WO2019093774A1 - 스마트 윈도우의 제조 방법 - Google Patents

스마트 윈도우의 제조 방법 Download PDF

Info

Publication number
WO2019093774A1
WO2019093774A1 PCT/KR2018/013507 KR2018013507W WO2019093774A1 WO 2019093774 A1 WO2019093774 A1 WO 2019093774A1 KR 2018013507 W KR2018013507 W KR 2018013507W WO 2019093774 A1 WO2019093774 A1 WO 2019093774A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealant
seal line
nozzle
electrode film
less
Prior art date
Application number
PCT/KR2018/013507
Other languages
English (en)
French (fr)
Inventor
문인주
김남규
이효진
홍경기
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/759,853 priority Critical patent/US11035170B2/en
Priority to JP2020523020A priority patent/JP7102520B2/ja
Priority to CN201880069803.9A priority patent/CN111279045B/zh
Publication of WO2019093774A1 publication Critical patent/WO2019093774A1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/6608Units comprising two or more parallel glass or like panes permanently secured together without separate spacing elements
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/02Shutters, movable grilles, or other safety closing devices, e.g. against burglary
    • E06B9/08Roll-type closures
    • E06B9/11Roller shutters
    • E06B9/17Parts or details of roller shutters, e.g. suspension devices, shutter boxes, wicket doors, ventilation openings
    • E06B9/17076Sealing or antirattling arrangements
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13454Drivers integrated on the active matrix substrate
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B2009/2464Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds featuring transparency control by applying voltage, e.g. LCD, electrochromic panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13775Polymer-stabilized liquid crystal layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor

