WO2019095648A1 - 一种开关电源模组及其封装方法 - Google Patents

一种开关电源模组及其封装方法 Download PDF

Info

Publication number
WO2019095648A1
WO2019095648A1 PCT/CN2018/086094 CN2018086094W WO2019095648A1 WO 2019095648 A1 WO2019095648 A1 WO 2019095648A1 CN 2018086094 W CN2018086094 W CN 2018086094W WO 2019095648 A1 WO2019095648 A1 WO 2019095648A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
magnetic core
switching power
electrode
electrode portion
Prior art date
Application number
PCT/CN2018/086094
Other languages
English (en)
French (fr)
Inventor
王文杰
陆达富
Original Assignee
深圳顺络电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳顺络电子股份有限公司 filed Critical 深圳顺络电子股份有限公司
Publication of WO2019095648A1 publication Critical patent/WO2019095648A1/zh
Priority to US15/931,609 priority Critical patent/US11657947B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • H01F27/292Surface mounted devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Definitions

  • the invention relates to a switching power supply module and a method of the same.
  • Switching power supplies have the advantages of small size and high power density. With the popularization of portable electronic devices such as smart phones, sports cameras and Bluetooth headsets, the development of mobile devices is becoming more and more rapid. In order to cater to the trend of thin and light, the switching power supply is smaller and higher. Power density has always been the constant pursuit of the industry.
  • switching power supply modules are packaged in a discrete package, that is, peripheral components such as a DC-DC chip and an inductor are separately soldered at different positions of the pad and packaged together, since the power inductor is generally bulky, resulting in an overall package.
  • the area is large, which reduces the overall power density of the switching power supply module.
  • the main object of the present invention is to provide a one-piece packaged switching power supply module for obtaining a smaller package volume and higher power density.
  • a switching power supply module includes a power inductor and a switching power supply chip, the power inductor includes a magnetic core and an L-shaped metal terminal electrode soldered to both ends of the magnetic core, and the switching power supply chip includes a package body, a bare chip in the package body, and a bottom pad of the bare chip; the L-shaped metal terminal electrode is composed of a first electrode portion and a second electrode portion that are perpendicular to each other, the first electrode portion is soldered to the magnetic core and at right angles to the magnetic core, and the second electrode portion is The first electrode portion extends in parallel to the central portion of the magnetic core; the bare chip and the package thereof are commonly embedded between the first and second electrode portions and the magnetic core, and the bottom pad is abutted on the two The second electrode portions are insulated from the second electrode portion, and the soldering surface of the bottom pad is flush with the solder surface of the second electrode portion.
  • the above-mentioned integrated package switching power supply module has the following beneficial effects compared with the existing discrete package module: by placing an inductor on top of the chip, the chip is nested in the core of the power inductor and In the gap between the terminal electrodes, the volume occupied by the entire module on the PCB is almost the same as the volume occupied by a single power inductor.
  • the volume is much smaller and the power density is much higher. In other words, the larger size of the inductor can be selected while maintaining the total volume of the module.
  • the inductance and rated current of the corresponding inductor can be better.
  • the thickness is sacrificed, the length and width are small. The increase in the above is enough to compensate for the performance loss caused by the thickness reduction and even the surplus. Therefore, the power supply is higher under the premise that the total volume of the module is constant.
  • the invention further provides a packaging method for a switching power supply module, comprising:
  • the switching power supply chip includes a package body, a bare chip in the package body, and a bottom pad of the bare chip;
  • Two L-shaped electrode sheets are respectively soldered to both ends of the magnetic core, and when soldered, the first electrode portion and the core end portion are welded by the first electrode portion, so that the first electrode portion and the magnetic core are at right angles to each other, and the second electrode portion is simultaneously Parallelly extending from the first electrode portion toward the central portion of the magnetic core to obtain a power inductor having an L-shaped metal terminal electrode;
  • the switching power supply chip and the power inductor are nested with each other such that the bare chip and the package thereof are commonly embedded between the first and second electrode portions and the magnetic core, and the bottom pad is Connected between the two second electrode portions and insulated from the second electrode portion, and the soldering surface of the bottom pad is flush with the soldering surface of the second electrode portion.
