution not containing silicon and the silicon concentrate containing silicon at a predetermined concentration.
  • the concentration may be confirmed by a silicon densitometer, but the silicon densitometer is not an essential component. Therefore, a phosphoric acid aqueous solution having a stable silicon concentration can be supplied to the substrate with an inexpensive configuration.
  • the first concentration is a value within the defined silicon concentration range. According to this method, since the first concentration is a value within the defined silicon concentration range, the silicon concentration of the phosphoric acid aqueous solution in the tank is adjusted to a value within the defined silicon concentration range by supplying the first phosphoric acid aqueous solution. It is easy to guide.
  • the first concentration may be a reference silicon concentration (the most preferable silicon concentration value for substrate processing) within the defined silicon concentration range.
  • the second concentration is a value lower than the specified silicon concentration range.
  • the silicon concentration of the phosphoric acid aqueous solution in the tank is within the specified silicon concentration range by supplying the second phosphoric acid aqueous solution.
  • the silicon of the substrate material is eluted in the aqueous phosphoric acid solution by supplying the aqueous phosphoric acid solution to the substrate, so the concentration of the aqueous phosphoric acid solution collected in the tank is It is higher than before the supply. Therefore, by supplying the second phosphoric acid aqueous solution containing silicon at a second concentration lower than the prescribed silicon concentration range, the silicon concentration of the phosphoric acid aqueous solution in the tank can be easily led to the prescribed silicon concentration range.
  • the second concentration is zero. That is, in this embodiment, the secondary phosphoric acid aqueous solution is a phosphoric acid aqueous solution not containing silicon.
  • the silicon concentration of the phosphoric acid aqueous solution in the tank can be easily led to the specified silicon concentration range.
  • the first and second aqueous phosphoric acid solutions are mixed with the first and second aqueous phosphoric acid solutions by supplying the first and second aqueous phosphoric acid solutions to the tank at appropriately determined feed amounts.
  • the silicon concentration of the phosphoric acid aqueous solution in the tank can be derived to the reference silicon concentration.
  • a supply target amount of the first and second phosphoric acid aqueous solutions is set by taking the adjustment target value of the silicon concentration in the phosphoric acid aqueous solution in the tank as the first concentration. It is determined.
  • the supply amounts of the first and second aqueous phosphoric acid solutions are determined by setting the first concentration as the adjustment target value, and the first and second aqueous phosphoric acid solutions and the aqueous phosphoric acid solution recovered in the tank are By mixing, the silicon concentration of the phosphoric acid aqueous solution in the tank is led to the first concentration.
  • the silicon concentration of the phosphoric acid aqueous solution in the tank can be adjusted to the reference silicon concentration.
  • the silicon concentration of the phosphoric acid aqueous solution in the tank can be adjusted to the reference silicon concentration.
  • the phosphoric acid aqueous solution stored in the tank can be used as it is for processing the substrate without passing through the waiting time for achieving uniform concentration.
  • the supply amounts of the first and second aqueous phosphoric acid solutions are determined based on the type of the substrate. Based on the type of substrate, fluctuations in the silicon concentration in the aqueous phosphoric acid solution before and after substrate processing can be predicted. Therefore, the silicon concentration of the phosphoric acid aqueous solution in the tank can be appropriately adjusted by determining the supply amounts of the first and second phosphoric acid aqueous solutions based on the type of the substrate.
  • the type of substrate refers to the material of the substrate, the type of film formed on the surface of the substrate, the type of pattern formed on the surface of the substrate, and other substrates that affect the fluctuation of silicon concentration before and after use of the phosphoric acid aqueous solution Represents the attribute of.
  • the first and second phosphorus are dissolved based on the amount of silicon eluted from the substrate into the aqueous phosphoric acid solution by the aqueous phosphoric acid solution supplied from the nozzle.
  • the feed rate of the aqueous acid solution is determined.
  • silicon concentration of the phosphoric acid aqueous solution in the tank can be appropriately adjusted by determining the supply amounts of the first and second phosphoric acid aqueous solutions based on the amount of silicon eluted from the substrate.
  • the first and second ones of the phosphoric acid aqueous solution supplied to the substrate from the nozzle are collected based on the recovery rate of the phosphoric acid aqueous solution recovered in the tank.
  • the feed rate of the aqueous phosphoric acid solution is determined. Not all of the aqueous phosphoric acid solution discharged from the nozzles for processing the substrate is collected in the tank, and for example, part of the aqueous phosphoric acid solution is discarded along with the rinse process and the like.
  • the silicon concentration of the phosphoric acid aqueous solution in the tank can be increased while replenishing the necessary amount of phosphoric acid aqueous solution to the tank. It can be adjusted to the specified silicon concentration range.
  • the supply amounts of the first and second phosphoric acid aqueous solutions are determined based on the number of substrates processed by the phosphoric acid aqueous solution supplied from the nozzles. Ru.
  • the silicon concentration in the phosphoric acid aqueous solution in the tank deviates from the reference silicon concentration. Therefore, the silicon concentration of the aqueous phosphoric acid solution in the tank can be appropriately adjusted by determining the supply amounts of the first and second aqueous phosphoric acid solutions based on the number of substrates processed.
  • the number of processed substrates is, in this case, the number of substrates processed without adjusting the silicon concentration by the supply of the first and second aqueous phosphoric acid solutions.
  • the replenishment start condition includes a fluid volume condition related to the fluid volume stored in the tank.
  • the first and second aqueous phosphoric acid solutions are supplied with a fluid amount condition related to the fluid amount stored in the tank as a trigger.
  • the liquid amount in the tank may be reduced to a predetermined lower limit liquid amount as the liquid amount condition.
  • the replenishment start condition includes a processing number condition regarding the number of substrates processed by the phosphoric acid aqueous solution supplied from the nozzle.
  • the first and second aqueous phosphoric acid solutions are supplied triggered by the processing number condition regarding the number of processed substrates.
  • the silicon concentration in the phosphoric acid aqueous solution in the tank deviates from the reference silicon concentration.
  • the first and second aqueous phosphoric acid solutions are supplied to adjust the silicon concentration of the aqueous phosphoric acid solution in the tank.
  • the substrate can be treated with a stable silicon concentration phosphoric acid aqueous solution.
  • the replenishment start condition includes a silicon concentration condition related to a silicon concentration in an aqueous phosphoric acid solution supplied from the tank to the nozzle.
  • the first and second aqueous phosphoric acid solutions are supplied, triggered by the silicon concentration condition related to the silicon concentration in the aqueous phosphoric acid solution supplied from the tank toward the nozzle. More specifically, when the silicon concentration in the phosphoric acid aqueous solution supplied to the substrate deviates from the reference value by a predetermined value or more, the first and second phosphoric acid aqueous solutions are supplied to the tank to adjust the silicon concentration. It is also good.
  • the substrate can be treated with a stable silicon concentration phosphoric acid aqueous solution.
  • the method further includes a substrate holding step of holding the substrate horizontally, and the aqueous phosphoric acid solution is supplied from the nozzle to the surface of the substrate held in the substrate holding step.
  • the substrate is held horizontally, and an aqueous solution of phosphoric acid is supplied from the nozzle to the surface of the substrate.
  • one substrate is held horizontally by the substrate holder, and a phosphoric acid aqueous solution is discharged from the nozzle toward the surface of the substrate.
  • Insufficient adjustment of the silicon concentration may cause variation in processing quality among a plurality of processed substrates. It is preferable to perform the substrate rotation step of rotating the substrate held by the substrate holder in parallel when the phosphoric acid aqueous solution is supplied, in order to make the substrate processing uniform.
  • the method includes: supplying a third aqueous phosphoric acid solution containing silicon to the tank at a third concentration different from any of the first concentration and the second concentration. Further includes
  • a tertiary phosphoric acid aqueous solution containing silicon at a third concentration can be supplied to the tank.
  • the adjustment range of the silicon concentration in the phosphoric acid aqueous solution in the tank can be broadened.
  • the first phosphoric acid aqueous solution and the third phosphoric acid aqueous solution may be selectively used.
  • the step of supplying the third aqueous phosphoric acid solution is performed.
  • the third concentration is higher than the first concentration.
  • a tertiary phosphoric acid aqueous solution having a relatively high silicon concentration may be supplied to the tank.
  • the first phosphoric acid aqueous solution having a relatively low concentration is used in the tank It may be supplied.
  • the tank is a recovery tank in which an aqueous solution of phosphoric acid used for substrate processing is introduced through a recovery pipe, and an aqueous solution of phosphoric acid stored in the recovery tank is a preparation liquid supply pipe
  • the aqueous phosphoric acid solution stored in the supply tank is supplied to the nozzle via a supply pipe, and the first aqueous phosphoric acid solution and the second aqueous phosphoric acid solution are It is supplied to the recovery tank.
  • the treated aqueous phosphoric acid solution is introduced to a recovery tank through a recovery pipe. Then, the first and second aqueous phosphoric acid solutions are supplied to the recovery tank, and the silicon concentration in the aqueous phosphoric acid solution is adjusted in the recovery tank.
  • the silicon concentration adjusted phosphoric acid aqueous solution is sent from the preparation liquid supply pipe to the supply tank, and is supplied from the supply tank to the treatment liquid nozzle. Therefore, the silicon concentration in the phosphoric acid aqueous solution in the supply tank is stable since it is not affected by liquid recovery. As a result, it is possible to supply a phosphoric acid aqueous solution having a more stable silicon concentration from the processing liquid nozzle to the substrate.
  • a plurality of the recovery tanks are provided.
  • the said method is the collection destination selection process of selecting the collection destination of the phosphoric acid aqueous solution collect
  • the used phosphoric acid aqueous solution is collected in a collection tank selected from among a plurality of collection tanks, and a phosphoric acid aqueous solution whose silicon concentration has been adjusted is supplied from the non-selected collection tank to the supply tank.
  • a phosphoric acid aqueous solution whose silicon concentration has been adjusted is supplied from the non-selected collection tank to the supply tank.
  • the silicon concentration in the phosphoric acid aqueous solution in the recovery tank for supplying the phosphoric acid aqueous solution to the supply tank is stable, the silicon concentration in the phosphoric acid aqueous solution in the supply tank can be stably maintained. Thereby, the silicon concentration in the phosphoric acid aqueous solution used for substrate processing is further stabilized.
  • the supply amounts of the first and second aqueous phosphoric acid solutions can be accurately managed.
  • the silicon concentration in the phosphoric acid aqueous solution in the tank can be accurately adjusted.
  • An embodiment of the present invention further provides a substrate processing apparatus suitable for performing the substrate processing method as described above.
  • a substrate processing apparatus for holding a substrate having a silicon oxide film and a silicon nitride film exposed on the surface, and phosphoric acid containing silicon in the substrate held by the substrate holding means
  • a first phosphoric acid aqueous solution supply means for supplying a first phosphoric acid aqueous solution containing silicon at a first concentration to the tank, and a second concentration lower than the first concentration in the tank.
  • Second phosphoric acid aqueous solution feeding means for feeding the second phosphoric acid aqueous solution containing the first phosphoric acid aqueous solution, and the first phosphoric acid aqueous solution feeding means and the second li Supplying a first aqueous phosphoric acid solution and a second aqueous phosphoric acid solution to the tank by controlling an aqueous acid solution supply unit; supplying the first aqueous phosphoric acid solution and the second aqueous phosphoric acid solution Determining means for determining an amount.
  • the control means determines the type of substrate, the amount of silicon eluted from the substrate to the phosphoric acid aqueous solution by the phosphoric acid aqueous solution supplied from the nozzle, the nozzle Based on at least one of the recovery rate of the phosphoric acid aqueous solution recovered in the tank among the phosphoric acid aqueous solutions supplied to the substrate and the number of the substrates processed by the phosphoric acid aqueous solution supplied from the nozzle The supply amounts of the first aqueous phosphoric acid solution and the second aqueous phosphoric acid solution are determined.
  • the replenishment condition is a liquid amount condition related to the liquid amount stored in the tank, a processing number condition related to the number of substrates processed by the phosphoric acid aqueous solution supplied from the nozzle, and At least one of the silicon concentration conditions relating to the silicon concentration in the aqueous phosphoric acid solution supplied from the tank to the nozzle.
  • the substrate processing apparatus further comprises a third aqueous phosphoric acid solution for supplying a third aqueous phosphoric acid solution containing silicon to the tank at a third concentration different from any of the first concentration and the second concentration.
  • the apparatus further includes supply means, and the control means further controls the third aqueous phosphoric acid solution supply means.
  • the tank is a recovery tank in which an aqueous solution of phosphoric acid used for substrate processing is introduced through a recovery pipe, and an aqueous solution of phosphoric acid stored in the recovery tank is a preparation liquid supply pipe
  • the aqueous phosphoric acid solution stored in the supply tank is supplied to the nozzle via a supply pipe, and the first aqueous phosphoric acid solution and the second aqueous phosphoric acid solution are It is supplied to the recovery tank.
  • a plurality of the recovery tanks are provided. Then, the control unit further selects a recovery destination of the aqueous phosphoric acid solution recovered via the recovery pipe from among the plurality of recovery tanks, a recovery destination selecting step, the first aqueous phosphoric acid solution, and the first The supply destination selection step of selecting the supply destination of the dibasic acid aqueous solution as the collection tank selected in the collection destination selection step, and the recovery tank not selected in the collection tank selection step among the plurality of collection tanks, And a replenishment source selection step of selecting as a replenishment source for replenishing the supply tank with the aqueous phosphoric acid solution via the preparation liquid supply pipe.
  • the substrate processing apparatus further comprises: a first integrated flow meter for measuring a supply amount of the first phosphoric acid aqueous solution supplied to the tank by the first phosphoric acid aqueous solution supply unit; And a second integrated flow meter that measures the supply amount of the second aqueous phosphoric acid solution supplied to the tank by the aqueous phosphoric acid solution supply unit, and the control unit is configured to include the first integrated flow meter and the second integration Based on the measurement result of the flow meter, a supply amount management step of managing supply of the first phosphoric acid aqueous solution and the second phosphoric acid aqueous solution to the tank is further executed.
  • FIG. 1 is a schematic view of a processing unit provided in a substrate processing apparatus according to an embodiment of the present invention as viewed from the horizontal direction.
  • FIG. 2 is a schematic view for explaining the configuration of a phosphoric acid supply system provided in the substrate processing apparatus.
  • FIG. 3 is a block diagram for explaining the main electrical configuration of the substrate processing apparatus.
  • FIG. 4 is a cross-sectional view showing an example of a substrate processed by the substrate processing apparatus.
  • FIG. 5 is a process diagram for explaining an example of substrate processing performed by the substrate processing apparatus.
  • FIG. 6 is a flowchart for explaining the process related to the supply of the phosphoric acid aqueous solution in the substrate processing apparatus.
  • FIG. 1 is a schematic view of a processing unit provided in a substrate processing apparatus according to an embodiment of the present invention as viewed from the horizontal direction.
  • FIG. 2 is a schematic view for explaining the configuration of a phosphoric acid supply system provided in the substrate processing apparatus.
  • FIG. 3 is a block diagram for
  • FIG. 7 is a schematic view for explaining the configuration of a substrate processing apparatus according to another embodiment of the present invention, mainly showing the configuration of a phosphoric acid supply system.
  • FIG. 8 is a block diagram for explaining the electrical configuration of the substrate processing apparatus having the configuration of FIG.
  • FIG. 9 is a flow chart for explaining the process related to the supply of phosphoric acid aqueous solution in the substrate processing apparatus having the configuration of FIG.
  • FIG. 10 is a flow chart for explaining the process related to the supply of the phosphoric acid aqueous solution in the substrate processing apparatus having the configuration of FIG. 7, and shows the selection of the recovery destination of used phosphoric acid and the phosphoric acid aqueous solution replenishing source Represents an operation related to the selection of FIG.
  • FIG. 11 is a flow chart for explaining the processing related to the supply of the phosphoric acid aqueous solution in the substrate processing apparatus of the configuration of FIG. 7, and shows the operation regarding the replenishment of the new solution to the recovery tank.
  • FIG. 12 is a schematic view for explaining the configuration of a substrate processing apparatus according to still another embodiment of the present invention.
  • FIG. 1 is a schematic view of a processing unit provided in a substrate processing apparatus according to an embodiment of the present invention as viewed from the horizontal direction.
  • the substrate processing apparatus 1 is a sheet-fed apparatus that processes a substrate W such as a semiconductor wafer one by one.
  • the substrate processing apparatus 1 transports the substrate W to a plurality of processing units 2 (only one is shown in FIG. 1) that processes the substrate W with a processing fluid such as a processing liquid or processing gas, and a plurality of processing units 2
  • a robot not shown
  • a control device 3 control means for controlling the substrate processing apparatus 1 are included.
  • the processing unit 2 receives the processing liquid scattered outward from the substrate W, the spin chuck 5 rotated about the vertical rotation axis A1 passing through the central portion of the substrate W while holding the substrate W horizontally in the chamber 4 And a cylindrical processing cup 10.
  • the spin chuck 5 includes a disk-like spin base 7 held in a horizontal posture, a plurality of chuck pins 6 for holding the substrate W in a horizontal posture above the spin base 7, and a central portion of the spin base 7. It includes a spin shaft 8 extending downward, and a spin motor 9 for rotating the spin base 7 and the plurality of chuck pins 6 by rotating the spin shaft 8.
  • the spin chuck 5 is not limited to a sandwich type chuck for holding the plurality of chuck pins 6 in contact with the outer peripheral surface of the substrate W, but the back surface (lower surface) of the substrate W which is a non-device forming surface is the upper surface of the spin base 7 It may be a vacuum type chuck which holds the substrate W horizontally by suction.
  • the processing cup 10 includes a plurality of guards 11 that receive the liquid discharged outward from the substrate W, and a plurality of cups 12 that receive the liquid guided downward by the guard 11.
  • the guard 11 includes a cylindrical tubular portion 11b surrounding the spin chuck 5, and an annular ceiling portion 11a extending obliquely upward from the upper end of the tubular portion 11b toward the rotation axis A1.
  • the plurality of ceiling portions 11a overlap in the vertical direction, and the plurality of cylindrical portions 11b are arranged in a concentric cylindrical shape.
  • the plurality of cups 12 are respectively disposed below the plurality of cylindrical portions 11 b.
  • the cup 12 forms an annular receiving groove 12a opened upward.
  • the processing unit 2 includes a guard elevating unit 13 that raises and lowers the plurality of guards 11 individually.
  • the guard elevating unit 13 vertically raises and lowers the guard 11 between the upper position and the lower position.
  • the upper position the upper end of the guard 11 is positioned above the substrate holding position where the spin chuck 5 holds the substrate W.
  • the upper end of the guard 11 is located below the substrate holding position.
  • the annular upper end of the ceiling portion 11 a corresponds to the upper end of the guard 11.
  • the upper end of the guard 11 surrounds the substrate W and the spin base 7 in plan view.
  • the processing liquid supplied to the substrate W is shaken off around the substrate W by the centrifugal force.
  • the processing liquid supplied to the substrate W the upper end of at least one guard 11 is disposed above the substrate W. Therefore, the processing solution such as the chemical solution and the rinse solution discharged around the substrate W is received by any one of the guards 11 and guided to the cup 12 corresponding to the guard 11.
  • the processing unit 2 includes a phosphoric acid nozzle 14 which discharges a phosphoric acid aqueous solution downward toward the upper surface of the substrate W.
  • the phosphoric acid nozzle 14 is connected to a phosphoric acid piping 15 for guiding a phosphoric acid aqueous solution.
  • the phosphoric acid valve 16 inserted in the phosphoric acid piping 15 is opened, the aqueous phosphoric acid solution is continuously discharged downward from the discharge port of the phosphoric acid nozzle 14.
  • the phosphoric acid aqueous solution is an aqueous solution containing phosphoric acid (H 3 PO 4 ) as a main component.
  • the concentration of phosphoric acid in the aqueous phosphoric acid solution is, for example, in the range of 50% to 100%, preferably about 90%.
  • the boiling point of the aqueous phosphoric acid solution varies depending on the concentration of phosphoric acid in the aqueous phosphoric acid solution, but is approximately in the range of 140 ° C. to 195 ° C.
  • the phosphoric acid aqueous solution discharged from the phosphoric acid nozzle 14 contains silicon. The silicon concentration in the phosphoric acid aqueous solution is controlled within a prescribed silicon concentration range.
  • the specified silicon concentration range is, for example, 15 ppm to 150 ppm, preferably 40 ppm to 60 ppm.
  • the silicon contained in the phosphoric acid aqueous solution may be a single silicon, a silicon compound, or both of them.
  • silicon contained in the phosphoric acid aqueous solution may contain silicon dissolved from the substrate W by the supply of the phosphoric acid aqueous solution.
  • the silicon contained in the aqueous phosphoric acid solution may contain silicon added to the aqueous phosphoric acid solution.
  • the phosphoric acid valve 16 includes a valve body forming a flow path, a valve body disposed in the flow path, and an actuator for moving the valve body.
  • the actuator may be a pneumatic actuator, an electric actuator, or any other actuator.
  • the control device 3 controls the actuator to open / close the phosphoric acid valve 16 or to change its opening degree.
  • the phosphoric acid nozzle 14 has the form of a scan nozzle movable in the chamber 4 in this embodiment.
  • the phosphoric acid nozzle 14 is coupled to the first nozzle moving unit 17, and the first nozzle moving unit 17 moves the phosphoric acid nozzle 14 in at least one of the vertical direction and the horizontal direction.
  • the first nozzle moving unit 17 is a processing position at which the aqueous solution of phosphoric acid discharged from the phosphoric acid nozzle 14 is deposited on the upper surface of the substrate W, and the retraction where the phosphoric acid nozzle 14 is positioned outward of the spin chuck 5 in plan view.
  • the phosphoric acid nozzle 14 is moved between the positions.
  • the processing unit 2 includes an SC1 nozzle 18 that discharges SC1 (a mixed solution containing NH 4 OH and H 2 O 2 ) downward toward the upper surface of the substrate W.
  • the SC1 nozzle 18 is connected to an SC1 pipe 19 that guides the SC1.
  • SC1 valve 20 interposed in the SC1 pipe 19 is opened, SC1 is continuously discharged from the discharge port of the SC1 nozzle 18.
  • the SC1 nozzle 18 has the form of a scan nozzle movable in the chamber 4 in this embodiment.
  • the SC1 nozzle 18 is coupled to the second nozzle moving unit 21.
  • the second nozzle moving unit 21 moves the SC1 nozzle 18 in at least one of the vertical direction and the horizontal direction.
  • the second nozzle moving unit 21 is between the processing position where the SC1 discharged from the SC1 nozzle 18 lands on the upper surface of the substrate W and the retracted position where the SC1 nozzle 18 is located outward of the spin chuck 5 in plan view. To move the SC1 nozzle 18.
  • the processing unit 2 further includes a rinse liquid nozzle 22 that discharges the rinse liquid downward toward the upper surface of the substrate W.
  • the rinse liquid nozzle 22 is connected to a rinse liquid pipe 23 for guiding the rinse liquid.
  • the rinse liquid valve 24 interposed in the rinse liquid pipe 23 is opened, the rinse liquid is continuously discharged downward from the discharge port of the rinse liquid nozzle 22.
  • the rinse solution is, for example, pure water (deionized water).
  • Other examples of the rinse solution are electrolytic ion water, hydrogen water, ozone water, hydrochloric acid water of diluted concentration (for example, about 10 ppm to 100 ppm), and the like.
  • the rinse liquid nozzle 22 is a fixed nozzle that discharges the rinse liquid from the discharge port whose position is fixed.
  • the rinse liquid nozzle 22 is fixed to the bottom of the chamber 4.
  • the processing unit 2 is between the processing position where the rinse liquid discharged from the rinse liquid nozzle 22 lands on the upper surface of the substrate W and the retracted position where the rinse liquid nozzle 22 is located outward of the spin chuck 5 in plan view.
  • the nozzle moving unit for moving the rinse liquid nozzle 22 may be provided.
  • FIG. 2 is a schematic view for explaining the configuration of the phosphoric acid supply system 30 provided in the substrate processing apparatus 1.
  • the phosphoric acid supply system 30 includes a supply tank 31 (tank) storing the phosphoric acid aqueous solution discharged from the phosphoric acid nozzle 14 and a circulation pipe 32 circulating the phosphoric acid aqueous solution in the supply tank 31.
  • the phosphoric acid supply system 30 further includes a pump 33 for feeding the aqueous phosphoric acid solution in the supply tank 31 to the circulation pipe 32, and a heater for heating the aqueous phosphoric acid solution in the middle of the circulation path formed by the supply tank 31 and the circulation pipe 32.
  • the pump 33, the filter 35 and the heater 34 are interposed in the circulation pipe 32.
  • the supply tank 31 is an example of a tank for storing a phosphoric acid aqueous solution.
  • a phosphoric acid pipe 15 as a supply pipe for supplying a phosphoric acid aqueous solution to the phosphoric acid nozzle 14 is connected to a circulation pipe 32.
  • the pump 33 always sends the aqueous phosphoric acid solution in the supply tank 31 to the circulation pipe 32.
  • the phosphoric acid supply system 30 may be provided with a pressurizing device that pushes the aqueous solution of phosphoric acid in the supply tank 31 into the circulation pipe 32 by raising the pressure in the supply tank 31 instead of the pump 33.
  • the pump 33 and the pressurizing device are both examples of a liquid sending device that sends the aqueous solution of phosphoric acid in the supply tank 31 to the circulation pipe 32 and the phosphoric acid pipe 15.
  • the upstream end and the downstream end of the circulation pipe 32 are connected to the supply tank 31.
  • the phosphoric acid aqueous solution is sent from the supply tank 31 to the upstream end of the circulation pipe 32, and returns to the supply tank 31 from the downstream end of the circulation pipe 32.
  • the phosphoric acid aqueous solution in the supply tank 31 circulates through a circulation path.
