WO2019095734A1 - 显示基板、有机发光器件及膜层蒸镀检测方法、显示装置 - Google Patents

显示基板、有机发光器件及膜层蒸镀检测方法、显示装置 Download PDF

Info

Publication number
WO2019095734A1
WO2019095734A1 PCT/CN2018/099160 CN2018099160W WO2019095734A1 WO 2019095734 A1 WO2019095734 A1 WO 2019095734A1 CN 2018099160 W CN2018099160 W CN 2018099160W WO 2019095734 A1 WO2019095734 A1 WO 2019095734A1
Authority
WO
WIPO (PCT)
Prior art keywords
limit
limit mark
alignment
marks
film layer
Prior art date
Application number
PCT/CN2018/099160
Other languages
English (en)
French (fr)
Inventor
杨凡
莫再隆
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/333,042 priority Critical patent/US11502137B2/en
Publication of WO2019095734A1 publication Critical patent/WO2019095734A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/88Dummy elements, i.e. elements having non-functional features
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54426Marks applied to semiconductor devices or parts for alignment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/851Division of substrate

Definitions

  • the present disclosure relates to, but is not limited to, the field of display technology, and in particular, to a display substrate, an organic light emitting device, a film evaporation detecting method of an organic light emitting device, and a display device.
  • a light emitting unit is disposed in each of the pixel regions of the Organic Light-Emitting Device (OLED) display device.
  • the light emitting unit includes a plurality of organic film layers, and each of the organic film layers is formed by an evaporation process.
  • a registration region is usually provided in a region other than the display region.
  • 1 is a schematic view of a first arrangement position of a matching area in the prior art, wherein the alignment area 20 is disposed on the display substrate and located on both sides of the display area 11;
  • FIG. 2 is a matching area in the prior art.
  • FIG. 3 is a schematic structural view of the alignment area.
  • a plurality of limit marks 21 are disposed in the alignment area 20, and the plurality of limit marks 21 can define the centers of the plurality of theoretical vapor deposition zones 22. While each organic film layer is vapor-deposited into the display region, a alignment pattern corresponding to each of the organic film layers is vapor-deposited to the alignment region. The alignment of the alignment pattern with the theoretical vapor deposition position 22 is used to characterize whether or not the organic materials deposited in the display region 11 are offset.
  • the setting in Figure 1 can cause poor display.
  • the setting mode in FIG. 2 may cause the subsequent alignment pattern to not accurately characterize the alignment of the organic film layer in the display area, and after the mother board is cut into an independent display substrate, the alignment of the organic film layer in the display area cannot be detected. .
  • the present disclosure is directed to at least one of the technical problems existing in the prior art, and provides a display layer, an organic light emitting device, a film evaporation detecting method of an organic light emitting device, and a display device to more accurately detect a display area.
  • the alignment of the organic film layer reduces the display defect.
  • the present disclosure provides a display substrate including a display area and a non-display area surrounding the display area, wherein the non-display area is provided with at least one limit mark set, the display The region has a plurality of sides, a round chamfer is formed between the adjacent two sides, and the non-display area includes a frame portion opposite to the side of the display area and a corner portion opposite to the round chamfer, and The set of limit marks is located at the corner portion.
  • each of the limit mark groups includes a plurality of limit marks, and the plurality of limit marks in each of the limit mark groups are used to define positions of the plurality of theoretical vapor deposition zones; Any one of the limit mark groups, and the plurality of the theoretical vapor deposition zones defined by the plurality of limit marks are arranged in an array shape.
  • a plurality of the limit marks and the plurality of the theoretical vapor deposition zones enclose a registration area along the display area
  • the dimensions in the length direction and the width direction are both between 100 ⁇ m and 130 ⁇ m.
  • the limit mark is a bar shape
  • the plurality of limit marks include at least two first limit marks and two second limit marks
  • the first limit mark extends in a first direction
  • the second limit mark extends in a second direction crossing the first direction
  • two of the first limit marks are along the first Arranging in two directions
  • two of the second limit marks are arranged along the first direction
  • the two second limit marks are located on both sides of the connection line between the two first limit marks.
  • the plurality of limit marks in the set of limit marks further includes a third limit mark, the third limit mark is strip-shaped and extends along the second direction, and The third limit mark intersects one of the first limit marks.
  • the display area is provided with a pixel defining layer, the pixel defining layer is provided with a plurality of pixel openings, and the display area is further provided with an electrode corresponding to the pixel opening; the non-display area
  • An epitaxial film layer is disposed, and the epitaxial film layer is provided with a through hole corresponding to the limit mark, wherein the limit mark is disposed in the through hole; the epitaxial film layer is disposed in the same layer as the electrode and the material Similarly, the limit mark is disposed in the same layer as the pixel defining layer and has the same material.
  • one of the epitaxial film layer and the stop mark is light transmissive and the other is opaque.
  • the present disclosure further provides an organic light emitting device including the above display substrate, wherein a display area of the display substrate is provided with a plurality of organic film layers, and a non-display area of the display substrate is disposed with the limit The alignment group corresponding to the mark group, where the alignment pattern group is located at a corner portion where the corresponding limit mark group is located.
  • each of the limit mark groups includes a plurality of limit marks, and the plurality of limit marks in each of the limit mark groups are used to define positions of the plurality of theoretical vapor deposition zones;
  • Each of the alignment pattern groups includes a plurality of alignment patterns, and the plurality of alignment patterns of each of the alignment pattern groups correspond to materials of the plurality of organic film layers; for any one of the alignment pattern groups, the alignment pattern group The plurality of alignment patterns correspond to the plurality of theoretical vapor deposition regions defined by the set of limit marks corresponding to the pair of alignment patterns.
  • the present disclosure also provides a display device including the above organic light emitting device.
  • the present disclosure further provides a film evaporation detecting method of an organic light emitting device, comprising:
  • the evaporation mark offset of the organic film layer in the display region of the display substrate is determined by the limit mark group and the corresponding alignment mark group.
  • the step of determining the evaporation offset of the organic film layer in the display region of the display substrate by using the limit mark group and the corresponding alignment mark group includes:
  • the step of determining the locations of the plurality of theoretical vapor deposition zones based on the plurality of limit markers in the set of limit markers comprises the following steps performed in each of the alignment zones:
  • positions of a plurality of intersection points including: a plurality of intersections formed by two first straight lines extending along the first direction and two second straight lines extending along the second direction, and two The intersection of the center line of the first limit mark and the center line of the two second limit marks, and the positions of the plurality of intersection points respectively serve as the positions of the plurality of theoretical vapor deposition zones, wherein the two A straight line passes through the centers of the two first limit marks, and the two second lines pass through the centers of the two second limit marks, respectively.
  • the steps of plating offset include:
  • the non-display area is provided with an epitaxial film layer, and the epitaxial film layer is provided with a through hole corresponding to the limit mark, and the limit mark is disposed in the through hole.
  • the electrode is opaque, and the second film is transparent.
  • the step of obtaining the center position of each limit mark includes:
  • the light of the first light source being able to pass through the epitaxial film layer and the alignment pattern to be used by the first light collecting member Acquisition;
  • the step of obtaining the center position of each of the alignment patterns includes:
  • a second light source is disposed on the same side of the first light collecting member, and a second light collecting member is disposed on the same side of the first light source, wherein the second light source is used to excite the alignment pattern to emit light.
  • the second light collecting member is configured to collect light emitted by the alignment pattern
  • the edge position of each of the alignment patterns is determined according to the light collected by the second light collecting member, and the center position of the corresponding alignment pattern is calculated according to the edge position of each of the alignment patterns.
  • the round chamfering of the display area is set such that the width of the corner portion of the non-display area is greater than the width of the bezel portion. Therefore, when the limit mark group is set at a large corner portion of the space, the influence of the limit mark group on the signal line can be reduced, thereby reducing display defects and improving the display effect of the organic light emitting device and the display device.
  • the limit mark group is disposed on the display substrate and is closer to the display area, so that the pixel offset of the display area can be detected more accurately, thereby improving the monitoring effect, thereby further ensuring the organic light emitting device. And the quality of the display device.
  • FIG. 1 is a schematic view showing a first arrangement position of a registration area in the prior art
  • FIG. 2 is a schematic view showing a second arrangement position of a matching area in the prior art
  • Figure 3 is a schematic view showing the structure of the alignment area in Figures 1 and 2;
  • FIG. 4 is a schematic diagram of a display substrate provided in accordance with an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram showing the structure and arrangement of each of the limit marks in the alignment area according to an embodiment of the present disclosure
  • Figure 6 is a cross-sectional view taken along line B-B' in Figure 5;
  • Figure 7 is a schematic view of a registration area in which a registration pattern is formed