Definitions

  • the present application relates to a method of manufacturing a smart window.
  • Smart window is a window that can control the light transmittance. It is also called smart blind, electronic curtain, variable transmission glass or dimming glass.
  • the product can be implemented through processes such as liquid crystal injection and ODF (One Drop Filling) (Patent Document 1: Korean Patent Publication No. 2012-0092247).
  • a sealant is used to confine the liquid crystal within the active area. Defects such as sealant contamination due to liquid crystal overflow may occur depending on the characteristics of the sealant and the process conditions. If the sealant characteristics and process conditions are not suitable, disconnection of the seal line, unevenness of the thickness and width may occur, resulting in deterioration of product quality and productivity.
  • the uniformity of the seal line for example, the thickness deviation, the line width deviation, and the straightness are improved by appropriately selecting the sealant and optimizing the process, thereby improving the product quality and productivity And provides a method of manufacturing the improved smart window.
  • the present application relates to a method of manufacturing a smart window.
  • the present application may be, for example, a method of manufacturing a smart window of the structure of FIG.
  • the smart window 100 may have a structure in which the light modulation layer 30 is present between the first electrode film 10 and the second electrode film 40 arranged opposite to each other.
  • the first electrode film 10 and the second electrode film 40 are bonded to each other via the seal line 20, and the light modulating layer 30 is present in an inner region divided by the seal line 20 Can be.
  • a light modulating layer exists in an inner region divided by a seal line, it can be referred to as an active region.
  • the seal line 20 may be formed to be double including the inner seal line 20A and the outer seal line 20B.
  • the light modulating layer may be in an inner region separated by an inner seal line 20A. That is, the inner seal line may exist closer to the optical modulation layer than the outer seal line.
  • the method of manufacturing a smart window of the present application includes the steps of forming an inner seal line by drawing a first sealant using a first nozzle on a first electrode film and forming a second sealant on the outer side of the inner seal line by using a second nozzle, And drawing the sealant to form an outer seal line.
  • the first sealant can be referred to as an inner sealant and the second sealant as an outer sealant, respectively.
  • uniformity of the seal line for example, thickness deviation, linewidth deviation, and straightness is improved by optimizing the process in the selection of the sealant suitable as the inner sealant and the outer sealant and the formation of the inner seal line and the outer seal line can do.
  • the viscosity of the inner sealant may be higher than the viscosity of the outer sealant.
  • the viscosity of the inner seal line When the viscosity of the inner seal line is high, the spreadability is low, so that a uniform seal line can be formed when the first electrode film and the second electrode film are bonded together.
  • the viscosity of the inner seal line when the viscosity of the inner seal line is low, the spreadability becomes large and the uniformity of the seal line may be hindered. If the viscosity of the outer seal line is low, spreadability is good, which may be advantageous to reduce the difference in height between the seal line area and the active area.
  • the viscosity of the inner sealant may be in the range of, for example, 100,000 mPas to 300,000 mPas. Specifically, the viscosity of the inner sealant may be at least 110,000 mPas, at least 120,000 mPas, at least 130,000 mPas, at least 140,000 mPas, at least 150,000 mPas, at least 160,000 mPas, at least 170,000 mPas, at least 180,000 mPas, at least 190,000 mPas, or at least 200,000 mPas Less than 300,000 mPas, less than 290,000 mPas, less than 280,000 mPas, less than 270,000 mPas, less than 260,000 mPas, less than 250,000 mPas, less than 240,000 mPas, less than 230,000 mPas, less than 220,000 mPas, or less than 210,000 m
  • the viscosity of the external sealant may be, for example, 60,000 mPas or less.
  • the lower limit of the viscosity of the external sealant may be, for example, 15,000 mPas or more.
  • the outer sealant may have a viscosity of less than or equal to 59,000 mPas, less than or equal to 58,000 mPas, less than or equal to 57,000 mPas, less than or equal to 56,000 mPas, less than or equal to 55,000 mPas, less than or equal to 54,000 mPas, less than or equal to 53,000 mPas, or less than or equal to 52,000 mPas, Greater than 30,000 mPas, greater than 35,000 mPas, greater than 40,000 mPas, greater than 45,000 mPas, greater than 50,000 mPas.
  • the viscosity of the outer sealant may be in the range of, for example, 51,000 mPas to 53,000 mPas.
  • the viscosity of the external sealant is too high, the spreadability is low and the thickness variation of the seal line after adhesion can be larger, so that the viscosity of the external sealant is preferably within the above range.
  • the viscosity of the sealant can be controlled by a method known in the art.
  • the viscosity of the sealant can be controlled via a viscosity modifier.
  • the viscosity modifier may be a viscosity increasing agent or a viscosity reducing agent, and an appropriate amount of a viscosity modifier may be added according to the viscosity of the sealant to be implemented.
  • a viscosity modifier known in the art may be used as the viscosity modifier.
  • silica, potassium carbonate, talc, aluminum oxide, alumina, loess or glass powder may be used.
  • the content of the viscosity modifier may be appropriately adjusted in consideration of the viscosity of the sealant.
  • the viscosity modifier may be contained in an amount of, for example, 1 part by weight to 30 parts by weight, 1 part by weight to 20 parts by weight or 1 part by weight to 15 parts by weight based on 100 parts by weight of the base resin of the sealant.
  • the first sealant may contain a viscosity adjusting agent in a proportion of 10 to 15 parts by weight based on 100 parts by weight of the base resin
  • the second sealant may include a viscosity adjusting agent in an amount of 1 By weight to 5 parts by weight.
  • the sealant may include a curable resin as a base resin.
  • a curable resin as a base resin.
  • the base resin ultraviolet curing resin or thermosetting resin known to be usable in sealants in the art can be used.
  • the ultraviolet ray hardening resin may be a polymer of an ultraviolet ray hardening monomer.
  • the thermosetting resin may be a polymer of a thermosetting monomer.
  • the base resin of the sealant for example, an acrylate resin, an epoxy resin, a urethane resin, a phenol resin or a mixture of the resins can be used.
  • the base resin may be an acrylate-based resin
  • the acrylate-based resin may be a polymer of an acrylic monomer.
  • the acrylic monomer may be, for example, a polyfunctional acrylate.
  • the sealant may further comprise a monomer component in the base resin.
  • the monomer component may be, for example, a monofunctional acrylate.
  • the monofunctional acrylate may mean a compound having one acrylic group
  • the polyfunctional acrylate may mean a compound having two or more acrylic groups.
  • the curable resin may be cured by irradiation with ultraviolet rays and / or heating.
  • the ultraviolet ray irradiation condition or the heating condition can be appropriately performed within a range not to impair the purpose of the present application.
  • the sealant may further comprise an initiator, for example, a photoinitiator or a thermal initiator, if desired.
  • the first sealant may be drawn on the first electrode film by a dispenser equipped with a first nozzle.
  • the second sealant can be drawn on the first electrode film outside the inner seal line by the dispenser equipped with the second nozzle.
  • a screw master can be used as the dispenser.
  • 2 illustrates an exemplary structure of the dispenser 200.
  • the dispenser is provided with a nozzle for discharging the sealant, and the nozzle may include a needle (50).
  • the objective of the present application can be achieved by optimizing the process conditions of the first and second sealants.
  • the discharge amount of the inner sealant of the first nozzle may be smaller than the discharge amount of the outer sealant of the second nozzle.
  • the discharge amount of the inner sealant of the first nozzle is larger than the discharge amount of the outer sealant of the second nozzle, the second electrode film is adhered to the first electrode film to widen the spreading region when the sealant is pressed, The straightness of the seal line can be reduced.
  • the discharge amount of the inner sealant of the first nozzle is smaller than the discharge amount of the outer sealant of the second nozzle, the sealant spreading region is reduced when the second electrode film is attached to the first electrode film, The linearity of the line can be improved.
  • the discharge amount of the inner sealant of the first nozzle may be in the range of, for example, 70 rpm to 180 rpm.
  • the discharge amount of the inner sealant of the first nozzle may be specifically 70 rpm or more, 80 rpm or more, 90 rpm or more, 100 rpm, 120 rpm or more, 130 rpm or more, 140 rpm or 150 rpm, Less than or equal to 160 rpm, less than or equal to 150 rpm, less than or equal to 140 rpm, less than or equal to 130 rpm, less than or equal to 120 rpm, or less than or equal to 110 rpm.
  • the discharge amount of the inner sealant of the first nozzle may be in the range of 145 rpm to 155 rpm, or in the range of 95 rpm to 105 rpm, for example.
  • the discharge amount of the outer sealant of the second nozzle may be, for example, in the range of 200 rpm to 500 rpm.
  • the discharge amount of the outer sealant of the second nozzle is at least 200 rpm, at least 210 rpm, at least 220 rpm, at least 230 rpm, at least 240 rpm, at least 250 rpm, at least 260 rpm, at least 270 rpm, at least 280 rpm, And may be not more than 500 rpm, not more than 490 rpm, not more than 480 rpm, 470 rpm or less, 460 rpm or less, 450 rpm or less, 440 rpm or less, 430 rpm or less, 420 rpm or less, 410 rpm or less or 400 rpm or less.
  • the discharge amount of the inner sealant of the second nozzle may be in the range of, for example, 290 rpm to 310 rpm
  • the revolution per minute (rpm) means a unit indicating how many times the apparatus for rotation performs rotation for one minute.
  • the inner diameter of the first nozzle may be smaller than the inner diameter of the second nozzle.
  • 3 is a schematic view exemplarily showing the inner diameter I of the nozzle.
  • the inner diameter of the nozzle may affect the amount of sealant discharged when the sealant is dispensed from the dispenser. If the inner diameter of the nozzle is not suitable, it is difficult to control the discharge amount of the sealant or sealant leakage may occur. In one example, it is advantageous that the smaller the discharge amount is, the smaller the inner diameter, and the larger the discharge amount, the larger the inner diameter may be.
  • the inner diameter of the first nozzle having a small discharge amount may be advantageous in terms of dischargeability and workability in comparison with the inner diameter of the second nozzle having a large discharge amount.
  • the inner diameter of the first nozzle may be in the range of, for example, 0.05 mm to 0.15 mm.
  • the inner diameter of the first nozzle may be at least 0.05 mm, at least 0.06 mm, at least 0.07 mm, at least 0.08 mm, at least 0.09 mm, at most 0.15 mm, at most 0.14 mm, at most 0.13 mm, mm or less.
  • the inner diameter of the first nozzle may be in the range of 0.09 mm to 0.11 mm, for example.
  • the inner diameter of the second nozzle may be, for example, in the range of 0.21 mm to 0.52 mm.
  • the inner diameter of the second nozzle may be 0.21 mm or more, 0.22 mm or more, 0.23 mm or more, 0.24 mm or more, 0.25 mm or more, or 0.26 mm or more, 0.52 mm or less, 0.50 mm or less, mm or less, 0.35 mm or less, 0.30 mm or less, 0.27 mm or less, or 0.26 mm or less.
  • the inner diameter of the second nozzle may be in the range of 0.25 mm to 0.27 mm, for example. When the inner diameter of the first nozzle and the second nozzle is within the above range, it is advantageous in terms of workability and dischargeability of the sealant.
  • the inner sealant and outer sealant may have drawing speeds in the range of 1000 mm / min to 3000 mm / min, respectively.
  • the drawing speed of the inner sealant and the outer sealant is 1000 mm / min or more, 1100 mm / min or more, 1200 mm / min or more, 1300 mm / min or more, 1400 mm / min or more, 1500 mm / min or more, min, at least 1700 mm / min, at least 1800 mm / min, at least 1900 mm / min, at least 2000 mm / min, at least 3000 mm / min, at least 2900 mm / min, at least 2800 mm / min or less, 2600 mm / min or less, 2500 mm / min or less, 2400 mm / min or less, 2300 mm / min or less, 2200 mm / min or 2100 mm / min or less.
  • the drawing speed may mean a drawing speed of the dispenser in a state where the first electrode film is fixed.
  • S in Fig. 2 means a drawing advancing direction of the dispenser.
  • the drawing speeds of the inner sealant and the outer sealant may be the same or different. If the drawing speed of the dispenser is excessively high, distortion of the drawing shape and breakage of the sealant may occur. If the drawing speed of the dispenser is too low, productivity and discharge amount may increase excessively. For example, thickness deviation, linewidth deviation and straightness in the processing conditions of the present application within which the drawing speed of the inner and outer sealants is within the above range.
  • the distance between the needle of the first nozzle and the first electrode film may be in the range of 120 mu m to 230 mu m.
  • the distance between the needles of the first nozzle and the first electrode film may be specifically 120 ⁇ or more, 130 ⁇ or more, 140 ⁇ or more, 145 ⁇ or more or 150 ⁇ or more, and 230 ⁇ or less, 215 ⁇ or less, Less than or equal to 180 mu m, less than or equal to 170 mu m, less than or equal to 160 mu m, less than or equal to 155 mu m, and less than or equal to 150 mu m.
  • the distance between the needle of the first nozzle and the first electrode film may be in the range of, for example, 145 ⁇ to 155 ⁇ or in the range of 195 ⁇ to 205 ⁇ .
  • the distance between the needle of the second nozzle and the first electrode film may be in the range of 150 mu m to 330 mu m.
  • the distance between the needles of the second nozzle and the first electrode film is at least 150 m, at least 160 m, at least 170 m, at least 180 m, at least 190 m, at least 195 m, at least 200 m, at least 220 m, at least 240 m, Or less, and 330 ⁇ m or less, 315 ⁇ m or less, 300 ⁇ m or less, 275 ⁇ m or less, 250 ⁇ m or less, 240 ⁇ m or less, 230 ⁇ m or less, 220 ⁇ m or less and 210 ⁇ m or less or 205 ⁇ m or less ≪ / RTI > According to one embodiment of the present application, the distance between the needle of the second nozzle and the distance between the needle of the second nozzle and the distance between the needle of the second nozzle and the distance between the needle of the