  • foreign matter contained in the aqueous phosphoric acid solution is removed by the filter 35, and the aqueous phosphoric acid solution is heated by the heater 34.
  • the phosphoric acid aqueous solution in the supply tank 31 is maintained at a constant temperature higher than room temperature (for example, 5 ° C. to 30 ° C.).
  • the temperature of the phosphoric acid aqueous solution heated by the heater 34 may be a boiling point at the concentration (phosphoric acid concentration) of the phosphoric acid aqueous solution, or may be a temperature lower than the boiling point.
  • a branch pipe 36 is connected in the middle of the circulation pipe 32.
  • a silicon concentration meter 37 is interposed in the middle of the branch pipe 36, and the branch pipe 36 branches from the circulation pipe 32 and passes through the silicon concentration meter 37 and then joins the circulation pipe 32.
  • valves 38 and 39 are interposed on both the upstream side and the downstream side of the silicon densitometer 37, respectively.
  • a drain system 40 is provided to drain the aqueous phosphoric acid solution in the supply tank 31.
  • the drain system 40 includes a drain pipe 41 for discharging the phosphoric acid aqueous solution in the supply tank 31 and a drain valve 42 interposed in the drain pipe 41.
  • the drain pipe 41 may be provided with a drain flow control valve 43 for adjusting the discharge flow rate of the phosphoric acid aqueous solution.
  • the drain valve 42 By opening the drain valve 42, the phosphoric acid aqueous solution in the supply tank 31 is discharged to the drain pipe 41. Thereby, the amount of the phosphoric acid aqueous solution in the supply tank 31 can be reduced as needed, or the entire amount of the phosphoric acid aqueous solution in the supply tank 31 can be drained.
  • the plurality of liquid amount sensors 44 include an upper limit sensor 44 h, a lower limit sensor 44 L, and a target sensor 44 t.
  • the upper limit sensor 44 h detects whether the liquid volume of the phosphoric acid aqueous solution in the supply tank 31 is equal to or higher than the upper limit value of the specified liquid volume range.
  • the lower limit sensor 44L detects whether the liquid volume of the phosphoric acid aqueous solution in the supply tank 31 is less than or equal to the lower limit value of the specified liquid volume range.
  • the target sensor 44t detects whether the liquid volume of the phosphoric acid aqueous solution in the supply tank 31 is equal to or higher than the target value between the upper limit value and the lower limit value.
  • the fresh solution replenishment system 50 replenishes the unused phosphoric acid aqueous solution (fresh solution). The new solution is replenished until the volume of the aqueous solution of phosphoric acid in the supply tank 31 reaches a target value.
  • the new solution replenishment system 50 is interposed in the new solution preparation tank 51, the new solution replenishment piping 52 for guiding the unused phosphoric acid aqueous solution from the new solution preparation tank 51 to the supply tank 31, and the new solution replenishment piping 52 New liquid replenishment valve 53, and a pump 54 also interposed in the new liquid replenishment piping 52.
  • a stock solution of phosphoric acid aqueous solution (hereinafter referred to as “phosphoric acid stock solution”) is supplied to the fresh liquid preparation tank 51 through a phosphoric acid stock solution pipe 55.
  • the phosphoric acid stock solution is an aqueous solution of phosphoric acid not containing silicon.
  • the phosphoric acid stock solution pipe 55 is provided with a phosphoric acid stock solution valve 56 for opening and closing the flow path.
  • the silicon concentrate is supplied to the new liquid preparation tank 51 via the silicon concentrate pipe 57.
  • the silicon concentrate pipe 57 is provided with a silicon valve 58 for opening and closing the flow path.
  • the new solution replenishment system 50 further includes a phosphate solution replenishment pipe 59 for supplying the phosphate solution to the supply tank 31.
  • the phosphoric acid stock solution replenishment pipe 59 branches from the phosphoric acid stock solution pipe 55 on the upstream side of the phosphoric acid stock solution valve 56 and is connected to the supply tank 31 without passing through the new liquid preparation tank 51.
  • a phosphate stock solution replenishment valve 60 for opening and closing the flow path is interposed.
  • Integrated flow meters 61 and 62 are interposed in the new solution replenishment piping 52 and the phosphate stock solution replenishment piping 59, respectively.
  • the phosphoric acid stock solution valve 56 By opening the phosphoric acid stock solution valve 56 to supply a fixed amount of phosphoric acid stock solution to the new liquid preparation tank 51, and opening the silicon valve 58 to supply a fixed quantity of silicon concentrate to the new liquid preparation tank 51,
  • the acid stock solution and the silicon concentrate are mixed at a predetermined ratio.
  • the phosphoric acid stock solution and the silicon concentrate are respectively quantified so as to have a predetermined supply amount ratio and supplied to the new liquid preparation tank 51.
  • a phosphoric acid aqueous solution containing silicon of a reference silicon concentration for example, 50 ppm, an example of the first concentration
  • a circulation path 63 circulating through the silicon densitometer 37 is provided to check the silicon concentration as necessary It may be possible.
  • valves 64 and 65 are interposed upstream and downstream of the silicon densitometer 37, respectively.
  • the new solution (unused phosphoric acid aqueous solution containing silicon at a reference silicon concentration) prepared in the new solution preparation tank 51 can be replenished to the supply tank 31.
  • the replenishment amount can be measured by the integrated flow meter 61.
  • the phosphoric acid stock solution replenishment valve 60 the phosphoric acid stock solution (an unused phosphoric acid aqueous solution not containing silicon) can be replenished to the supply tank 31.
  • the replenishment amount can be measured by the integrating flow meter 62.
  • the silicon concentration in the phosphoric acid solution is zero (an example of the second concentration).
  • An aqueous acid solution supply means is configured.
  • secondary phosphoric acid aqueous solution supply means for supplying a phosphoric acid aqueous solution (second phosphoric acid aqueous solution) having a zero concentration (example of the second concentration) is configured by the phosphoric acid stock solution replenishment piping 59 and the phosphoric acid stock solution replenishment valve 60 etc. It is done.
  • the substrate processing apparatus 1 further includes a recovery system 70 for recovering the used aqueous phosphoric acid solution used for processing the substrate W.
  • the recovery system 70 includes a processing cup 10, a recovery pipe 71, and a recovery valve 72.
  • the recovery pipe 71 guides the aqueous solution of phosphoric acid received by the processing cup 10 to the supply tank 31.
  • the recovery valve 72 opens and closes the flow path of the recovery pipe 71.
  • the substrate processing apparatus 1 further includes a drainage system 80 for discarding the processing liquid used for processing the substrate W.
  • the drainage system 80 includes a drainage pipe 81 connected to the processing cup 10 or the recovery pipe 71, and a drainage valve 82 for opening and closing the flow path of the drainage pipe 81.
  • the recovery valve 72 When the recovery valve 72 is opened and the drainage valve 82 is closed, the aqueous phosphoric acid solution received by the processing cup 10 is recovered by the recovery pipe 71 into the supply tank 31. When the spent treatment liquid is discarded, the recovery valve 72 is closed, and the drainage valve 82 is opened. As a result, the phosphoric acid aqueous solution and the other treatment liquids received by the processing cup 10 are discharged to the drainage pipe 81.
  • FIG. 3 is a block diagram for explaining the main electrical configuration of the substrate processing apparatus 1.
  • Control device 3 includes a computer main body 3a and a peripheral device 3b connected to computer main body 3a.
  • the computer main body 3 a includes a processor (CPU) 91 and a main storage device 92.
  • the peripheral device 3b is a communication device for communicating with an external device such as the host computer HC, a reading device 94 for reading information from the removable medium M, an auxiliary storage device 93 for storing the program P executed by the processor 91, various data. And 95.
  • the input device 96 and a display device 97 are connected to the control device 3.
  • the input device 96 is a device operated by an operator such as a user or a maintenance person to input information to the substrate processing apparatus 1.
  • the display device 97 displays various information on the display screen and provides the operator or the like.
  • the input device 96 may be a keyboard, a pointing device, a touch panel or the like.
  • the processor 91 executes the program P stored in the auxiliary storage device 93.
  • the program P in the auxiliary storage device 93 may be installed in the control device 3 in advance.
  • the program P may be read from the removable medium M by the reading device 94 and introduced into the auxiliary storage device 93.
  • the program P may be acquired from the host computer HC or another external device via the communication device 95, and may be introduced into the auxiliary storage device.
  • the auxiliary storage device 93 and the removable medium M are non-volatile memories that retain storage even when power is not supplied.
  • the auxiliary storage device 93 may be, for example, a magnetic storage device such as a hard disk drive.
  • the removable medium M may be an optical disc or a semiconductor memory.
  • the auxiliary storage device 93 and the removable medium M are examples of computer readable recording media in which the program P is recorded.
  • the control device 3 controls the substrate processing apparatus 1 to process the substrate W in accordance with the recipe R specified by the host computer HC.
  • the control device 3 controls the processing unit 2 and each part of the phosphoric acid supply system 30. More specifically, the control device 3 controls the spin motor 9, the guard lifting unit 13, the nozzle moving unit 17, 21, the valves 16, 20, 24, and the like. Further, the control device 3 controls the pumps 33 and 54, the heater 34, the valves 38, 39, 42, 53, 56, 58, 60, 64, 65, 72, and the like. Furthermore, signals from sensors are input to the control device 3.
  • the sensors include a liquid amount sensor 44, a silicon densitometer 37, and integrated flow meters 61 and 62.
  • the auxiliary storage device 93 stores a plurality of recipes R.
  • the recipe R includes information that defines the processing content of the substrate W, the processing conditions, and the processing procedure.
  • the plurality of recipes R differ in at least one of the processing content of the substrate W, the processing conditions, and the processing procedure.
  • Each process of substrate processing is realized by the control device 3 controlling the substrate processing apparatus 1 according to the recipe R. That is, the control device 3 is programmed to execute each process of substrate processing.
  • FIG. 4 is a cross-sectional view showing an example of the substrate W processed by the substrate processing apparatus 1.
  • the substrate W is a silicon wafer having a surface (device formation surface) on which the silicon oxide film Fo and the silicon nitride film Fn are exposed.
  • an aqueous solution of phosphoric acid containing silicon is supplied to such a substrate W, whereby selective etching of the silicon nitride film Fn is performed. That is, the silicon nitride film Fn can be etched at a predetermined etching rate (etching amount per unit time) while suppressing the etching of the silicon oxide film Fo.
  • FIG. 5 is a process diagram for explaining an example of substrate processing performed by the substrate processing apparatus 1.
  • the substrate W to be processed is carried into the chamber 4 by the transfer robot and transferred to the spin chuck 5 (step S1).
  • the control device 3 rotates the spin chuck 5, thereby rotating the substrate W around the vertical rotation axis A1 (step S2).
  • an aqueous solution of phosphoric acid is supplied to the substrate W (step S3). More specifically, the first nozzle moving unit 17 moves the phosphoric acid nozzle 14 to the processing position, and the guard lifting and lowering unit 13 causes any one of the guards 11 to face the substrate W. Thereafter, the phosphoric acid valve 16 is opened, and a phosphoric acid aqueous solution is discharged from the phosphoric acid nozzle 14.
  • the first nozzle moving unit 17 has a central processing position at which the phosphoric acid aqueous solution discharged from the phosphoric acid nozzle 14 contacts the central portion of the upper surface of the substrate W;
  • the phosphoric acid nozzle 14 may be moved between the peripheral processing position where the aqueous phosphoric acid solution discharged from the phosphoric acid nozzle 14 adheres to the upper surface peripheral portion of the substrate W.
  • the phosphoric acid nozzle 14 may be stationary so that the landing position of the phosphoric acid aqueous solution is located at the central portion of the upper surface of the substrate W.
  • the phosphoric acid aqueous solution discharged from the phosphoric acid nozzle 14 is deposited on the upper surface of the substrate W, it flows outward along the upper surface of the rotating substrate W.
  • a liquid film of phosphoric acid aqueous solution covering the entire upper surface of the substrate W is formed, and the phosphoric acid aqueous solution is supplied to the entire upper surface of the substrate W.
  • the entire top surface of the substrate W is uniformly supplied. Thereby, the upper surface of the substrate W is uniformly processed.
  • the phosphoric acid valve 16 is closed, and the discharge of the aqueous phosphoric acid solution from the phosphoric acid valve 16 is stopped. Thereafter, the first nozzle moving unit 17 moves the phosphoric acid valve 16 to the retracted position.
  • the phosphoric acid aqueous solution jumps out of the substrate W by the centrifugal force and is received by the guard 11 facing the substrate W.
  • the aqueous phosphoric acid solution is further guided by the guard 11 to the corresponding cup 12, flows into the recovery pipe 71, and is recovered into the supply tank 31.
  • a first rinse liquid supply process of supplying pure water, which is an example of a rinse liquid, to the upper surface of the substrate W is performed (step S4).
  • the rinse liquid valve 24 is opened, and the rinse liquid nozzle 22 starts discharging the pure water.
  • the pure water deposited on the upper surface of the substrate W flows outward along the upper surface of the rotating substrate W.
  • the phosphoric acid aqueous solution on the substrate W is washed away by the pure water discharged from the rinse liquid nozzle 22. Thereby, a liquid film of pure water covering the upper surface of the substrate W is formed.
  • the rinse liquid valve 24 is closed and the discharge of pure water is stopped.
  • the treatment liquid (mainly rinse liquid) received by the guard 11 and guided to the cup 12 is drained through the drainage pipe 81.
  • an SC1 supply process of supplying SC1 to the substrate W is performed (step S5).
  • the second nozzle moving unit 21 moves the SC1 nozzle 18 to the processing position, and the guard lifting unit 13 makes the guard 11 different from that in the phosphoric acid supply process face the substrate W.
  • the SC1 valve 20 is opened, and the SC1 nozzle 18 starts discharging the SC1.
  • the SC1 nozzle 18 discharges from the central processing position where the SC1 discharged from the SC1 nozzle 18 contacts the center of the upper surface of the substrate W and the SC1 nozzle 18
  • the SC1 nozzle 18 may be moved between the outer peripheral processing position where the SC1 contacts the upper surface outer peripheral portion of the substrate W.
  • the SC1 may be made to stand still so that the liquid deposition position of the SC1 is positioned at the central portion of the upper surface of the substrate W.
  • SC1 discharged from the SC1 nozzle 18 flows along the upper surface of the rotating substrate W after being deposited on the upper surface of the substrate W.
  • a liquid film of SC1 covering the entire top surface of the substrate W is formed, and SC1 is supplied to the entire top surface of the substrate W.
  • the SC 1 supplied to the upper surface of the substrate W jumps out of the substrate W by centrifugal force, is received by the guard 11 facing the substrate W, and is guided to the corresponding cup 12. Similar to the phosphoric acid aqueous solution, the SC1 may be recovered and reused in the SC1 tank (not shown) or may be discarded without recovery.
  • a second rinse liquid supply process of supplying pure water, which is an example of a rinse liquid, to the upper surface of the substrate W is performed (step S6).
  • the rinse liquid valve 24 is opened, and discharge of pure water from the rinse liquid nozzle 22 is started.
  • the pure water deposited on the upper surface of the substrate W flows outward along the upper surface of the rotating substrate W.
  • the SC 1 on the substrate W is washed away by the pure water, and a liquid film of pure water covering the entire upper surface of the substrate W is formed.
  • the rinse liquid valve 24 is closed and the discharge of pure water is stopped.
  • the treatment liquid (mainly rinse liquid) received by the guard 11 and guided to the cup 12 is discarded.
  • step S7 a drying process of drying the substrate W by high-speed rotation of the substrate W is performed (step S7).
  • the spin motor 9 accelerates the rotation of the substrate W, and rotates the substrate W at a rotation speed (eg, several thousand rpm) larger than that in the liquid processing step (S3 to S6). Thereby, the liquid on the substrate W is removed by centrifugal force, and the substrate W is dried.
  • the rotation of the spin motor 9 is stopped (step S8).
  • step S9 an unloading step of unloading the substrate W from the chamber 4 is performed (step S9). Specifically, the guard lifting unit 13 lowers all the guards 11 to the lower position. Thereafter, the transfer robot causes the hand to enter the chamber 4, scoops the processed substrate W from the spin chuck 5, and carries it out of the chamber 4.
  • FIG. 6 is a flowchart for explaining the process related to the supply of the phosphoric acid aqueous solution.
  • the control device 3 opens the phosphoric acid valve 16 and supplies a phosphoric acid aqueous solution to the phosphoric acid nozzle 14 (step S11). Thereby, the phosphoric acid aqueous solution is supplied to the substrate W held by the spin chuck 5.
  • the controller 3 opens the recovery valve 72 and closes the drainage valve 82.
  • the used aqueous phosphoric acid solution supplied to the substrate W is collected into the supply tank 31 via the collection pipe 71 (step S12).
  • the control device 3 determines whether the condition (refilling start condition) to start the replenishment of the new solution to the supply tank 31 is satisfied (step S13).
  • the replenishment start conditions may include liquid volume conditions.
  • One specific example of the fluid amount condition is that the lower limit sensor 44L detects the fluid amount equal to or less than the lower limit value.
  • the replenishment start conditions may also include processing number conditions.
  • One specific example of the processing number condition is that the number of substrates W processed without replenishing the supply tank 31 with a new solution reaches a predetermined number.
  • the replenishment start conditions may include silicon concentration conditions.
  • the control device 3 may determine that the replenishment start condition is satisfied when at least one of the liquid amount condition, the processing number condition, and the silicon concentration condition is satisfied.
  • Control device 3 measures the silicon concentration by, for example, opening valves 38 and 39 at predetermined time intervals (for example, intervals of 10 minutes to several tens of minutes) to sample the phosphoric acid aqueous solution and introduce it into silicon densitometer 37. You may go.
  • the controller 3 determines the amount of liquid to be replenished in order to replenish the new liquid from the new liquid replenishment system 50 to the supply tank 31 (step S14).
  • the total amount of the liquid to be replenished may be, for example, the difference between the lower limit value detected by the lower limit sensor 44L and the target value detected by the target sensor 44t, which is a known value.
  • the liquid amount in the supply tank 31 may be larger than the lower limit value. In such a case, the control device 3 may drain the aqueous phosphoric acid solution in the supply tank 31 until the amount of liquid in the supply tank 31 reaches the lower limit value by opening the drain valve 42.
  • the control device 3 mixes the phosphoric acid aqueous solution in the supply tank 31, the new liquid (the unused phosphoric acid aqueous solution of the reference silicon concentration) prepared in the new liquid preparation tank 51, and the phosphoric acid stock solution to obtain the reference silicon concentration.
  • the replenishment liquid amount is determined so that the phosphoric acid aqueous solution of (adjustment target value) is stored in the supply tank 31 up to the liquid level of the target value.
  • the sum of the replenishment rate of the fresh solution and the replenishment rate of the phosphate stock solution is the total volume to be replenished, and its value is known as described above.
  • the control device 3 can determine the new solution replenishment amount and the phosphate stock solution replenishment amount based thereon. In other words, the ratio between the fresh solution replenishment rate and the phosphate stock solution replenishment rate can be determined.
  • the silicon concentration in the phosphoric acid aqueous solution collected in the supply tank 31 through the collection pipe 71 is higher than the silicon concentration in the phosphoric acid aqueous solution supplied from the phosphoric acid valve 16 to the substrate W. This is because the silicon material (including the silicon compound) constituting the substrate W is eluted in the aqueous phosphoric acid solution.
  • the elution amount varies depending on the type of the substrate W, and varies depending on the processing conditions for the substrate W.
  • the control device 3 can obtain these pieces of information from the recipe R.
  • the silicon concentration in the phosphoric acid aqueous solution in the supply tank 31 increases as the number of processed substrates increases. That is, the silicon concentration in the phosphoric acid aqueous solution depends on the number of treatments.
  • the control device 3 can obtain information on the number of processed substrates by counting the number of processed substrates.
  • the silicon concentration of the phosphoric acid aqueous solution in the supply tank 31 also depends on the recovery rate of the phosphoric acid aqueous solution.
  • the recovery rate is the ratio of the amount of phosphoric acid aqueous solution recovered to the supply tank 31 via the recovery pipe 71 to the amount of aqueous phosphoric acid solution discharged from the phosphoric acid nozzle 14.
  • the rinse step part of the phosphoric acid aqueous solution is drained together with the rinse liquid (pure water), so the recovery rate is less than 100%.
  • the controller 3 can obtain information on the recovery rate by referring to the recipe R. Of course, the operator may input information on the recovery rate by operating the input device 96.
  • control device 3 obtains information obtained from the recipe R (elution amount of silicon (type of substrate W and / or substrate processing conditions), recovery rate), information obtained in the process of controlling the substrate processing apparatus 1
  • the silicon concentration in the phosphoric acid aqueous solution at the start of replenishment can be determined from the number of processes and the information input from the input device 96.
  • the silicon concentration in the phosphoric acid aqueous solution collected in the supply tank 31 may be determined by calculation, and the silicon concentration value corresponds to the type of the substrate W, the condition of the substrate processing, the recovery rate, the number of processing, etc. It can also be determined using the attached table. Alternatively, a table may be prepared in which the amount of replenished new solution and the replenished amount of phosphoric acid solution are associated with the type of substrate W, the condition of substrate processing, the recovery rate, the number of treatments, and the like.
  • the control device 3 determines the new solution replenishment amount and the phosphate stock solution replenishment amount (step S14). Then, the control device 3 opens the new solution replenishment valve 53 and drives the pump 54 to replenish the new solution from the new solution preparation tank 51 to the supply tank 31 (step S15). The replenishment amount is measured by the integrated flow meter 61. When the measurement value of the integrated flow meter 61 reaches the new solution replenishment amount (step S16), the control device 3 stops the pump 54 and closes the new solution replenishment valve 53 (step S17). Further, the control device 3 opens the phosphate stock solution replenishment valve 60, and causes the supply tank 31 to be replenished with the phosphate stock solution via the phosphate stock solution replenishment pipe 59 (step S18).
  • the replenishment amount is measured by the integrating flow meter 62.
  • the control device 3 closes the phosphate stock solution replenishment valve 60 to stop the replenishment of the phosphate stock solution (step S20).
  • the silicon nitride film Fn exposed on the surface of the substrate W is selectively etched by processing the substrate W using a phosphoric acid aqueous solution.
  • concentration of silicon contained in the phosphoric acid aqueous solution is controlled to a prescribed silicon concentration range, whereby the etching of the silicon oxide film Fo exposed on the surface of the substrate W can be suppressed, and accordingly, the silicon nitride film Fn
  • the selectivity can be increased.
  • the phosphoric acid aqueous solution is supplied from the supply tank 31 to the phosphoric acid nozzle 14, and is supplied from the phosphoric acid nozzle 14 to the substrate W.
  • the spent phosphoric acid aqueous solution used for processing the substrate W is recovered to the supply tank 31.
  • the predetermined replenishment start condition is satisfied (Step S13: Satisfy)
  • the new solution containing silicon at the reference silicon concentration and the phosphate stock solution having no silicon concentration are replenished to the supply tank 31.
  • the silicon concentration of the phosphoric acid aqueous solution in the supply tank 31 can be controlled within the specified silicon concentration range.
  • the silicon concentration of the phosphoric acid aqueous solution in the supply tank 31 is defined within a predetermined silicon concentration range (preferably by preparing the new liquid and phosphoric acid stock solution of the reference silicon concentration in advance and supplying only the necessary amount to the supply tank 31 when necessary. Can be adjusted to the standard silicon concentration). Therefore, since the waiting time for replenishing the phosphoric acid aqueous solution to the supply tank 31 is not required, the phosphoric acid aqueous solution having a stable silicon concentration can be supplied to the substrate W without impairing the productivity of the substrate processing.
  • the silicon densitometer 37 is not an essential component, and a configuration for monitoring the silicon concentration in the phosphoric acid aqueous solution in real time is not necessary. Therefore, a phosphoric acid aqueous solution having a stable silicon concentration can be supplied to the substrate W with an inexpensive configuration.
  • the new solution supplied from the new solution preparation tank 51 to the supply tank 31 has a silicon concentration (more specifically, a reference silicon concentration) within the specified silicon concentration range. Therefore, the silicon concentration of the phosphoric acid aqueous solution in the supply tank 31 can be easily derived to a value within the specified silicon concentration range by the supply of the new solution. Moreover, when the phosphoric acid aqueous solution is stored in the supply tank 31 first, only the new liquid prepared in the new liquid preparation tank 51 may be supplied to the supply tank 31. As a result, the phosphoric acid aqueous solution stored in the supply tank 31 can be used as it is for processing the substrate W without passing through the waiting time for achieving uniform concentration.
  • the silicon concentration of the phosphoric acid aqueous solution in the supply tank 31 is derived to a value within the specified silicon concentration range.
  • Cheap when the substrate W contains silicon, the silicon of the substrate material is eluted in the aqueous phosphoric acid solution by supplying the aqueous phosphoric acid solution to the substrate W, so the concentration of the aqueous phosphoric acid solution recovered in the supply tank 31 Is higher than before the substrate W is supplied.
  • the silicon concentration of the phosphoric acid aqueous solution in the supply tank 31 is defined in the specified silicon concentration range by supplying the phosphoric acid stock solution containing silicon to the supply tank 31 at a concentration (zero in this embodiment) lower than the specified silicon concentration range. It can easily lead to
  • the replenishment amount of the new solution and the phosphate stock solution to the supply tank 31 is determined based on the type of the substrate W. Based on the type of the substrate W, fluctuations in the silicon concentration in the phosphoric acid aqueous solution before and after substrate processing can be predicted. Therefore, the silicon concentration of the phosphoric acid aqueous solution in the supply tank 31 can be appropriately adjusted by determining the replenishment amounts of the new solution and the phosphoric acid stock solution based on the type of the substrate W.
  • the supply tank is specified by specifying the amount of silicon eluted from the substrate W according to the type of the substrate W and the like, and determining each replenishment amount of the new solution and the phosphate stock solution based on the specified silicon elution amount.
  • the silicon concentration of the phosphoric acid aqueous solution in 31 can be appropriately adjusted.