  • FIG. 8 is a flow chart of a film layer evaporation detecting method provided according to an embodiment of the present disclosure.
  • a display substrate which is applicable to an organic light emitting (OLED) device.
  • the display substrate includes a display area 11 and a non-display area 12 surrounding the display area 11.
  • the display area 11 has a plurality of sides, and a round chamfer is formed between adjacent two sides, as shown in FIG.
  • the shape of the region 11 is a rounded rectangle;
  • the non-display region 12 includes a frame portion 121 opposite to the side of the display region 11 and a corner portion 122 opposite to the rounded chamfer, that is, the corner portion 122 faces the center of the display region 11
  • the sides are formed as curved edges.
  • At least one limit mark group is disposed in the non-display area 12. As shown in FIG. 5, each limit mark group includes a plurality of limit marks 211 to 213. The limit mark group is located at the corner portion 122.
  • the display area 11 includes a plurality of pixel regions, each of which is provided with light emitting units, each of which includes a plurality of organic film layers.
  • the limit mark group can be used for the detection of Pixel Position Alignment (PPA).
  • PPA Pixel Position Alignment
  • the pixel shift amount is defined as the amount of shift of the actual position of the organic film layer with respect to the pixel region.
  • the specific manner of detecting the pixel offset by using the limit mark group is not limited herein.
  • a signal line for providing a signal to the display area 11 is provided in the non-display area 12. Therefore, when the limit mark group is disposed in the non-display area 12 and adjacent to the side of the display area 11 (i.e., the case shown in FIG. 1), the limit mark group occupies a certain width. In the case where the width of the frame is constant, it is necessary to reduce the width of the wiring area, resulting in an increase in signal line resistance, which in turn causes uneven display. When the limit mark group is disposed in the vacant area between the adjacent two display substrate areas 10a in the motherboard (ie, as shown in FIG.
  • the limit mark The group is separated from the display substrate 10, and the pixel offset in the display area 11 cannot be detected; on the other hand, the farther the limit mark group is from the display area 11, due to the limitation of the process conditions, the detected offset and display The actual pixel offset in the zone is different. Therefore, even if the pixel shift amount in the display region 11 is detected before the mother board is cut, it is impossible to accurately judge the pixel shift amount.
  • the round chamfer of the display region 11 is disposed such that the width d1 of the corner portion 122 of the non-display region 12 is greater than the width d2 of the frame portion 121. Therefore, when the limit mark group is disposed in the corner portion 122 having a large space, the influence of the limit mark group on the signal line can be reduced, thereby reducing display defects.
  • the limit mark group in the display substrate of the present disclosure is disposed on the display substrate 10, which is closer to the display area 11, so that the pixel offset of the display area 11 can be detected more accurately. , thereby improving the accuracy of the film evaporation test.
  • each corner portion 122 is provided with at most one limit mark set. That is to say, when a plurality of limit mark groups are set, different limit mark groups are located at different corner portions to prevent the corner portion 122 from being occupied by the limit mark group to occupy too much wiring space, thereby affecting the display effect.
  • each of the limit mark groups includes a plurality of limit marks 211 to 213, and the plurality of limit marks 211 to 213 in each of the limit mark groups are used to define a plurality of theoretical vapor deposition areas. s position.
  • a plurality of the plurality of theoretical vapor deposition zones 22 defined by the limit marks are arranged in an array shape. That is, the plurality of theoretical vapor deposition zones 22 are arranged in a plurality of rows and columns.
  • a plurality of limit marks and a plurality of theoretical vapor deposition zones 22 defined therein enclose a registration zone 20.
  • the plurality of theoretical vapor deposition zones 22 are arranged in a plurality of rows and columns to facilitate setting the alignment region 20 to be square or nearly square to facilitate placement of the alignment region 20 at the corner portion 122.
  • the theoretical vapor deposition zone 22 refers to a region where the corresponding alignment pattern is located when the organic film layer is accurately deposited in each pixel region of the display region 11 and the organic film layer is accurately positioned.
  • the alignment pattern is a graphic for monitoring a pixel offset. Specifically, when the organic film layer (for example, the red light-emitting layer) is vapor-deposited to the display region 11, in order to monitor whether the evaporation position of the organic film layer is offset from the target pixel region, alignment holes and evaporation are provided on the mask. hole.
  • the alignment holes are used to align with the theoretical vapor deposition zone 22, the vapor deposition holes are used to align with the pixel regions of the organic film layer to be evaporated, and the relative positions between the alignment holes and the respective vapor deposition holes and the theoretical evaporation are performed.
  • the relative position between the region 22 and the pixel region of each of the organic film layers to be evaporated is the same. In this manner, when the organic material is vapor-deposited through the alignment holes to the theoretical vapor deposition zone 22 to form an alignment pattern, the organic material that has passed through the vapor deposition holes can be accurately formed in the pixel region of the organic material to be evaporated.
  • the amount of shift of the corresponding organic film layer in the pixel region (i.e., the above-described pixel shift amount) in the display region 11 can be represented by the offset between each of the alignment patterns and the theoretical vapor deposition region 22.
  • the disclosure is not limited as to how to define the positions of the plurality of theoretical vapor deposition zones 22 using a plurality of limit marks.
  • the limit mark is a strip shape, and the intersection position of the straight line where the limit marks intersecting in the two extending directions is the theoretical position of the alignment pattern.
  • the area of the alignment area 20 in FIG. 1 is large (usually around 30,000 ⁇ m 2 ), thereby occupying more wiring space. And if the size of the alignment area 20 is too small, the plurality of theoretical vapor deposition zones 22 are closer to each other. Thus, after the alignment pattern is formed, it is difficult to define the boundary of the alignment pattern, thereby affecting the monitoring effect. For this reason, the dimensions of the alignment region 20 in the longitudinal direction and the width direction of the display region 11 in the embodiment of the present disclosure are both between 100 ⁇ m and 130 ⁇ m, so that the occupied space at the corner portion 122 can be reduced, and the space can be clearly Define the boundaries of the alignment graph.
  • the size of the alignment area 20 in the longitudinal direction of the display region 11 is 108.38 ⁇ m
  • the dimension in the width direction of the display region 11 is 113 ⁇ m.
  • the area of the alignment area 20 is about 12000 ⁇ m 2 , which is significantly smaller than the area of the alignment area 20 in the prior art. Therefore, in the present embodiment, the alignment area 20 is more easily disposed at the corner portion 122, thereby reducing the occupation of the wiring space and reducing the influence on the signal line.
  • each limit mark in the limit mark group is a strip shape.
  • the plurality of limit marks in the limit mark group include at least two first limit marks 211 and two second limit marks 212.
  • the first limit mark 211 extends in the first direction
  • the second limit mark 212 extends in the second direction crossing the first direction.
  • Two first limit marks 211 are arranged along the second direction
  • two second limit marks 212 are arranged along the first direction
  • the two second limit marks 212 are located at two first limit marks. 211 center wiring on both sides.
  • the first direction is perpendicular to the second direction to concentrate a plurality of limit marks and a plurality of theoretical vapor deposition zones 22.
  • the first direction is the left-right direction and the second direction is the up-and-down direction.
  • a line passing through the center of the limit mark and extending along the extending direction of the limit mark is regarded as the center line of the limit mark.
  • the intersection of the center line of the second limit mark 212 on the left side and the center line of the upper limit mark 211 is The center of the theoretical vapor deposition zone 22 in the upper left corner defines the position of the upper left corner theoretical vapor deposition zone 22; likewise, the intersection of the centerline of the second second limit mark 212 and the centerline of the lower first limit mark 211 is the lower left.
  • the position of the theoretical vapor deposition zone 22 of the corner; the intersection of the center line of the second second limit mark 212 on the right side and the center line of the upper first limit mark 211 is the position of the theoretical vapor deposition zone 22 in the upper right corner; the second limit on the right side
  • the intersection of the center line of the mark 212 and the center line of the lower first limit mark 211 is the center of the lowermost corner theoretical vapor deposition zone 22; the center line of the two first limit marks 211 and the center line of the two second limit marks 212
  • the intersection of the wires is the center of the intermediate theoretical vapor deposition zone 22.
  • the plurality of limit marks in the limit mark group may further include a third limit mark 213.
  • the third limit mark 213 is strip-shaped and extends in the second direction, and the third limit mark 213 intersects one of the first limit marks 211 to form a cross structure.
  • the position of the intermediate theoretical vapor deposition zone 22 can be determined by the two first limit marks 211 and the two second limit marks 212, or the two second limit marks 212 and the third limit mark 213 can be used. The position of the intermediate theoretical vapor deposition zone 22 is determined.
  • the display area 11 is provided with a pixel defining layer and a plurality of electrodes.
  • a plurality of pixel openings are disposed on the pixel defining layer, and the electrodes are in one-to-one correspondence with the pixel openings.
  • the pixel openings are for accommodating respective organic film layers of the organic light emitting unit. It can be understood that the electrodes are the lower electrodes of the respective light-emitting units, ie the anodes.
  • the amount of shift of the organic film layer in the pixel region is an offset of the organic film layer with respect to the pixel opening. As shown in FIG. 5 and FIG.
  • the non-display area is provided with an epitaxial film layer 23, and the epitaxial film layer 23 is provided with through holes corresponding to the limit marks 211 to 213.