  • FIG. 1 is a schematic diagram of a power inductor for an integrated package of a switching power supply module
  • FIG. 2 is a schematic diagram of a switching power supply chip of a one-piece packaged switching power supply module
  • FIG. 3 is a schematic diagram of an integrated switching power supply module formed by nesting and packaging the power inductor of FIG. 1 and the switching power supply chip of FIG. 2;
  • FIG. 4 is a schematic view of the bottom welding surface of the switching power supply module shown in FIG. 3.
  • the switching power supply module includes a power inductor 10 and a switching power supply chip 20.
  • the power inductor 10 includes a magnetic core 100 and L-shaped metal terminal electrodes 10a, 10b soldered to both ends of the magnetic core 100.
  • the switching power supply chip 20 includes a package body 21 and a package. The bare chip 22 in the body and the bottom pad 23 of the bare chip.
  • the two L-shaped metal terminal electrodes are the same, and one of them is taken as an example: the L-shaped metal terminal electrode 10b is composed of the first electrode portion 10b1 and the second electrode portion 10b2 which are perpendicular to each other, and the first electrode portion 10b1 and the magnetic core 100 One end is welded, and the first electrode portion 10b1 and the magnetic core 100 are at right angles to each other, and the second electrode portion 10b2 extends in parallel from the first electrode portion toward the central portion of the magnetic core 100.
  • the bare chip 22 and the package body 21 are commonly embedded between the first and second electrode portions and the magnetic core, and the bottom pad 23 abuts against the two second electrode portions 10a2 and 10b2.
  • the second electrode portion is insulated from each other, and the soldering surface of the bottom pad 23 is flush with the soldering surface of the second electrode portion.
  • the magnetic core of the power inductor is in the shape of a cube, which can be considered as a magnetic core in a chip inductor, which can adopt a metric 2520 size, that is, a thickness of 0.5 mm.
  • the L-shaped metal terminal electrode of the power inductor may be a copper piece having a thickness of 0.2 to 0.25 mm; and the size of the bare chip may be 2.0*2.0*0.3 mm.
  • the dimensions herein are merely examples, and it should be noted that the dimensions do not constitute a limitation of the invention.
  • the package body of the bare chip may be a resin package whose outer shape contour is adapted to the gap between the L-shaped metal terminal electrode and the magnetic core, so that the bare chip is embedded therein.
  • the package 21 can just be placed into the gap.
  • the first electrode portion has a welding auxiliary structure on the core welding portion, for example, some recessed portions, that is, not too deep grooves, the shape of which is not limited, and the auxiliary structure can be accommodated during welding.
  • a certain amount of solder makes it possible to make the soldering between the end of the core and the first electrode portion stronger.
  • the solder layer between the two ends of the magnetic core and the L-shaped metal terminal electrode is a nickel layer 30.
  • the bare chip 22 and its bottom pad 23 have been connected by a wire.
  • Another embodiment of the present invention provides a method for packaging the foregoing switching power supply module, as follows:
  • a magnetic core of a chip inductor, two identical L-shaped metal electrode sheets, and a switching power supply chip are provided, wherein the L-shaped metal electrode sheet is composed of a first electrode portion and a second electrode portion that are perpendicular to each other.
  • the switching power supply chip includes a package body, a bare chip in the package body, and a bottom pad of the bare chip;
  • two L-shaped electrode sheets are respectively soldered to both ends of the magnetic core, and when soldered, the first electrode portion and the core end portion are welded, so that the first electrode portion and the magnetic core are at right angles to each other, and the second The electrode portion extends in parallel from the first electrode portion toward the central portion of the magnetic core to obtain a power inductor having an L-shaped metal terminal electrode;
  • the switching power supply chip and the power inductor are nested with each other such that the bare chip and the package thereof are commonly embedded between the first and second electrode portions and the magnetic core, and at the same time
  • the bottom pad abuts between the second electrode portions and is insulated from the second electrode portion, and the soldering surface of the bottom pad is flush with the soldering surface of the second electrode portion.
  • the soldering faces 1a, 1b of the second electrode portion and the plurality of soldering sites 2, 3, 4 of the chip bottom pad are visible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Dc-Dc Converters (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