  • the supply amount of the new solution and the phosphoric acid stock solution is based on the recovery rate of the phosphoric acid aqueous solution recovered in the supply tank 31 among the phosphoric acid aqueous solution supplied to the substrate W from the phosphoric acid nozzle 14. It is determined.
  • the silicon concentration of the phosphoric acid aqueous solution in the supply tank 31 can be adjusted to the defined silicon concentration range while replenishing the supply tank 31 with the necessary amount of phosphoric acid aqueous solution.
  • the replenishment amounts of the new solution and the phosphoric acid stock solution are determined based on the number (the number of processes) of the substrate W processed by the phosphoric acid aqueous solution supplied from the phosphoric acid nozzle 14. Thereby, the silicon concentration of the phosphoric acid aqueous solution in the supply tank 31 can be appropriately adjusted.
  • the above-described replenishment start condition includes the liquid amount condition regarding the liquid amount stored in the supply tank 31.
  • the new solution and the phosphate stock solution are replenished with the decrease in the amount of liquid stored in the supply tank 31 to the lower limit value as a trigger.
  • the new solution and the phosphoric acid stock solution are replenished to recover the amount of liquid, and at the same time, the silicon concentration is adjusted.
  • the replenishment start condition includes the processing number condition regarding the number of substrates W processed by the phosphoric acid aqueous solution supplied from the phosphoric acid nozzle 14. That is, when the number of processed substrates W reaches a predetermined number, the new solution and the phosphoric acid stock solution are replenished to the supply tank 31 using this as a trigger.
  • the substrate W can be treated with a stable silicon concentration phosphoric acid aqueous solution.
  • the replenishment start condition includes the silicon concentration condition regarding the silicon concentration in the phosphoric acid aqueous solution supplied from the supply tank 31 toward the phosphoric acid nozzle 14.
  • the silicon concentration in the phosphoric acid aqueous solution whose circulation temperature is regulated through the circulation pipe 32 is periodically measured by the silicon concentration meter 37.
  • the new solution and the phosphoric acid stock solution are replenished to the supply tank 31 with that as a trigger.
  • the silicon concentration of the phosphoric acid aqueous solution in the supply tank 31 is recovered to the specified silicon concentration range, so that the substrate W can be processed with the stable silicon concentration phosphoric acid aqueous solution.
  • the substrates W are held horizontally and processed by the spin chuck 5 one by one.
  • the integrated solution flow rate to the supply tank 31 is measured by the integrated flow meter 61, and the integrated solution flow rate to the supply tank 31 is measured by the integrated flow meter 62.
  • the control device 3 manages the new solution replenishment amount and the phosphate stock solution replenishment amount based on the measurement results of the integrated flow meters 61 and 62. Thereby, the silicon concentration in the phosphoric acid aqueous solution in the supply tank 31 can be accurately adjusted.
  • FIG. 7 is a schematic view for explaining the configuration of the substrate processing apparatus 1 according to the second embodiment of the present invention, and mainly shows the configuration of the phosphoric acid supply system 30. As shown in FIG. In FIG. 7, corresponding parts in FIG. 2 are indicated by the same reference numerals.
  • the phosphoric acid supply system 30 of the substrate processing apparatus 1 includes a first recovery tank 90A and a second recovery tank 90B.
  • the recovery pipe 71 is branched into two recovery branch pipes 71A and 71B.
  • the first recovery branch pipe 71A is connected to the first recovery tank 90A
  • the second recovery branch pipe 71B is connected to the second recovery tank 90B.
  • a first recovery valve 72A and a second recovery valve 72B are interposed in the first recovery branch pipe 71A and the second recovery branch pipe 71B.
  • the controller 3 controls the opening and closing of the first and second recovery valves 72A and 72B to select the recovery destination of the used aqueous phosphoric acid solution as one of the first recovery tank 90A and the second recovery tank 90B. Yes (collection destination selection process).
  • the phosphoric acid aqueous solution stored in the first recovery tank 90A and the second recovery tank 90B is replenished to the supply tank 31 via the replenishment pipe 100 (preparation liquid supply pipe).
  • the downstream end of the refilling pipe 100 is connected to the supply tank 31.
  • the upstream end of the refilling pipe 100 branches into a first branch pipe 100A and a second branch pipe 100B.
  • the first branch pipe 100A is connected to the first recovery tank 90A
  • the second branch pipe 100B is connected to the second recovery tank 90B.
  • a first refill valve 101A and a second refill valve 101B are interposed in the first branch pipe 100A and the second branch pipe 100B.
  • a pump 102 and a heater 103 are interposed in the refilling pipe 100.
  • the phosphoric acid aqueous solution can be supplied from the first recovery tank 90A to the supply tank 31 by driving the pump 102 in a state where the first replenishment valve 101A is opened and the second replenishment valve 101B is closed.
  • the phosphoric acid aqueous solution can be supplied from the second recovery tank 90B to the supply tank 31 by driving the pump 102 with the first replenishment valve 101A closed and the second replenishment valve 101B opened.
  • the aqueous phosphoric acid solution is heated by the heater 103. Therefore, the temperature-controlled phosphoric acid aqueous solution can be supplied to the supply tank 31.
  • the control device 3 controls the opening and closing of the first and second replenishment valves 101A and 101B to make the phosphoric acid aqueous solution replenishment source to the supply tank 31 one of the first recovery tank 90A and the second recovery tank 90B. Select to More specifically, the control device 3 selects the recovery tank 90A, 90B which is not selected as the recovery destination of the used aqueous phosphoric acid solution as a replenishment source to the supply tank 31 (replenishment source selection step).
  • the new solution replenishment piping 52 through which the new solution supplied from the new solution preparation tank 51 flows is branched into a first branch pipe 52A and a second branch pipe 52B.
  • the first branch pipe 52A is connected to the first recovery tank 90A
  • the second branch pipe 52B is connected to the second recovery tank 90B.
  • a first fresh fluid replenishment valve 53A and a second fresh fluid replenishment valve 53B are interposed in the first branch pipe 52A and the second branch pipe 52B, respectively.
  • the new solution (unused phosphoric acid aqueous solution of the reference silicon concentration) prepared in the new solution preparation tank 51 can be supplied to the first recovery tank 90A.
  • the new solution prepared in the new solution preparation tank 51 can be supplied to the second recovery tank 90B by opening the second new solution replenishment valve 53B.
  • the phosphate stock solution replenishment pipe 59 branches into a first branch pipe 59A and a second branch pipe 59B.
  • the first branch pipe 59A is connected to the first recovery tank 90A
  • the second branch pipe 59B is connected to the second recovery tank 90B.
  • a first phosphate stock solution replenishment valve 60A and a second phosphate stock solution replenishment valve 60B are respectively interposed in the first branch pipe 59A and the second branch pipe 59B.
  • the control device 3 controls the opening and closing of the first and second new solution refilling valves 53A, 53B and the first and second phosphate stock solution refilling valves 60A, 60B, thereby providing a replacement destination of the new solution and the phosphate solution.
  • One of the first recovery tank 90A and the second recovery tank 90B is selected. More specifically, the control device 3 selects the recovery tanks 90A and 90B selected as the recovery destinations of the used aqueous phosphoric acid solution as the replenishment destinations of the new solution and the phosphate stock solution (supply destination selection process).
  • First drain systems 45A and 45B are provided to drain the aqueous phosphoric acid solutions in the first and second recovery tanks 90A and 90B, respectively.
  • the drain systems 45A, 45B include drain pipes 46A, 46B for discharging the phosphoric acid aqueous solution in the recovery tanks 90A, 90B, and drain valves 47A, 47B interposed in the drain pipes 46A, 46B.
  • a drain flow rate adjustment valve for adjusting the discharge flow rate of the phosphoric acid aqueous solution may be interposed in the drain pipes 46A and 46B.
  • the phosphoric acid aqueous solution in the collection tanks 90A and 90B is discharged to the drain pipes 46A and 46B.
  • the amount of phosphoric acid aqueous solution in the recovery tank 90A, 90B can be reduced as needed, or the entire amount of phosphoric acid aqueous solution in the recovery tank 90A, 90B can be drained.
  • the lower limit liquid amount sensors 75A and 75B In order to detect the amount of liquid stored in the first and second collection tanks 90A and 90B, the lower limit liquid amount sensors 75A and 75B, the collection stop liquid amount sensors 76A and 76B, and the target liquid amount sensors 77A and 77B are provided. It is done.
  • the lower limit liquid amount sensor 75A, 75B detects that the lower limit liquid amount has been reached when the amount of liquid in the recovery tank 90A, 90B decreases due to the supply of the phosphoric acid aqueous solution from the recovery tank 90A, 90B to the supply tank 31. Do.
  • the recovery stop fluid amount sensors 76A and 76B detect that the upper limit fluid amount has been reached when the used phosphoric acid aqueous solution is recovered in the recovery tanks 90A and 90B and the liquid volume in the recovery tanks 90A and 90B increases. Do.
  • the target fluid volume sensors 77A and 77B stop the replenishment when replenishing the recovery tanks 90A and 90B with an unused phosphoric acid aqueous solution from the new solution replenishment system 50 to increase the volume in the recovery tanks 90A and 90B. It detects that the liquid volume (target liquid volume) to be reached has been reached.
  • a valve 29 is interposed in the circulation pipe 32.
  • a valve 29 may be provided also in the configuration shown in FIG.
  • the valve 29 is opened and closed by the controller 3.
  • FIG. 8 is a block diagram for explaining the electrical configuration of the substrate processing apparatus 1 having the configuration of FIG. In FIG. 8, the corresponding parts in FIG. 3 described above are indicated by the same reference numerals.
  • the controller 3 controls the processing unit 2 and the phosphoric acid supply system 30. With regard to the phosphoric acid supply system 30, the controller 3 controls the pumps 33, 54, 102 and controls the heaters 34, 103 so that the valves 38, 39, 42, 53A, 53B, 56, 58, 60A, 60B, 64. , 65, 72A, 72B.
  • an output signal of the liquid amount sensor 44 of the supply tank 31 an output signal of the densitometer 37, an output signal of the integrating flowmeter 61, 62, and a liquid amount sensor 75A, 75B of the collection tank 90A, 90B.
  • 76A, 76B, 77A, 77B are input.
  • FIG. 9, FIG. 10 and FIG. 11 are flowcharts for explaining the process related to the supply of the phosphoric acid aqueous solution.
  • FIG. 9 shows an operation related to supplying the aqueous phosphoric acid solution to the substrate W and replenishing the aqueous phosphoric acid solution to the supply tank 31, and
  • FIG. 11 shows an operation relating to the replenishment of the new solution to the recovery tank 90A, 90B.
  • the control device 3 opens the phosphoric acid valve 16 and supplies a phosphoric acid aqueous solution to the phosphoric acid nozzle 14 (step S21). Thereby, the phosphoric acid aqueous solution is supplied to the substrate W held by the spin chuck 5. By the supply of the phosphoric acid aqueous solution, the liquid amount of the phosphoric acid aqueous solution in the supply tank 31 decreases. Then, when it is detected by the lower limit sensor 44L that the liquid amount of the phosphoric acid aqueous solution in the supply tank 31 has become the lower limit value (step S22: YES), the control device 3 is selected as the phosphoric acid aqueous solution replenishment source.
  • the phosphoric acid aqueous solution is replenished to the supply tank 31 from any one of the recovery tanks 90A and 90B (step S23). That is, the control device 3 opens the replenishment valves 101A and 101B corresponding to any one of the recovery tanks 90A and 90B selected as the replenishment source, and drives the pump 102.
  • the control device 3 ends the replenishment operation (step S24) S25). By repeating the same operation, the liquid volume of the phosphoric acid aqueous solution in the supply tank 31 is maintained in the appropriate range between the lower limit value and the target value.
  • control device 3 selects the recovery destination of the used aqueous phosphoric acid solution used for substrate processing as one of the recovery tanks 90A and 90B (step S31).
  • the other is selected as a phosphoric acid aqueous solution replenishment source to the supply tank 31 (step S32).
  • the recovery valves 72A and 72B corresponding to the recovery reservoirs 90A and 90B selected as the recovery destination are opened, and the recovery valves 72A and 72B corresponding to the recovery reservoirs 90A and 90B not selected as the recovery destination are closed.
  • the replenishment valves 101A and 101B corresponding to the recovery tanks 90A and 90B selected as the phosphoric acid aqueous solution replenishment source are opened.
  • the replenishment valves 101A and 101B corresponding to the recovery tanks 90A and 90B which are not selected as the phosphoric acid aqueous solution replenishment source are kept closed.
  • the control device 3 further detects that the lower limit liquid amount sensor 75A, 75B corresponding to the collection tank 90A, 90B selected as the replenishment source has reduced the liquid amount of the collection tank 90A, 90B to the lower limit liquid amount (Ste S33: YES), switching between the recovery destination and the phosphoric acid aqueous solution replenishment source (steps S31 and S32). That is, the collection tank 90A, 90B in which the liquid volume has decreased to the lower limit liquid volume is selected as the collection destination (step S31), and the other collection tank 90A, 90B is selected as the phosphoric acid aqueous solution replenishment source (step S32).
  • the roles of the first recovery tank 90A and the second recovery tank 90B are alternately switched between the recovery destination and the phosphoric acid aqueous solution replenishment source, triggered by a decrease in liquid volume.
  • the control device 3 determines whether or not replenishment of new solution to the collection tank 90A, 90B selected as the collection destination should be started (step S41). Specifically, the control device 3 determines whether the condition (replenishment start condition) to start the replenishment of the new solution to the collection tank 90A, 90B is satisfied.
  • the replenishment start conditions may include liquid volume conditions (recovery liquid volume conditions). In one specific example of the liquid amount condition, the amount of collected liquid stored in the collection tank 90A, 90B selected as the collection destination increases, and the corresponding collected stop liquid amount sensor 76A, 76B detects the amount of collected stop liquid It is.
  • the replenishment start conditions may also include processing number conditions.
  • the processing number condition is that the number of substrates W processed without replenishing the recovery tank 90A, 90B with a new solution reaches a predetermined number.
  • the replenishment start conditions may include silicon concentration conditions.
  • the silicon concentration condition is that the silicon concentration in the phosphoric acid aqueous solution supplied from the supply tank 31 toward the phosphoric acid nozzle 14 reaches a predetermined concentration.
  • the control device 3 may determine that the replenishment start condition is satisfied when at least one of the liquid amount condition, the processing number condition, and the silicon concentration condition is satisfied.
  • step S41 satisfaction
  • the control device 3 stops the recovery operation (step S42). That is, the control device 3 closes the recovery valves 72A and 72B corresponding to the recovery tanks 90A and 90B selected as recovery destinations, and opens the drainage valve 82.
  • control device 3 determines the amount of liquid to be replenished in order to replenish the new solution from the new solution replenishment system 50 to the recovery tank 90A, 90B of the recovery destination (step S43).
  • the total amount of the fluid to be replenished is, for example, the recovery stop fluid amount detected by the recovery stop fluid amount sensor 76A, 76B of the recovery tank 90A, 90B of the recovery destination and the target fluid amount detected by the target fluid amount sensor 77A, 77B. It may be a difference, which is a known value.
  • the replenishment start condition is satisfied by satisfying the processing number condition or the silicon concentration condition, the liquid amount in the collection tanks 90A and 90B of the collection destination may be larger than the recovery stop liquid amount.
  • control device 3 opens the corresponding drain valves 47A and 47B, and the phosphorus in the collection tanks 90A and 90B until the liquid quantity in the collection tanks 90A and 90B reaches the collection stop liquid quantity.
  • the aqueous acid solution may be drained.
  • the control device 3 controls the phosphoric acid aqueous solution in the recovery tank 90A, 90B selected as the recovery destination, the new solution (unused phosphoric acid aqueous solution with reference silicon concentration) prepared in the new solution mixing tank 51, and the phosphoric acid stock solution
  • the amount of replenishing liquid is determined so that the phosphoric acid aqueous solution of the reference silicon concentration (adjustment target value) is stored in the collection tanks 90A and 90B up to the target liquid volume by mixing.
  • the sum of the fresh solution replacement amount and the phosphate stock solution replacement amount is the total amount of solution replenished, and its value is known as described above.
  • the control device 3 can determine the new solution replenishment amount and the phosphate stock solution replenishment amount based thereon. In other words, the ratio between the fresh solution replenishment rate and the phosphate stock solution replenishment rate can be determined.
  • the silicon concentration in the phosphoric acid aqueous solution recovered and stored in the recovery tanks 90A and 90B can be predicted based on the recipe and the number of processed wafers. This is as already described in relation to the first embodiment.
  • the silicon concentration may be obtained by calculation, or a table in which the silicon concentration value is associated with the type of substrate W, substrate processing conditions, recovery rate, number of processing, etc. It can also be determined using. Alternatively, a table may be prepared in which the amount of replenished new solution and the replenished amount of phosphoric acid solution are associated with the type of substrate W, the condition of substrate processing, the recovery rate, the number of treatments, and the like.
  • the control device 3 determines the new solution replenishment amount and the phosphate stock solution replenishment amount (step S43). Then, the control device 3 opens the replenishment valves 53A and 53B corresponding to the recovery tanks 90A and 90B selected as the recovery destination, drives the pump 54, and transfers the new liquid preparation tank 51 to the recovery tanks 90A and 90B. And replenish the new solution (step S44).
  • the replenishment amount is measured by the integrated flow meter 61.
  • the control device 3 stops the pump 54 and closes the replenishment valves 53A and 53B (step S46).
  • control device 3 opens the phosphate stock solution replenishment valves 60A and 60B corresponding to the recovery tanks 90A and 90B selected as the recovery destination, and transfers them to the recovery tanks 90A and 90B through the phosphate stock solution pipe 55.
  • the phosphate stock solution is replenished (step S47).
  • the replenishment amount is measured by the integrating flow meter 62.
  • the controller 3 closes the first phosphate stock solution replenishment valve 60A to stop the replenishment of the phosphate stock solution ( Step S49).
  • the phosphoric acid aqueous solution of the reference silicon concentration can be prepared. Since the recovery destination and the phosphoric acid aqueous solution replenishment source are alternately switched as described above, the phosphoric acid aqueous solution preparation operation by the new solution replenishment to the first and second recovery tanks 90A and 90B is alternately executed. .
  • the tank for storing the phosphoric acid aqueous solution is the first and second collecting tanks 90A, through which the phosphoric acid aqueous solution used for the substrate processing is guided through the collecting pipe 71, 90B and a supply tank 31 to which a phosphoric acid aqueous solution stored in the first and second recovery tanks 90A and 90B is supplied via a replenishment pipe 100. Then, the phosphoric acid aqueous solution stored in the supply tank 31 is supplied to the phosphoric acid nozzle 14 through the phosphoric acid pipe 15.
  • the fresh solution replenishment system 50 supplies unused phosphoric acid aqueous solution (fresh solution and phosphoric acid stock solution) to the recovery tanks 90A and 90B.
  • the adjustment of the silicon concentration in the phosphoric acid aqueous solution is performed in the recovery tanks 90A and 90B, and the phosphoric acid aqueous solution whose silicon concentration has been adjusted is sent from the recovery tanks 90A and 90B to the supply tank 31 via the replenishment piping 100. Therefore, the silicon concentration in the phosphoric acid aqueous solution in the supply tank 31 is stable because it is not affected by the liquid recovery. As a result, it is possible to supply a phosphoric acid aqueous solution having a more stable silicon concentration to the substrate W from the phosphoric acid nozzle 14.
  • one of the first recovery tank 90A and the second recovery tank 90B is selected as a phosphoric acid aqueous solution replenishment source to the supply tank 31, and the other is selected as a recovery destination of the used phosphoric acid aqueous solution. Ru.
  • the phosphoric acid aqueous solution whose silicon concentration has been adjusted can be supplied to the supply tank 31 without any delay, the supply of the phosphoric acid aqueous solution to the substrate W is not delayed. Thereby, the productivity of substrate processing can be enhanced.
  • the new solution and the phosphoric acid stock solution are supplied to the recovered phosphoric acid aqueous solution to adjust the silicon concentration.
  • the silicon concentration in the phosphoric acid aqueous solution in the recovery tanks 90A and 90B for supplying the phosphoric acid aqueous solution to the supply tank 31 is stable, the silicon concentration in the phosphoric acid aqueous solution in the supply tank 31 can be stably maintained. Thereby, the silicon concentration in the phosphoric acid aqueous solution used for substrate processing is further stabilized.
  • FIG. 12 is a schematic view for explaining the configuration of a substrate processing apparatus 1 according to a third embodiment of the present invention.
  • the new solution replenishment system 50 includes a first new solution preparation tank 51 and a second new solution preparation tank 111.
  • a phosphoric acid stock solution is supplied to the first fresh liquid preparation tank 51 from the phosphoric acid stock solution pipe 55 via the first phosphoric acid stock solution valve 56, and a second phosphoric acid stock solution valve 112 is supplied to the second fresh liquid preparation tank 111.
  • the phosphate stock solution is supplied from the phosphate stock solution pipe 113 via the
  • the silicon concentrate is supplied to the first new liquid preparation tank 51 from the silicon concentrate pipe 57 via the first silicon valve 58, and the second new liquid preparation tank 111 is provided with the second silicon valve 114.
  • the silicon concentrate is supplied from the silicon concentrate pipe 115.
  • the first new liquid preparation tank 51 is connected to the new liquid replenishment piping 52 via the first new liquid replenishment source selection valve 121.
  • the second new liquid preparation tank 111 is connected to the new liquid replenishment piping 52 via the second new liquid replenishment source valve 122.
  • the second fresh solution preparation tank 111, the second fresh solution replenishment source valve 122, the pump 54, and the fresh solution replenishment valves 53A and 53B constitute a tertiary phosphoric acid aqueous solution supply means.
  • the control device 3 controls the opening and closing of the valves 112, 114, 121 and 122 described above.
  • unused phosphoric acid aqueous solution to which silicon is added is supplied from the first new liquid preparation tank 51 and / or the second new liquid preparation tank 111 to the first recovery tank 90A and the second recovery tank 90B. can do.
  • the controller 3 prepares, for example, a phosphoric acid aqueous solution having a silicon concentration (an example of the first concentration) lower than the reference silicon concentration in the first new liquid preparation tank 51. Further, the control device 3 prepares a phosphoric acid aqueous solution having a reference silicon concentration (an example of the third concentration) in the second new liquid preparation tank 111.
  • the second new liquid replenishment source selection valve 122 is opened, the first new liquid replenishment source selection valve 121 is closed, and the second liquid preparation tank 111 is opened.
  • a phosphoric acid aqueous solution (fresh solution) having a reference silicon concentration is supplied and stored in one of the recovery tanks 90A and 90B (for example, the first recovery tank 90A). Then, a phosphoric acid aqueous solution having the reference silicon concentration is supplied from the first recovery tank 90A to the supply tank 31, and the phosphoric acid aqueous solution is used for substrate processing.
  • the used aqueous phosphoric acid solution is recovered in the other of the recovery tanks 90A and 90B (for example, the second recovery tank 90B).
  • the control device 3 opens the first new solution replenishment source selection valve 121 and closes the second new solution replenishment source selection valve 122 . Thereby, the control device 3 supplies the new solution having a silicon concentration lower than the reference silicon concentration from the first new solution preparation tank 51 to the second recovery tank 90B.
  • the silicon concentration in the used phosphoric acid aqueous solution is higher than the reference silicon concentration, the silicon concentration of the phosphoric acid aqueous solution in the second recovery tank 90B can be easily adjusted by mixing the phosphoric acid aqueous solution having a low silicon concentration. it can.
  • the new solution of the reference silicon concentration is replenished from the second new solution mixing tank 111 up to the predetermined number of processed sheets, and when the predetermined number of processed sheets is exceeded, the new liquid of low silicon concentration is extracted from the first new solution mixing tank 51. May be replenished.
  • the silicon concentration of the phosphoric acid aqueous solution in the recovery tank 90A, 90B is measured, and depending on the measurement result, the first new solution mixing tank 51 or the second new solution mixing tank 111 Either may be selected as a new solution replenishment source.
  • either the first new liquid preparation tank 51 or the second new liquid preparation tank 111 may be selected as a new liquid replenishment source.
  • a new solution with a silicon concentration larger than zero and smaller than the reference silicon concentration is prepared in the first new solution mixing tank 51, and a new solution with the reference silicon concentration is the second new solution mixing tank 111.
  • the silicon concentration adjustment range of the phosphoric acid aqueous solution in the recovery tanks 90A and 90B can be increased.
  • the present invention can also be practiced in other forms.
  • a phosphoric acid aqueous solution of reference silicon concentration a zero concentration phosphoric acid aqueous solution (phosphoric acid stock solution), and
  • the phosphoric acid aqueous solution having a silicon concentration lower than the reference silicon concentration is exemplified.
  • phosphoric acid aqueous solution of silicon concentration other than these may be used.
  • the configuration in which two recovery tanks are provided is shown.
  • the configuration may include one recovery tank, or may include three or more recovery tanks.
  • by providing a plurality of (two or more) recovery tanks it is possible to distinguish the recovery tank which is the recovery destination of the used aqueous phosphoric acid solution and the recovery tank which is the replenishment source to the supply tank.
  • an aqueous solution of phosphoric acid having a stable silicon concentration can be supplied without failure.
  • Reference Signs List 1 substrate processing apparatus 2 processing unit 3 controller 5 spin chuck 9 spin motor 10 processing cup 12 cup 14 phosphoric acid nozzle 15 phosphoric acid piping 16 phosphoric acid valve 30 phosphoric acid supply system 31 supply tank (tank) 33 pump 37 silicon densitometer 44 liquid level sensor 44h upper limit sensor 44L lower limit sensor 44t target sensor 50 new solution replenishment system 51 new solution mixing tank 52 new solution replenishment piping 53 new solution replenishment valve 53A first solution replenishment valve 53B second solution Liquid refilling valve 54 Pump 55 Phosphoric acid stock piping 56 Phosphoric acid stock piping 57 Silicon concentrate piping 58 Silicon valve 59 Phosphoric acid stock refilling piping 60 Phosphate stock solution refilling valve 60A Primary phosphate stock solution refilling valve 60B Secondary phosphate stock replenishment Valve 61 integrated flow meter 62 integrated flow meter 70 collection system 71 collection piping 72 collection valve 72A first collection valve 72B second collection valve 75A, 75B lower limit liquid volume sensor 76A, 76B collection stop liquid