  • the distance between the needle of the first nozzle and the first electrode film may be shorter than the distance between the needle of the second nozzle and the second electrode film.
  • the inner sealant since the discharge amount is small, it may be advantageous that the distance is relatively short so that the discharged sealant can contact the first electrode film. Otherwise, the discharged amount of the sealant may not be transferred to the first electrode film due to a small discharge amount.
  • the discharged sealant since the discharge amount is large, the discharged sealant must be able to contact the electrode film. If the distance between the needle of the second nozzle and the first electrode film is too close, the electrode film and the stepped step may contact the needle with the film to damage the electrode film or damage the needle.
  • the uniformity of the seal line for example, the thickness deviation, the line width deviation, and the straightness can be improved, and a smart window with improved product quality and productivity can be manufactured.
  • the difference (H 1 -H 2) of the height (H 1) and (H 2) the height of the active region of the seal line area may be less than 5 ⁇ m.
  • the manufacturing method may further include forming a light modulating layer in an area divided by an inner seal line after the step of forming the outer seal line.
  • the light modulating layer may be performed before or after the adhesion of the first electrode film and the second electrode film to be described later.
  • a light modulating material may be formed by applying a light modulating material, for example, by an ODF (One Drop Filling) process, have.
  • the step of forming the optical modulating layer when the step of forming the optical modulating layer is performed after the cementing, the light modulating material is injected through the process of injecting the light modulating material into the area divided by the inner seal line through a part of the inner and outer seal lines, Layer can be formed.
  • the optical modulation layer a known layer known to be capable of modulating light, for example, transmitting or blocking light, or converting color, can be applied.
  • the optical modulation layer may be a liquid crystal layer switched between a diffusion mode and a transmission mode by voltage, for example, on-off of a vertical electric field or a horizontal electric field, or between a transmission mode and a blocking mode A switching liquid crystal layer, a liquid crystal layer switched between a transmissive mode and a color mode, or a liquid crystal layer switching between color modes of different colors.
  • a light modulating layer for example, a liquid crystal layer, capable of performing the above-described actions is variously known.
  • a liquid crystal layer used in a typical liquid crystal display can be used.
  • the liquid crystal layer may include a liquid crystal or a mixture of a liquid crystal and a dichroic dye.
  • the light modulating layer may be formed of various types of Polymer Dispersed Liquid Crystal Layer, Pixel-isolated Liquid Crystal Layer, Suspended Particle Layer, Layer or an electrochromic layer.
  • the polymer dispersed liquid crystal layer (PDLC layer) in the present application is a so-called PILC layer (pixel isolated liquid crystal layer), a polymer dispersed liquid crystal layer, a polymer network liquid crystal layer (PNLC) layer and so on.
  • PILC layer pixel isolated liquid crystal layer
  • PNLC polymer network liquid crystal layer
  • the manufacturing method may further include the step of attaching the second electrode film to the first electrode film after the step of forming the external seal line.
  • the adhesion of the first electrode film and the second electrode film may be performed before or after the formation of the light modulating layer.
  • the cementing step may be performed after the light modulating layer is formed.
  • the sealant can be cured by a well-known sealant curing method, for example, heat application and / or ultraviolet irradiation.
  • the first electrode film and the second electrode film may each include a plastic film and a conductive layer formed on the plastic film.
  • plastic film examples include acrylic films such as polycarbonate film, polyethylene naphthalate (PEN) film and polyethylene terephthalate (PET) film and poly (methyl methacrylate) film, and polyacetyl cellulose (TAC)
  • An olefin film such as a cellulose polymer film, a polyethylene (PE) film, a polypropylene (PP) film, or a cycloolefin polymer (COP) film, a polybenzimidazole film, a polybenzoxazole film, a polybenzazole film, Polyimide films, and the like, but the present invention is not limited thereto.
  • the thickness of the film and the like can be selected in consideration of the level of the material to be applied to a general smart window.
  • a conductive layer for example, a conductive polymer, a conductive metal, a conductive nanowire, or a metal oxide such as ITO (Indium Tin Oxide) may be used.
  • ITO Indium Tin Oxide
  • various materials and forming methods capable of forming a transparent electrode are known and can be applied without limitation.
  • a functional layer such as a liquid crystal alignment layer, a barrier layer, or a hard coating layer may be further formed on the first electrode film and the second electrode film, respectively.
  • An exemplary smart window can be manufactured according to the above manufacturing method.
  • Exemplary smart windows can have uniformity of the seal line, for example, thickness deviation, line width deviation, and straightness.
  • FIG. 1 illustrates an exemplary smart window.
  • the exemplary smart window 100 includes a first electrode film 10 and a second electrode film 40 disposed opposite to each other and a light modulating layer 30 between the first electrode film 10 and the second electrode film 40 And a seal line 20 for attaching the first electrode film 10 and the second electrode film 40 together.
  • the optical modulation layer 30 may be present in an inner region divided by the seal line 20.
  • the seal line 20 may include an inner seal line 20A and an outer seal line 20B.
  • the inner seal line 20A may exist closer to the optical modulation layer 30 than the outer seal line 20B.
  • the viscosity of the inner seal line 20A may be higher than the viscosity 20B of the outer seal line. Otherwise, the contents described in the manufacturing method of the smart window can be applied equally.
  • An exemplary smart window may include a seal line of uniform thickness.
  • the difference (H 1 -H 2) of the height (H 1) and (H 2) the height of the active region of the seal line area may be less than 5 ⁇ m.
  • an optical modulating layer is present in an inner region divided by a seal line, it can be referred to as an active region.
  • the difference (H 1 -H 2 ) of the height (H 2 ) may be specifically 4 ⁇ m or less, 3 ⁇ m or less, or 2 ⁇ m or less. The smaller the height difference (H 1 -H 2 ), the more the seal line is formed to have a uniform thickness.
  • the lower limit of the seal line is not particularly limited, but may be, for example, more than 0 ⁇ m or 1 ⁇ m or more.
  • An exemplary smart window may include a seal line of uniform thickness as described above through the selection of a suitable sealant and process optimization.
  • An exemplary smart window may include a seal line of uniform line width.
  • the difference (W 1 - W 2 ) between the maximum width (W 1 ) and minimum width (W 2 ) of the seal line may be less than 2 mm.
  • the difference in width (W 1 - W 2 ) may be specifically 1.5 mm or less, 1 mm or less, or 0.5 mm or less.
  • the lower limit is not particularly limited, but may be, for example, more than 0 mm or 0.1 mm or more.
  • An exemplary smart window may include a uniform line width seal line as described above through the selection of suitable sealants and process optimization.
  • An exemplary smart window may include a seal line that is excellent in continuity or straightness.
  • the seal line may have no more than two, no more than one, or no break regions in which the break occurs.
  • the area where the break occurs may refer to an area in which a break occurs in a part of the area based on the width of the seal line, or an area where break occurs in the whole area to break.
  • An exemplary smart window may include a seal line having excellent continuity or straightness as described above by selecting an appropriate sealant and optimizing the process.
  • the present application relates to the use of smart windows.
  • exemplary smart windows can improve the product quality and productivity because of the uniformity of the seal line, for example, thickness deviation, line width deviation, and straightness.
  • Such a smart window can be applied to various applications including various architectural or automotive materials that need to control the transmittance, eyewear such as goggles for augmented reality experience or sports goggles, sunglasses or helmets.
  • the manufacturing method of the smart window of the present invention by selecting a suitable sealant and optimizing the process, the uniformity of the seal line, for example, the thickness deviation, the line width deviation, and the straightness are improved to manufacture a smart window with improved product quality and productivity can do.
  • FIG. 1 is a schematic diagram of a smart window structure.
  • FIG. 2 is a schematic view of a sealant dispenser.
  • 3 is a schematic diagram showing the inner diameter of the needle.
  • FIG. 4 is a schematic view of a manufacturing method of a smart window of Comparative Example 1.
  • FIG. 5 is a schematic diagram of a manufacturing method of a smart window according to the first embodiment.
  • FIG. 6 is a microscope image showing the uniformity of the sealant width in Example 1 and Comparative Example 2.
  • the smart window of Comparative Example 1 was prepared according to the manufacturing method of FIG. Specifically, two PET films each having an ITO (Indium Tin Oxide) layer formed on one surface thereof were prepared as a first electrode film and a second electrode film, respectively. A sealant having a viscosity of 200,000 mPas was drawn on the ITO layer of the first electrode film using the dispenser of Fig. 2 to form a seal line by drawing the area of the active area to be 180 mm x 150 mm (based on the outer size of the seal line) Respectively.
  • ITO Indium Tin Oxide
  • the sealant comprises acrylate resin, HEA (hydroxyethyl acrylate), IBOA (isobornyl acrylate), Igarcure 819 (initiator) and silica (viscosity modifier) in a weight ratio of 70: 15: 15: 3: 12.
  • a needle having an inner diameter of 0.25 mm was applied to the nozzle, the distance between the needle of the nozzle and the first electrode film was maintained at 200 ⁇ m, and the rotation amount of the nozzle was adjusted to 400 rpm to control the discharge amount of the sealant.
  • the drawing speed of the sealant dispenser was set at 2000 mm / min.
  • a mixture of a liquid crystal and a dye was applied in the active region on the ITO layer of the first electrode film.
  • the second electrode film was laminated on the first electrode film on which the seal line was formed, and the first electrode film and the second electrode film were laminated together.
  • the sealant was cured by irradiating ultraviolet rays having a wavelength of 380 nm at an intensity of 3000 mJ Smart window was manufactured.
  • the smart window of Example 1 was prepared according to the manufacturing method of Fig. Specifically, two PET films each having an ITO (Indium Tin Oxide) layer formed on one surface thereof were prepared as a first electrode film and a second electrode film, respectively. A first sealant having a viscosity of 200,000 mPas was drawn on the ITO layer of the first electrode film using the dispenser of Fig. 2 so that the area of the active area was 180 mm (width) x 150 mm (length) .
  • ITO Indium Tin Oxide
  • the first sealant comprises acrylate resin, hydroxyethyl acrylate (HEA), isobornyl acrylate (IBOA), Igarcure 819 (initiator) and silica (viscosity modifier) in a weight ratio of 70: 15: 15: 3: 12.
  • a needle having an inner diameter of 0.1 mm was applied to the nozzle, a distance between the needle of the nozzle and the first electrode film was maintained at 150 mu m, and the amount of discharge of the first sealant was controlled by adjusting the rotation of the nozzle to 150 rpm.
  • a second sealant having a viscosity of 52,000 mPas was then drawn to the outside of the inner seal line to form an outer seal line.
  • the second sealant comprises acrylate resin, hydroxyethyl acrylate (HEA), isobornyl acrylate (IBOA), Igarcure 819 (initiator) and silica (viscosity modifier) in a weight ratio of 70: 15: 15: 3: 2.
  • HSA hydroxyethyl acrylate
  • IBOA isobornyl acrylate
  • silica viscosity modifier
  • the liquid crystal was applied in the region separated by the seal line on the ITO layer of the ITO / PET film.
  • the second electrode film was laminated on the first electrode film on which the seal line was formed, and the first electrode film and the second electrode film were laminated together.
  • the sealant was cured by irradiating ultraviolet rays having a wavelength of 380 nm at an intensity of 3000 mJ Smart window was manufactured.
  • Example 1 The nozzle discharge amount (rpm) Dispenser Drawing Speed (mm / min) Distance between nozzle and needle film ( ⁇ ) Nozzle Inner Diameter (mm) Comparative Example 1 1 species 400 2000 200 0.25 Example 1 inside 150 2000 150 0.1 Out 300 2000 200 0.26 Example 2 inside 100 2000 150 0.1 Out 400 2000 200 0.26 Example 3 inside 150 2000 200 0.1 Out 300 2000 300 0.26 Example 4 inside 150 2000 150 0.1 Out 300 2000 200 0.26 Comparative Example 2 inside 300 2000 200 0.26 Out 150 2000 150 0.1
  • Seal line continuity was evaluated by a Steeler test for Comparative Examples 1 and 2 and Examples 1 to 4, and the results are shown in Table 2. 3 for no breaks, 2 for less than 1 point where the sealant was broken, and 1 for 2 or more points where the sealant was broken.
  • FIG. 4 and 5 are schematic views showing the width uniformity of the seal lines of Comparative Example 1 and Example 1, respectively.
  • the seal line was uneven and liquid crystal contamination occurred in the sealant due to liquid crystal overflow.
  • Fig. 5 in Example 1, There is no contamination of liquid crystal inside the sealant.
  • Example 6 is a seal line image of the Smart Window of Comparative Example 2 (left) and Example 1 (right).
  • Comparative Example 2 the widths of the outer and inner seal lines were not uniform, while in Example 1, the widths of the outer and inner seal lines were uniform, and thus, the linearity was excellent.
  • the present invention relates to a method of manufacturing a semiconductor device and a method of manufacturing the same and a method of manufacturing the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Dispersion Chemistry (AREA)