  • the limit marks 211 to 213 are disposed in the through holes.
  • the epitaxial film layer 23 is disposed in the same layer as the electrodes and has the same material.
  • the limit marks 211 to 213 are disposed in the same layer as the pixel defining layer and have the same material. That is, the same material as the pixel defining layer is filled in the via hole as the stopper marks 211 to 213. It should be understood that the same layer arrangement and the same material means that the two structures can be fabricated in the same step using the same process.
  • the pixel defining layer is formed synchronously with the limit marks 211 to 213, and the epitaxial film layer is formed in synchronization with the electrodes, thereby simplifying the structure and the manufacturing process.
  • one of the epitaxial film layer 23 and the stop mark is light transmissive while the other is opaque.
  • white light can be respectively provided on one side of the display substrate, and the other side can provide excitation light for exciting the alignment pattern.
  • the image of the limit mark and the alignment pattern can be separately collected by the two daylighting lenses, thereby improving the measurement accuracy.
  • the specific method of image acquisition is introduced below, and will not be described here.
  • the epitaxial film layer 23 is opaque, and the stop marks 211 to 213 are light transmissive.
  • the material of the epitaxial film layer 23 i.e., the material of the electrode
  • the material of the limit marks 211 to 213 may include silicon oxide and/or silicon nitride or the like. Since the wet etching process used in patterning the metal film layer generates some water vapor, when the electrode and the epitaxial film layer are simultaneously formed, the epitaxial film layer 23 is caused to bulge.
  • making a via hole on the epitaxial film layer 23 can reduce the bulge, and filling the same material as the pixel defining layer in the through hole can prevent the edge of the through hole from being burred due to oxidation. Thereby, it is advantageous to perform edge detection on the limit marks 211 to 213.
  • an organic light emitting device including the above display substrate 10 is provided.
  • the display region 11 of the display substrate 10 is provided with a plurality of organic film layers, and different organic film layers may be located in different layers.
  • the display area 11 includes a plurality of pixel areas, each of which is provided with a light emitting unit, and the colors of the plurality of light emitting units may be divided into red, green, and blue.
  • the plurality of organic film layers are a plurality of film layers of the light emitting unit.
  • the plurality of organic film layers may include a red light emitting layer of each red light emitting unit, a green light emitting layer of each green light emitting unit, a blue light emitting layer of each blue light emitting unit, an electron injection layer of each light emitting unit, and the like.
  • the non-display area of the display substrate 10 is provided with a registration pattern group corresponding to the limit mark group one-to-one, and the alignment pattern group is located at a corner portion where the corresponding limit mark group is located. The alignment pattern group and the limit marker group are used together to detect a pixel offset.
  • the set of limit marks includes a plurality of limit marks for defining the positions of the plurality of theoretical vapor deposition zones 22.
  • Each of the alignment pattern groups includes a plurality of alignment patterns (the alignment patterns 31 to 35 in FIG. 7), and the plurality of alignment patterns 31 to 35 of each of the alignment pattern groups and the materials of the plurality of organic film layers are one by one correspond.
  • the plurality of alignment patterns in the alignment pattern group are in one-to-one correspondence with the plurality of theoretical vapor deposition regions 22 defined by the limit mark groups corresponding to the pair of alignment patterns.
  • the positions of the plurality of theoretical vapor deposition zones 22 defined by the plurality of limit mark groups are respectively the positions of the plurality of alignment pattern theory areas corresponding to the alignment area 20.
  • the corresponding alignment patterns 31 to 35 are also vapor-deposited to the alignment region 20, and the actual vapor deposition positions and the theoretical vapor deposition regions 22 of the alignment patterns 31 to 35 are passed.
  • the alignment pattern 31, the alignment pattern 33, and the alignment pattern 35 are aligned with the corresponding theoretical vapor deposition regions 22, indicating the organic film layer corresponding to the alignment pattern 31 in the display region 11, and alignment.
  • the organic film layer corresponding to the pattern 33 and the organic film layer corresponding to the alignment pattern 35 are not shifted during vapor deposition; the offset between the alignment pattern 32 and the upper right corner theoretical vapor deposition region 22 indicates the corresponding organic film.
  • the offset of the layer in the pixel region; the offset between the alignment pattern 34 and the lower right corner theoretical vapor deposition region 22 represents the offset of the organic film layer corresponding to the bit pattern 34 in the pixel region.
  • a display device including the above organic light emitting device.
  • the display device may be a product or component having a display function such as a mobile phone, a tablet computer, a display, a television, or the like. Since the position of the limit mark group in the display substrate can reduce the influence on the signal line and facilitate the detection of the pixel offset, the display effect of the organic light-emitting device and the display device using the display substrate is better. And it is convenient and accurate to detect the evaporation effect of the film layer.
  • a film evaporation detecting method of an organic light emitting device is provided. As shown in FIG. 4 to FIG. 8 , the vapor deposition detecting method includes:
  • each of the limit mark groups includes a plurality of limit marks for defining a plurality of theoretical vapor deposition zone positions
  • each of the alignment pattern groups includes a plurality of alignment patterns
  • each of the plurality of alignment pattern groups The alignment pattern is in one-to-one correspondence with the materials of the plurality of organic film layers; the plurality of alignment patterns in the alignment pattern group are in one-to-one correspondence with the plurality of theoretical vapor deposition regions defined by the corresponding limit mark groups.
  • Step S2 specifically includes:
  • the organic light emitting device may have one alignment region 20 or more than one alignment region 20.
  • a aligning area 20 is taken as an example for description.
  • the limit marks are strips.
  • the plurality of limit marks in each limit mark group includes at least two first limit marks 211 and two second limit marks 212.
  • the first limit mark 211 extends in the first direction
  • the second limit mark 212 extends in the second direction.
  • the non-display area of the display substrate 10 is provided with an epitaxial film layer 23.
  • the epitaxial film layer 23 is provided with through holes corresponding to the limit marks 211 to 213.
  • the limit marks 211 to 213 are disposed in the through holes.
  • the epitaxial film layer 23 is opaque, and the limit marks 211 to 213 are light transmissive.
  • the step S21 specifically includes the following steps S211 and S212 performed in each of the alignment areas 20.
  • the step S211 includes: respectively providing a first light source and a first light collecting member on both sides of the organic light emitting device, wherein the light of the first light source can pass through the epitaxial film layer 23 and the alignment patterns 31 to 35,
  • the edge position of each of the limit marks 211 to 213 is determined according to the light collected by the first light collecting member, and the edge position of each of the limit marks 211 to 213 is calculated according to the edge position of each of the limit marks 211 to 213.
  • the first light source may be disposed on a side of the display substrate 10 facing away from the organic film layer, and the first light collecting member is disposed on a side of the display substrate 10 where the organic film layer is disposed; the first light source is specifically a white light source, and the first light collection is performed.
  • the pieces acquire the images of the limit marks 211 to 213 according to the collected light, and detect the boundaries of the limit marks 211 to 213 by image gray scale recognition.
  • S212 Acquire a position of a plurality of intersection points, where the plurality of intersection points include: a plurality of intersection points formed by two first straight lines extending along the first direction and two second straight lines extending along the second direction
  • the intersection of the center line of the two first limit marks 211 and the center line of the two second limit marks 212, and the positions of the plurality of intersection points are respectively taken as the positions of the plurality of theoretical vapor deposition zones 22.
  • the two first straight lines respectively pass through the centers of the two first limit marks 211, and the two second straight lines respectively pass through the centers of the two second limit marks 212.
  • step S22 specifically includes the following steps S221 and S222:
  • the step S221 specifically includes: providing a second light source on the same side of the first light collecting member, and providing a second light collecting member on the same side of the first light source; the second light source is used to excite the alignment pattern 31 ⁇ 35 illuminating, the second light collecting component is configured to collect the light emitted by the alignment patterns 31-35; and then determining the edge position of each of the alignment patterns 31-35 according to the light collected by the second light collecting component, and The center position of the corresponding alignment patterns 31 to 35 is calculated based on the edge positions of each of the alignment patterns 31 to 35.
  • the second light source may be an ultraviolet light source, similar to the first light collecting member, and the second light collecting member may obtain an image of the alignment patterns 31-35 according to the collected light, and detect by image gray scale recognition. To the boundary of the alignment patterns 31 to 35.
  • the wavelengths of the light emitted by the first light source and the second light source are different, and the first light source and the second light source are respectively located on different sides of the organic light emitting device.
  • the first light collecting member and the second light collecting member are also located on different sides of the organic light emitting device, so that the imaging of the alignment pattern and the limit mark can be prevented from interfering with each other, thereby improving the detection accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示基板、有机发光器件及其膜层蒸镀检测方法和一种显示装置,显示基板包括显示区域和环绕显示区域的非显示区域,非显示区域中设置有至少一个限位标记组,显示区域具有多条边,相邻两条边之间形成圆倒角;非显示区域包括与显示区域的边一一相对的边框部以及与圆倒角一一相对的拐角部;限位标记组位于拐角部。该显示基板能够减少显示不良,并提高膜层蒸镀检测的准确性。