Abstract

シリコン酸化膜とシリコン窒化膜とが表面で露出した基板にシリコンを含むリン酸水溶液を供給して、シリコン窒化膜を選択的にエッチングする基板処理方法。この方法は、規定シリコン濃度範囲のシリコンを含むリン酸水溶液をタンクに貯留する工程と、タンク内のリン酸水溶液をノズルに供給し、ノズルから基板にリン酸水溶液を供給して基板を処理する工程と、基板の処理のために使われたリン酸水溶液をタンクに回収する回収工程と、タンクに第1濃度でシリコンを含む第1リン酸水溶液を供給する第1リン酸水溶液供給工程と、タンクに第1濃度よりも低い第2濃度でシリコンを含む第2リン酸水溶液を供給する第2リン酸水溶液供給工程と、所定の補充開始条件が充足されると、第1および第2リン酸水溶液供給工程を開始する開始判定工程と、第1および第2リン酸水溶液の供給量を決定する供給量決定工程と、を含む。

Description

基板処理方法および基板処理装置
 この出願は、2017年11月15日提出の日本国特許出願2017-220075号に基づく優先権を主張しており、この出願の全内容はここに引用により組み込まれるものとする。
 この発明は、基板を処理するための方法および装置に関する。処理の対象となる基板には、たとえば、半導体ウエハ、液晶表示装置用および有機EL(Electroluminescence)表示装置等のFPD(Flat Panel Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板等の基板が含まれる。
 半導体装置や液晶表示装置の製造工程では、基板を処理する基板処理装置が用いられる。下記特許文献1は、シリコン酸化膜およびシリコン窒化膜が形成された基板に、シリコンを含むリン酸水溶液を供給して、シリコン窒化膜を選択エッチングする基板処理装置および基板処理方法を開示している。リン酸水溶液中にシリコンが含まれていることによって、シリコン酸化膜のエッチングが抑制され、それにより、選択性の高いシリコン窒化膜エッチングが達成される。
 特許文献1に記載された基板処理装置は、基板を保持して回転するスピンチャックと、リン酸水溶液をそれぞれ貯留する第1~第3タンクと、新液供給装置とを含む。第1タンクから処理液ノズルへとリン酸水溶液が供給され、処理液ノズルから吐出されるリン酸水溶液がスピンチャックに保持されている基板に供給される。リン酸水溶液の供給によって第1タンクの液位が下がると、第2タンクから第1タンクへとリン酸水溶液が供給される。一方、基板に供給された後の使用済みリン酸水溶液は、第3タンクに回収される。その回収されたリン酸水溶液中のリン酸濃度がリン酸濃度計によって検出される。その検出結果に応じて、第3タンクに対して、リン酸、DIW(脱イオン水)または窒素ガスの供給によるリン酸濃度調整動作が実行される。回収動作を停止すると、回収されたリン酸水溶液中のシリコン濃度がシリコン濃度計によって検出される。新液供給装置は、第3タンクにリン酸水溶液を補充し、それによって、第3回収タンク中のリン酸水溶液のシリコン濃度を基準シリコン濃度に調整する。より具体的には、新液供給装置は、シリコン濃度計の検出結果に応じてシリコン濃度を可変設定した新液(未使用のリン酸水溶液)を調整し、その新液を第3タンクに供給する。第2タンクの液位が下限レベルまで低下すると、第2タンクと第3タンクとの役割を入れ替えるように液経路が切り替えられ、同様の動作が繰り返される。
特開2015-177139号公報
 新液供給装置は、回収されたリン酸水溶液中のシリコン濃度に応じて、補充すべき新液のシリコン濃度を可変設定している。そのため、補充のたびに濃度の異なる新液を調製する必要がある。新液供給装置は、シリコン濃度計を有しており、このシリコン濃度計でシリコン濃度を検出しながら、リン酸水溶液(原液)およびシリコン濃縮液を導入して混合する。新たな液の導入によって、混合液が撹乱されるから、それに応じて、シリコン濃度計の測定結果も撹乱される。混合液中のシリコン濃度が均一になって安定するまでには、相応の時間を要するので、新液の調製に時間がかかる。
 しかも、第3タンクへの液回収を停止してシリコン濃度を計測し、それに応じて新液のシリコン濃度を設定したうえで、新液を調製するので、予め新液を調製しておくことができない。そのため、たとえ基準濃度の新液を供給すれば足りるときでも、新液調製のための待機時間が生じる。この待機時間のために第1タンクへの液補充が滞れば、基板処理の生産性に影響する。
 また、第2および第3タンクならびに新液供給装置にシリコン濃度計を備える必要があるので、装置構成が複雑であり、それに応じて、コストが嵩む。
 そこで、この発明の一実施形態は、基板処理の生産性を損なうことなく、かつ安価な構成で、基板に供給されるリン酸水溶液中のシリコン濃度を安定化できる基板処理方法および基板処理装置を提供する。
 この発明の一実施形態は、シリコン酸化膜とシリコン窒化膜とが表面で露出した基板にシリコンを含むリン酸水溶液を供給して、前記シリコン窒化膜を選択的にエッチングする基板処理方法を提供する。この発明の一実施形態の方法は、規定シリコン濃度範囲のシリコンを含むリン酸水溶液をタンクに貯留する工程と、前記タンク内のリン酸水溶液をノズルに供給し、前記ノズルから基板にリン酸水溶液を供給して基板を処理する工程と、前記ノズルから基板に供給されて基板の処理のために使われたリン酸水溶液を前記タンクに回収する回収工程と、前記タンクに第1濃度でシリコンを含む第1リン酸水溶液を供給する第1リン酸水溶液供給工程と、前記タンクに前記第1濃度よりも低い第2濃度でシリコンを含む第2リン酸水溶液を供給する第2リン酸水溶液供給工程と、所定の補充開始条件が充足されると、前記第1リン酸水溶液供給工程および前記第2リン酸水溶液供給工程を開始する開始判定工程と、前記第1リン酸水溶液供給工程における前記第1リン酸水溶液および前記第2リン酸水溶液供給工程における前記第2リン酸水溶液の供給量を決定する供給量決定工程と、を含む。
 この方法は、リン酸水溶液を用いて基板を処理することにより、基板の表面で露出しているシリコン窒化膜を選択的にエッチングする。リン酸水溶液中に含まれるシリコンの濃度を規定シリコン濃度範囲に制御することによって、基板の表面で露出しているシリコン酸化膜のエッチングを抑制でき、それによって、シリコン窒化膜の選択比を高めることができる。
 リン酸水溶液は、タンクからノズルへと供給され、ノズルから基板に供給される。基板の処理に使われた使用済みリン酸水溶液は、タンクへと回収される。所定の補充開始条件が充足されると、第1濃度でシリコンを含む第1リン酸水溶液および第2濃度でシリコンを含むリン酸水溶液がタンクに供給される。これらの第1および第2リン酸水溶液のそれぞれの供給量を適切に決定することにより、タンク内のリン酸水溶液のシリコン濃度を規定シリコン濃度範囲に制御できる。
 第1リン酸水溶液および第2リン酸水溶液は、それぞれ、第1濃度および第2濃度でシリコンを含み、これらの濃度値はそれぞれ一定値であればよく、変更を要しない。なぜなら、第1および第2リン酸水溶液の各供給量を適切に定めることにより、第1リン酸水溶液、第2リン酸水溶液およびタンク内のリン酸水溶液を混合して、規定シリコン濃度範囲のリン酸水溶液をタンク内に貯留できるからである。したがって、第1リン酸水溶液および第2リン酸水溶液は、予め準備しておき、必要時に必要量だけタンクに供給することにより、タンク内のリン酸水溶液のシリコン濃度を調整できる。よって、タンクへのリン酸水溶液の補充のための待ち時間を削減できるから、基板処理の生産性を損なうことなく、安定なシリコン濃度のリン酸水溶液を基板に供給できる。
 しかも、第1濃度および第2濃度でそれぞれシリコンを含む第1および第2リン酸水溶液を予め準備しておけばよいので、第1リン酸水溶液および第2リン酸水溶液のシリコン濃度をリアルタイムで制御するような構成を必要としない。たとえば、シリコンを含んでいないリン酸水溶液の原液と、シリコンを所定濃度で含むシリコン濃縮液とをそれぞれ定量して混合することにより、第1または第2濃度のリン酸水溶液を調製できる。むろん、必要に応じて、シリコン濃度計によって濃度の確認を行ってもよいが、シリコン濃度計は必須の構成ではない。したがって、安価な構成で、安定したシリコン濃度のリン酸水溶液を基板に供給できる。
 この発明の一実施形態では、前記第1濃度が前記規定シリコン濃度範囲内の値である。この方法によれば、第1濃度が規定シリコン濃度範囲内の値であるので、第1リン酸水溶液を供給することによって、タンク内のリン酸水溶液のシリコン濃度を規定シリコン濃度範囲内の値に導きやすい。
 前記第1濃度は、前記規定シリコン濃度範囲内の基準シリコン濃度(基板処理のために最も好ましいシリコン濃度値)であってもよい。
 この発明の一実施形態では、前記第2濃度が前記規定シリコン濃度範囲よりも低い値である。この方法によれば、第2濃度が規定シリコン濃度範囲よりも低い値であるので、第2リン酸水溶液を供給することによって、タンク内のリン酸水溶液のシリコン濃度を規定シリコン濃度範囲内の値に導きやすい。とくに、基板がシリコンを含む場合には、リン酸水溶液を基板に供給することによって、基板材料のシリコンがリン酸水溶液中に溶出するから、タンクに回収されるリン酸水溶液の濃度は、基板に供給する前よりも高くなっている。そこで、規定シリコン濃度範囲よりも低い第2濃度でシリコンを含む第2リン酸水溶液を供給することで、タンク内のリン酸水溶液のシリコン濃度を規定シリコン濃度範囲に容易に導くことができる。
 この発明の一実施形態では、前記第2濃度が零である。すなわち、この実施形態では、第2リン酸水溶液は、シリコンを含まないリン酸水溶液である。このような第2リン酸水溶液をタンクに供給することによって、タンク内のリン酸水溶液のシリコン濃度を規定シリコン濃度範囲に容易に導くことができる。
 この発明の一実施形態では、前記供給量決定工程において、前記タンク内のリン酸水溶液中のシリコン濃度を予め定める基準シリコン濃度に調整するように、前記第1および第2リン酸水溶液の供給量が決定される。この方法により、第1および第2リン酸水溶液をそれぞれ適切に決定した供給量ずつタンクに供給することにより、第1および第2リン酸水溶液とタンク内に回収されたリン酸水溶液とを混合させて、タンク内のリン酸水溶液のシリコン濃度を基準シリコン濃度に導くことができる。
 この発明の一実施形態では、前記供給量決定工程において、前記タンク内のリン酸水溶液中のシリコン濃度の調整目標値を前記第1濃度として、前記第1および第2リン酸水溶液の供給量が決定される。
 この方法では、第1濃度を調整目標値として、第1および第2リン酸水溶液の供給量が定められることにより、第1および第2リン酸水溶液とタンク内に回収されたリン酸水溶液とを混合させて、タンク内のリン酸水溶液のシリコン濃度が第1濃度に導かれる。
 たとえば、第1濃度を基準シリコン濃度に等しくしておけば、タンク内のリン酸水溶液のシリコン濃度を基準シリコン濃度に調整できる。この場合、タンクに最初にリン酸水溶液を貯留するときには、第1リン酸水溶液のみをタンクに供給すればよい。それにより、濃度の均一化を図るための待機時間を経ることなく、タンク内に貯留されたリン酸水溶液をそのまま速やかに基板の処理のために用いることができる。
 この発明の一実施形態では、前記供給量決定工程において、前記基板の種類に基づいて、前記第1および第2リン酸水溶液の供給量が決定される。基板の種類に基づいて、基板処理の前後におけるリン酸水溶液中のシリコン濃度の変動を予測することができる。そこで、基板の種類に基づいて、第1および第2リン酸水溶液の供給量を決定することにより、タンク内のリン酸水溶液のシリコン濃度を適切に調整できる。
 基板の種類とは、基板の材料、基板の表面に形成された膜の種類、基板の表面に形成されたパターンの種類、その他、リン酸水溶液の使用前後におけるシリコン濃度の変動に影響のある基板の属性を表す。
 この発明の一実施形態では、前記供給量決定工程において、前記ノズルから供給されたリン酸水溶液によって前記基板から当該リン酸水溶液中に溶出するシリコンの量に基づいて、前記第1および第2リン酸水溶液の供給量が決定される。リン酸水溶液による処理によって基板からシリコンが溶出する場合に、その溶出量は、回収されるリン酸水溶液中のシリコン濃度に影響する。そこで、基板から溶出するシリコンの量に基づいて第1および第2リン酸水溶液の供給量を決定することによって、タンク内のリン酸水溶液のシリコン濃度を適切に調整できる。
 この発明の一実施形態では、前記供給量決定工程において、前記ノズルから基板に供給されたリン酸水溶液のうち前記タンクに回収されるリン酸水溶液の回収率に基づいて、前記第1および第2リン酸水溶液の供給量が決定される。基板を処理するためにノズルから吐出されたリン酸水溶液の全てがタンクに回収されるわけではなく、たとえば、リンス処理などに伴って、一部は廃棄される。そこで、リン酸水溶液の回収率に基づいて第1および第2リン酸水溶液の供給量を定めることにより、必要量のリン酸水溶液をタンクに補充しながら、タンク内のリン酸水溶液のシリコン濃度を規定シリコン濃度範囲に調整できる。
 この発明の一実施形態では、前記供給量決定工程において、前記ノズルから供給されたリン酸水溶液によって処理された基板の枚数に基づいて、前記第1および第2リン酸水溶液の供給量が決定される。基板の処理枚数が多いほど、すなわち、リン酸水溶液が基板処理に使われた回数が多いほど、タンク内のリン酸水溶液中のシリコン濃度は基準シリコン濃度から離れていく。そこで、処理された基板の枚数に基づいて第1および第2リン酸水溶液の供給量を決定することにより、タンク内のリン酸水溶液のシリコン濃度を適切に調整できる。
 処理された基板の枚数とは、この場合、第1および第2リン酸水溶液の供給によるシリコン濃度の調整が行われることなく処理された基板の枚数である。
 この発明の一実施形態では、前記補充開始条件が、前記タンクに貯留されている液量に関する液量条件を含む。この実施形態では、タンクに貯留されている液量に関する液量条件をトリガとして、第1および第2リン酸水溶液が供給される。具体的には、タンク内の液量が、所定の下限液量まで減少したことを液量条件としてもよい。これにより、タンク内の液量が下限液量まで減少すると、第1および第2リン酸水溶液が補充され、同時に、シリコン濃度が調整される。
 この発明の一実施形態では、前記補充開始条件が、前記ノズルから供給されたリン酸水溶液によって処理された基板の枚数に関する処理数条件を含む。この実施形態では、処理された基板の枚数に関する処理数条件をトリガとして、第1および第2リン酸水溶液が供給される。基板の処理枚数が多くなるほど、すなわち、リン酸水溶液が基板処理に使われた回数が多いほど、タンク内のリン酸水溶液中のシリコン濃度は基準シリコン濃度から離れていく。そこで、たとえば、処理枚数が所定値に達したことをトリガに第1および第2リン酸水溶液を供給してタンク内のリン酸水溶液のシリコン濃度を調整する。それにより、安定したシリコン濃度のリン酸水溶液で基板を処理できる。
 この発明の一実施形態では、前記補充開始条件が、前記タンクから前記ノズルに向けて供給されるリン酸水溶液中のシリコン濃度に関するシリコン濃度条件を含む。この方法では、タンクからノズルに向けて供給されるリン酸水溶液中のシリコン濃度に関するシリコン濃度条件をトリガとして、第1および第2リン酸水溶液が供給される。より具体的には、基板に供給されるリン酸水溶液中のシリコン濃度が基準値から所定値以上離れると、第1および第2リン酸水溶液をタンクに供給してシリコン濃度の調整が行われてもよい。これにより、安定したシリコン濃度のリン酸水溶液で基板を処理できる。
 この発明の一実施形態では、前記方法が、前記基板を水平に保持する基板保持工程をさらに含み、前記基板保持工程で保持されている基板の表面に前記ノズルから前記リン酸水溶液が供給される。この方法では、基板を水平に保持して、その基板の表面にノズルからリン酸水溶液が供給される。たとえば、1枚の基板を基板ホルダで水平に保持し、その基板の表面に向けてノズルからリン酸水溶液が吐出される。このような、いわゆる枚葉型の処理においては、ノズルから吐出されるリン酸水溶液中のシリコン濃度が正確に調整されていることが重要である。シリコン濃度の調整が不十分であると、処理された複数枚の基板の間で処理品質がばらつくおそれがある。リン酸水溶液が供給されるとき、基板ホルダに保持された基板を回転させる基板回転工程を並行して実施することが、基板処理の均一化のために好ましい。
 この発明の一実施形態では、前記方法は、前記タンクに前記第1濃度および前記第2濃度のいずれとも異なる第3濃度でシリコンを含む第3リン酸水溶液を供給する第3リン酸水溶液供給工程をさらに含む。
 この方法では、第3濃度でシリコンを含む第3リン酸水溶液をタンクに供給できる。それにより、タンク内のリン酸水溶液中のシリコン濃度の調整幅を広くすることができる。基板の種類に応じて、第1リン酸水溶液と第3リン酸水溶液とを選択的に用いてもよい。
 この発明の一実施形態では、前記リン酸水溶液を前記タンクに貯留する工程において、前記第3リン酸水溶液供給工程が実行される。そして、前記第3濃度が前記第1濃度よりも高い。たとえば、タンクに最初にリン酸水溶液を貯留するときには、比較的シリコン濃度が高い第3リン酸水溶液をタンクに供給してもよい。そして、基板を処理することによってシリコン濃度が増大したリン酸水溶液がタンクに回収された後に、そのリン酸水溶液中のシリコン濃度を調整するときには、比較的濃度の低い第1リン酸水溶液がタンクに供給されてもよい。
 この発明の一実施形態では、前記タンクが、基板処理のために使われたリン酸水溶液が回収配管を介して導かれる回収槽と、前記回収槽に貯留されたリン酸水溶液が調合液供給配管を介して供給される供給槽とを含み、前記供給槽に貯留されたリン酸水溶液が供給配管を介して前記ノズルに供給され、前記第1リン酸水溶液および前記第2リン酸水溶液が、前記回収槽に供給される。
 この方法では、処理済みのリン酸水溶液は回収配管を介して回収槽に導かれる。そして、第1および第2リン酸水溶液は回収槽に供給され、回収槽内でリン酸水溶液中のシリコン濃度が調整される。シリコン濃度調整済みのリン酸水溶液は、調合液供給配管から供給槽へと送られ、供給槽から処理液ノズルへと供給される。したがって、供給槽内のリン酸水溶液中のシリコン濃度は、液回収の影響を受けないので安定している。それにより、一層安定したシリコン濃度のリン酸水溶液を処理液ノズルから基板へと供給できる。
 この発明の一実施形態では、前記回収槽が複数設けられている。そして、前記方法は、前記回収配管を介して回収されるリン酸水溶液の回収先を前記複数の回収槽のなかから選択する回収先選択工程と、前記第1リン酸水溶液および前記第2リン酸水溶液の供給先を、前記回収先選択工程で選択された回収槽に選択する供給先選択工程と、前記複数の回収槽のうちで前記回収槽選択工程において選択されなかった回収槽を、前記調合液供給配管を介して前記供給槽にリン酸水溶液を補充するための補充元として選択する補充元選択工程と、をさらに含む。
 この方法では、複数の回収槽のなかから選択された回収槽に使用済みリン酸水溶液が回収され、選択されなかった回収槽から供給槽にシリコン濃度調整済みのリン酸水溶液が供給される。それにより、供給槽へのリン酸水溶液の補充を滞りなく行うことができるので、基板へのリン酸水溶液供給が滞らない。それにより、基板処理の生産性を高めることができる。また、リン酸水溶液の回収に用いる回収槽において、第1および第2リン酸水溶液の供給によるシリコン濃度調整が行われる。したがって、供給槽にリン酸水溶液を供給する回収槽内のリン酸水溶液中のシリコン濃度は安定しているから、供給槽のリン酸水溶液中のシリコン濃度を安定に保持できる。それにより、基板処理に用いられるリン酸水溶液中のシリコン濃度が一層安定する。
 この発明の一実施形態では、前記第1リン酸水溶液供給工程における前記第1リン酸水溶液の供給量を、第1積算流量計を用いて管理する工程と、前記第2リン酸水溶液供給工程における前記第2リン酸水溶液の供給量を、第2積算流量計を用いて管理する工程と、をさらに含む。
 この方法では、積算流量計を用いることにより、第1および第2リン酸水溶液の供給量を正確に管理できる。それにより、タンク内のリン酸水溶液中のシリコン濃度を正確に調整できる。
 この発明の一実施形態は、さらに、前述のような基板処理方法の実施に適した基板処理装置を提供する。この発明の一実施形態に係る基板処理装置は、シリコン酸化膜およびシリコン窒化膜が表面で露出した基板を保持する基板保持手段と、前記基板保持手段に保持された基板に、シリコンを含むリン酸水溶液を供給するノズルと、規定シリコン濃度範囲のシリコンを含むリン酸水溶液を前記ノズルに供給するタンクと、前記ノズルから基板に供給されて基板の処理のために使われたリン酸水溶液を前記タンクに回収する回収配管と、前記タンクに第1濃度でシリコンを含む第1リン酸水溶液を供給する第1リン酸水溶液供給手段と、前記タンクに前記第1濃度よりも低い第2濃度でシリコンを含む第2リン酸水溶液を供給する第2リン酸水溶液供給手段と、所定の補充開始条件が充足されると、前記第1リン酸水溶液供給手段および前記第2リン酸水溶液供給手段を制御することにより、前記第1リン酸水溶液および前記第2リン酸水溶液を前記タンクに供給するリン酸水溶液供給工程と、前記第1リン酸水溶液および第2リン酸水溶液の供給量を決定する供給量決定工程とを実行する制御手段と、を含む。
 この発明の一実施形態では、前記制御手段が、前記供給量決定工程において、基板の種類、前記ノズルから供給されたリン酸水溶液によって前記基板から当該リン酸水溶液に溶出するシリコンの量、前記ノズルから基板に供給されたリン酸水溶液のうち前記タンクに回収されるリン酸水溶液の回収率、および前記ノズルから供給されたリン酸水溶液によって処理された基板の枚数のうちの少なくとも一つに基づいて、前記第1リン酸水溶液および前記第2リン酸水溶液の供給量を決定する。