Abstract

본 발명은 스마트 윈도우의 제조 방법에 관한 것이다. 본 발명의 스마트 윈도우의 제조 방법에 따르면 적합한 실런트의 선정 및 공정의 최적화를 통해, 씰 라인의 균일도, 예를 들어, 두께 편차, 선폭 편차 및 직진도를 개선하여, 제품 품질 및 생산성이 향상된 스마트 윈도우를 제조할 수 있다.

Description

스마트 윈도우의 제조 방법
본 출원은 스마트 윈도우의 제조 방법에 관한 것이다.
본 출원은 2017년 11월 08일자 한국 특허 출원 제10-2017-0147938호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
스마트 윈도우는 빛의 투과율을 조절할 수 있는 윈도우로서, 스마트 블라인드, 전자 커튼, 투과도 가변 유리 또는 조광 유리 등으로도 불린다. 플라스틱 필름을 사용하는 스마트 윈도우의 경우 액정 주입 및 ODF (One Drop Filling) 등의 공정을 통해 제품을 구현할 수 있다(특허문헌 1: 한국공개특허 제2012-0092247호).
이때 액정을 활성 영역 (active area) 내로 한정하기 위해 실런트를 사용한다. 실런트의 특성 및 공정 조건에 따라 액정 넘침에 의한 실런트 오염 등의 불량이 발생할 수 있다. 실런트 특성 및 공정 조건이 적합하지 않을 경우 씰 라인의 단선, 두께 및 폭의 불균일이 발생하여 제품의 품질 및 생산성의 저하를 초래한다.
본 출원의 과제는 상기 문제점을 해결하기 위한 것이며, 본 출원에서는 적합한 실런트의 선정 및 공정 최적화를 통해 씰 라인의 균일도, 예를 들어, 두께 편차, 선폭 편차 및 직진도를 개선하여, 제품 품질 및 생산성이 향상된 스마트 윈도우의 제조 방법을 제공한다.
본 출원은 스마트 윈도우의 제조 방법에 관한 것이다. 본 출원은 예를 들어 도 1의 구조의 스마트 윈도우의 제조 방법일 수 있다. 도 1에 나타낸 바와 같이 스마트 윈도우(100)는 대향 배치된 제 1 전극 필름(10) 및 제 2 전극 필름(40) 사이에 광 변조층(30)이 존재하는 구조를 가질 수 있다. 상기 광 변조층(30)은 씰 라인(20)으로 구분된 내부 영역 내에 존재하며, 상기 제 1 전극 필름(10)과 제 2 전극 필름(40)은 상기 씰 라인(20)을 매개로 합착되어 있을 수 있다. 이하, 씰 라인으로 구분된 내부 영역 내에 광 변조층이 존재하는 경우 활성 영역으로 호칭할 수 있다.
본 출원의 스마트 윈도우의 제조 방법에 따르면, 상기 씰 라인(20)은 내부 씰 라인(20A)과 외부 씰 라인(20B)을 포함하여 이중으로 형성될 수 있다. 상기 광 변조층은 내부 씰 라인(20A)으로 구분된 내부 영역 내에 존재할 수 있다. 즉, 내부 씰 라인이 외부 씰 라인에 비해 광 변조층에 근접하여 존재할 수 있다.
본 출원의 스마트 윈도우의 제조 방법은 제 1 전극 필름 상에 제 1 노즐을 이용하여 제 1 실런트를 드로잉하여 내부 씰 라인을 형성하는 단계 및 상기 내부 씰 라인의 외측에 제 2 노즐을 이용하여 제 2 실런트를 드로잉하여 외부 씰 라인을 형성하는 단계를 포함할 수 있다. 이하, 제 1 실런트를 내부 실런트로, 제 2 실런트를 외부 실런트로 각각 호칭할 수 있다.
본 출원에 따르면 상기 내부 실런트 및 외부 실런트로서 적합한 실런트의 선정 및 내부 씰 라인 및 외부 씰 라인의 형성 단계에서 공정 최적화를 통해 씰 라인의 균일도, 예를 들어, 두께 편차, 선폭 편차 및 직진도를 개선할 수 있다.
하나의 예시에서, 상기 내부 실런트의 점도는 외부 실런트의 점도에 비해서 높을 수 있다. 내부 씰 라인의 점도가 높을 경우 퍼짐성이 낮아 제 1 전극 필름과 제 2 전극 필름의 합착 시 균일한 씰 라인을 형성할 수 있다. 반면 내부 씰 라인의 점도가 낮을 경우 퍼짐성이 커져 씰 라인의 균일도가 저해될 수 있다. 외부 씰 라인의 점도가 낮을 경우 퍼짐성이 좋으므로 씰 라인 영역과 활성 영역의 높이의 차이를 감소시키는 데 유리할 수 있다.
상기 내부 실런트의 점도는 예를 들어 100,000 mPas 내지 300,000 mPas 범위 내일 수 있다. 상기 내부 실런트의 점도는 구체적으로, 110,000 mPas 이상, 120,000 mPas 이상, 130,000 mPas 이상, 140,000 mPas 이상, 150,000 mPas 이상, 160,000 mPas 이상, 170,000 mPas 이상, 180,000 mPas 이상, 190,000 mPas 이상 또는 200,000 mPas 이상일 수 있고, 300,000 mPas 이하, 290,000 mPas 이하, 280,000 mPas 이하, 270,000 mPas 이하, 260,000 mPas 이하, 250,000 mPas 이하, 240,000 mPas 이하, 230,000 mPas 이하, 220,000 mPas 이하 또는 210,000 mPas 이하일 수 있다. 본 출원의 일 실시예에 의하면 내부 실런트의 점도는 예를 들어 190,000 mPas 내지 210,000 mPas 범위 내일 수 있다.
상기 외부 실런트의 점도는 예를 들어 60,000 mPas 이하일 수 있다. 상기 외부 실란트의 점도의 하한은 예를 들어 15,000 mPas 이상일 수 있다. 상기 외부 실런트의 점도는 구체적으로 59,000 mPas 이하, 58,000 mPas 이하, 57,000 mPas 이하, 56,000 mPas 이하, 55,000 mPas 이하, 54,000 mPas 이하, 53,000 mPas 이하 또는 52,000 mPas 이하일 수 있고, 20,000 mPas 이상, 25,000 mPas 이상, 30,000 mPas 이상, 35,000 mPas 이상, 40,000 mPas 이상, 45,000 mPas 이상, 50,000 mPas 이상일 수 있다. 본 출원의 일 실시예에 의하면, 상기 외부 실런트의 점도는 예를 들어 51,000 mPas 내지 53,000 mPas 범위 내일 수 있다. 외부 실란트의 점도가 지나치게 높은 경우 퍼짐성이 낮아 합착 후 씰 라인의 두께 불균일이 더 커질 수 있으므로, 외부 실런트의 점도는 상기 범위가 바람직하다.
상기 실런트의 점도는 당 업계에 공지된 방식에 의해 조절될 수 있다. 하나의 예시에서, 상기 실런트의 점도는 점도 조절제를 통해 조절될 수 있다. 점도 조절제로는 점도 증가제 또는 점도 감소제가 있으며, 구현하고자 하는 실런트의 점도에 따라 점도 조절제를 적정량 첨가할 수 있다. 상기 점도 조절제로는 당 업계에 공지된 점도 조절제를 사용할 수 있으며, 예를 들어, 실리카, 탄산칼륨, 탈크, 산화알루미늄, 알루미나, 황토 또는 유리분말 등을 사용할 수 있다.
상기 점도 조절제의 함량은 실런트의 점도를 고려하여 적절히 조절될 수 있다. 상기 점도 조절제는 예를 들어, 실런트의 베이스 수지 100 중량부 대비 1 중량부 내지 30 중량부, 1 중량부 내지 20 중량부 또는 1 중량부 내지 15 중량부의 비율로 포함될 수 있다. 본 출원의 일 실시예에 의하면, 상기 제 1 실런트는 점도 조절제를 베이스 수지 100 중량부 대비 10 내지 15 중량부의 비율로 포함할 수 있고, 상기 제 2 실런트는 점도 조절제를 베이스 수지 100 중량부 대비 1 중량부 내지 5 중량부의 비율로 포함할 수 있다.
상기 실런트는 베이스 수지로서 경화성 수지를 포함할 수 있다. 상기 베이스 수지로는 당 업계에 실런트에 사용될 수 있는 것으로 공지된 자외선 경화성 수지 또는 열 경화성 수지를 사용할 수 있다. 상기 자외선 경화성 수지는 자외선 경화성 단량체의 중합체일 수 있다. 상기 열 경화성 수지는 열 경화성 단량체의 중합체일 수 있다. 상기 실런트의 베이스 수지로는, 예를 들어, 아크릴레이트계 수지, 에폭시계 수지, 우레탄계 수지, 페놀계 수지 또는 상기 수지의 혼합물을 사용할 수 있다. 하나의 예시에서, 상기 베이스 수지는 아크릴레이트계 수지일 수 있고, 상기 아크릴레이트계 수지는 아크릴 단량체의 중합체일 수 있다. 상기 아크릴 단량체는 예를 들어 다관능성 아크릴레이트일 수 있다. 하나의 예시에서, 상기 실런트는 베이스 수지에, 단량체 성분을 더 포함할 수 있다. 상기 단량체 성분은 예를 들어 일관능성 아크릴레이트일 수 있다. 본 명세서에서 일관능성 아크릴레이트는 아크릴기를 1개 갖는 화합물을 의미할 수 있고, 다관능성 아크릴레이트는 아크릴기를 2개 이상 갖는 화합물을 의미할 수 있다. 상기 경화성 수지는 자외선의 조사 및/또는 가열에 의해 경화될 수 있다. 상기 자외선 조사 조건 또는 가열 조건은 본 출원의 목적을 손상시키지 않는 범위 내에서 적절히 수행될 수 있다. 상기 실런트는 필요한 경우 개시제, 예를 들어 광 개시제 또는 열 개시제를 더 포함할 수 있다.
하나의 예시에서, 상기 제 1 실런트는 제 1 노즐을 장착한 디스펜서에 의해 제 1 전극 필름 상에 드로잉 할 수 있다. 상기 제 2 실런트는 제 2 노즐을 장착한 디스펜서에 의해 제 1 전극 필름 상에 내부 씰 라인의 외측에 드로잉 할 수 있다.