一种开关电源模组及其封装方法,包括功率电感(10)和开关电源芯片(20),功率电感包括磁芯(100)和焊接于磁芯两端的L型金属端电极(10a、10b),开关电源芯片包括封装体(21)、封装体内的裸芯片(22)以及裸芯片的底部焊盘(23);L型金属端电极由相互垂直的第一电极部(10b1)和第二电极部(10b2)构成,第一电极部焊接于磁芯并与磁芯互成直角,第二电极部由第一电极部向磁芯中部方向平行延伸;裸芯片及其封装体共同内嵌于第一、第二电极部和磁芯之间,同时底部焊盘抵接于两第二电极部之间且与第二电极部绝缘,并且底部焊盘的焊接面与第二电极部的焊接面齐平。封装方法即是将带有L型金属端电极的功率电感与开关电源芯片嵌套封装。

Description

一种开关电源模组及其封装方法 技术领域
本发明涉及开关电源模组及其一体式封装的方法。
背景技术
开关电源有着体积小、功率密度高的优点,随着智能手机、运动相机、蓝牙耳机等便携式电子设备的普及更是发展迅猛,为了迎合轻薄化的市场趋势,开关电源的更小尺寸以及更高功率密度始终是业界不变的追求。
目前的开关电源模组,其封装方法大多属于分立式封装,即DC-DC芯片和电感等外围元器件分别焊在焊盘不同位置再一起封装,由于功率电感体积一般较大,导致总体封装面积很大,从而降低了开关电源模组的整体功率密度。
以上背景技术内容的公开仅用于辅助理解本发明的发明构思及技术方案,其并不必然属于本专利申请的现有技术,在没有明确的证据表明上述内容在本专利申请的申请日已经公开的情况下,上述背景技术不应当用于评价本申请的新颖性和创造性。
发明内容
本发明的主要目的在于提出一种一体式封装的开关电源模组,以获取更小的封装体积和更高的功率密度。
为达上述目的,本发明其中一实施例提出了以下技术方案:
一种开关电源模组,包括功率电感和开关电源芯片,所述功率电感包括磁芯和焊接于磁芯两端的L型金属端电极,所述开关电源芯片包括封装体、封装体内的裸芯片以及裸芯片的底部焊盘;所述L型金属端电极由相互垂直的第一电极部和第二电极部构成,第一电极部焊接于磁芯并与磁芯互成直角,第二电极部由第一电极部向磁芯中部方向平行延伸;所述裸芯片及其封装体共同内嵌于第一、第二电极部和所述磁芯之间,同时所述底部焊盘抵接于两第二电极部之间且与第二电极部绝缘,并且所述底部焊盘的焊接面与所述第二电极部的焊接面齐平。
本发明提供的上述一体式封装的开关电源模组,相比现有的分立式封装模组,具有以下有益效果:通过将电感置于芯片上方,将芯片嵌套于功率电感 的磁芯与端电极之间的空隙中,使得整个模组在PCB板上所占的体积与单独一个功率电感所占的体积几乎一样,相比采用同样尺寸的电感和芯片进行分立式封装的模组,体积要小很多,从而功率密度要高很多。换言之,在保持模组总体积不变的前提下可以选择更大尺寸的电感,相应的电感的电感量和额定电流等电性能可以做的更好,虽然厚度上有所牺牲,但是长宽尺寸上的增量足以弥补厚度降低带来的性能损失甚至还有富余。从而在模组总体积不变的前提下拥有更高的电源功率。
本发明另还提出了一种开关电源模组的封装方法,包括:
提供一贴片式电感的磁芯、两个相同的L型金属电极片以及开关电源芯片,其中,所述L型金属电极片由相互垂直的第一电极部和第二电极部构成,所述开关电源芯片包括封装体、封装体内的裸芯片以及裸芯片的底部焊盘;
将两个L型电极片分别焊接到所述磁芯的两端,焊接时,通过第一电极部与磁芯端部焊接,使得第一电极部与磁芯互成直角,同时第二电极部由第一电极部向磁芯中部方向平行延伸,得到具有L型金属端电极的功率电感;