 この発明の一実施形態では、前記補充条件が、前記タンクに貯留されている液量に関する液量条件、前記ノズルから供給されたリン酸水溶液によって処理された基板の枚数に関する処理数条件、および前記タンクから前記ノズルに向けて供給されるリン酸水溶液中のシリコン濃度に関するシリコン濃度条件のうちの少なくとも一つを含む。
 この発明の一実施形態では、前記基板処理装置が、前記タンクに前記第1濃度および前記第2濃度のいずれとも異なる第3濃度でシリコンを含む第3リン酸水溶液を供給する第3リン酸水溶液供給手段をさらに含み、前記制御手段が前記第3リン酸水溶液供給手段をさらに制御する。
 この発明の一実施形態では、前記タンクが、基板処理のために使われたリン酸水溶液が回収配管を介して導かれる回収槽と、前記回収槽に貯留されたリン酸水溶液が調合液供給配管を介して供給される供給槽とを含み、前記供給槽に貯留されたリン酸水溶液が供給配管を介して前記ノズルに供給され、前記第1リン酸水溶液および前記第2リン酸水溶液が、前記回収槽に供給される。
 この発明の一実施形態では、前記回収槽が複数設けられている。そして、前記制御手段が、さらに、前記回収配管を介して回収されるリン酸水溶液の回収先を前記複数の回収槽のなかから選択する回収先選択工程と、前記第1リン酸水溶液および前記第2リン酸水溶液の供給先を、前記回収先選択工程で選択された回収槽に選択する供給先選択工程と、複数の回収槽のなかで前記回収槽選択工程において選択されなかった回収槽を、前記調合液供給配管を介して前記供給槽にリン酸水溶液を補充するための補充元として選択する補充元選択工程と、をさらに実行する。
 この発明の一実施形態では、前記基板処理装置が、前記第1リン酸水溶液供給手段が前記タンクに供給する前記第1リン酸水溶液の供給量を計測する第1積算流量計と、前記第2リン酸水溶液供給手段が前記タンクに供給する前記第2リン酸水溶液の供給量を計測する第2積算流量計と、をさらに含み、前記制御手段が、前記第1積算流量計および前記第2積算流量計の計測結果に基づいて、前記第1リン酸水溶液および前記第2リン酸水溶液の前記タンクへの供給を管理する供給量管理工程をさらに実行する。
 本発明における上述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。
図1は、この発明の一実施形態に係る基板処理装置が備える処理ユニットを水平方向から見た図解的な模式図である。 図2は、前記基板処理装置に備えられたリン酸供給システムの構成を説明するための模式図である。 図3は、前記基板処理装置の主要な電気的構成を説明するためのブロック図である。 図4は、前記基板処理装置によって処理される基板の一例を示す断面図である。 図5は、前記基板処理装置によって行われる基板処理の一例を説明するための工程図である。 図6は、前記基板処理装置におけるリン酸水溶液の供給に関連する処理を説明するためのフローチャートである。 図7は、この発明の他の実施形態に係る基板処理装置の構成を説明するための模式図であり、主としてリン酸供給システムの構成が示されている。 図8は、図7の構成の基板処理装置の電気的構成を説明するためのブロック図である。 図9は、図7の構成の基板処理装置におけるリン酸水溶液の供給に関連する処理を説明するためのフローチャートであり、基板へのリン酸水溶液供給および供給槽へのリン酸水溶液の補充に関する動作を表す。 図10は、図7の構成の基板処理装置におけるリン酸水溶液の供給に関連する処理を説明するためのフローチャートであり、使用済みリン酸の回収先の選択および供給槽へのリン酸水溶液補充元の選択に関する動作を表す。 図11は、図7の構成の基板処理装置におけるリン酸水溶液の供給に関連する処理を説明するためのフローチャートであり、回収槽に対する新液の補充に関する動作を表す。 図12は、この発明のさらに他の実施形態に係る基板処理装置の構成を説明するための模式図である。
 図1は、この発明の一実施形態に係る基板処理装置が備える処理ユニットを水平方向から見た図解的な模式図である。基板処理装置1は、半導体ウエハなどの基板Wを1枚ずつ処理する枚葉式の装置である。基板処理装置1は、処理液や処理ガスなどの処理流体で基板Wを処理する複数の処理ユニット2(図1には一つのみ示す)と、複数の処理ユニット2に基板Wを搬送する搬送ロボット(図示せず)と、基板処理装置1を制御する制御装置3(制御手段)とを含む。
 処理ユニット2は、チャンバ4内で基板Wを水平に保持しながら基板Wの中央部を通る鉛直な回転軸線A1まわりに回転させるスピンチャック5と、基板Wから外方に飛散する処理液を受け止める筒状の処理カップ10とを含む。
 スピンチャック5は、水平な姿勢で保持された円板状のスピンベース7と、スピンベース7の上方で基板Wを水平な姿勢で保持する複数のチャックピン6と、スピンベース7の中央部から下方に延びるスピン軸8と、スピン軸8を回転させることによりスピンベース7および複数のチャックピン6を回転させるスピンモータ9とを含む。スピンチャック5は、複数のチャックピン6を基板Wの外周面に接触させて挟持する挟持式のチャックに限らず、非デバイス形成面である基板Wの裏面(下面)をスピンベース7の上面に吸着させることによって基板Wを水平に保持するバキューム式のチャックであってもよい。
 処理カップ10は、基板Wから外方に排出された液体を受け止める複数のガード11と、ガード11によって下方に案内された液体を受け止める複数のカップ12とを含む。ガード11は、スピンチャック5を取り囲む円筒状の筒状部11bと、筒状部11bの上端部から回転軸線A1に向かって斜め上方に延びる円環状の天井部11aとを含む。複数の天井部11aは、上下方向に重なっており、複数の筒状部11bは、同心筒状に配置されている。複数のカップ12は、それぞれ、複数の筒状部11bの下方に配置されている。カップ12は、上向きに開いた環状の受液溝12aを形成している。
 処理ユニット2は、複数のガード11を個別に昇降させるガード昇降ユニット13を含む。ガード昇降ユニット13は、上位置と下位置との間でガード11を鉛直方向に沿って昇降させる。上位置では、スピンチャック5が基板Wを保持する基板保持位置よりもガード11の上端が上方に位置する。下位置では、ガード11の上端が基板保持位置よりも下方に位置する。天井部11aの円環状の上端は、ガード11の上端に相当する。ガード11の上端は、平面視で、基板Wおよびスピンベース7を取り囲んでいる。
 スピンチャック5が基板Wを回転させている状態で、処理液が基板Wに供給されると、基板Wに供給された処理液が遠心力によって基板Wの周囲に振り切られる。処理液が基板Wに供給されるとき、少なくとも一つのガード11の上端が、基板Wよりも上方に配置される。したがって、基板Wの周囲に排出された薬液やリンス液などの処理液は、いずれかのガード11によって受け止められ、そのガード11に対応するカップ12に案内される。
 処理ユニット2は、基板Wの上面に向けてリン酸水溶液を下方に吐出するリン酸ノズル14を含む。リン酸ノズル14は、リン酸水溶液を案内するリン酸配管15に接続されている。リン酸配管15に介装されたリン酸バルブ16が開かれると、リン酸水溶液がリン酸ノズル14の吐出口から下方に連続的に吐出される。
 リン酸水溶液は、リン酸(HPO)を主成分とする水溶液である。リン酸水溶液中のリン酸の濃度は、たとえば、50%~100%の範囲、好ましく90%前後である。リン酸水溶液の沸点は、リン酸水溶液中のリン酸濃度によって異なるが、概略140℃~195℃の範囲である。リン酸ノズル14から吐出されるリン酸水溶液はシリコンを含む。リン酸水溶液中のシリコン濃度は規定シリコン濃度範囲に制御されている。規定シリコン濃度範囲は、たとえば、15ppm~150ppm、好ましくは40ppm~60ppmである。リン酸水溶液に含まれるシリコンは、シリコン単体であってもよいし、シリコン化合物であってもよいし、それらの両方であってもよい。また、リン酸水溶液に含まれるシリコンは、リン酸水溶液の供給によって基板Wから溶け出したシリコンを含んでいてもよい。また、リン酸水溶液に含まれるシリコンは、リン酸水溶液に添加されたシリコンを含んでいてもよい。
 図示は省略するが、リン酸バルブ16は、流路を形成するバルブボディと、流路内に配置された弁体と、弁体を移動させるアクチュエータとを含む。以下に説明する他のバルブについても同様である。アクチュエータは、空圧アクチュエータであってもよいし、電動アクチュエータであってもよいし、これら以外のアクチュエータであってもよい。制御装置3は、アクチュエータを制御することにより、リン酸バルブ16を開閉したり、その開度を変更したりする。
 リン酸ノズル14は、この実施形態では、チャンバ4内で移動可能なスキャンノズルの形態を有している。リン酸ノズル14は、第1ノズル移動ユニット17に結合されており、第1ノズル移動ユニット17は、リン酸ノズル14を、鉛直方向および水平方向の少なくとも一方に移動させる。第1ノズル移動ユニット17は、リン酸ノズル14から吐出されたリン酸水溶液が基板Wの上面に着液する処理位置と、平面視でリン酸ノズル14がスピンチャック5の外方に位置する退避位置との間で、リン酸ノズル14を移動させる。
 処理ユニット2は、基板Wの上面に向けてSC1(NHOHとHとを含む混合液)を下方に吐出するSC1ノズル18を含む。SC1ノズル18は、SC1を案内するSC1配管19に接続されている。SC1配管19に介装されたSC1バルブ20が開かれると、SC1ノズル18の吐出口からSC1が連続的に吐出される。
 SC1ノズル18は、この実施形態では、チャンバ4内で移動可能なスキャンノズルの形態を有している。SC1ノズル18は、第2ノズル移動ユニット21に結合されている。第2ノズル移動ユニット21は、SC1ノズル18を、鉛直方向および水平方向の少なくとも一方に移動させる。第2ノズル移動ユニット21は、SC1ノズル18から吐出されたSC1が基板Wの上面に着液する処理位置と、平面視でSC1ノズル18がスピンチャック5の外方に位置する退避位置との間でSC1ノズル18を移動させる。
 処理ユニット2は、基板Wの上面に向けてリンス液を下方に吐出するリンス液ノズル22をさらに含む。リンス液ノズル22は、リンス液を案内するリンス液配管23に接続されている。リンス液配管23に介装されたリンス液バルブ24が開かれると、リンス液が、リンス液ノズル22の吐出口から下方に連続的に吐出される。リンス液は、たとえば、純水(脱イオン水)である。リンス液の他の例は、電解イオン水、水素水、オゾン水、希釈濃度(たとえば10ppm~100ppm程度)の塩酸水などである。
 リンス液ノズル22は、この実施形態では、位置固定された吐出口からリンス液を吐出する固定ノズルである。リンス液ノズル22は、チャンバ4の底部に対して固定されている。処理ユニット2は、リンス液ノズル22から吐出されたリンス液が基板Wの上面に着液する処理位置と、平面視でリンス液ノズル22がスピンチャック5の外方に位置する退避位置との間でリンス液ノズル22を移動させるノズル移動ユニットを備えていてもよい。
 図2は、基板処理装置1に備えられたリン酸供給システム30の構成を説明するための模式図である。
 リン酸供給システム30は、リン酸ノズル14から吐出されるリン酸水溶液を貯留する供給槽31(タンク)と、供給槽31内のリン酸水溶液を循環させる循環配管32とを含む。リン酸供給システム30は、さらに、供給槽31内のリン酸水溶液を循環配管32に送るポンプ33と、供給槽31および循環配管32によって形成された循環路の途中でリン酸水溶液を加熱するヒータ34と、循環配管32内を流れるリン酸水溶液から異物を除去するフィルタ35とを含む。ポンプ33、フィルタ35およびヒータ34は、循環配管32に介装されている。供給槽31は、リン酸水溶液を貯留するタンクの一例である。
 リン酸ノズル14にリン酸水溶液を供給する供給配管としてのリン酸配管15は、循環配管32に接続されている。ポンプ33は、常時、供給槽31内のリン酸水溶液を循環配管32に送る。リン酸供給システム30は、ポンプ33に代えて、供給槽31内の気圧を上昇させることにより、供給槽31内のリン酸水溶液を循環配管32に押し出す加圧装置を備えていてもよい。ポンプ33および加圧装置は、いずれも、供給槽31内のリン酸水溶液を循環配管32およびリン酸配管15に送り出す送液装置の一例である。
 循環配管32の上流端および下流端は、供給槽31に接続されている。リン酸水溶液は、供給槽31から循環配管32の上流端に送られ、循環配管32の下流端から供給槽31に戻る。これにより、供給槽31内のリン酸水溶液が循環路を通って循環する。この循環の間に、リン酸水溶液に含まれる異物がフィルタ35によって除去され、かつリン酸水溶液がヒータ34によって加熱される。それにより、供給槽31内のリン酸水溶液は、室温(たとえば5℃~30℃)よりも高い一定の温度に維持される。ヒータ34によって加熱されたリン酸水溶液の温度は、当該リン酸水溶液の濃度(リン酸濃度)における沸点であってもよいし、その沸点よりも低い温度であってもよい。
 循環配管32の途中に、分岐配管36が接続されている。分岐配管36の途中にシリコン濃度計37が介装されており、分岐配管36は、循環配管32から分岐してシリコン濃度計37を通った後に循環配管32に合流している。分岐配管36には、シリコン濃度計37の上流側および下流側の両方にバルブ38,39がそれぞれ介装されている。
 供給槽31内のリン酸水溶液を排液するために、ドレインシステム40が備えられている。ドレインシステム40は、供給槽31内のリン酸水溶液を排出するドレイン配管41と、ドレイン配管41に介装されたドレインバルブ42とを含む。ドレイン配管41には、リン酸水溶液の排出流量を調整するためのドレイン流量調整バルブ43が介装されていてもよい。ドレインバルブ42が開かれることによって、供給槽31内のリン酸水溶液は、ドレイン配管41に排出される。それにより、供給槽31内のリン酸水溶液の量を必要に応じて減少させたり、供給槽31内のリン酸水溶液の全量を排液したりすることができる。
 供給槽31内のリン酸水溶液の液量を検出するために、複数の液量センサ44が設けられている。複数の液量センサ44は、上限センサ44hと、下限センサ44Lと、目標センサ44tとを含む。上限センサ44hは、供給槽31内のリン酸水溶液の液量が規定液量範囲の上限値以上かどうかを検出する。下限センサ44Lは、供給槽31内のリン酸水溶液の液量が規定液量範囲の下限値以下かどうかを検出する。目標センサ44tは、供給槽31内のリン酸水溶液の液量が上限値と下限値との間の目標値以上かどうかを検出する。リン酸水溶液の使用によって、供給槽31内のリン酸水溶液の液量が下限値まで減少すると、新液補充システム50から、未使用のリン酸水溶液(新液)が補充される。新液は、供給槽31内のリン酸水溶液の液量が目標値に達するまで補充される。
 新液補充システム50は、新液調合槽51と、新液調合槽51から供給槽31へと未使用のリン酸水溶液を案内する新液補充配管52と、新液補充配管52に介装された新液補充バルブ53と、同じく新液補充配管52に介装されたポンプ54とを含む。新液調合槽51には、リン酸水溶液の原液(以下「リン酸原液」という。)がリン酸原液配管55を介して供給される。リン酸原液とは、シリコン未添加のリン酸水溶液である。リン酸原液配管55には、その流路を開閉するリン酸原液バルブ56が介装されている。また、新液調合槽51には、シリコン濃縮液が、シリコン濃縮液配管57を介して供給される。シリコン濃縮液配管57には、その流路を開閉するシリコンバルブ58が介装されている。新液補充システム50は、さらに、リン酸原液を供給槽31に供給するためのリン酸原液補充配管59をさらに含む。リン酸原液補充配管59は、リン酸原液バルブ56の上流側においてリン酸原液配管55から分岐し、新液調合槽51を経ることなく、供給槽31に接続されている。リン酸原液補充配管59の途中には、その流路を開閉するリン酸原液補充バルブ60が介装されている。
 新液補充配管52およびリン酸原液補充配管59には、それぞれ、積算流量計61,62が介装されている。
 リン酸原液バルブ56を開いて一定量のリン酸原液を新液調合槽51に供給し、かつシリコンバルブ58を開いて一定量のシリコン濃縮液を新液調合槽51に供給することにより、リン酸原液とシリコン濃縮液とが所定の比率で混合される。換言すれば、リン酸原液およびシリコン濃縮液が所定の供給量比率となるようにそれぞれ定量されて新液調合槽51に供給される。それにより、基準シリコン濃度(たとえば50ppm。第1濃度の例)のシリコンを含有するリン酸水溶液が新液調合槽51内で調製される。
 新液調合槽51内で調製されるリン酸水溶液のシリコン濃度は、必ずしも確認する必要はないが、シリコン濃度計37を通って循環する循環経路63を設けて、必要に応じてシリコン濃度を確認できるようにしてもよい。循環経路63には、シリコン濃度計37の上流側および下流側にそれぞれバルブ64,65が介装されている。
 新液補充バルブ53を開き、ポンプ54を駆動することによって、新液調合槽51で調合された新液(シリコンを基準シリコン濃度で含む未使用のリン酸水溶液)を供給槽31に補充できる。その補充量は、積算流量計61によって測定できる。また、リン酸原液補充バルブ60を開くことによって、リン酸原液(シリコンを含有していない未使用のリン酸水溶液)を供給槽31に補充できる。その補充量は、積算流量計62によって測定できる。リン酸原液中のシリコン濃度は零(第2濃度の一例)である。
 新液調合槽51、新液補充配管52、新液補充バルブ53およびポンプ54などにより、基準シリコン濃度(第1濃度の例)のリン酸水溶液(第1リン酸水溶液)を供給する第1リン酸水溶液供給手段が構成されている。また、リン酸原液補充配管59およびリン酸原液補充バルブ60などにより、零濃度(第2濃度の例)のリン酸水溶液(第2リン酸水溶液)を供給する第2リン酸水溶液供給手段が構成されている。
 基板処理装置1は、基板Wの処理に用いられた使用済みリン酸水溶液を回収するための回収システム70をさらに含む。回収システム70は、処理カップ10と、回収配管71と、回収バルブ72とを含む。回収配管71は、処理カップ10によって受け止められたリン酸水溶液を供給槽31に案内する。回収バルブ72は、回収配管71の流路を開閉する。
 基板処理装置1は、基板Wの処理のために使用された処理液を廃棄するための排液システム80をさらに含む。排液システム80は、処理カップ10または回収配管71に接続された排液配管81と、排液配管81の流路を開閉する排液バルブ82とを含む。
 回収バルブ72が開かれ、かつ排液バルブ82が閉じられた回収状態のとき、処理カップ10に受け止められたリン酸水溶液は、回収配管71によって供給槽31に回収される。使用済み処理液を廃棄するときには、回収バルブ72が閉じられ、排液バルブ82が開かれた排液状態とされる。それにより、処理カップ10に受け止められたリン酸水溶液その他の処理液は、排液配管81に排出される。
 図3は、基板処理装置1の主要な電気的構成を説明するためのブロック図である。制御装置3は、コンピュータ本体3aと、コンピュータ本体3aに接続された周辺装置3bとを含む。コンピュータ本体3aは、プロセッサ(CPU)91と、主記憶装置92とを含む。周辺装置3bは、プロセッサ91が実行するプログラムPと、各種データとを記憶する補助記憶装置93と、リムーバブルメディアMから情報を読み取る読取装置94と、ホストコンピュータHC等の外部装置と通信する通信装置95とを含む。
 制御装置3には、入力装置96および表示装置97が接続されている。入力装置96は、ユーザまたはメンテナンス担当者などの操作者が基板処理装置1に対して情報を入力するために操作される装置である。表示装置97は、各種情報を表示画面に表示して操作者等に提供する。入力装置96は、キーボード、ポインティングデバイス、タッチパネル等であってもよい。
 プロセッサ91は、補助記憶装置93に記憶されたプログラムPを実行する。補助記憶装置93内のプログラムPは、制御装置3に予めインストールされていてもよい。また、プログラムPは、リムーバブルメディアMから読取装置94によって読み取られて補助記憶装置93に導入されてもよい。また、プログラムPは、通信装置95を介してホストコンピュータHCその他の外部装置から取得されて、補助記憶装置に導入されてもよい。
 補助記憶装置93およびリムーバブルメディアMは、電力が供給されなくても記憶を保持する不揮発性メモリである。補助記憶装置93は、たとえば、ハードディスクドライブ等の磁気記憶装置であってもよい。リムーバブルメディアMは、光ディスクであってもよいし、半導体メモリであってもよい。補助記憶装置93およびリムーバブルメディアMは、プログラムPが記録されたコンピュータ読取可能な記録媒体の例である。
 制御装置3は、ホストコンピュータHCによって指定されたレシピRに従って基板Wが処理されるように基板処理装置1を制御する。とくに、制御装置3は、処理ユニット2およびリン酸供給システム30の各部を制御する。より具体的には、制御装置3は、スピンモータ9、ガード昇降ユニット13、ノズル移動ユニット17,21、バルブ類16,20,24等を制御する。また、制御装置3は、ポンプ33,54、ヒータ34、バルブ類38,39,42,53,56,58,60,64,65,72等を制御する。さらに、制御装置3には、センサ類からの信号が入力されている。センサ類は、液量センサ44、シリコン濃度計37、積算流量計61,62を含む。
 補助記憶装置93は、複数のレシピRを記憶している。レシピRは、基板Wの処理内容、処理条件および処理手順を規定する情報を含む。複数のレシピRは、基板Wの処理内容、処理条件および処理手順の少なくとも一つが異なっている。基板処理の各工程は、制御装置3が基板処理装置1をレシピRに従って制御することによって実現される。すなわち、制御装置3は、基板処理の各工程を実行するようにプログラムされている。