상기 디스펜서로는 Screw master를 사용할 수 있다. 도 2는 상기 디스펜서(200)의 구조를 예시적으로 나타낸다. 상기 디스펜서는 실런트를 토출하기 위한 노즐이 구비되어 있으며, 상기 노즐은 니들(50)을 포함할 수 있다. 본 출원에서는 제 1 및 제 2 실런트의 공정 조건을 최적화하여 본 출원의 목적을 달성시킬 수 있다.
하나의 예시에서, 상기 제 1 노즐의 내부 실런트의 토출량은 제 2 노즐의 외부 실런트의 토출량에 비해 적을 수 있다. 제 1 노즐의 내부 실런트의 토출량이 제 2 노즐의 외부 실런트의 토출량에 비해 많을 경우 제 1 전극 필름에 제 2 전극 필름을 합착하여 실런트를 눌러 줄 때 퍼지는 영역이 넓어지고 이에 따라 퍼지는 영역의 편차도 커지게 되어 씰 라인의 직진성이 감소할 수 있다. 반대로 제 1 노즐의 내부 실런트의 토출량이 제 2 노즐의 외부 실런트의 토출량에 비해 적을 경우 제 1 전극 필름에 제 2 전극 필름을 합착 시 실런트 퍼짐 영역이 줄어 상대적으로 퍼지는 영역의 편차도 작아지게 되어 씰 라인의 직진성을 개선할 수 있다.
상기 제 1 노즐의 내부 실런트의 토출량은 예를 들어 70 rpm 내지 180 rpm 범위 내일 수 있다. 제 1 노즐의 내부 실런트의 토출량은 구체적으로 70 rpm 이상, 80 rpm 이상, 90 rpm 이상, 100 rpm, 120 rpm 이상, 130 rpm 이상, 140 rpm 이상 또는 150 rpm 이상일 수 있고, 180 rpm 이하, 170 rpm 이하, 160 rpm 이하, 150 rpm 이하, 140 rpm 이하, 130rpm 이하, 120rpm 이하 또는 110rpm 이하일 수 있다. 본 출원의 일 실시예에 의하면 제 1 노즐의 내부 실런트의 토출량은 예를 들어 145 rpm 내지 155 rpm 범위 내이거나 또는 95 rpm 내지 105 rpm 범위 내일 수 있다.
상기 제 2 노즐의 외부 실런트의 토출량은 예를 들어 200 rpm 내지 500 rpm 범위 내일 수 있다. 제 2 노즐의 외부 실런트의 토출량은 구체적으로, 200 rpm 이상, 210 rpm 이상, 220 rpm 이상, 230 rpm 이상, 240 rpm 이상, 250 rpm 이상, 260 rpm 이상, 270 rpm 이상, 280 rpm 이상, 290 rpm 이상일 수 있고, 500 rpm 이하, 490 rpm 이하, 480 rpm 이하, 470 rpm 이하, 460 rpm 이하, 450 rpm 이하, 440 rpm 이하, 430 rpm 이하, 420 rpm 이하, 410 rpm 이하 또는 400 rpm 이하일 수 있다. 본 출원의 일 실시예에 의하면 제 2 노즐의 내부 실런트의 토출량은 예를 들어 290 rpm 내지 310 rpm 범위 내이거나 또는 390 rpm 내지 410 rpm 범위 내일 수 있다.
상기 단위 rpm(revolution per minute)은 회전하면서 일을 하는 장치가 1분 동안 몇 번의 회전을 하는지 나타내는 단위를 의미한다. 제 1 및 제 2 노즐의 토출량이 상기 범위 내인 경우 씰 라인의 직진성 개선 측면에서 유리할 수 있다.
하나의 예시에서, 상기 제 1 노즐의 내부 직경은 제 2 노즐의 내부 직경에 비해 작을 수 있다. 도 3은 노즐의 내부 직경(I)을 예시적으로 나타내는 모식도이다. 노즐의 내부 직경은 디스펜서로부터 실런트가 토출될 때 실런트의 토출량에 영향을 미칠 수 있다. 노즐의 내부 직경이 적합하지 않은 경우 실런트의 토출량 제어가 어렵거나 실런트 누액이 발생할 수 있다. 하나의 예시에서, 토출량이 적을수록 내부 직경이 작은 것이 유리하고 토출량이 많을수록 내부 직경이 큰 것이 유리할 수 있다. 토출량이 많을 경우 노즐의 내부 직경이 작으면 노즐이 막혀서 토출이 안되어 실런트 끊김이 발생하거나 반대로 토출량이 적은데 노즐의 내부 직경이 큰 경우 실런트 누액이 발생할 수 있다. 따라서, 토출량이 적은 제 1 노즐의 내부 직경이 토출량이 많은 제 2 노즐의 내부 직경에 비해 작은 것이 토출성 및 작업성 측면에서 유리할 수 있다.
상기 제 1 노즐의 내부 직경은 예를 들어 0.05mm 내지 0.15mm 범위 내일 수 있다. 상기 제 1 노즐의 내부 직경은 구체적으로, 0.05 mm 이상, 0.06 mm 이상, 0.07 mm 이상, 0.08 mm 이상 또는 0.09 mm 이상일 수 있고, 0.15mm 이하, 0.14mm 이하, 0.13mm 이하, 0.12mm 이하 또는 0.11mm 이하일 수 있다. 본 출원의 일 실시예에 의하면, 상기 제 1 노즐의 내부 직경은 예를 들어 0.09 mm 내지 0.11mm 범위 내일 수 있다. 상기 제 2 노즐의 내부 직경은 예를 들어 0.21mm 내지 0.52mm 범위 내일 수 있다. 상기 제 2 노즐의 내부 직경은 구체적으로, 0.21mm 이상, 0.22mm 이상, 0.23mm 이상, 0.24mm 이상, 0.25mm 이상 또는 0.26mm 이상일 수 있고, 0.52mm 이하, 0.50mm 이하, 0.45mm 이하, 0.40mm 이하, 0.35mm 이하, 0.30mm 이하, 0.27mm 이하 또는 0.26mm 이하일 수 있다. 본 출원의 일 실시예에 의하면, 상기 제 2 노즐의 내부 직경은 예를 들어 0.25 mm 내지 0.27mm 범위 내일 수 있다. 제 1 노즐과 제 2 노즐의 내부 직경이 상기 범위 내인 경우 실런트의 작업성 및 토출성 측면에서 유리할 수 있다.
하나의 예시에서, 내부 실런트 및 외부 실런트는 드로잉 속도는 각각 1000 mm/min 내지 3000 mm/min 범위 내일 수 있다. 내부 실런트 및 외부 실런트의 드로잉 속도는 구체적으로, 1000 mm/min 이상, 1100 mm/min 이상, 1200 mm/min 이상, 1300 mm/min 이상, 1400 mm/min 이상, 1500 mm/min 이상, 1600 mm/min 이상, 1700 mm/min 이상, 1800 mm/min 이상, 1900 mm/min 이상 또는 2000 mm/min 이상일 수 있고, 3000 mm/min 이하, 2900 mm/min 이하, 2800 mm/min 이하, 2700 mm/min 이하, 2600 mm/min 이하, 2500 mm/min 이하, 2400 mm/min 이하, 2300 mm/min 이하, 2200 mm/min 이하 또는 2100 mm/min 이하일 수 있다. 본 출원의 일 실시예에 의하면, 내부 실런트 및 외부 실런트의 드로잉 속도는 예를 들어 1900 mm/min 내지 2100 mm/min 범위 내일 수 있다.
상기 드로잉 속도는 제 1 전극 필름은 고정된 상태에서, 상기 디스펜서의 드로잉 속도를 의미할 수 있다. 도 2의 S는 디스펜서의 드로잉 진행 방향을 의미한다. 하나의 예시에서, 상기 내부 실런트와 외부 실런트의 드로잉 속도는 동일하거나 상이할 수 있다. 디스펜서의 드로잉 속도가 지나치게 높을 경우 드로잉 형상의 왜곡 및 실런트의 끊김 현상이 발생할 수 있고, 디스펜서의 드로잉 속도가 지나치게 낮을 경우 생산성 저하 및 토출량이 과다 증가할 수 있다. 내부 및 외부 실런트의 드로잉 속도가 상기 범위 내인 본 출원의 공정 조건에서 씰 라인의 균일도, 예를 들어, 두께 편차, 선폭 편차 및 직진도를 개선하는데 유리할 수 있다.
하나의 예시에서, 내부 실런트를 드로잉하는 단계에서, 즉 내부 씰 라인을 형성하는 단계에서, 제 1 노즐의 니들과 제 1 전극 필름 간의 거리는 120㎛ 내지 230㎛ 범위 내일 수 있다. 제 1 노즐의 니들과 제 1 전극 필름 간의 거리는 구체적으로 120㎛ 이상, 130㎛ 이상, 140㎛ 이상, 145㎛ 이상 또는 150㎛ 이상일 수 있고, 230㎛ 이하, 215㎛ 이하, 205㎛ 이하, 200㎛ 이하, 180㎛ 이하, 170㎛ 이하, 160㎛ 이하, 155㎛ 이하, 150㎛ 이하일 수 있다. 본 출원의 일 실시예에 의하면 제 1 노즐의 니들과 제 1 전극 필름 간의 거리는 예를 들어 145㎛ 내지 155㎛ 범위 내이거나 또는 195㎛ 내지 205㎛ 범위 내일 수 있다.
하나의 예시에서, 외부 실런트를 드로잉하는 단계에서, 즉 외부 씰 라인을 형성하는 단계에서, 제 2 노즐의 니들과 제 1 전극 필름 간의 거리는 150㎛ 내지 330㎛ 범위 내일 수 있다. 제 2 노즐의 니들과 제 1 전극 필름 간의 거리는 150㎛ 이상, 160㎛ 이상, 170㎛ 이상, 180㎛ 이상, 190㎛ 이상, 195㎛ 이상, 200㎛ 이상, 220㎛ 이상, 240㎛ 이상, 260㎛ 이상, 280㎛ 이상 또는 300㎛ 이상일 수 있고, 330㎛ 이하, 315㎛ 이하, 300㎛ 이하, 275㎛ 이하, 250㎛ 이하, 240㎛ 이하, 230㎛ 이하, 220㎛ 이하, 210㎛ 이하 또는 205㎛ 이하일 수 있다. 본 출원의 일 실시예에 의하면 제 2 노즐의 니들과 제 1 전극 필름 간의 거리는 예를 들어 195㎛ 내지 205㎛ 범위 내이거나 또는 295㎛ 내지 305㎛ 범위 내일 수 있다.