Description

显示基板、有机发光器件及膜层蒸镀检测方法、显示装置 技术领域
本公开涉及但不限于显示技术领域,具体涉及一种显示基板、有机发光器件、有机发光器件的膜层蒸镀检测方法、显示装置。
背景技术
有机电致发光(Organic Light-Emitting Device,OLED)显示装置的每个像素区中均设置有发光单元。发光单元包括多层有机膜层,各有机膜层通过蒸镀工艺形成。为了检测各有机膜层的蒸镀位置是否发生偏移,通常会在显示区域以外的区域设置对位区。图1是现有技术中的对位区的第一种设置位置示意图,其中对位区20设置在显示基板上,并位于显示区域11的两侧;图2是现有技术中的对位区的第二种设置位置示意图,其中,对位区20设置母板上相邻两个显示基板所在区10a之间的空置区;图3是对位区的结构示意图。如图3所示,对位区20中设置有多个限位标记21,多个限位标记21能够限定出多个理论蒸镀区22的中心。在向显示区蒸镀各个有机膜层的同时,还向对位区蒸镀与各有机膜层分别对应的对位图形。用对位图形与理论蒸镀位置22对位情况,来表征显示区域11中蒸镀的各层有机材料是否发生偏移。
但是,图1中的设置方式会造成显示不良。图2中的设置方式会造成后续对位图形无法准确表征显示区的有机膜层的对位情况,且将母板切割形成独立的显示基板后,无法检测显示区域中有机膜层的对位情况。
发明内容
本公开旨在至少解决现有技术中存在的技术问题之一,提出了一种显示基板、有机发光器件、有机发光器件的膜层蒸镀检测方法、显示装置,以更准确地检测显示区的有机膜层的对位情况,并减少显示不良。
为了解决上述技术问题之一,本公开提供一种显示基板,包括显示区域和环绕所述显示区域的非显示区域,其中,所述非显示区域中设置有至少一个限位标记组,所述显示区域具有多条边,相邻两条边之间形成圆倒角,所述非显示区域包括与所述显示区域的边一一相对的边框部以及与所述圆倒角相对的拐角部,并且所述限位标记组位于所述拐角部。
在一个可选实施例中,每个所述限位标记组包括多个限位标记,每个限位标记组中的多个限位标记用于限定多个理论蒸镀区的位置;并且对于任意一个限位标记组,多个所述限位标记限定的多个所述理论蒸镀区排成阵列形状。
在一个可选实施例中,对于任意一个限位标记组,多个所述限位标记和所述多个所述理论蒸镀区围成对位区,所述对位区沿所述显示区域长度方向和宽度方向的尺寸均在100μm~130μm之间。
在一个可选实施例中,所述限位标记为条形,并且对于任意一个限位标记组,所述多个限位标记至少包括两个第一限位标记和两个第二限位标记,其中,所述第一限位标记沿第一方向延伸,所述第二限位标记沿与所述第一方向交叉的第二方向延伸;两个所述第一限位标记沿所述第二方向排列,两个所述第二限位标记沿所述第一方向排列,且该两个第二限位标记位于两个所述第一限位标记中心连线的两侧。
在一个可选实施例中,所述限位标记组中的多个限位标记还包括第三限位标记,所述第三限位标记为条形且沿所述第二方向延伸,并且所述第三限位标记与其中一个所述第一限位标记相交叉。
在一个可选实施例中,所述显示区域设置有像素界定层,所述像素界定层上设置有多个像素开口,所述显示区域还设置有与像素开口对应的电极;所述非显示区域设置有外延膜层,所述外延膜层上设置有与限位标记对应的通孔,所述限位标记设置在所述通孔中;所述外延膜层与所述电极同层设置且材料相同,所述限位标记与所述像素界定层同层设置且材料相同。
在一个可选实施例中,所述外延膜层和所述限位标记中的一者 是透光的,另一者是不透光的。
相应地,本公开还提供一种有机发光器件,包括上述显示基板,其中,所述显示基板的显示区域设置有多种有机膜层,所述显示基板的非显示区域设置有与所述限位标记组对应的对位图形组,所述对位图形组位于相应的限位标记组所在的拐角部。
在一个可选实施例中,每个限位标记组包括多个限位标记,每个限位标记组中的多个限位标记用于限定多个理论蒸镀区的位置;
每个对位图形组包括多个对位图形,每个对位图形组的多个对位图形与多种有机膜层的材料对应;对于任意一个对位图形组,该对位图形组中的多个对位图形与该对位图形组所对应的限位标记组限定出的多个理论蒸镀区对应。
相应地,本公开还提供一种显示装置,包括上述有机发光器件。
相应地,本公开还提供一种有机发光器件的膜层蒸镀检测方法,包括:
提供上述有机发光器件;以及
利用限位标记组及相应的对位标记组来确定显示基板的显示区域中有机膜层的蒸镀偏移量。
在一个可选实施例中,所述利用限位标记组及相应的对位标记组来确定显示基板的显示区域中有机膜层的蒸镀偏移量的步骤包括:
对于每个限位标记组,均根据该限位标记组中的多个限位标记确定多个理论蒸镀区的位置;以及
检测每个对位图形的实际位置相对于相应理论蒸镀区的位置的偏移量,并以对应于同一种有机膜层的各对位图形的最大偏移量作为该有机膜层的蒸镀偏移量。
在一个可选实施例中,所述根据该限位标记组中的多个限位标记确定多个理论蒸镀区的位置的步骤包括在每个对位区中进行的以下步骤:
获取每个限位标记的中心位置;以及
获取多个交点的位置,所述多个交点包括:沿所述第一方向延伸的两条第一直线与沿所述第二方向延伸的两条第二直线交叉形成 的多个交点、两个第一限位标记的中心连线与两个第二限位标记的中心连线的交点,并且将所述多个交点的位置分别作为多个理论蒸镀区的位置,其中,两条第一直线分别经过两个第一限位标记的中心,两条第二直线分别经过两个第二限位标记的中心,
所述检测每个对位图形的实际位置相对于相应理论蒸镀区的位置的偏移量并以对应于同一种有机膜层的各对位图形的最大偏移量作为该有机膜层的蒸镀偏移量的步骤包括:
获取每个对位图形的中心位置;
计算每个对位图形的中心位置与相应理论蒸镀区的位置之间的偏移量。
在一个可选实施例中,所述非显示区设置有外延膜层,所述外延膜层上设置有与限位标记对应的通孔,所述限位标记设置在所述通孔中,所述电极是不透光的,所述第二膜层是透光的,
所述获取每个限位标记的中心位置的步骤包括:
分别在有机发光器件的两侧设置第一光源和第一光采集件,所述第一光源的光线能够穿过所述外延膜层和所述对位图形,以被所述第一光采集件采集;以及
根据第一光采集件采集到的光线确定每个限位标记的边缘位置,并根据每个限位标记的边缘位置计算相应限位标记的中心位置;
所述获取每个对位图形的中心位置的步骤包括:
在所述第一光采集件的同侧设置第二光源,在所述第一光源的同侧设置第二光采集件,其中,所述第二光源用于激发所述对位图形发光,所述第二光采集件用于采集所述对位图形发射的光线;以及
根据第二光采集件采集到的光线确定每个对位图形的边缘位置,并根据每个对位图形的边缘位置计算相应对位图形的中心位置。
根据本公开的实施例,显示区域的圆倒角的设置使得非显示区域的拐角部的宽度大于边框部的宽度。因此,将限位标记组设置在空间较大拐角部时,可以减小限位标记组对信号线的影响,从而减少显示不良,改善有机发光器件和显示装置的显示效果。另外,根据本公 开的实施例,限位标记组设置在显示基板上,距离显示区域较近,从而可以更准确地检测显示区域的像素偏移量,进而改善监控效果,从而进一步保证有机发光器件和显示装置的质量。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是现有技术中的对位区的第一种设置位置示意图;
图2是现有技术中的对位区的第二种设置位置示意图;
图3是图1和图2中的对位区的结构示意图;;
图4是根据本公开实施例提供的显示基板的示意图;
图5是根据本公开实施例的对位区中的各限位标记的结构和排列方式的示意图;
图6是沿图5中的B-B’线截取的剖视图;
图7是形成有对位图形的对位区的示意图;以及
图8是根据本公开实施例提供的膜层蒸镀检测方法的流程图。
其中,附图标记为:
10、显示基板;10a、显示基板所在区;11、显示区域;12、非显示区域;121、边框部;122、拐角部;20、对位区;21、限位标记;211、第一限位标记;212、第二限位标记;213、第三限位标记;22、理论蒸镀区;23、外延膜层;31~35、对位图形。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
作为本公开的一方面,提供一种显示基板,可适用于有机发光(OLED)器件。如图4所示,该显示基板包括显示区域11和环绕显示区域11的非显示区域12,显示区域11具有多条边,相邻两条 边之间形成圆倒角,如图4中,显示区域11的形状为圆角矩形;所述非显示区域12包括与显示区域11的边相对的边框部121以及与所述圆倒角相对的拐角部122,即,拐角部122朝向显示区域11中心的边形成为弧形边。所述非显示区域12中设置有至少一个限位标记组。如图5所示,每个限位标记组包括多个限位标记211~213。限位标记组位于拐角部122。
在一个示例性实施例中,显示区域11中包括多个像素区,每个像素区中设置有发光单元,每个发光单元包括多个有机膜层。限位标记组可以用于像素偏移量(Pixel Position Alignment,PPA)的检测。这里,像素偏移量定义为有机膜层的实际位置相对于像素区的偏移量。利用限位标记组来检测像素偏移量的具体方式,这里不做限定。
本领域技术人员可以理解的是,非显示区域12中设置有用于为显示区域11提供信号的信号线。因此,当限位标记组设置在非显示区域12中且与显示区域11的边相邻时(即,图1中所示的情况),限位标记组会占用一定的宽度。在边框宽度一定的情况下,需要减小布线区域的宽度,导致信号线电阻增大,进而引起显示不均匀。当限位标记组设置在母板中相邻两个显示基板所在区10a之间的空置区时(即,如图2所示的情况),一方面,在进行母板切割之后,限位标记组与显示基板10分离,而无法检测显示区域11中的像素偏移量;另一方面,由于工艺条件的限制,限位标记组距离显示区域11越远,所检测出的偏移量与显示区中实际的像素偏移量相差越大。因此,即使在母板切割之前检测显示区域11中的像素偏移量,也无法对像素偏移量进行准确判断。
而在本公开的显示基板中,显示区域11的圆倒角的设置使得非显示区域12的拐角部122的宽度d1大于边框部121的宽度d2。因此,将限位标记组设置在空间较大的拐角部122时,可以减小限位标记组对信号线的影响,从而减少显示不良。另外,与图2的设置方式相比,本公开的显示基板中的限位标记组设置在显示基板10上,距离显示区域11较近,从而可以更准确地检测显示区域11的像素偏移量,进而提高膜层蒸镀检测的准确性。
在本公开实施例的附图中,以设置一个限位标记组为例来进行说明。当然,可以理解的是,也可以设置多个限位标记组。在一个可选实施例中,每个拐角部122最多设置一个限位标记组。也就是说,当设置多个限位标记组时,不同的限位标记组位于不同的拐角部,以防止拐角部122被限位标记组占用过多布线的空间而影响显示效果。
具体地,如图5所示,每个限位标记组包括多个限位标记211~213,每个限位标记组中的多个限位标记211~213用于限定多个理论蒸镀区的位置。对于任意一个限位标记组,多个所述限位标记限定的多个理论蒸镀区22排成阵列形状。即,多个理论蒸镀区22排列成多行多列。多个限位标记及其限定的多个理论蒸镀区22围成对位区20。多个理论蒸镀区22排成多行多列,从而有利于将对位区20设置为方形或接近方形,以便于将对位区20设置在拐角部122。
需要说明的是,上述理论蒸镀区22是指,在向显示区域11的各像素区中蒸镀有机膜层时,在有机膜层位置准确的情况下,相应的对位图形所在的区域,其中,所述对位图形为用于监控像素偏移量的图形。具体地,在向显示区域11蒸镀有机膜层(例如,红色发光层)时,为了监控有机膜层的蒸镀位置是否偏移目标像素区,在掩膜板上设置对位孔和蒸镀孔。对位孔用于与理论蒸镀区22对正,蒸镀孔用于与待蒸镀有机膜层的像素区对正,且对位孔与各蒸镀孔之间的相对位置和理论蒸镀区22与各待蒸镀有机膜层的像素区之间的相对位置相同。按照这种方式,当有机材料经过对位孔蒸镀至理论蒸镀区22而形成对位图形时,经过蒸镀孔的有机材料能够准确地形成在待蒸镀有机材料的像素区中。这样,可以以每个对位图形与理论蒸镀区22之间的偏移量来表示显示区域11中相应的有机膜层在像素区中的偏移量(即上述像素偏移量)。对于如何利用多个限位标记来限定多个理论蒸镀区22的位置,本公开不作限定。例如,限位标记为条形,两个延伸方向交叉的限位标记所在直线的交叉位置即为一个对位图形的理论位置。
目前,图1中的对位区20的面积较大(通常在30000μm 2左右),从而占用较多的布线空间。而如果对位区20的尺寸过小,多个理论 蒸镀区22彼此距离较近。这样,在形成对位图形后,难以界定对位图形的边界,从而影响监控效果。为此,在本公开实施例中的对位区20沿显示区域11长度方向和宽度方向的尺寸均在100μm~130μm之间,从而既可以减小在拐角部122的占用空间,又可以清楚地界定对位图形的边界。具体地,对位区20沿显示区域11长度方向(图4和图5中的上下方向)的尺寸为108.38μm,沿显示区域11宽度方向(图4和图5中的左右方向)的尺寸为113μm。在本公开实施例中,对位区20的面积在12000μm 2左右,明显小于现有技术中对位区20的面积。因此,在本实施例中,对位区20更容易设置在拐角部122,从而减小对布线空间的占用,减小对信号线的影响。
所述限位标记组中各限位标记的结构和排列方式如图5所示,其中,限位标记为条形。对于任意一个限位标记组,该限位标记组中的多个限位标记至少包括两个第一限位标记211和两个第二限位标记212。第一限位标记211沿第一方向延伸,第二限位标记212沿与所述第一方向交叉的第二方向延伸。两个第一限位标记211沿所述第二方向排列,两个第二限位标记212沿所述第一方向排列,且该两个第二限位标记212位于两个第一限位标记211中心连线的两侧。
具体地,所述第一方向与所述第二方向垂直,以使多个限位标记以及多个理论蒸镀区22集中。在图5中,例如,第一方向为左右方向,第二方向为上下方向。将经过限位标记中心且沿限位标记延伸方向延伸的直线视为该限位标记的中线,那么,左侧第二限位标记212的中线与上方第一限位标记211的中线的交点为左上角的理论蒸镀区22的中心,从而限定了左上角理论蒸镀区22的位置;同样,左侧第二限位标记212的中线与下方第一限位标记211的中线的交点为左下角的理论蒸镀区22的位置;右侧第二限位标记212的中线与上方第一限位标记211的中线的交点为右上角的理论蒸镀区22的位置;右侧第二限位标记212的中线与下方第一限位标记211的中线的交点为右下角理论蒸镀区22的中心;两个第一限位标记211的中线连线与两个第二限位标记212的中线连线的交点为中间理论蒸镀区22的中心。
进一步地,所述限位标记组中的多个限位标记还可以包括第三限位标记213。第三限位标记213为条形且沿所述第二方向延伸,第三限位标记213与其中一个第一限位标记211相交叉,以形成十字结构。这样,既可以由两个第一限位标记211与两个第二限位标记212确定中间理论蒸镀区22的位置,也可以由两个第二限位标记212与第三限位标记213确定中间理论蒸镀区22的位置。
进一步地,显示区域11设置有像素界定层和多个电极。所述像素界定层上设置有多个像素开口,电极与像素开口一一对应。所述像素开口用于容纳有机发光单元的各个有机膜层。可以理解的是,所述电极为相应发光单元的下电极,即阳极。上述有机膜层在像素区中的偏移量为有机膜层相对于像素开口的偏移量。如图5和图6所示,所述非显示区设置有外延膜层23,外延膜层23上设置有与限位标记211~213一一对应的通孔。限位标记211~213设置在所述通孔中。外延膜层23与所述电极同层设置且材料相同。限位标记211~213与所述像素界定层同层设置且材料相同。即,在通孔中填充与像素界定层相同的材料作为限位标记211~213。应当理解的是,所述同层设置且材料相同,是指两个结构可以在同一步骤中利用同一工艺制作。在显示基板的制作过程中,像素界定层与限位标记211~213同步制作,外延膜层与电极同步形成,从而可以简化结构和制作工艺。