 図4は、基板処理装置1によって処理される基板Wの一例を示す断面図である。基板Wは、シリコン酸化膜Foと、シリコン窒化膜Fnとが露出した表面(デバイス形成面)を有するシリコンウエハである。後述する基板処理の一例では、このような基板Wに対して、シリコンを含有するリン酸水溶液が供給され、それによって、シリコン窒化膜Fnの選択エッチングが行われる。すなわち、シリコン酸化膜Foのエッチングを抑えながら、シリコン窒化膜Fnを所定のエッチングレート(単位時間当たりのエッチング量)でエッチングすることができる。
 図5は、基板処理装置1によって行われる基板処理の一例を説明するための工程図である。処理対象の基板Wは、搬送ロボットによってチャンバ4内に搬入され、スピンチャック5に渡される(ステップS1)。搬送ロボットがチャンバ4外に退避した後、制御装置3は、スピンチャック5を回転させ、それによって、基板Wを鉛直な回転軸線A1まわりに回転させる(ステップS2)。
 この状態で、基板Wに対してリン酸水溶液が供給される(ステップS3)。より具体的には、第1ノズル移動ユニット17が、リン酸ノズル14を処理位置に移動させ、ガード昇降ユニット13がいずれかのガード11を基板Wに対向させる。その後、リン酸バルブ16が開かれ、リン酸ノズル14からリン酸水溶液が吐出される。リン酸ノズル14がリン酸水溶液を吐出しているとき、第1ノズル移動ユニット17は、リン酸ノズル14から吐出されたリン酸水溶液が基板Wの上面中央部に着液する中央処理位置と、リン酸ノズル14から吐出されたリン酸水溶液が基板Wの上面周縁部に着液する外周処理位置との間で、リン酸ノズル14を移動させてもよい。また、リン酸水溶液の着液位置が基板Wの上面中央部に位置するようにリン酸ノズル14を静止させてもよい。
 リン酸ノズル14から吐出されたリン酸水溶液は、基板Wの上面に着液した後、回転している基板Wの上面に沿って外方に流れる。これにより、基板Wの上面全域を覆うリン酸水溶液の液膜が形成され、基板Wの上面全域にリン酸水溶液が供給される。基板Wの上面全域に均一に供給される。それにより、基板Wの上面が均一に処理される。リン酸バルブ16が開かれてから所定時間が経過すると、リン酸バルブ16が閉じられ、リン酸バルブ16からのリン酸水溶液の吐出が停止される。その後、第1ノズル移動ユニット17がリン酸バルブ16を退避位置に移動させる。
 リン酸水溶液は、遠心力によって基板Wの外方へと飛び出し、基板Wに対向しているガード11によって受けられる。リン酸水溶液は、さらに、そのガード11によって対応するカップ12へと案内され、回収配管71とへ流れ込み、供給槽31へと回収される。
 次に、リンス液の一例である純水を基板Wの上面に供給する第1リンス液供給工程が行われる(ステップS4)。具体的には、リンス液バルブ24が開かれ、リンス液ノズル22が純水の吐出を開始する。基板Wの上面に着液した純水は、回転している基板Wの上面に沿って外方に流れる。基板W上のリン酸水溶液は、リンス液ノズル22から吐出された純水によって洗い流される。それにより、基板Wの上面を覆う純水の液膜が形成される。リンス液バルブ24が開かれてから所定時間が経過すると、リンス液バルブ24が閉じられ、純水の吐出が停止される。
 第1リンス液供給工程では、ガード11によって受けられ、カップ12へと案内された処理液(主としてリンス液)は、排液配管81を通って排液される。
 次に、SC1を基板Wに供給するSC1供給工程が行われる(ステップS5)。具体的には、第2ノズル移動ユニット21がSC1ノズル18を処理位置に移動させ、ガード昇降ユニット13が、リン酸供給工程のときとは異なるガード11を基板Wに対向させる。その後、SC1バルブ20が開かれ、SC1ノズル18がSC1の吐出を開始する。SC1ノズル18がSC1を吐出しているとき、第2ノズル移動ユニット21は、SC1ノズル18から吐出されたSC1が基板Wの上面中央に着液する中央処理位置と、SC1ノズル18から吐出されたSC1が基板Wの上面外周部に着液する外周処理位置との間でSC1ノズル18を移動させてもよい。また、SC1の着液位置が基板Wの上面中央部に位置するように、SC1を静止させてもよい。
 SC1ノズル18から吐出されたSC1は、基板Wの上面に着液した後、回転している基板Wの上面に沿って流れる。それにより、基板Wの上面全域を覆うSC1の液膜が形成され、基板Wの上面全域にSC1が供給される。SC1バルブ20が開かれてから所定時間が経過すると、SC1バルブ20が閉じられ、SC1ノズル18からのSC1の吐出が停止される。その後、第2ノズル移動ユニット21がSC1ノズル18を退避位置に移動させる。
 基板Wの上面に供給されたSC1は、遠心力によって基板Wの外方へと飛び出し、基板Wに対向しているガード11に受けられ、対応するカップ12へと案内される。SC1は、リン酸水溶液と同様にして、SC1タンク(図示せず)へと回収されて再利用されてもよいし、回収せずに廃棄されてもよい。
 次に、リンス液の一例である純水を基板Wの上面に供給する第2リンス液供給工程が実行される(ステップS6)。具体的には、リンス液バルブ24が開かれ、リンス液ノズル22から純水の吐出が開始される。基板Wの上面に着液した純水は、回転している基板Wの上面に沿って外方に流れる。それにより、基板W上のSC1が純水によって洗い流され、基板Wの上面全域を覆う純水の液膜が形成される。リンス液バルブ24が開かれてから所定時間が経過すると、リンス液バルブ24が閉じられ、純水の吐出が停止される。
 第2リンス液供給工程では、ガード11によって受けられ、カップ12へと案内された処理液(主としてリンス液)は、廃棄される。
 次に、基板Wの高速回転によって基板Wを乾燥させる乾燥工程が行われる(ステップS7)。具体的には、スピンモータ9が基板Wの回転を加速させ、液処理工程(S3~S6)のときよりも大きい回転速度(たとえば数千rpm)で基板Wを回転させる。これにより、基板W上の液体が遠心力によって除去され、基板Wが乾燥する。基板Wの高速回転が開始されてから所定時間が経過すると、スピンモータ9の回転が停止させられる(ステップS8)。
 その後、基板Wをチャンバ4から搬出する搬出工程が行われる(ステップS9)。具体的には、ガード昇降ユニット13が全てのガード11を下位置まで下降させる。その後、搬送ロボットが、ハンドをチャンバ4内に進入させ、スピンチャック5から処理済みの基板Wをすくい取ってチャンバ4外へと搬出する。
 図6は、リン酸水溶液の供給に関連する処理を説明するためのフローチャートである。制御装置3は、リン酸バルブ16を開き、リン酸ノズル14へとリン酸水溶液を供給する(ステップS11)。それにより、スピンチャック5に保持された基板Wにリン酸水溶液が供給される。その一方で、制御装置3は、回収バルブ72を開き、排液バルブ82を閉じる。それにより、基板Wに供給された使用済みのリン酸水溶液が回収配管71を介して供給槽31へと回収される(ステップS12)。
 一方、制御装置3は、供給槽31への新液の補充を開始すべき条件(補充開始条件)が充足されるかどうかを判断する(ステップS13)。補充開始条件は、具体的には、液量条件を含んでいてもよい。液量条件の一具体例は、下限センサ44Lが下限値以下の液量を検出することである。補充開始条件は、また、処理数条件を含んでいてもよい。処理数条件の一具体例は、供給槽31に新液を補充することなく処理された基板Wの枚数が所定枚数に達することである。さらに、補充開始条件は、シリコン濃度条件を含んでいてもよい。シリコン濃度条件の一具体例は、供給槽31からリン酸ノズル14に向けて供給されるリン酸水溶液中のシリコン濃度が所定濃度に達することである。制御装置3は、液量条件、処理数条件およびシリコン濃度条件のうちの少なくとも一つが充足されると、補充開始条件が充足されたと判断してもよい。制御装置3は、たとえば、所定時間間隔(たとえば10分~数十分間隔)でバルブ38,39を開いてリン酸水溶液をサンプリングしてシリコン濃度計37に導入することにより、シリコン濃度の計測を行ってもよい。
 補充開始条件が充足されると、制御装置3は、新液補充システム50から新液を供給槽31に補充するために、補充する液量を決定する(ステップS14)。補充する液の総量は、たとえば、下限センサ44Lが検出する下限値と目標センサ44tが検出する目標値との差であってもよく、これは既知の値である。処理数条件またはシリコン濃度条件の充足によって補充開始条件が満たされたときには、供給槽31内の液量が下限値よりも多い場合があり得る。このような場合には、制御装置3は、ドレインバルブ42を開いて、供給槽31内の液量が下限値となるまで、供給槽31内のリン酸水溶液を排液してもよい。
 制御装置3は、供給槽31内のリン酸水溶液、新液調合槽51で調合済みの新液(基準シリコン濃度の未使用リン酸水溶液)、およびリン酸原液を混合することにより、基準シリコン濃度(調整目標値)のリン酸水溶液が目標値の液位まで供給槽31内に貯留されるように、補充液量を決定する。新液の補充量およびリン酸原液の補充量の合計が、補充される総液量であり、その値は前述のとおり既知である。また、供給槽31内の液量が下限値の状態で補充が行われるので、補充開始時における供給槽31内のリン酸水溶液液量も既知である。したがって、制御装置3は、補充開始時における供給槽31内のリン酸水溶液中のシリコン濃度が分かれば、それに基づいて、新液補充量およびリン酸原液補充量を決定することができる。換言すれば、新液補充量とリン酸原液補充量との比を決定することができる。
 回収配管71を通って供給槽31に回収されるリン酸水溶液中のシリコン濃度は、リン酸バルブ16から基板Wに供給されるリン酸水溶液中のシリコン濃度よりも高い。これは、基板Wを構成するシリコン材料(シリコン化合物を含む)がリン酸水溶液中に溶出するからである。その溶出量は、基板Wの種類に応じて異なり、かつ基板Wに対する処理の条件に応じて異なる。制御装置3は、これらの情報をレシピRから取得することができる。
 また、リン酸水溶液は、回収配管71を通って供給槽31に回収されながら繰り返し使用されるので、供給槽31内のリン酸水溶液中のシリコン濃度は、基板処理枚数が多くなるに従って増加する。つまり、リン酸水溶液中のシリコン濃度は処理数に依存する。制御装置3は、処理した基板枚数を計数することにより、処理数に関する情報を取得することができる。
 一方、供給槽31内のリン酸水溶液のシリコン濃度は、リン酸水溶液の回収率にも依存する。回収率とは、リン酸ノズル14から吐出したリン酸水溶液液量に対する、回収配管71を介して供給槽31へと回収されるリン酸水溶液液量の割合である。リンス工程では、リンス液(純水)とともにリン酸水溶液の一部が排液されるから、回収率は100%未満である。制御装置3は、レシピRを参照することにより、回収率に関する情報を得ることができる。もちろん、回収率に関する情報を操作者が入力装置96を操作して入力してもよい。
 このように、制御装置3は、レシピRから得られる情報(シリコンの溶出量(基板Wの種類および/または基板処理の条件)、回収率)、基板処理装置1を制御する過程で得られる情報(処理数)、入力装置96から入力される情報などから、補充開始時におけるリン酸水溶液中のシリコン濃度を求めることができる。
 なお、供給槽31に回収されたリン酸水溶液中のシリコン濃度は、演算によって求めてもよいし、基板Wの種類、基板処理の条件、回収率、処理数等に対してシリコン濃度値を対応付けたテーブルを用いて求めることもできる。また、基板Wの種類、基板処理の条件、回収率、処理数等に対して、新液補充量およびリン酸原液補充量を対応付けたテーブルを準備してもよい。
 制御装置3は、このようにして、新液補充量およびリン酸原液補充量を決定する(ステップS14)。そして、制御装置3は、新液補充バルブ53を開き、ポンプ54を駆動して、新液調合槽51から供給槽31へと新液を補充させる(ステップS15)。その補充量は、積算流量計61で計測される。積算流量計61の計測値が、新液補充量に達すると(ステップS16)、制御装置3は、ポンプ54を停止し、新液補充バルブ53を閉じる(ステップS17)。また、制御装置3は、リン酸原液補充バルブ60を開いて、リン酸原液補充配管59を介して供給槽31へとリン酸原液を補充させる(ステップS18)。その補充量は、積算流量計62で計測される。積算流量計62の計測値が、リン酸原液補充量に達すると(ステップS19)、制御装置3は、リン酸原液補充バルブ60を閉じて、リン酸原液の補充を停止させる(ステップS20)。
 以上のように、この実施形態によれば、リン酸水溶液を用いて基板Wを処理することにより、基板Wの表面で露出しているシリコン窒化膜Fnが選択的にエッチングされる。リン酸水溶液中に含まれるシリコンの濃度が規定シリコン濃度範囲に制御され、それによって、基板Wの表面で露出しているシリコン酸化膜Foのエッチングを抑制でき、それに応じて、シリコン窒化膜Fnの選択比を高めることができる。
 リン酸水溶液は、供給槽31からリン酸ノズル14へと供給され、リン酸ノズル14から基板Wに供給される。基板Wの処理に使われた使用済みリン酸水溶液は、供給槽31へと回収される。所定の補充開始条件が充足されると(ステップS13:充足)、基準シリコン濃度でシリコンを含む新液およびシリコン濃度が零のリン酸原液が供給槽31に補充される。新液およびリン酸原液のそれぞれの補充量を適切に決定することにより、供給槽31内のリン酸水溶液のシリコン濃度を規定シリコン濃度範囲に制御できる。
 基準シリコン濃度の新液およびリン酸原液は、予め準備しておき、必要時に必要量だけ供給槽31に供給することにより、供給槽31内のリン酸水溶液のシリコン濃度を規定シリコン濃度範囲(好ましくは基準シリコン濃度)に調整できる。よって、供給槽31へのリン酸水溶液を補充するための待ち時間を必要としないから、基板処理の生産性を損なうことなく、安定なシリコン濃度のリン酸水溶液を基板Wに供給できる。
 しかも、基準シリコン濃度の新液およびリン酸原液を予め準備しておけばよいので、リン酸水溶液のシリコン濃度をリアルタイムで制御するような構成を必要としない。前述のとおり、供給槽31に貯留されたリン酸水溶液および新液のシリコン濃度は、シリコン濃度計37によって確認することができる。しかし、シリコン濃度計37は必須の構成ではなく、リン酸水溶液中のシリコン濃度をリアルタイムで監視する構成は必要ではない。したがって、安価な構成で、安定したシリコン濃度のリン酸水溶液を基板Wに供給できる。
 また、この実施形態では、新液調合槽51から供給槽31に供給される新液は、規定シリコン濃度範囲内のシリコン濃度(より具体的には基準シリコン濃度)を有している。そのため、新液の供給によって、供給槽31内のリン酸水溶液のシリコン濃度を規定シリコン濃度範囲内の値に導きやすい。そのうえ、供給槽31に最初にリン酸水溶液を貯留するときには、新液調合槽51で調合された新液のみを供給槽31に供給すればよい。それにより、濃度の均一化を図るための待機時間を経ることなく、供給槽31内に貯留されたリン酸水溶液をそのまま速やかに基板Wの処理のために用いることができる。
 しかも、リン酸原液補充配管59を介して、シリコン濃度が零のリン酸原液を供給槽31に補充できるから、供給槽31内のリン酸水溶液のシリコン濃度を規定シリコン濃度範囲内の値に導きやすい。とくに、基板Wがシリコンを含む場合には、リン酸水溶液を基板Wに供給することによって、基板材料のシリコンがリン酸水溶液中に溶出するから、供給槽31に回収されるリン酸水溶液の濃度は、基板Wに供給する前よりも高くなっている。そこで、規定シリコン濃度範囲よりも低い濃度(この実施形態では零)でシリコンを含むリン酸原液を供給槽31に供給することで、供給槽31内のリン酸水溶液のシリコン濃度を規定シリコン濃度範囲に容易に導くことができる。
 また、この実施形態では、基板Wの種類に基づいて、新液およびリン酸原液の供給槽31への補充量が決定される。基板Wの種類に基づいて、基板処理の前後におけるリン酸水溶液中のシリコン濃度の変動を予測することができる。そこで、基板Wの種類に基づいて、新液およびリン酸原液の各補充量を決定することにより、供給槽31内のリン酸水溶液のシリコン濃度を適切に調整できる。
 基板Wの種類等に応じて、リン酸水溶液による処理によって基板Wから溶出するシリコンの量が異なる。シリコン溶出量は、回収されるリン酸水溶液中のシリコン濃度に大きく影響する。そこで、基板Wの種類等に応じて基板Wから溶出するシリコンの量を特定し、その特定されたシリコン溶出量に基づいて新液およびリン酸原液の各補充量を決定することによって、供給槽31内のリン酸水溶液のシリコン濃度を適切に調整できる。
 また、この実施形態では、リン酸ノズル14から基板Wに供給されたリン酸水溶液のうち供給槽31に回収されるリン酸水溶液の回収率に基づいて、新液およびリン酸原液の供給量が決定される。それにより、必要量のリン酸水溶液を供給槽31に補充しながら、供給槽31内のリン酸水溶液のシリコン濃度を規定シリコン濃度範囲に調整できる。
 また、この実施形態では、リン酸ノズル14から供給されたリン酸水溶液によって処理された基板Wの枚数(処理数)に基づいて、新液およびリン酸原液の各補充量が決定される。それにより、供給槽31内のリン酸水溶液のシリコン濃度を適切に調整できる。
 また、この実施形態では、前述の補充開始条件が、供給槽31に貯留されている液量に関する液量条件を含む。具体的には、供給槽31に貯留されている液量が下限値まで減少したことをトリガとして、新液およびリン酸原液が補充される。これにより、供給槽31内の液量が下限値まで減少すると、新液およびリン酸原液が補充されて液量が回復され、同時に、シリコン濃度が調整される。
 また、この実施形態では、前記補充開始条件が、リン酸ノズル14から供給されたリン酸水溶液によって処理された基板Wの枚数に関する処理数条件を含む。つまり、処理された基板Wの枚数が所定数に達すると、それをトリガとして、新液およびリン酸原液が供給槽31に補充される。それにより、安定したシリコン濃度のリン酸水溶液で基板Wを処理できる。
 また、この実施形態では、前記補充開始条件が、供給槽31からリン酸ノズル14に向けて供給されるリン酸水溶液中のシリコン濃度に関するシリコン濃度条件を含む。具体的には、循環配管32を通って循環温調されているリン酸水溶液中のシリコン濃度がシリコン濃度計37で定期的に計測される。その計測値が所定値まで上昇すると、それをトリガとして、新液およびリン酸原液が供給槽31に補充される。これにより、供給槽31のリン酸水溶液のシリコン濃度が規定シリコン濃度範囲に回復するから、安定したシリコン濃度のリン酸水溶液で基板Wを処理できる。
 また、この実施形態では、基板Wは1枚ずつスピンチャック5に水平に保持されて処理される。このような、いわゆる枚葉型の処理においては、リン酸ノズル14から吐出されるリン酸水溶液中のシリコン濃度が正確に調整されていることが重要である。シリコン濃度の調整が不十分であると、処理された複数枚の基板Wの間で処理品質がばらつくおそれがある。この実施形態の処理では、供給槽31からリン酸ノズル14に供給されるリン酸水溶液中のシリコン濃度が正確にかつ安定に制御されるので、処理品質のばらつきの少ない基板処理を達成できる。
 また、この実施形態では、供給槽31への新液補充量が積算流量計61で計測され、供給槽31へのリン酸原液補充量が積算流量計62で計測される。制御装置3は、積算流量計61,62の計測結果に基づいて、新液補充量およびリン酸原液補充量を管理する。それにより、供給槽31内のリン酸水溶液中のシリコン濃度を正確に調整できる。
 図7は、この発明の第2の実施形態に係る基板処理装置1の構成を説明するための模式図であり、主としてリン酸供給システム30の構成が示されている。図7において、図2の対応部分は、同一参照符号で示す。
 この基板処理装置1のリン酸供給システム30は、第1回収槽90Aと、第2回収槽90Bとを備えている。回収配管71は、2つの回収枝管71A,71Bに分岐している。第1回収枝管71Aは第1回収槽90Aに接続されており、第2回収枝管71Bは第2回収槽90Bに接続されている。第1回収枝管71Aおよび第2回収枝管71Bには、第1回収バルブ72Aおよび第2回収バルブ72Bが介装されている。第1回収バルブ72Aを開き、第2回収バルブ72Bを閉じることにより、基板処理のために使用された使用済みリン酸水溶液は、第1回収槽90Aに回収される。第1回収バルブ72Aを閉じ、第2回収バルブ72Bを開くことにより、使用済みリン酸水溶液は、第2回収槽90Bに回収される。制御装置3は、第1および第2回収バルブ72A,72Bの開閉を制御することにより、使用済みリン酸水溶液の回収先を、第1回収槽90Aおよび第2回収槽90Bのうちの一方に選択する(回収先選択工程)。
 一方、第1回収槽90Aおよび第2回収槽90Bに貯留されたリン酸水溶液は、補充配管100(調合液供給配管)を介して、供給槽31に補充される。補充配管100の下流端は供給槽31に接続されている。補充配管100の上流端は、第1枝管100Aおよび第2枝管100Bに分岐している。第1枝管100Aは第1回収槽90Aに接続されており、第2枝管100Bは第2回収槽90Bに接続されている。第1枝管100Aおよび第2枝管100Bには、第1補充バルブ101Aおよび第2補充バルブ101Bが介装されている。補充配管100には、ポンプ102およびヒータ103が介装されている。
 第1補充バルブ101Aを開き、第2補充バルブ101Bを閉じた状態でポンプ102を駆動すれば、第1回収槽90Aから供給槽31へとリン酸水溶液を供給できる。第1補充バルブ101Aを閉じ、第2補充バルブ101Bを開いた状態でポンプ102を駆動すれば、第2回収槽90Bから供給槽31へとリン酸水溶液を供給できる。補充配管100を通るときに、リン酸水溶液はヒータ103によって加熱される。したがって、温度調節されたリン酸水溶液を供給槽31に供給できる。