하나의 예시에서, 제 1 노즐의 니들과 제 1 전극 필름 간의 거리는 제 2 노즐의 니들과 제 2 전극 필름 간의 거리에 비해 짧을 수 있다. 내부 실런트의 경우 토출량이 작기 때문에 토출되는 실런트가 제 1 전극 필름에 접촉할 수 있도록 거리가 상대적으로 가까운 것이 유리할 수 있다. 그렇지 않을 경우 토출량이 작기 때문에 토출된 실런트가 제 1 전극 필름에 전사되지 않는 불량이 발생할 수 있다. 반대로 외부 실런트의 경우 토출량이 많기 때문에 토출된 실런트가 전극 필름에 접촉할 수 있어야 한다. 제 2 노즐의 니들과 제 1 전극 필름 간의 거리가 지나치게 가까울 경우 전극 필름 및 스테이지 단차 등에 의해 니들이 필름에 접촉되어 전극 필름이 손상되거나 니들에 손상이 발생할 수 있다.
본 출원의 스마트 윈도우의 제조 방법에 의하면 씰 라인의 균일도, 예를 들어, 두께 편차, 선폭 편차 및 직진도를 개선하여 제품 품질 및 생산성이 향상된 스마트 윈도우를 제조할 수 있다.
하나의 예시에서, 상기 씰 라인 영역의 높이(H1)와 활성 영역의 높이(H2)의 차이(H1-H2)는 5㎛ 미만일 수 있다. 상기 높이의 차이는 작을수록 씰 라인이 균일한 두께로 형성됨을 의미할 수 있다. 상기 제조 방법은 외부 씰 라인을 형성하는 단계 후에, 내부 씰 라인으로 구분된 영역 내에 광 변조층을 형성하는 단계를 더 포함할 수 있다. 상기 광 변조층은 후술하는 제 1 전극 필름과 제 2 전극 필름의 합착 전에 수행되거나 또는 합착 후에 수행될 수도 있다. 하나의 예시에서, 상기 광 변조 층의 형성 단계가 합착 전에 수행되는 경우 내부 씰 라인으로 구분된 영역 내에 광 변조 물질을 예를 들어 ODF (One Drop Filling) 공정으로 도포하여 광 변조 층을 형성할 수 있다. 다른 하나의 예시에서, 상기 광 변조 층의 형성 단계가 합착 후에 수행되는 경우 내부 및 외부 씰 라인의 일부 영역을 통해, 내부 씰 라인으로 구분된 영역 내로 광 변조 물질을 주입하는 공정을 통해 상기 광 변조층을 형성할 수 있다.
상기에서 광 변조층으로는 광의 변조, 예를 들면, 광의 투과 또는 차단이나 색의 변환이 가능한 것으로 알려진 공지의 층을 적용할 수 있다. 예를 들면, 상기 광 변조층은, 전압, 예를 들면 수직 전계나 수평 전계의 온오프(on-off)에 의하여 확산 모드와 투과 모드 사이에서 스위칭되는 액정층이거나, 투과 모드와 차단 모드 사이에서 스위칭되는 액정층이거나, 투과 모드와 칼라 모드에서 스위칭되는 액정층 또는 서로 다른 색의 칼라 모드 사이를 스위칭하는 액정층일 수 있다.
상기와 같은 작용을 수행할 수 있는 광 변조층, 예를 들면, 액정층은 다양하게 공지되어 있다. 하나의 예시적인 광 변조층으로는 통상적인 액정 디스플레이에 사용되는 액정층이 사용이 가능하다. 상기 액정층은 액정을 포함하거나 또는 액정과 이색성 염료의 혼합물을 포함할 수 있다.
다른 예시에서, 광 변조층은 다양한 형태의 고분자 분산형 액정층(Polymer Dispersed Liquid Crystal Layer), 화소 고립형 액정층(Pixcel-isolated Liquid Crystal Layer), 부유 입자 층(Suspended Particle Layer)의 또는 전기변색 층 (Electrochromic layer)일 수도 있다.
본 출원에서 고분자 분산형 액정층(PDLC layer)은 소위 PILC층(pixel isolated liquid crystal layer), PDLC층(polymer dispersed liquid crystal layer), PNLC(Polymer network liquid crystal layer) 또는 PSLC층(Polymer stablized liquid crystal layer) 등을 포함하는 상위 개념이다.
상기 제조 방법은 상기 외부 씰 라인을 형성하는 단계 후에 제 1 전극 필름에 제 2 전극 필름을 합착하는 단계를 더 포함할 수 있다. 전술한 바와 같이 상기 제 1 전극 필름과 제 2 전극 필름의 합착은 광 변조층의 형성 전에 수행되거나 또는 형성 후에 수행될 수 있다. 본 출원의 일 실시예에 따르면, 광 변조층이 형성된 후에 합착 단계가 수행될 수 있다.
제 1 전극 필름과 제 2 전극 필름을 합착한 후에 공지의 실런트 경화 방식, 예를 들면, 열의 인가 및/또는 자외선의 조사 등의 방식으로 실런트를 경화시켜서 스마트 윈도우를 제조할 수 있다.
하나의 예시에서, 상기 제 1 전극 필름과 제 2 전극 필름을 합착하는 과정에서 내부 실런트와 외부 실런트는 퍼짐에 의해 서로 밀접할 수 있다. 즉, 외부 씰 라인을 드로잉하는 과정에서 외부 실런트는 내부 씰 라인과 일정 간격을 두고 드로잉되지만, 제 1 전극 필름과 제 2 전극 필름을 합착하는 과정에서 내부 씰 라인과 외부 씰 라인이 서로 밀접하여 일체의 실런트를 구성하는 것으로 보일 수 있다. 상기 제 1 전극 필름 및 제 2 전극 필름은 각각 플라스틱 필름 및 상기 플라스틱 필름 상에 형성된 전도성 층을 포함할 수 있다.
상기 플라스틱 필름으로는 PC(polycarbonate) 필름, PEN(polyethylene naphthalate) 필름, PET(polyethyleneterephthalate) 필름 등의 폴리에스테르 필름, PMMA(poly(methyl methacrylate)) 필름 등의 아크릴 필름, TAC(triacetyl cellulose) 등의 셀룰로오스 고분자 필름, PE(polyethylene) 필름, PP(polypropylene) 필름, COP(cycloolefin polymer) 필름 등의 올레핀 필름, 폴리벤즈이미다졸 필름, 폴리벤즈옥사졸 필름, 폴리벤즈아졸 필름, 폴리벤즈티아졸 필름 또는 폴리이미드 필름 등이 예시될 수 있으나, 이에 제한되는 것은 아니다. 상기 필름의 두께 등도 일반적인 스마트 윈도우로의 적용 재료의 수준을 고려하여 선택될 수 있다.
상기 전도성 층으로는 예를 들면, 전도성 고분자, 전도성 금속, 전도성 나노와이어 또는 ITO(Indium Tin Oxide) 등의 금속 산화물 등을 증착하여 형성한 것을 사용할 수 있다. 이외에도 투명 전극을 형성할 수 있는 다양한 소재 및 형성 방법이 공지되어 있고, 이를 제한없이 적용할 수 있다.
또한, 상기 제 1 전극 필름 및 제 2 전극 필름 상에는 각각 액정 배향막, 배리어층 또는 하드 코팅층 등의 기능성층이 추가로 형성될 수도 있다.
본 출원은 스마트 윈도우에 관한 것이다. 예시적인 스마트 윈도우는 상기 제조 방법에 따라 제조될 수 있다. 예시적인 스마트 윈도우는 씰 라인의 균일도, 예를 들어, 두께 편차, 선폭의 편차, 직진도가 우수할 수 있다.
도 1은 스마트 윈도우를 예시적으로 나타낸다. 예시적인 스마트 윈도우(100)는 대향 배치된 제 1 전극 필름(10)과 제 2 전극 필름(40), 상기 제 1 전극 필름(10)과 제 2 전극 필름(40) 사이의 광 변조층(30) 및 상기 제 1 전극 필름(10)과 제 2 전극 필름(40)을 합착하고 있는 씰 라인(20)을 포함할 수 있다. 상기 광 변조층(30)은 상기 씰 라인(20)으로 구분된 내부 영역에 존재할 수 있다. 상기 씰 라인(20)은 내부 씰 라인(20A)과 외부 씰 라인(20B)를 포함할 수 있다. 상기 내부 씰 라인(20A)은 외부 씰 라인(20B)에 비해 광 변조층(30)에 근접하여 존재할 수 있다. 상기 내부 씰 라인(20A)의 점도는 외부 씰라인의 점도(20B)에 비해 높을 수 있다. 이외의 사항은 상기 스마트 윈도우의 제조 방법에서 기술한 내용이 동일하게 적용될 수 있다.
예시적인 스마트 윈도우는 균일한 두께의 씰 라인을 포함할 수 있다. 하나의 예시에서, 상기 씰 라인 영역의 높이(H1)와 활성 영역의 높이(H2)의 차이(H1-H2)는 5㎛ 미만일 수 있다. 씰 라인으로 구분된 내부 영역 내에 광 변조층이 존재하는 경우 활성 영역으로 호칭할 수 있다. 상기 높이(H2)의 차이(H1-H2)는 구체적으로 4 ㎛ 이하, 3 ㎛ 이하 또는 2㎛ 이하일 수 있다. 상기 높이의 차이(H1-H2)는 작을수록 씰 라인이 균일한 두께로 형성됨을 의미하는 것으로 그 하한을 특별히 제한되지 않으나, 예를 들어, 0㎛ 초과 또는 1㎛ 이상일 수 있다. 예시적인 스마트 윈도우는 적합한 실런트의 선정 및 공정 최적화를 통해 상기와 같이 균일한 두께의 씰 라인을 포함할 수 있다.
예시적인 스마트 윈도우는 균일한 선폭의 씰 라인을 포함할 수 있다. 하나의 예시에서, 상기 씰 라인의 최대 폭(W1)과 최소 폭(W2)의 차이(W1- W2)는 2 mm 미만일 수 있다. 상기 폭의 차이(W1- W2)는 구체적으로, 1.5 mm 이하, 1 mm 이하 또는 0.5 mm 이하일 수 있다. 상기 폭의 차이(W1- W2)는 작을수록 씰 라인이 균일한 선폭으로 형성됨을 의미하는 것으로 그 하한을 특별히 제한되지 않으나, 예를 들어, 0 mm 초과 또는 0.1 mm 이상일 수 있다. 예시적인 스마트 윈도우는 적합한 실런트의 선정 및 공정 최적화를 통해 상기와 같이 균일한 선폭의 씰 라인을 포함할 수 있다.