将所述开关电源芯片与所述功率电感相互嵌套,使得所述裸芯片及其封装体共同内嵌于第一、第二电极部和所述磁芯之间,同时所述底部焊盘抵接于两第二电极部之间并与第二电极部绝缘,并且所述底部焊盘的焊接面与所述第二电极部的焊接面齐平。
附图说明
图1是用于进行开关电源模组的一体式封装的功率电感示意图;
图2是一体式封装的开关电源模组的开关电源芯片的示意图;
图3是采用图1的功率电感和图2的开关电源芯片嵌套封装而成的一体式开关电源模组的示意图;
图4是图3所示的开关电源模组的底部焊接面的示意图。
具体实施方式
下面结合附图和具体的实施方式对本发明作进一步说明。
本发明的具体实施方式提供了一种一体式封装的开关电源模组,如图3所示,所述开关电源模组包括功率电感10和开关电源芯片20。如图1所示,所述功率电感10包括磁芯100和焊接于磁芯100两端的L型金属端电极10a、10b; 如图2所示,所述开关电源芯片20包括封装体21、封装体内的裸芯片22以及裸芯片的底部焊盘23。两个L型金属端电极相同,以其中一个为例进行说明:L型金属端电极10b由相互垂直的第一电极部10b1和第二电极部10b2构成,第一电极部10b1与磁芯100的一端焊接,并且第一电极部10b1与磁芯100互成直角,第二电极部10b2由第一电极部向磁芯100中部方向平行延伸。所述裸芯片22及其封装体21共同内嵌于所述第一、第二电极部和所述磁芯之间,同时所述底部焊盘23抵接于两第二电极部10a2和10b2之间且与第二电极部绝缘,并且所述底部焊盘23的焊接面与所述第二电极部的焊接面齐平。
在一具体的实施例中,所述功率电感的磁芯为立方体状,可认为是贴片式电感中的磁芯,其可采用公制2520尺寸,即厚度为0.5mm。另外,功率电感的L型金属端电极可以采用铜片,厚度为0.2~0.25mm;裸芯片的尺寸可以是2.0*2.0*0.3mm。此处的尺寸只是一种举例,需要说明的是,尺寸并不构成对本发明的限制。
在优选的实施例中,所述裸芯片的所述封装体可以是树脂封装体,其外部形状轮廓与L型金属端电极和磁芯之间围成的空隙相适应,使得内有裸芯片的封装体21刚好可以放入到该空隙中。另外,所述第一电极部上与磁芯焊接处具有焊接辅助结构,例如是一些凹陷下去的部位,即不太深的凹槽,其形状不作限制,在焊接时,这些辅助结构内可容纳一定的焊料,从而可以使磁芯端部和第一电极部之间的焊接更加牢固。所述磁芯两端与L型金属端电极之间的焊接层为镍层30。所述裸芯片22及其底部焊盘23之间已通过邦线连接。
本发明另一实施例提供了前述开关电源模组的封装方法,如下:
首先,提供一贴片式电感的磁芯、两个相同的L型金属电极片及开关电源芯片,其中,所述L型金属电极片由相互垂直的第一电极部和第二电极部构成,所述开关电源芯片包括封装体、封装体内的裸芯片以及裸芯片的底部焊盘;
其次,将两个L型电极片分别焊接到所述磁芯的两端,焊接时,通过第一电极部与磁芯端部焊接,使得第一电极部与磁芯互成直角,同时第二电极部由第一电极部向磁芯中部方向平行延伸,得到具有L型金属端电极的功率电感;
最后,将所述开关电源芯片与所述功率电感相互嵌套,使得所述裸芯片及其封装体共同内嵌于所述第一、第二电极部和所述磁芯之间,同时所述底部 焊盘抵接于两第二电极部之间并与第二电极部绝缘,并且所述底部焊盘的焊接面与所述第二电极部的焊接面齐平。如图4所示,即为封装好的开关电源模组的底部,可见到第二电极部的焊接面1a、1b以及芯片底部焊盘的多个焊接点位2、3、4等。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干等同替代或明显变型,而且性能或用途相同,都应当视为属于本发明的保护范围。

Claims (8)