 制御装置3は、第1および第2補充バルブ101A,101Bの開閉を制御することにより、供給槽31へのリン酸水溶液補充元を、第1回収槽90Aおよび第2回収槽90Bのいずれか一方に選択する。より具体的には、制御装置3は、使用済みリン酸水溶液の回収先として選択されていない方の回収槽90A,90Bを、供給槽31への補充元として選択する(補充元選択工程)。
 新液調合槽51から供給される新液が流れる新液補充配管52は、第1枝管52Aおよび第2枝管52Bに分岐している。第1枝管52Aは第1回収槽90Aに接続されており、第2枝管52Bは第2回収槽90Bに接続されている。第1枝管52Aおよび第2枝管52Bに、第1新液補充バルブ53Aおよび第2新液補充バルブ53Bがそれぞれ介装されている。
 第1新液補充バルブ53Aを開くことにより、新液調合槽51で調合された新液(基準シリコン濃度の未使用のリン酸水溶液)を、第1回収槽90Aに供給できる。同様に、第2新液補充バルブ53Bを開くことにより、新液調合槽51で調合された新液を第2回収槽90Bに供給できる。
 リン酸原液補充配管59は、第1枝管59Aおよび第2枝管59Bに分岐している。第1枝管59Aは第1回収槽90Aに接続されており、第2枝管59Bは第2回収槽90Bに接続されている。第1枝管59Aおよび第2枝管59Bに第1リン酸原液補充バルブ60Aおよび第2リン酸原液補充バルブ60Bがそれぞれ介装されている。第1リン酸原液補充バルブ60Aを開くことにより、リン酸原液(シリコンを含まないリン酸水溶液)を、第1回収槽90Aに供給できる。同様に、第2リン酸原液補充バルブ60Bを開くことにより、リン酸原液を第2回収槽90Bに供給できる。
 制御装置3は、第1および第2新液補充バルブ53A,53Bならびに第1および第2リン酸原液補充バルブ60A,60Bの開閉を制御することにより、新液およびリン酸原液の補充先を、第1回収槽90Aおよび第2回収槽90Bのいずれか一方に選択する。より具体的には、制御装置3は、使用済みリン酸水溶液の回収先として選択されている回収槽90A,90Bを、新液およびリン酸原液の補充先として選択する(供給先選択工程)。
 第1および第2回収槽90A,90B内のリン酸水溶液をそれぞれ排液するために、第1ドレインシステム45A,45Bが備えられている。ドレインシステム45A,45Bは、回収槽90A,90B内のリン酸水溶液を排出するドレイン配管46A,46Bと、ドレイン配管46A,46Bに介装されたドレインバルブ47A,47Bとを含む。ドレイン配管46A,46Bには、リン酸水溶液の排出流量を調整するためのドレイン流量調整バルブが介装されていてもよい。
 ドレインバルブ47A,47Bが開かれることによって、回収槽90A,90B内のリン酸水溶液は、ドレイン配管46A,46Bに排出される。それにより、回収槽90A,90B内のリン酸水溶液の量を必要に応じて減少させたり、回収槽90A,90B内のリン酸水溶液の全量を排液したりすることができる。
 第1および第2回収槽90A,90Bに貯留されている液量を検出するために、下限液量センサ75A,75B、回収停止液量センサ76A,76B、および目標液量センサ77A,77Bが備えられている。下限液量センサ75A,75Bは、回収槽90A,90Bから供給槽31へのリン酸水溶液の供給によって回収槽90A,90B内の液量が減少するときに、下限液量に達したことを検出する。回収停止液量センサ76A,76Bは、使用済みリン酸水溶液が回収槽90A,90Bに回収されて回収槽90A,90B内の液量が増加するときに、回収上限液量に達したことを検出する。目標液量センサ77A,77Bは、新液補充システム50から未使用のリン酸水溶液を回収槽90A,90Bに補充して回収槽90A,90B内の液量を増加させるときに、補充を停止すべき液量(目標液量)に達したことを検出する。
 なお、この実施形態では、循環配管32にバルブ29が介装されている。図2に示す構成においても、このようなバルブ29を設けてもよい。バルブ29は、制御装置3によって開閉される。
 図8は、図7の構成の基板処理装置1の電気的構成を説明するためのブロック図である。図8において、前述の図3の対応部分は、同一参照符号で示す。制御装置3は、処理ユニット2およびリン酸供給システム30を制御する。リン酸供給システム30に関して、制御装置3は、ポンプ33,54,102を制御し、ヒータ34,103を制御し、バルブ38,39,42,53A,53B,56,58,60A,60B,64,65,72A,72Bを制御する。また、制御装置3には、供給槽31の液量センサ44の出力信号、濃度計37の出力信号、積算流量計61,62の出力信号、および回収槽90A,90Bの液量センサ75A,75B,76A,76B,77A,77Bの出力信号が入力される。
 図9、図10および図11は、リン酸水溶液の供給に関連する処理を説明するためのフローチャートである。図9は基板Wへのリン酸水溶液供給および供給槽31へのリン酸水溶液の補充に関する動作を表し、図10は使用済みリン酸の回収先の選択および供給槽31へのリン酸水溶液補充元の選択に関する動作を表し、図11は回収槽90A,90Bに対する新液の補充に関する動作を表す。
 まず、図9を参照すると、制御装置3は、リン酸バルブ16を開き、リン酸ノズル14へとリン酸水溶液を供給する(ステップS21)。それにより、スピンチャック5に保持された基板Wにリン酸水溶液が供給される。リン酸水溶液の供給によって供給槽31内のリン酸水溶液の液量が減少する。そして、制御装置3は、供給槽31内のリン酸水溶液の液量が下限値になったことが下限センサ44Lによって検出されると(ステップS22:YES)、リン酸水溶液補充元として選択されたいずれかの回収槽90A,90Bから、供給槽31へとリン酸水溶液を補充する(ステップS23)。すなわち、制御装置3は、補充元として選択されたいずれかの回収槽90A,90Bに対応する補充バルブ101A,101Bを開き、ポンプ102を駆動する。この補充動作によって供給槽31内のリン酸水溶液の液量が目標値に達したことが目標センサ44tによって検出されると(ステップS24:YES)、制御装置3は、補充動作を終了する(ステップS25)。同様の動作の繰り返しによって、供給槽31内のリン酸水溶液の液量は、下限値と目標値との間の適正範囲に維持される。
 次に、図10を参照すると、制御装置3は、基板処理のために使用された使用済みリン酸水溶液の回収先を回収槽90A,90Bのいずれか一方に選択し(ステップS31)、それらのうちの他方を供給槽31へのリン酸水溶液補充元として選択する(ステップS32)。
 すなわち、回収先として選択された回収槽90A,90Bに対応する回収バルブ72A,72Bが開かれ、回収先として選択されなかった回収槽90A,90Bに対応する回収バルブ72A,72Bは閉じられる。また、供給槽31へのリン酸水溶液の補充が必要なとき(図9のステップS22)には、リン酸水溶液補充元として選択された回収槽90A,90Bに対応する補充バルブ101A,101Bが開かれ、リン酸水溶液補充元として選択されなかった回収槽90A,90Bに対応する補充バルブ101A,101Bは閉状態に保持される。
 制御装置3は、さらに、補充元として選択された回収槽90A,90Bに対応する下限液量センサ75A,75Bが当該回収槽90A,90Bの液量が下限液量まで減少したことを検出すると(ステップS33:YES)、回収先とリン酸水溶液補充元とを切り替える(ステップS31,S32)。すなわち、液量が下限液量まで減少した回収槽90A,90Bを回収先として選択し(ステップS31)、他方の回収槽90A,90Bをリン酸水溶液補充元として選択する(ステップS32)。
 同様の動作が繰り返されることにより、第1回収槽90Aと第2回収槽90Bとは、液量低下を契機として、その役割が回収先とリン酸水溶液補充元との間で交互に切り替わる。
 次に、図11を参照すると、制御装置3は、回収先として選択されている回収槽90A,90Bへの新液補充を開始すべきかどうかを判定する(ステップS41)。具体的には、制御装置3は、回収槽90A,90Bへの新液の補充を開始すべき条件(補充開始条件)が充足されるかどうかを判断する。補充開始条件は、液量条件(回収液量条件)を含んでいてもよい。液量条件の一具体例は、回収先として選択されている回収槽90A,90Bに貯留された回収液量が増加して対応する回収停止液量センサ76A,76Bが回収停止液量を検出することである。補充開始条件は、また、処理数条件を含んでいてもよい。処理数条件の一具体例は、回収槽90A,90Bに新液を補充することなく処理された基板Wの枚数が所定枚数に達することである。さらに、補充開始条件は、シリコン濃度条件を含んでいてもよい。シリコン濃度条件の一具体例は、供給槽31からリン酸ノズル14に向けて供給されるリン酸水溶液中のシリコン濃度が所定濃度に達することである。制御装置3は、液量条件、処理数条件およびシリコン濃度条件のうちの少なくとも一つが充足されると、補充開始条件が充足されたと判断してもよい。
 制御装置3は、補充開始条件が充足されると(ステップS41:充足)、回収動作を停止する(ステップS42)。すなわち、制御装置3は、回収先として選択されている回収槽90A,90Bに対応する回収バルブ72A,72Bを閉じ、排液バルブ82を開く。
 さらに、制御装置3は、新液補充システム50から新液を当該回収先の回収槽90A,90Bに補充するために、補充する液量を決定する(ステップS43)。補充する液の総量は、たとえば、当該回収先の回収槽90A,90Bの回収停止液量センサ76A,76Bが検出する回収停止液量と目標液量センサ77A,77Bが検出する目標液量との差であってもよく、これは既知の値である。処理数条件またはシリコン濃度条件の充足によって補充開始条件が満たされたときには、回収先の回収槽90A,90B内の液量が回収停止液量よりも多い場合があり得る。このような場合には、制御装置3は、対応するドレインバルブ47A,47Bを開いて、回収槽90A,90B内の液量が回収停止液量となるまで、当該回収槽90A,90B内のリン酸水溶液を排液してもよい。
 制御装置3は、回収先として選択されている回収槽90A,90B内のリン酸水溶液、新液調合槽51で調合済みの新液(基準シリコン濃度の未使用リン酸水溶液)、およびリン酸原液を混合することにより、基準シリコン濃度(調整目標値)のリン酸水溶液が目標液量まで当該回収槽90A,90B内に貯留されるように、補充液量を決定する。新液補充量およびリン酸原液補充量の合計が、補充される総液量であり、その値は前述のとおり既知である。また、回収槽90A,90B内の液量が回収停止液量の状態で補充が行われるので、補充開始時における回収槽90A,90B内のリン酸水溶液液量も既知である。したがって、制御装置3は、補充開始時における回収槽90A,90B内のリン酸水溶液中のシリコン濃度が分かれば、それに基づいて、新液補充量およびリン酸原液補充量を決定することができる。換言すれば、新液補充量とリン酸原液補充量との比を決定することができる。
 回収槽90A,90B内に回収されて貯留されるリン酸水溶液中のシリコン濃度は、レシピや処理枚数に基づいて予測可能である。これについては、第1実施形態に関連して既に説明したとおりである。第1実施形態の場合と同様に、シリコン濃度は、演算によって求めてもよいし、基板Wの種類、基板処理の条件、回収率、処理数等に対してシリコン濃度値を対応付けたテーブルを用いて求めることもできる。また、基板Wの種類、基板処理の条件、回収率、処理数等に対して、新液補充量およびリン酸原液補充量を対応付けたテーブルを準備してもよい。
 制御装置3は、このようにして、新液補充量およびリン酸原液補充量を決定する(ステップS43)。そして、制御装置3は、回収先として選択されている回収槽90A,90Bに対応する補充バルブ53A,53Bを開き、ポンプ54を駆動して、新液調合槽51から当該回収槽90A,90Bへと新液を補充させる(ステップS44)。その補充量は、積算流量計61で計測される。積算流量計61の計測値が、新液補充量に達すると(ステップS45:YES)、制御装置3は、ポンプ54を停止し、補充バルブ53A,53Bを閉じる(ステップS46)。また、制御装置3は、回収先として選択されている回収槽90A,90Bに対応するリン酸原液補充バルブ60A,60Bを開いて、リン酸原液配管55を介して当該回収槽90A,90Bへとリン酸原液を補充させる(ステップS47)。その補充量は、積算流量計62で計測される。積算流量計62の計測値が、リン酸原液補充量に達すると(ステップS48:YES)、制御装置3は、第1リン酸原液補充バルブ60Aを閉じて、リン酸原液の補充を停止させる(ステップS49)。
 このような動作が繰り返されることによって、回収先として選択されている回収槽90A,90B、すなわち、供給槽31へのリン酸水溶液補充元でない回収槽90A,90Bにおいて、基準シリコン濃度のリン酸水溶液を調合しておくことができる。回収先とリン酸水溶液補充元とは、前述のとおり、交互に切り替えられるので、第1および第2回収槽90A,90Bに対する新液補充によるリン酸水溶液調合動作が交互に実行されることになる。
 以上のように、この実施形態では、リン酸水溶液を貯留するためのタンクは、基板処理のために使われたリン酸水溶液が回収配管71を介して導かれる第1および第2回収槽90A,90Bと、これらの第1および第2回収槽90A,90Bに貯留されたリン酸水溶液が補充配管100を介して供給される供給槽31とを含む。そして、供給槽31に貯留されたリン酸水溶液がリン酸配管15を介してリン酸ノズル14に供給される。新液補充システム50は、回収槽90A,90Bに未使用のリン酸水溶液(新液およびリン酸原液)を供給する。
 リン酸水溶液中のシリコン濃度の調整は、回収槽90A,90Bで行われ、シリコン濃度調整済みのリン酸水溶液が、回収槽90A,90Bから補充配管100を介して供給槽31へと送られる。したがって、供給槽31内のリン酸水溶液中のシリコン濃度は、液回収の影響を受けないので安定している。それにより、一層安定したシリコン濃度のリン酸水溶液をリン酸ノズル14から基板Wへと供給できる。
 また、この実施形態では、第1回収槽90Aおよび第2回収槽90Bの一方が供給槽31へのリン酸水溶液補充元として選択され、それらの他方が使用済みリン酸水溶液の回収先として選択される。それにより、シリコン濃度調整済みのリン酸水溶液を供給槽31に滞りなく供給できるので、基板Wへのリン酸水溶液供給が滞らない。それにより、基板処理の生産性を高めることができる。また、リン酸水溶液の回収に用いる回収槽90A,90Bにおいて、回収されたリン酸水溶液に新液およびリン酸原液を供給して、シリコン濃度調整が行われる。したがって、供給槽31にリン酸水溶液を供給する回収槽90A,90B内のリン酸水溶液中のシリコン濃度は安定しているから、供給槽31のリン酸水溶液中のシリコン濃度を安定に保持できる。それにより、基板処理に用いられるリン酸水溶液中のシリコン濃度が一層安定する。
 図12は、この発明の第3の実施形態に係る基板処理装置1の構成を説明するための模式図である。図2において、図7の対応部分は、同一参照符号で示す。この実施形態では、新液補充システム50は、第1新液調合槽51および第2新液調合槽111を備えている。第1新液調合槽51には、第1リン酸原液バルブ56を介してリン酸原液配管55からリン酸原液が供給され、第2新液調合槽111には、第2リン酸原液バルブ112を介してリン酸原液配管113からリン酸原液が供給される。また、第1新液調合槽51には、第1シリコンバルブ58を介してシリコン濃縮液配管57からシリコン濃縮液が供給され、第2新液調合槽111には、第2シリコンバルブ114を介してシリコン濃縮液配管115からシリコン濃縮液が供給される。
 第1新液調合槽51は、第1新液補充元選択バルブ121を介して新液補充配管52に接続されている。第2新液調合槽111は、第2新液補充元バルブ122を介して新液補充配管52に接続されている。第2新液調合槽111、第2新液補充元バルブ122、ポンプ54および新液補充バルブ53A,53Bは、第3リン酸水溶液供給手段を構成している。
 制御装置3(図8参照)は、上述のバルブ112,114,121,122を開閉制御する。
 このような構成により、シリコンが添加された未使用のリン酸水溶液を、第1新液調合槽51および/または第2新液調合槽111から第1回収槽90Aおよび第2回収槽90Bに供給することができる。
 制御装置3は、たとえば、第1新液調合槽51内で、基準シリコン濃度よりも低いシリコン濃度(第1濃度の例)のリン酸水溶液を調合する。また、制御装置3は、第2新液調合槽111内で、基準シリコン濃度(第3濃度の例)のリン酸水溶液を調合する。
 基板処理装置1を起動して、その使用を開始するときには、第2新液補充元選択バルブ122が開かれ、第1新液補充元選択バルブ121が閉じられて、第2新液調合槽111から回収槽90A,90Bの一方(たとえば第1回収槽90A)に基準シリコン濃度のリン酸水溶液(新液)が供給されて貯留される。そして、第1回収槽90Aから供給槽31に、その基準シリコン濃度のリン酸水溶液が供給され、そのリン酸水溶液が基板処理のために用いられる。
 一方、回収槽90A,90Bの他方(たとえば第2回収槽90B)に、使用済みのリン酸水溶液が回収される。その回収されたリン酸水溶液に新液を混合して基準シリコン濃度に調整するときには、制御装置3は、第1新液補充元選択バルブ121を開き、第2新液補充元選択バルブ122を閉じる。それにより、制御装置3は、第1新液調合槽51から、基準シリコン濃度よりもシリコン濃度の低い新液を第2回収槽90Bに供給させる。使用済みのリン酸水溶液中のシリコン濃度は、基準シリコン濃度よりも高いので、シリコン濃度の低いリン酸水溶液を混合することによって、第2回収槽90B内のリン酸水溶液のシリコン濃度を容易に調整できる。
 もちろん、基板処理枚数が少ない段階では、繰り返し使用されたリン酸水溶液中のシリコン濃度はさほど高まっていない。したがって、たとえば、所定の処理枚数までは、第2新液調合槽111から基準シリコン濃度の新液を補充し、所定処理枚数を越えると、第1新液調合槽51から低シリコン濃度の新液を補充するようにしてもよい。また、新液を補充する前に回収槽90A,90B内のリン酸水溶液のシリコン濃度を計測して、その計測結果に応じて、第1新液調合槽51または第2新液調合槽111のいずれかを新液補充元として選択してもよい。さらにまた、基板Wの種類に応じて、第1新液調合槽51または第2新液調合槽111のいずれかを新液補充元として選択してもよい。
 このように、この実施形態では、零よりも大きく基準シリコン濃度よりも小さいシリコン濃度の新液が第1新液調合槽51で調製され、基準シリコン濃度の新液が第2新液調合槽111で調製される。それにより、回収槽90A,90B内のリン酸水溶液のシリコン濃度調整幅を大きくできる。
 以上、この発明の実施形態について具体的に説明してきたが、この発明は、さらに他の形態で実施することもできる。たとえば、前述の実施形態では、回収された使用済みリン酸水溶液に対して混合されるリン酸水溶液の例として、基準シリコン濃度のリン酸水溶液、零濃度のリン酸水溶液(リン酸原液)、および基準シリコン濃度よりも低いシリコン濃度のリン酸水溶液を例示した。しかし、これら以外のシリコン濃度のリン酸水溶液が用いられてもよい。
 また、第2および第3実施形態では、2つの回収槽が備えられた構成を示した。しかし、1つの回収槽を備えた構成であってもよいし、3つ以上の回収槽が備えられた構成であってもよい。ただし、複数(2つ以上)の回収槽を備えることによって、使用済みリン酸水溶液の回収先となる回収槽と、供給槽への補充元となる回収槽とを区分できるから、供給槽に対して安定なシリコン濃度のリン酸水溶液を滞りなく供給できる。
 また、第1および第2新液調合槽を備えた第3実施形態の構成は、図2に示した第1実施形態にも適用することができる。
 本発明の実施形態について詳細に説明してきたが、これらは本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の範囲は添付の請求の範囲によってのみ限定される。
  1 基板処理装置
  2 処理ユニット
  3 制御装置
  5 スピンチャック
  9 スピンモータ
 10 処理カップ
 12 カップ
 14 リン酸ノズル
 15 リン酸配管
 16 リン酸バルブ
 30 リン酸供給システム
 31 供給槽(タンク)
 33 ポンプ
 37 シリコン濃度計
 44 液量センサ
  44h 上限センサ
  44L 下限センサ
  44t 目標センサ
 50 新液補充システム
 51 新液調合槽
 52 新液補充配管
 53 新液補充バルブ
 53A 第1新液補充バルブ
 53B 第2新液補充バルブ
 54 ポンプ
 55 リン酸原液配管
 56 リン酸原液バルブ
 57 シリコン濃縮液配管
 58 シリコンバルブ
 59 リン酸原液補充配管
 60 リン酸原液補充バルブ
 60A 第1リン酸原液補充バルブ
 60B 第2リン酸原液補充バルブ
 61 積算流量計
 62 積算流量計
 70 回収システム
 71 回収配管
 72 回収バルブ
 72A 第1回収バルブ
 72B 第2回収バルブ
 75A,75B 下限液量センサ
 76A,76B 回収停止液量センサ
 77A,77B 目標液量センサ
 90A 第1回収槽
 90B 第2回収槽
100 補充配管
101A 第1補充バルブ
101B 第2補充バルブ
102 ポンプ
103 ヒータ
111 第2新液調合槽
112 第2リン酸原液バルブ
113 第2リン酸原液配管
114 第2シリコンバルブ
115 第2シリコン濃縮液配管
121 第1新液補充元選択バルブ
122 第2新液補充元選択バルブ
  W 基板
  P プログラム
  R レシピ
  Fo シリコン酸化膜
  Fn シリコン窒化膜