예시적인 스마트 윈도우는 연속성 내지 직진성이 우수한 씰 라인을 포함할 수 있다. 하나의 예시에서, 상기 씰 라인은 끊김이 발생하는 영역이 2개 이하, 1개 이하이거나 또는 끊김이 발생하는 영역이 없을 수 있다. 상기 끊김이 발생하는 영역은 씰 라인의 폭을 기준으로 일부 영역에서 끊김이 발생하는 영역 또는 전체 영역에서 끊김이 발생하여 단선되는 영역을 의미할 수 있다. 예시적인 스마트 윈도우는 적합한 실런트의 선정 및 공정 최적화를 통해 상기와 같이 연속성 내지 직진성이 우수한 씰 라인을 포함할 수 있다.
본 출원은 스마트 윈도우의 용도에 관한 것이다. 예시적인 스마트 윈도우는 씰 라인의 균일도, 예를 들어, 두께 편차, 선폭의 편차, 직진도가 우수하므로 제품 품질 및 생산성이 향상될 수 있다. 이러한 스마트 윈도우는 투과도 조절이 필요한 다양한 건축용 또는 차량용 소재나, 증강 현실 체험용 또는 스포츠용 고글, 선글라스 또는 헬멧 등의 아이웨이(eyewear)를 포함하는 다양한 용도에 적용될 수 있다.
본 발명의 스마트 윈도우의 제조 방법에 따르면 적합한 실런트의 선정 및 공정 최적화함으로써, 씰 라인의 균일도, 예를 들어, 두께 편차, 선폭 편차 및 직진도를 개선하여, 제품 품질 및 생산성이 향상된 스마트 윈도우를 제조할 수 있다.
도 1은 스마트 윈도우 구조의 모식도이다.
도 2는 실런트 디스펜서의 모식도이다.
도 3은 니들의 내부 직경을 나타내는 모식도이다.
도 4는 비교예 1의 스마트 윈도우의 제조 방법의 모식도이다.
도 5는 실시예 1의 스마트 윈도우의 제조 방법의 모식도이다.
도 6은 실시예 1과 비교예 2의 실런트 폭 균일성을 보여주는 현미경 이미지이다.
이하 실시예를 통하여 본 출원을 구체적으로 설명하지만, 본 출원의 범위가 하기 실시예에 의해 제한되는 것은 아니다.
비교예 1
도 4의 제조 방법에 따라 비교예 1의 스마트 윈도우를 제조하였다. 구체적으로, 일면에 ITO(Indium Tin Oxide)층이 형성된 PET 필름 2장을 각각 제 1 전극 필름 및 제 2 전극 필름으로 준비하였다. 제 1 전극 필름의 ITO층 상에 도 2의 디스펜서를 이용하여 점도 200,000 mPas 의 실런트를 활성 영역의 면적이 가로×세로 = 180mm×150mm (씰 라인의 외곽 사이즈 기준)가 되도록 드로잉하여 씰 라인을 형성하였다. 상기 실런트는 아크릴레이트 수지, HEA(hydroxyethyl acrylate), IBOA(Isobornyl acrylate), Igarcure 819 (개시제) 및 실리카(점도 조절제)를 70: 15: 15: 3: 12 의 중량 비율로 포함한다. 이때 노즐은 내부 직경이 0.25 mm인 니들을 적용하고 노즐의 니들과 제 1 전극 필름 간의 거리는 200㎛로 유지하며, 노즐의 회전을 400 rpm으로 조정하여 실런트의 토출량을 제어하였다. 상기 실런트의 디스펜서의 드로잉 속도는 2000 mm/min로 설정하였다. 다음으로 액정 및 염료의 혼합물을 제 1 전극 필름의 ITO 층 상의 활성 영역 내에 도포하였다. 다음으로 제 2 전극 필름을 상기 씰 라인이 형성된 제 1 전극 필름 상에 적층하고, 제 1 전극 필름과 제 2 전극 필름을 합착한 후, 실런트를 380nm 파장의 자외선을 3000mJ의 세기로 조사하여 경화시켜 스마트 윈도우를 제조하였다.
실시예 1
도 5의 제조 방법에 따라 실시예 1의 스마트 윈도우를 제조하였다. 구체적으로, 일면에 ITO(Indium Tin Oxide)층이 형성된 PET 필름을 2장을 각각 제 1 전극 필름 및 제 2 전극 필름으로 준비하였다. 제 1 전극 필름의 ITO층 상에 도 2의 디스펜서를 이용하여 점도 200,000 mPas 의 제 1 실런트를 활성 영역의 면적이 180mm(가로) x 150mm(세로) (외곽 사이즈 기준) 가 되도록 드로잉하여 내부 씰 라인을 형성하였다. 상기 제 1 실런트는 아크릴레이트 수지, HEA(hydroxyethyl acrylate), IBOA(Isobornyl acrylate), Igarcure 819 (개시제) 및 실리카(점도 조절제)를 70: 15: 15: 3: 12 의 중량 비율로 포함한다. 노즐은 내부 직경이 0.1 mm인 니들을 적용하고 노즐의 니들과 제 1 전극 필름 간의 거리는 150㎛으로 유지하며, 노즐의 회전을 150 rpm으로 조정하여 제 1 실런트의 토출량을 제어하였다. 다음으로 점도가 52,000 mPas인 제 2 실런트를 상기 내부 씰 라인의 외측에 드로잉하여 외부 씰 라인을 형성하였다. 상기 제 2 실런트는 아크릴레이트 수지, HEA(hydroxyethyl acrylate), IBOA(Isobornyl acrylate), Igarcure 819 (개시제) 및 실리카(점도 조절제)를 70: 15: 15: 3: 2 의 중량 비율로 포함한다. 이때 노즐은 내부 직경이 0.26 mm인 니들을 적용하고 노즐의 니들과 제 1 전극 필름 간의 거리는 200㎛으로 유지하며, 노즐의 회전을 300 rpm으로 조정하여 제 2 실런트의 토출량을 제어하였다. 제 1 및 제 2 실런트의 디스펜서의 드로잉 속도는 2000 mm/min로 설정하였다. 다음으로 액정을 ITO/PET 필름의 ITO 층 상의 씰라인으로 구분된 영역 내에 도포하였다. 다음으로 제 2 전극 필름을 상기 씰 라인이 형성된 제 1 전극 필름 상에 적층하고, 제 1 전극 필름과 제 2 전극 필름을 합착한 후, 실런트를 380nm 파장의 자외선을 3000mJ의 세기로 조사하여 경화시켜 스마트 윈도우를 제조하였다.
실시예 2 내지 4 및 비교예 2
씰 라인 형성 공정 조건을 하기 표 1과 같이 변경한 것을 제외하고는 실시예 1과 동일하게 실시예 2 내지 4 및 비교예 2의 스마트 윈도우를 제조하였다.
위치 노즐 토출량(rpm) 디스펜서 드로잉 속도(mm/min) 노즐과 니들의 필름간 거리(㎛) 노즐 내부 직경(mm)
비교예 1 1종 400 2000 200 0.25
실시예 1 내부 150 2000 150 0.1
외부 300 2000 200 0.26
실시예 2 내부 100 2000 150 0.1
외부 400 2000 200 0.26
실시예 3 내부 150 2000 200 0.1
외부 300 2000 300 0.26
실시예 4 내부 150 2000 150 0.1
외부 300 2000 200 0.26
비교예 2 내부 300 2000 200 0.26
외부 150 2000 150 0.1
평가예 1. 씰 라인 높이 단차 평가
비교예 1 및 2와 실시예 1 내지 4에 대하여, tesa u hite(테사 뮤하이트) 측정기에 의해 씰 라인 영역의 높이(H2)와 활성 영역의 높이(H2)의 차이(H1-H2)를 평가하고 그 결과를 표 2에 기재하였다.
평가예 2. 씰 라인 연속성 평가
비교예 1 및 2와 실시예 1 내지 4에 대하여 스틸자 평가로 씰 라인 연속성을 평가하고 그 결과를 표 2에 기재하였다. 끊김이 없는 경우 3으로 하고 실런트 끊김이 있는 지점이 1개 이하는 2로 하고, 실런트 끊김이 있는 지점이 2개 이상인 경우 1로 평가했다.
평가예 3. 씰 라인 폭 균일성 평가
비교예 1 및 2와 실시예 1 내지 4에 대하여, 스틸자 평가로 씰 라인의 최대 폭(W1)과 최소 폭(W2)의 차이(W1- W2)를 평가하고 그 결과를 표 2에 기재하였다. 실런트 폭 편차가 0.5mm 이하인 경우 3으로 하고, 1mm 이하인 경우 2로 평가하고 2mm 이하인 경우 1로 평가했다.
상기 평가예 1 내지 3의 결과를 하기 표 2에 정리하였다. 종합 품질 수준은 모두 3점인 경우, ◎로 평가하고, 3점이 없고 2점 또는 1점인 경우 ○로 평가하고, 모두 1점인 경우 X로 평가했다.
도 4 및 도 5의 S3는 각각 비교예 1 및 실시예 1의 씰 라인의 폭 균일성을 나타내는 모식도이다. 도 4에 나타낸 바와 같이 비교예 1은 씰 라인이 불균일하고, 액정 넘침에 의해 실런트 내부로 액정의 오염이 발생하는 반면, 도 5에 나타낸 바와 같이, 실시예 1은 씰 라인을 균일하게 형성할 수 있고, 실런트 내부로 액정의 오염도 발생하지 않는다.
도 6은 비교예 2 (좌측) 및 실시예 1(우측)의 스마트 윈도우의 씰 라인 이미지이다. 비교예 2는 외부 및 내부 씰 라인의 폭의 균일하지 않은 반면, 실시예 1은 외부 및 내부 씰 라인의 폭이 균일하여 직진성이 우수함을 확인할 수 있다.
활성 영역 대비씰 라인의 높이 단차 씰 라인 연속성 씰 라인 폭 균일성 종합 품질 수준
비교예 1 3~5㎛ 1 (끊김 개수: 3개) 1 ×
실시예 1 0~2㎛ 3 3
실시예 2 1~4㎛ 1 (끊김 개수: 2개) 2
실시예 3 0~3㎛ 2 2
실시예 4 1~4㎛ 2 1
비교예 2 5~10㎛ 1 (끊김 개수: 4개) 1 ×
[부호의 설명]
100: 스마트 윈도우 10: 제 1 전극 필름, 40: 제 2 전극 필름, 30: 광 변조층 20: 씰 라인, 20A: 내부 씰 라인, 20B: 외부 씰 라인, 200: 디스펜서, 50: 노즐의 니들, 60: 스크루 마스터(Screw master) 70: 에어 호스(Air hose), 80: 시린지(syringe), I: 니들의 내부 직경, S: 드로잉 진행 방향, D: 니들과 제 1 전극 필름 간의 거리