  1. 一种开关电源模组,其特征在于:包括功率电感和开关电源芯片,所述功率电感包括磁芯和焊接于磁芯两端的L型金属端电极,所述开关电源芯片包括封装体、封装体内的裸芯片以及裸芯片的底部焊盘;
    所述L型金属端电极由相互垂直的第一电极部和第二电极部构成,第一电极部焊接于磁芯并与磁芯互成直角,第二电极部由第一电极部向磁芯中部方向平行延伸;
    所述裸芯片及其封装体共同内嵌于第一、第二电极部和所述磁芯之间,同时所述底部焊盘抵接于两第二电极部之间且与第二电极部绝缘,并且所述底部焊盘的焊接面与所述第二电极部的焊接面齐平。
  2. 如权利要求1所述的开关电源模组,其特征在于:所述裸芯片的所述封装体为树脂封装体,其外部形状轮廓与L型金属端电极和磁芯之间围成的空隙相适应。
  3. 如权利要求1所述的开关电源模组,其特征在于:所述第一电极部上与磁芯焊接处具有焊接辅助结构。
  4. 如权利要求3所述的开关电源模组,其特征在于:所述焊接辅助结构包括可容纳焊料的凹槽。
  5. 如权利要求1所述的开关电源模组,其特征在于:所述磁芯两端与L型金属端电极之间的焊接层为镍层。
  6. 如权利要求1所述的开关电源模组,其特征在于:所述功率电感的磁芯为立方体状。
  7. 如权利要求1所述的开关电源模组,其特征在于:所述裸芯片及其底部焊盘之间通过邦线连接。
  8. 一种开关电源模组的封装方法,其特征在于,包括:
    提供一贴片式电感的磁芯、两个相同的L型金属电极片以及开关电源芯片,其中,所述L型金属电极片由相互垂直的第一电极部和第二电极部构成,所述开关电源芯片包括封装体、封装体内的裸芯片以及裸芯片的底部焊盘;
    将两个L型电极片分别焊接到所述磁芯的两端,焊接时,通过第一电极部与磁芯端部焊接,使得第一电极部与磁芯互成直角,同时第二电极部由第一电极部向磁芯中部方向平行延伸,得到具有L型金属端电极的功率电感;
    将所述开关电源芯片与所述功率电感相互嵌套,使得所述裸芯片及其封装体共同内嵌于第一、第二电极部和所述磁芯之间,同时所述底部焊盘抵接于两第二电极部之间并与第二电极部绝缘,并且所述底部焊盘的焊接面与所述第二电极部的焊接面齐平。
PCT/CN2018/086094 2017-11-20 2018-05-09 一种开关电源模组及其封装方法 WO2019095648A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/931,609 US11657947B2 (en) 2017-11-20 2020-05-14 Switching power supply module and packaging method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711161014.1 2017-11-20
CN201711161014.1A CN107808879A (zh) 2017-11-20 2017-11-20 一种开关电源模组及其封装方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/931,609 Continuation US11657947B2 (en) 2017-11-20 2020-05-14 Switching power supply module and packaging method thereof

Publications (1)

Publication Number Publication Date
WO2019095648A1 true WO2019095648A1 (zh) 2019-05-23

Family

ID=61580267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086094 WO2019095648A1 (zh) 2017-11-20 2018-05-09 一种开关电源模组及其封装方法

Country Status (3)