在一个实施例中,外延膜层23和所述限位标记中的一者是透光的,而另一者是不透光的。这样可以在后续捕捉限位标记和对位图形的图像以检测像素偏移量时,可以分别在显示基板的一侧提供白光,另一侧提供激发对位图形发光的激发光。这样,可以通过两个采光镜头分别采集限位标记和对位图形的图像,从而提高测量精度。图像采集的具体方式在下文介绍,这里先不赘述。
在一个示例性实施例中,外延膜层23是不透光的,而限位标记211~213是透光的。外延膜层23的材料(即,电极的材料)可以包括金属等反射材料,从而使得显示区域11的发光单元形成顶发光结构。限位标记211~213的材料可以包括氧化硅和/或氮化硅等。由于在对金属膜层进行构图时采用的湿法刻蚀工艺会产生一些水汽,因此 在同步制作电极和外延膜层时,会导致外延膜层23出现鼓包。相比之下,在本公开中,在外延膜层23上制作通孔可以减少鼓包,并且,将与像素界定层相同的材料填充在通孔中,可以防止通孔边缘因氧化而产生毛刺,从而有利于对限位标记211~213进行边缘检测。
作为本公开的另一方面,提供一种有机发光器件,包括上述显示基板10,显示基板10的显示区域11设置有多种有机膜层,不同的有机膜层可以位于不同的层。具体地,显示区域11包括多个像素区,每个像素区设置有发光单元,多个发光单元的颜色可以分为红、绿、蓝。所述多种有机膜层为发光单元的多种膜层。例如,所述多种有机膜层可以包括各个红色发光单元的红色发光层、各绿色发光单元的绿色发光层、各蓝色发光单元的蓝色发光层、各发光单元的电子注入层等。显示基板10的非显示区域设置有与限位标记组一一对应的对位图形组,对位图形组位于相应限位标记组所在的拐角部。所述对位图形组和所述限位标记组共同用于检测像素偏移量。
在一个示例性实施例中,限位标记组包括多个限位标记,该多个限位标记用于限定多个理论蒸镀区22的位置。每个对位图形组包括多个对位图形(图7中的对位图形31~35),每个对位图形组的多个对位图形31~35与多种有机膜层的材料一一对应。对于任意一个对位图形组,该对位图形组中的多个对位图形与该对位图形组所对应的限位标记组限定出的多个理论蒸镀区22一一对应。即,在对位区20中,多个限位标记组所限定的多个理论蒸镀区22的位置分别为该对位区20所对应的多个对位图形理论所在区的位置。在向显示基板上蒸镀各种有机膜层的同时,还向对位区20蒸镀相应的对位图形31~35,通过对位图形31~35的实际蒸镀位置与理论蒸镀区22的位置之间的偏移量来表征相应的有机膜层与像素区之间的偏移量。如图7中,对位图形31、对位图形33和对位图形35均与相应的理论蒸镀区22对正,表明显示区域11中与对位图形31对应的有机膜层、与对位图形33对应的有机膜层、与对位图形35对应的有机膜层在蒸镀时均未发生偏移;对位图形32与右上角理论蒸镀区域22之间的偏移量表示相应有机膜层在像素区中的偏移量;对位图形34与右下角理 论蒸镀区22之间的偏移量表示对位图形34所对应的有机膜层在像素区中的偏移量。
作为本公开的再一方面,提供一种显示装置,包括上述有机发光器件。所述显示装置可以为手机、平板电脑、显示器、电视机等具有显示功能的产品或部件。由于显示基板中限位标记组的设置位置能够减少对信号线的影响,且有利于对像素偏移量的检测,因此,采用上述显示基板的有机发光器件、以及显示装置的显示效果更好,且能够方便准确地检测膜层蒸镀效果。
作为本公开的又一方面,提供一种有机发光器件的膜层蒸镀检测方法,结合图4至图8所示,蒸镀检测方法包括:
S1、提供上述有机发光器件;以及
S2、利用限位标记组及相应的对位标记组来确定显示基板的显示区域中有机膜层的蒸镀偏移量(即,上述像素偏移量)。
如上所述,每个限位标记组包括用于限定多个理论蒸镀区位置的多个限位标记,每个对位图形组包括多个对位图形,每个对位图形组的多个对位图形与多种有机膜层的材料一一对应;对位图形组中的多个对位图形与相应限位标记组限定出的多个理论蒸镀区一一对应。步骤S2具体包括:
S21、对于每个限位标记组,均根据该限位标记组中的多个限位标记确定多个理论蒸镀区22的位置;以及
S22、检测对位图形31~35的实际位置相对于相应理论蒸镀区22的位置的偏移量,并以对应于同一种有机膜层的各对位图形的最大偏移量表征该有机膜层的蒸镀偏移量(即,上述像素偏移量)。
有机发光器件可以具有一个对位区20也可以具有一个以上的对位区20。在本公开的实施例中,以一个对位区20为例进行说明。这种情况下,可以具有一个对位图形组,每种有机膜层的蒸镀偏移量即为与该有机膜层对应的对位图形的偏移量。
如上所述,限位标记为条形。每个限位标记组中的多个限位标记至少包括两个第一限位标记211和两个第二限位标记212。第一限位标记211沿第一方向延伸,第二限位标记212沿第二方向延伸。显 示基板10的非显示区设置有外延膜层23。外延膜层23上设置有与限位标记211~213一一对应的通孔。限位标记211~213设置在所述通孔中。外延膜层23是不透光的,限位标记211~213是透光的。这种情况下,所述步骤S21具体包括在每个对位区20中进行的以下步骤S211和S212。
S211、获取每个限位标记211~213的中心位置。具体地,该步骤S211包括:分别在有机发光器件的两侧设置第一光源和第一光采集件,所述第一光源的光线能够穿过外延膜层23和对位图形31~35,以被所述第一光采集件采集;之后,根据第一光采集件采集到的光线确定每个限位标记211~213的边缘位置,并根据每个限位标记211~213的边缘位置计算相应限位标记211~213的中心位置。具体地,第一光源可以设置在显示基板10的背离有机膜层的一侧,第一采光件设置在显示基板10设置有机膜层的一侧;第一光源具体为白光光源,第一光采集件根据采集的光线获取限位标记211~213的图像,并通过图像灰度识别,检测到限位标记211~213的边界。
S212、获取多个交点的位置,所述多个交点包括:沿所述第一方向延伸的两条第一直线与沿所述第二方向延伸的两条第二直线交叉形成的多个交点、两个第一限位标记211的中心连线与两个第二限位标记212的中心连线的交点,并且将所述多个交点的位置分别作为多个理论蒸镀区22的位置,其中,上述两条第一直线分别经过两个第一限位标记211的中心,上述两条第二直线分别经过两个第二限位标记212的中心。
上述步骤S22具体包括以下步骤S221和S222:
S221、获取每个对位图形31~35的中心位置。该步骤S221具体包括:在所述第一光采集件的同侧设置第二光源,在所述第一光源的同侧设置第二光采集件;所述第二光源用于激发对位图形31~35发光,所述第二光采集件用于采集对位图形31~35发射的光线;之后,根据第二光采集件采集到的光线确定每个对位图形31~35的边缘位置,并根据每个对位图形31~35的边缘位置计算相应对位图形31~35的中心位置。在一个实施例中,第二光源可以为紫外光源,与第一光 采集件类似,第二光采集件可以根据采集的光线获取对位图形31~35的图像,并通过图像灰度识别,检测到对位图形31~35的边界。
S222、计算每个对位图形31~35的中心位置与相应理论蒸镀区22的位置(即步骤S212中获取的交点)之间的偏移量。
根据本公开的实施例,在获取对位图形中心和限位标记中心时,第一光源和第二光源发出的光线波长不同,且第一光源和第二光源分别位于有机发光器件的不同侧,第一光采集件和第二光采集件也位于有机发光器件的不同侧,这样可以防止对位图形和限位标记的成像相互干扰,从而提高检测准确性。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (14)