Claims (26)

  1.  シリコン酸化膜とシリコン窒化膜とが表面で露出した基板にシリコンを含むリン酸水溶液を供給して、前記シリコン窒化膜を選択的にエッチングする基板処理方法であって、
     規定シリコン濃度範囲のシリコンを含むリン酸水溶液をタンクに貯留する工程と、
     前記タンク内のリン酸水溶液をノズルに供給し、前記ノズルから基板にリン酸水溶液を供給して基板を処理する工程と、
     前記ノズルから基板に供給されて基板の処理のために使われたリン酸水溶液を前記タンクに回収する回収工程と、
     前記タンクに第1濃度でシリコンを含む第1リン酸水溶液を供給する第1リン酸水溶液供給工程と、
     前記タンクに前記第1濃度よりも低い第2濃度でシリコンを含む第2リン酸水溶液を供給する第2リン酸水溶液供給工程と、
     所定の補充開始条件が充足されると、前記第1リン酸水溶液供給工程および前記第2リン酸水溶液供給工程を開始する開始判定工程と、
     前記第1リン酸水溶液供給工程における前記第1リン酸水溶液および前記第2リン酸水溶液供給工程における前記第2リン酸水溶液の供給量を決定する供給量決定工程と、
    を含む、基板処理方法。
  2.  前記第1濃度が前記規定シリコン濃度範囲内の値である、請求項1に記載の基板処理方法。
  3.  前記第2濃度が前記規定シリコン濃度範囲よりも低い値である、請求項1または2に記載の基板処理方法。
  4.  前記第2濃度が零である、請求項1~3のいずれか一項に記載の基板処理方法。
  5.  前記供給量決定工程において、前記タンク内のリン酸水溶液中のシリコン濃度を予め定める基準シリコン濃度に調整するように、前記第1および第2リン酸水溶液の供給量が決定される、請求項1~4のいずれか一項に記載の基板処理方法。
  6.  前記供給量決定工程において、前記タンク内のリン酸水溶液中のシリコン濃度の調整目標値を前記第1濃度として、前記第1および第2リン酸水溶液の供給量が決定される、請求項1~5のいずれか一項に記載の基板処理方法。
  7.  前記供給量決定工程において、前記基板の種類に基づいて、前記第1および第2リン酸水溶液の供給量が決定される、請求項1~6のいずれか一項に記載の基板処理方法。
  8.  前記供給量決定工程において、前記ノズルから供給されたリン酸水溶液によって前記基板から当該リン酸水溶液中に溶出するシリコンの量に基づいて、前記第1および第2リン酸水溶液の供給量が決定される、請求項1~7のいずれか一項に記載の基板処理方法。
  9.  前記供給量決定工程において、前記ノズルから基板に供給されたリン酸水溶液のうち前記タンクに回収されるリン酸水溶液の回収率に基づいて、前記第1および第2リン酸水溶液の供給量が決定される、請求項1ないし8のいずれか一項に記載の基板処理方法。
  10.  前記供給量決定工程において、前記ノズルから供給されたリン酸水溶液によって処理された基板の枚数に基づいて、前記第1および第2リン酸水溶液の供給量が決定される、請求項1~9のいずれか一項に記載の基板処理方法。
  11.  前記補充開始条件が、前記タンクに貯留されている液量に関する液量条件を含む、請求項1~10のいずれか一項に記載の基板処理方法。
  12.  前記補充開始条件が、前記ノズルから供給されたリン酸水溶液によって処理された基板の枚数に関する処理数条件を含む、請求項1~11のいずれか一項に記載の基板処理方法。
  13.  前記補充開始条件が、前記タンクから前記ノズルに向けて供給されるリン酸水溶液中のシリコン濃度に関するシリコン濃度条件を含む、請求項1~12のいずれか一項に記載の基板処理方法。
  14.  前記基板を水平に保持する基板保持工程をさらに含み、
     前記基板保持工程で保持されている基板の表面に前記ノズルから前記リン酸水溶液が供給される、請求項1~13のいずれか一項に記載の基板処理方法。
  15.  前記タンクに前記第1濃度および前記第2濃度のいずれとも異なる第3濃度でシリコンを含む第3リン酸水溶液を供給する第3リン酸水溶液供給工程をさらに含む、請求項1~14のいずれか一項に記載の基板処理方法。
  16.  前記リン酸水溶液を前記タンクに貯留する工程において、前記第3リン酸水溶液供給工程が実行され、前記第3濃度が前記第1濃度よりも高い、請求項15に記載の基板処理方法。
  17.  前記タンクが、基板処理のために使われたリン酸水溶液が回収配管を介して導かれる回収槽と、前記回収槽に貯留されたリン酸水溶液が調合液供給配管を介して供給される供給槽とを含み、
     前記供給槽に貯留されたリン酸水溶液が供給配管を介して前記ノズルに供給され、
     前記第1リン酸水溶液および前記第2リン酸水溶液が、前記回収槽に供給される、請求項1~16のいずれか一項に記載の基板処理方法。
  18.  前記回収槽が複数設けられており、
     前記回収配管を介して回収されるリン酸水溶液の回収先を前記複数の回収槽のなかから選択する回収先選択工程と、
     前記第1リン酸水溶液および前記第2リン酸水溶液の供給先を、前記回収先選択工程で選択された回収槽に選択する供給先選択工程と、
     前記複数の回収槽のうちで前記回収槽選択工程において選択されなかった回収槽を、前記調合液供給配管を介して前記供給槽にリン酸水溶液を補充するための補充元として選択する補充元選択工程と、をさらに含む、請求項17に記載の基板処理方法。
  19.  前記第1リン酸水溶液供給工程における前記第1リン酸水溶液の供給量を、第1積算流量計を用いて管理する工程と、
     前記第2リン酸水溶液供給工程における前記第2リン酸水溶液の供給量を、第2積算流量計を用いて管理する工程と、をさらに含む、請求項1~18のいずれか一項に記載の基板処理方法。
  20.  シリコン酸化膜およびシリコン窒化膜が表面で露出した基板を保持する基板保持手段と、
     前記基板保持手段に保持された基板に、シリコンを含むリン酸水溶液を供給するノズルと、
     規定シリコン濃度範囲のシリコンを含むリン酸水溶液を前記ノズルに供給するタンクと、
     前記ノズルから基板に供給されて基板の処理のために使われたリン酸水溶液を前記タンクに回収する回収配管と、
     前記タンクに第1濃度でシリコンを含む第1リン酸水溶液を供給する第1リン酸水溶液供給手段と、
     前記タンクに前記第1濃度よりも低い第2濃度でシリコンを含む第2リン酸水溶液を供給する第2リン酸水溶液供給手段と、
     所定の補充開始条件が充足されると、前記第1リン酸水溶液供給手段および前記第2リン酸水溶液供給手段を制御することにより、前記第1リン酸水溶液および前記第2リン酸水溶液を前記タンクに供給するリン酸水溶液供給工程と、前記第1リン酸水溶液および第2リン酸水溶液の供給量を決定する供給量決定工程とを実行する制御手段と、
    を含む、基板処理装置。
  21.  前記制御手段が、前記供給量決定工程において、基板の種類、前記ノズルから供給されたリン酸水溶液によって前記基板から当該リン酸水溶液に溶出するシリコンの量、前記ノズルから基板に供給されたリン酸水溶液のうち前記タンクに回収されるリン酸水溶液の回収率、および前記ノズルから供給されたリン酸水溶液によって処理された基板の枚数のうちの少なくとも一つに基づいて、前記第1リン酸水溶液および前記第2リン酸水溶液の供給量を決定する、請求項20に記載の基板処理装置。
  22.  前記補充条件が、前記タンクに貯留されている液量に関する液量条件、前記ノズルから供給されたリン酸水溶液によって処理された基板の枚数に関する処理数条件、および前記タンクから前記ノズルに向けて供給されるリン酸水溶液中のシリコン濃度に関するシリコン濃度条件のうちの少なくとも一つを含む、請求項20または21に記載の基板処理装置。
  23.  前記タンクに前記第1濃度および前記第2濃度のいずれとも異なる第3濃度でシリコンを含む第3リン酸水溶液を供給する第3リン酸水溶液供給手段をさらに含み、前記制御手段が前記第3リン酸水溶液供給手段をさらに制御する、請求項20~22のいずれか一項に記載の基板処理装置。
  24.  前記タンクが、基板処理のために使われたリン酸水溶液が回収配管を介して導かれる回収槽と、前記回収槽に貯留されたリン酸水溶液が調合液供給配管を介して供給される供給槽とを含み、
     前記供給槽に貯留されたリン酸水溶液が供給配管を介して前記ノズルに供給され、
     前記第1リン酸水溶液および前記第2リン酸水溶液が、前記回収槽に供給される、請求項20~23のいずれか一項に記載の基板処理装置。
  25.  前記回収槽が複数設けられており、
     前記制御手段が、さらに、
     前記回収配管を介して回収されるリン酸水溶液の回収先を前記複数の回収槽のなかから選択する回収先選択工程と、
     前記第1リン酸水溶液および前記第2リン酸水溶液の供給先を、前記回収先選択工程で選択された回収槽に選択する供給先選択工程と、
     前記複数の回収槽のなかで前記回収槽選択工程において選択されなかった回収槽を、前記調合液供給配管を介して前記供給槽にリン酸水溶液を補充するための補充元として選択する補充元選択工程と、をさらに実行する、請求項24に記載の基板処理装置。
  26.  前記第1リン酸水溶液供給手段が前記タンクに供給する前記第1リン酸水溶液の供給量を計測する第1積算流量計と、
     前記第2リン酸水溶液供給手段が前記タンクに供給する前記第2リン酸水溶液の供給量を計測する第2積算流量計と、をさらに含み、
     前記制御手段が、前記第1積算流量計および前記第2積算流量計の計測結果に基づいて、前記第1リン酸水溶液および前記第2リン酸水溶液の前記タンクへの供給を管理する供給量管理工程をさらに実行する、請求項20~25のいずれか一項に記載の基板処理装置。
PCT/JP2018/037581 2017-11-15 2018-10-09 基板処理方法および基板処理装置 WO2019097901A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207013563A KR102483802B1 (ko) 2017-11-15 2018-10-09 기판 처리 방법 및 기판 처리 장치
CN201880073324.4A CN111344839A (zh) 2017-11-15 2018-10-09 衬底处理方法及衬底处理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017220075A JP6917868B2 (ja) 2017-11-15 2017-11-15 基板処理方法および基板処理装置
JP2017-220075 2017-11-15

Publications (1)

Publication Number Publication Date
WO2019097901A1 true WO2019097901A1 (ja) 2019-05-23

Family

ID=66539458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037581 WO2019097901A1 (ja) 2017-11-15 2018-10-09 基板処理方法および基板処理装置

Country Status (5)

Country Link
JP (1) JP6917868B2 (ja)
KR (1) KR102483802B1 (ja)
CN (1) CN111344839A (ja)
TW (1) TWI701086B (ja)
WO (1) WO2019097901A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6843173B2 (ja) * 2019-03-29 2021-03-17 東京エレクトロン株式会社 基板処理装置、および基板処理方法
JP6952860B2 (ja) * 2019-03-29 2021-10-27 東京エレクトロン株式会社 基板処理装置、および基板処理方法
JP7467051B2 (ja) * 2019-09-13 2024-04-15 株式会社Screenホールディングス 基板処理装置、基板処理方法、及び、半導体製造方法
JP7312656B2 (ja) * 2019-09-24 2023-07-21 株式会社Screenホールディングス 基板処理装置
JP2022148186A (ja) * 2021-03-24 2022-10-06 株式会社Screenホールディングス 基板処理装置および配管着脱パーツ洗浄方法
KR102449897B1 (ko) * 2022-01-14 2022-09-30 삼성전자주식회사 습식 식각 방법 및 이를 이용한 반도체 소자 제조 방법.
KR20230157596A (ko) 2022-05-10 2023-11-17 세메스 주식회사 기판처리장치 및 기판처리방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11300190A (ja) * 1998-04-27 1999-11-02 Sony Corp 半導体製造用薬液調合装置
JP2013165217A (ja) * 2012-02-13 2013-08-22 Dainippon Screen Mfg Co Ltd 基板処理方法および基板処理装置
JP2015135943A (ja) * 2013-09-30 2015-07-27 芝浦メカトロニクス株式会社 基板処理方法及び基板処理装置
JP2016032029A (ja) * 2014-07-29 2016-03-07 株式会社Screenホールディングス 基板処理装置および基板処理方法
WO2017057727A1 (ja) * 2015-09-30 2017-04-06 芝浦メカトロニクス株式会社 基板処理装置及び基板処理方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129588A (ja) * 1995-10-31 1997-05-16 Fujitsu Ltd エッチング液の濃度管理方法及びエッチング装置
JPH09275091A (ja) * 1996-04-03 1997-10-21 Mitsubishi Electric Corp 半導体窒化膜エッチング装置
JP6324775B2 (ja) 2014-03-17 2018-05-16 株式会社Screenホールディングス 基板処理装置および基板処理装置を用いた基板処理方法
JP6320869B2 (ja) * 2014-07-29 2018-05-09 株式会社Screenホールディングス 基板処理装置および基板処理方法
JP6499414B2 (ja) * 2014-09-30 2019-04-10 株式会社Screenホールディングス 基板処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11300190A (ja) * 1998-04-27 1999-11-02 Sony Corp 半導体製造用薬液調合装置
JP2013165217A (ja) * 2012-02-13 2013-08-22 Dainippon Screen Mfg Co Ltd 基板処理方法および基板処理装置
JP2015135943A (ja) * 2013-09-30 2015-07-27 芝浦メカトロニクス株式会社 基板処理方法及び基板処理装置
JP2016032029A (ja) * 2014-07-29 2016-03-07 株式会社Screenホールディングス 基板処理装置および基板処理方法
WO2017057727A1 (ja) * 2015-09-30 2017-04-06 芝浦メカトロニクス株式会社 基板処理装置及び基板処理方法

Also Published As

Publication number Publication date
TWI701086B (zh) 2020-08-11
KR102483802B1 (ko) 2022-12-30
CN111344839A (zh) 2020-06-26
TW201936274A (zh) 2019-09-16
KR20200062327A (ko) 2020-06-03
JP2019091815A (ja) 2019-06-13
JP6917868B2 (ja) 2021-08-11

Similar Documents

Publication Publication Date Title
WO2019097901A1 (ja) 基板処理方法および基板処理装置
KR102502045B1 (ko) 기판 처리 장치
CN109037111B (zh) 基板处理装置
CN105845602A (zh) 基板液体处理装置和基板液体处理方法
US7918242B2 (en) Processing solution supply system, processing solution supply method and recording medium for storing processing solution supply control program
TW201322323A (zh) 液體處理裝置、液體處理方法及記憶媒體
CN108630568B (zh) 基板处理装置及基板处理方法
US20110290279A1 (en) Substrate processing apparatus, substrate processing method, and storage medium storing computer program for performing substrate processing method
US8372299B2 (en) Substrate treating apparatus and substrate treating method
JP7312656B2 (ja) 基板処理装置
JP2018056293A (ja) 基板処理装置および処理液供給方法
US11433420B2 (en) Solution supply apparatus and solution supply method
KR102525270B1 (ko) 기판 처리 장치 및 기판 처리 방법
US10854469B2 (en) Substrate processing method and substrate processing apparatus
US10458010B2 (en) Substrate liquid processing apparatus, substrate liquid processing method, and storage medium
JP2015167161A (ja) 液処理装置、液処理方法及び記憶媒体
JP6407764B2 (ja) 基板処理システム、基板処理システムの制御方法、及び記憶媒体
CN115116888A (zh) 处理液提供单元及具有其的基板处理装置
KR102489739B1 (ko) 기판 처리 장치 및 처리액 공급 방법
US20230131562A1 (en) Liquid supply unit, substrate treating apparatus, and bottle replacing method
US20220199432A1 (en) Apparatus and method for supplying processing liquid
KR20230097965A (ko) 기판 처리 장치 및 기판 처리 방법
TW202333894A (zh) 基板處理方法及基板處理裝置
TW202141614A (zh) 處理液溫度調整方法、基板處理方法、處理液溫度調整裝置、及基板處理系統
KR101553361B1 (ko) 기판 처리 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18878786

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207013563

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18878786

Country of ref document: EP

Kind code of ref document: A1