Country Link
US (1) US11657947B2 (zh)
CN (1) CN107808879A (zh)
WO (1) WO2019095648A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107808879A (zh) * 2017-11-20 2018-03-16 深圳顺络电子股份有限公司 一种开关电源模组及其封装方法
CN114188129B (zh) * 2021-11-18 2024-05-28 北京卫星制造厂有限公司 变压器及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102376594A (zh) * 2010-08-26 2012-03-14 乾坤科技股份有限公司 电子封装结构及其封装方法
CN102592781A (zh) * 2011-01-07 2012-07-18 乾坤科技股份有限公司 电感器
CN103000608A (zh) * 2012-12-11 2013-03-27 矽力杰半导体技术(杭州)有限公司 一种多组件的芯片封装结构
CN203644518U (zh) * 2013-12-14 2014-06-11 和瑞电子(中山)有限公司 一种微型电感器
CN107808879A (zh) * 2017-11-20 2018-03-16 深圳顺络电子股份有限公司 一种开关电源模组及其封装方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09275170A (ja) * 1996-04-03 1997-10-21 Fuji Electric Co Ltd 半導体装置
US7315077B2 (en) * 2003-11-13 2008-01-01 Fairchild Korea Semiconductor, Ltd. Molded leadless package having a partially exposed lead frame pad
US10111333B2 (en) * 2010-03-16 2018-10-23 Intersil Americas Inc. Molded power-supply module with bridge inductor over other components
TWI445103B (zh) * 2010-08-19 2014-07-11 Cyntec Co Ltd 電子封裝結構及其封裝方法
TWI448226B (zh) * 2010-09-21 2014-08-01 Cyntec Co Ltd 電源轉換模組
KR101397488B1 (ko) * 2012-07-04 2014-05-20 티디케이가부시기가이샤 코일 부품 및 그의 제조 방법
JP6008750B2 (ja) * 2013-01-28 2016-10-19 三菱電機株式会社 半導体装置
JP6303341B2 (ja) * 2013-09-03 2018-04-04 Tdk株式会社 コイル部品
CN104659011A (zh) * 2013-11-20 2015-05-27 西安永电电气有限责任公司 一种igbt模块的芯片焊接结构
CN103617852B (zh) * 2013-12-05 2017-01-04 深圳顺络电子股份有限公司 一种贴片式功率型热敏电阻元件及其制造方法
CN104900621A (zh) * 2014-03-04 2015-09-09 西安永电电气有限责任公司 一种塑封式ipm的芯片焊接结构
CN207637797U (zh) * 2017-11-20 2018-07-20 深圳顺络电子股份有限公司 一种开关电源模组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102376594A (zh) * 2010-08-26 2012-03-14 乾坤科技股份有限公司 电子封装结构及其封装方法
CN102592781A (zh) * 2011-01-07 2012-07-18 乾坤科技股份有限公司 电感器
CN103000608A (zh) * 2012-12-11 2013-03-27 矽力杰半导体技术(杭州)有限公司 一种多组件的芯片封装结构
CN203644518U (zh) * 2013-12-14 2014-06-11 和瑞电子(中山)有限公司 一种微型电感器
CN107808879A (zh) * 2017-11-20 2018-03-16 深圳顺络电子股份有限公司 一种开关电源模组及其封装方法

Also Published As

Publication number Publication date
US20200273616A1 (en) 2020-08-27
CN107808879A (zh) 2018-03-16
US11657947B2 (en) 2023-05-23

Similar Documents

Publication Publication Date Title
KR102047563B1 (ko) 코일 부품 및 그 실장 기판
KR102080659B1 (ko) 코일 부품 및 그 실장 기판
JP3696559B2 (ja) バッテリー
TWI584315B (zh) 電源模組與應用其之能量轉換裝置
JP6512335B1 (ja) コイル部品及びその製造方法
JP2015032761A (ja) 巻線型電子部品のコア、巻線型電子部品及びコモンモードチョークコイル
US20100237973A1 (en) Surface mount magnetic device, coil structure thereof and fabricating process thereof
US20190272945A1 (en) Surface mount inductor
US20080231406A1 (en) Surface mount magnetic device
KR102105393B1 (ko) 코일 부품 및 그 실장 기판
KR102105394B1 (ko) 코일 부품 및 그 실장 기판
WO2017101551A1 (zh) 电芯的保护主板、电子终端和电子终端用电芯的组装方法
US10453587B2 (en) Conductor assembly, electronic component using same, and manufacturing method thereof
KR102029491B1 (ko) 코일 부품 및 그 실장 기판
KR20170004121A (ko) 코일 부품 및 그 실장 기판
WO2019095648A1 (zh) 一种开关电源模组及其封装方法
US7009484B2 (en) Magnetic assembly
CN207909913U (zh) 一种led器件的封装结构
KR20160072198A (ko) 코일 안테나의 제조 방법 및 코일 안테나 패키지의 제조 방법
JP2007157763A (ja) 回路モジュール
CN207637797U (zh) 一种开关电源模组
US7223486B2 (en) Encapsulating device and battery pack including such an encapsulating device
CN111653417A (zh) 一种插件式一体成型电感器
US20150016069A1 (en) Printed circuit board
KR102558332B1 (ko) 인덕터 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18878453

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18878453

Country of ref document: EP

Kind code of ref document: A1