  1. 一种显示基板,包括显示区域和环绕所述显示区域的非显示区域,其中,
    所述非显示区域中设置有至少一个限位标记组,
    所述显示区域具有多条边,相邻两条边之间形成圆倒角,
    所述非显示区域包括与所述显示区域的边相对的边框部以及与所述圆倒角相对的拐角部,并且
    所述限位标记组位于所述拐角部。
  2. 根据权利要求1所述的显示基板,其中,
    每个所述限位标记组包括多个限位标记,每个限位标记组中的多个限位标记用于限定多个理论蒸镀区的位置;并且
    对于任意一个限位标记组,多个所述限位标记限定的多个所述理论蒸镀区排成阵列形状。
  3. 根据权利要求2所述的显示基板,其中,
    对于任意一个限位标记组,多个所述限位标记和所述多个所述理论蒸镀区围成对位区,所述对位区沿所述显示区域长度方向和宽度方向的尺寸均在100μm~130μm之间。
  4. 根据权利要求2所述的显示基板,其中,
    所述限位标记为条形,并且
    对于任意一个限位标记组,所述多个限位标记至少包括两个第一限位标记和两个第二限位标记,其中,所述第一限位标记沿第一方向延伸,所述第二限位标记沿与所述第一方向交叉的第二方向延伸;两个所述第一限位标记沿所述第二方向排列,两个所述第二限位标记沿所述第一方向排列,且该两个第二限位标记位于两个所述第一限位标记中心连线的两侧。
  5. 根据权利要求4所述的显示基板,其中,
    所述限位标记组中的多个限位标记还包括第三限位标记,所述第三限位标记为条形且沿所述第二方向延伸,并且
    所述第三限位标记与其中一个所述第一限位标记相交叉。
  6. 根据权利要求2所述的显示基板,其中,
    所述显示区域设置有像素界定层,所述像素界定层上设置有多个像素开口,所述显示区域还设置有与像素开口对应的电极;
    所述非显示区域设置有外延膜层,所述外延膜层上设置有与限位标记对应的通孔,所述限位标记设置在所述通孔中;
    所述外延膜层与所述电极同层设置且材料相同,所述限位标记与所述像素界定层同层设置且材料相同。
  7. 根据权利要求6所述的显示基板,其中,
    所述外延膜层和所述限位标记中的一者是透光的,另一者是不透光的。
  8. 一种有机发光器件,包括权利要求1至7中任意一项所述的显示基板,其中,
    所述显示基板的显示区域设置有多种有机膜层,所述显示基板的非显示区域设置有与所述限位标记组对应的对位图形组,所述对位图形组位于相应的限位标记组所在的拐角部。
  9. 根据权利要求8所述的有机发光器件,其中,
    每个限位标记组包括多个限位标记,每个限位标记组中的多个限位标记用于限定多个理论蒸镀区的位置;
    每个对位图形组包括多个对位图形,每个对位图形组的多个对位图形与多种有机膜层的材料对应;
    对于任意一个对位图形组,所述对位图形组中的多个对位图形与该对位图形组所对应的限位标记组限定出的多个理论蒸镀区对应。
  10. 一种显示装置,包括权利要求8或9所述的有机发光器件。
  11. 一种有机发光器件的膜层蒸镀检测方法,包括:
    提供权利要求8或9所述的有机发光器件;
    利用限位标记组及相应的对位标记组来确定显示基板的显示区域中有机膜层的蒸镀偏移量。
  12. 根据权利要求11所述的膜层蒸镀检测方法,其中,在有机发光器件为权利要求9所述的有机发光器件的情况下,所述利用限位标记组及相应的对位标记组来确定显示基板的显示区域中有机膜层的蒸镀偏移量的步骤包括:
    对于每个限位标记组,均根据该限位标记组中的多个限位标记确定多个理论蒸镀区的位置;以及
    检测每个对位图形的实际位置相对于相应理论蒸镀区的位置的偏移量,并以对应于同一种有机膜层的各对位图形的最大偏移量作为该有机膜层的蒸镀偏移量。
  13. 根据权利要求12所述的膜层蒸镀检测方法,其中,在所述有机发光器件的显示基板为权利要求4所述的显示基板的情况下,所述根据该限位标记组中的多个限位标记确定多个理论蒸镀区的位置的步骤包括在每个对位区中进行的以下步骤:
    获取每个限位标记的中心位置;以及
    获取多个交点的位置,所述多个交点包括:沿所述第一方向延伸的两条第一直线与沿所述第二方向延伸的两条第二直线交叉形成的多个交点、两个第一限位标记的中心连线与两个第二限位标记的中心连线的交点,并且将所述多个交点的位置分别作为多个理论蒸镀区的位置,其中,两条第一直线分别经过两个第一限位标记的中心,两条第二直线分别经过两个第二限位标记的中心,
    所述检测每个对位图形的实际位置相对于相应理论蒸镀区的位 置的偏移量并以对应于同一种有机膜层的各对位图形的最大偏移量作为该有机膜层的蒸镀偏移量的步骤包括:
    获取每个对位图形的中心位置;以及
    计算每个对位图形的中心位置与相应理论蒸镀区的位置之间的偏移量。
  14. 根据权利要求13所述的检测方法,其中,所述非显示区设置有外延膜层,所述外延膜层上设置有与限位标记对应的通孔,所述限位标记设置在所述通孔中,所述电极是不透光的,所述第二膜层是透光的,
    所述获取每个限位标记的中心位置的步骤包括:
    分别在有机发光器件的两侧设置第一光源和第一光采集件,所述第一光源的光线能够穿过所述外延膜层和所述对位图形,以被所述第一光采集件采集;以及
    根据第一光采集件采集到的光线确定每个限位标记的边缘位置,并根据每个限位标记的边缘位置计算相应限位标记的中心位置;
    所述获取每个对位图形的中心位置的步骤包括:
    在所述第一光采集件的同侧设置第二光源,在所述第一光源的同侧设置第二光采集件,其中,所述第二光源用于激发所述对位图形发光,所述第二光采集件用于采集所述对位图形发射的光线;以及
    根据第二光采集件采集到的光线确定每个对位图形的边缘位置,并根据每个对位图形的边缘位置计算相应对位图形的中心位置。
PCT/CN2018/099160 2017-11-15 2018-08-07 显示基板、有机发光器件及膜层蒸镀检测方法、显示装置 WO2019095734A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/333,042 US11502137B2 (en) 2017-11-15 2018-08-07 Display substrate, organic light emitting device and display device with vapor-deposited organic film layers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711130276.1A CN107742623B (zh) 2017-11-15 2017-11-15 显示基板、有机发光器件及膜层蒸镀检测方法、显示装置
CN201711130276.1 2017-11-15

Publications (1)

Publication Number Publication Date
WO2019095734A1 true WO2019095734A1 (zh) 2019-05-23

Family

ID=61234678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099160 WO2019095734A1 (zh) 2017-11-15 2018-08-07 显示基板、有机发光器件及膜层蒸镀检测方法、显示装置

Country Status (3)

Country Link
US (1) US11502137B2 (zh)
CN (1) CN107742623B (zh)
WO (1) WO2019095734A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113299707A (zh) * 2021-05-12 2021-08-24 深圳市华星光电半导体显示技术有限公司 显示面板母板及显示面板母板的制作方法
JP7477067B2 (ja) 2020-05-09 2024-05-01 京東方科技集團股▲ふん▼有限公司 表示パネル及びその製作方法、表示装置及びその製作方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107742623B (zh) 2017-11-15 2024-01-23 京东方科技集团股份有限公司 显示基板、有机发光器件及膜层蒸镀检测方法、显示装置
CN110797347B (zh) * 2019-10-12 2022-02-22 武汉华星光电技术有限公司 阵列基板和显示面板
CN111509023B (zh) * 2020-05-06 2022-05-20 京东方科技集团股份有限公司 显示面板和显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005215313A (ja) * 2004-01-29 2005-08-11 Casio Comput Co Ltd 液晶表示パネル用基板及びそれを用いた液晶表示パネル
US20090091701A1 (en) * 2007-10-04 2009-04-09 Seiko Epson Corporation Electro-optical device and electronic apparatus
CN105549320A (zh) * 2016-01-05 2016-05-04 京东方科技集团股份有限公司 一种对位标记结构、掩模板、基板以及对位方法
CN107153492A (zh) * 2017-07-24 2017-09-12 厦门天马微电子有限公司 阵列基板和触控显示面板
CN107742623A (zh) * 2017-11-15 2018-02-27 京东方科技集团股份有限公司 显示基板、有机发光器件及膜层蒸镀检测方法、显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216425A (ja) * 2005-02-04 2006-08-17 Tohoku Pioneer Corp 表示パネルの製造方法
JP5309854B2 (ja) * 2008-10-02 2013-10-09 セイコーエプソン株式会社 表示装置および電子機器
JP2016122513A (ja) * 2014-12-24 2016-07-07 株式会社Joled 有機el表示パネル及び有機el表示パネルの製造方法
KR102632617B1 (ko) * 2016-08-08 2024-02-02 삼성디스플레이 주식회사 마스크 조립체, 이를 이용한 표시 장치의 제조장치, 이를 이용한 표시 장치의 제조방법 및 표시 장치
CN107315501B (zh) * 2017-06-30 2020-07-03 上海中航光电子有限公司 一种显示面板和显示装置
CN207338364U (zh) * 2017-11-15 2018-05-08 京东方科技集团股份有限公司 显示基板、有机发光器件及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005215313A (ja) * 2004-01-29 2005-08-11 Casio Comput Co Ltd 液晶表示パネル用基板及びそれを用いた液晶表示パネル
US20090091701A1 (en) * 2007-10-04 2009-04-09 Seiko Epson Corporation Electro-optical device and electronic apparatus
CN105549320A (zh) * 2016-01-05 2016-05-04 京东方科技集团股份有限公司 一种对位标记结构、掩模板、基板以及对位方法
CN107153492A (zh) * 2017-07-24 2017-09-12 厦门天马微电子有限公司 阵列基板和触控显示面板
CN107742623A (zh) * 2017-11-15 2018-02-27 京东方科技集团股份有限公司 显示基板、有机发光器件及膜层蒸镀检测方法、显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7477067B2 (ja) 2020-05-09 2024-05-01 京東方科技集團股▲ふん▼有限公司 表示パネル及びその製作方法、表示装置及びその製作方法
CN113299707A (zh) * 2021-05-12 2021-08-24 深圳市华星光电半导体显示技术有限公司 显示面板母板及显示面板母板的制作方法

Also Published As

Publication number Publication date
CN107742623A (zh) 2018-02-27
US11502137B2 (en) 2022-11-15
US20210351249A1 (en) 2021-11-11
CN107742623B (zh) 2024-01-23

Similar Documents

Publication Publication Date Title
WO2019095734A1 (zh) 显示基板、有机发光器件及膜层蒸镀检测方法、显示装置
US20200119278A1 (en) Substrate for use in manufacturing display device and method for forming element on substrate
CN108362712B (zh) 一种基板母板及其检测方法
US11268184B2 (en) Mask frame assembly
US9946109B2 (en) Color filter and method for preparing the same, method for preparing alignment mark for spacer, and method for detecting position accuracy
WO2017114098A1 (zh) 显示基板母板及其制造和检测方法以及显示面板母板
US20190235288A1 (en) Alignment detection method and display device
JP2010008455A (ja) 表示パネル及びその製造方法
US8987759B2 (en) Substrate for a display device
CN207338364U (zh) 显示基板、有机发光器件及显示装置
JP4972278B2 (ja) レチクル及び半導体装置の製造方法
CN102437068B (zh) 孔量测图形以及孔量测方法
WO2014146369A1 (zh) 彩膜基板及其制作方法、显示面板及显示设备
KR20060125476A (ko) 검사 방법 및 이것을 사용한 액정표시장치의 제조 방법
US8193649B2 (en) Substrate for a display panel, and a display panel having the same
KR20200026371A (ko) 표시패널의 결함검사장치
CN115291446A (zh) 阵列基板、显示面板及显示装置
KR102593308B1 (ko) 표시 장치
CN112180691A (zh) 拼接芯片的线上监控方法
JP4435002B2 (ja) 精度測定パターン、表示パネルの製造方法および表示装置の製造方法
JP2000180125A (ja) カラーフィルターの画素幅測定方法
JP2006276747A (ja) パターン形成方法及び液晶表示装置の製造方法
CN113871402A (zh) 阵列基板及显示面板
WO2016002730A1 (ja) 光学表示デバイスの検査方法および光学部材のパターン認識方法
JP2004212252A (ja) マーク位置検出装置、マーク位置検出方法、重ね合わせ測定装置、および、重ね合わせ測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31.08.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18879781

Country of ref document: EP

Kind code of ref document: A1