Claims (15)

  1. 제 1 전극 필름 상에 제 1 노즐을 이용하여 제 1 실런트를 드로잉하여 내부 씰 라인을 형성하는 단계 및 상기 내부 씰 라인의 외측에 제 2 노즐을 이용하여 제 2 실런트를 드로잉하여 외부 씰 라인을 형성하는 단계를 포함하고, 제 1 실런트의 점도는 제 2 실런트의 점도에 비해서 높고, 제 1 노즐의 토출량은 제 2 노즐의 토출량에 비해 적으며, 제 1 노즐의 내부 직경은 제 2 노즐의 내부 직경에 비해 작은 스마트 윈도우의 제조 방법.
  2. 제 1 항에 있어서, 제 1 실런트의 점도는 200,000 mPas 내지 300,000 mPas 범위 내인 스마트 윈도우의 제조 방법.
  3. 제 1 항에 있어서, 제 2 실런트의 점도는 60,000 mPas 이하인 스마트 윈도우의 제조 방법.
  4. 제 1 항에 있어서, 제 1 노즐의 토출량은 100 rpm 내지 180 rpm 범위 내인 스마트 윈도우의 제조 방법.
  5. 제 1 항에 있어서, 제 2 노즐의 토출량은 노즐 토출량은 200 rpm 내지 400 rpm 범위 내인 스마트 윈도우의 제조 방법.
  6. 제 1 항에 있어서, 제 1 노즐의 내부 직경은 0.05mm 내지 0.15mm 범위 내인 스마트 윈도우의 제조 방법.
  7. 제 1 항에 있어서, 제 2 노즐의 내부 직경은 0.21mm 내지 0.52mm 범위 내인 스마트 윈도우의 제조 방법.
  8. 제 1 항에 있어서, 제 1 실런트 및 제 2 실런트의 드로잉 속도는 각각 1000 mm/min 내지 3000 mm/min 범위 내인 스마트 윈도우의 제조 방법.
  9. 제 1 항에 있어서, 제 1 실런트를 드로잉하는 단계에서, 제 1 노즐의 니들과 제 1 전극 필름 간의 거리는 120㎛ 내지 180㎛ 범위 내인 스마트 윈도우의 제조 방법.
  10. 제 1 항에 있어서, 제 2 실런트를 드로잉하는 단계에서, 제 2 노즐의 니들과 제 1 전극 필름 간의 거리는 150㎛ 내지 250㎛ 범위 내인 스마트 윈도우의 제조 방법.
  11. 제 1 항에 있어서, 외부 씰 라인을 형성하는 단계 후에, 내부 씰 라인으로 구분된 내부 영역 내에 광 변조층을 형성하는 단계를 더 포함하는 스마트 윈도우의 제조 방법.
  12. 제 11 항에 있어서, 상기 광 변조층은 액정 또는 액정 및 염료의 혼합물을 포함하는 스마트 윈도우의 제조 방법.
  13. 제 1 항에 있어서, 외부 씰 라인을 형성하는 단계 후에, 제 1 전극 필름에 제 2 전극 필름을 합착하는 단계를 더 포함하는 스마트 윈도우의 제조 방법.
  14. 제 13 항에 있어서, 상기 제 1 전극 필름 및 제 2 전극 필름은 각각 플라스틱 필름 및 상기 플라스틱 필름 상에 형성된 전도성 층을 포함하는 스마트 윈도우의 제조 방법.
  15. 대향 배치된 제 1 전극 필름과 제 2 전극 필름; 상기 제 1 전극 필름과 제 2 전극 필름 사이의 광 변조층 및 상기 제 1 전극 필름과 제 2 전극 필름을 합착하는 씰 라인을 포함하고, 상기 씰 라인은 내부 씰 라인과 외부 씰 라인을 포함하며, 상기 내부 씰라인의 점도는 외부 씰 라인의 점도에 비해 높고, 상기 씰 라인 영역의 높이(H1)와 상기 광 변조층이 존재하는 활성 영역의 높이(H2)의 차이(H1-H2)는 5㎛ 미만인 스마트 윈도우.
PCT/KR2018/013507 2017-11-08 2018-11-08 스마트 윈도우의 제조 방법 WO2019093774A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/759,853 US11035170B2 (en) 2017-11-08 2018-11-08 Method for manufacturing smart window
JP2020523020A JP7102520B2 (ja) 2017-11-08 2018-11-08 スマートウィンドウの製造方法
CN201880069803.9A CN111279045B (zh) 2017-11-08 2018-11-08 用于制造智能窗的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170147938 2017-11-08
KR10-2017-0147938 2017-11-08

Publications (1)

Publication Number Publication Date
WO2019093774A1 true WO2019093774A1 (ko) 2019-05-16

Family

ID=66438482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013507 WO2019093774A1 (ko) 2017-11-08 2018-11-08 스마트 윈도우의 제조 방법

Country Status (6)

Country Link
US (1) US11035170B2 (ko)
JP (1) JP7102520B2 (ko)
KR (1) KR102101150B1 (ko)
CN (1) CN111279045B (ko)
TW (1) TWI702335B (ko)
WO (1) WO2019093774A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111552128B (zh) * 2020-06-12 2024-05-28 江苏铁锚玻璃股份有限公司 调光面板以及调光面板的制造方法
KR20230079980A (ko) 2021-11-29 2023-06-07 주식회사 엘지화학 액정 공급 장치 및 스마트 윈도우의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0977536A (ja) * 1995-09-14 1997-03-25 Asahi Glass Co Ltd 複層ガラス
JP2004109448A (ja) * 2002-09-18 2004-04-08 Seiko Epson Corp ディスペンサ、電気光学装置の製造装置および電気光学装置の製造方法
WO2016043164A1 (ja) * 2014-09-17 2016-03-24 旭硝子株式会社 調光窓
KR20160095128A (ko) * 2013-12-12 2016-08-10 쌩-고벵 글래스 프랑스 개선된 밀봉을 갖는 이중 글레이징
KR20170063293A (ko) * 2015-11-30 2017-06-08 김성진 스마트 블라인드 창호

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960014118B1 (ko) 1992-01-10 1996-10-14 한국유리공업 주식회사 광편광현탁액이 고분자수지내에 분산된 투과도 가변창용 필름 및 그 제조방법
JPH10175269A (ja) 1996-10-15 1998-06-30 Affinity Kk 高分子水溶液積層体およびその製法
JP2001337335A (ja) 2000-05-26 2001-12-07 Toshiba Corp 液晶表示素子の製造方法
JP2003140196A (ja) 2001-11-06 2003-05-14 Nippon Oil Corp エレクトロクロミック調光素子
JP2003216059A (ja) 2002-01-24 2003-07-30 Sharp Corp 表示素子およびその製造方法
JP4105469B2 (ja) * 2002-04-05 2008-06-25 芝浦メカトロニクス株式会社 接着剤塗布装置、液晶表示パネル、液晶表示パネルの製造装置及び製造方法、並びに基板貼り合わせ装置
TWI263283B (en) 2005-04-19 2006-10-01 Unividion Technology Inc Molding method and molding structure used to prevent vapor infiltration
KR20070047569A (ko) * 2005-11-02 2007-05-07 삼성전자주식회사 실란트 디스펜싱 장치와 이를 이용하여 제작된 액정 표시패널 및 제조 방법
FR2899631B1 (fr) 2006-04-10 2010-02-26 Saint Gobain Vitrage feuillete et ses moyens d'etancheification et de renforcement peripherique
JP2010096889A (ja) 2008-10-15 2010-04-30 Konica Minolta Holdings Inc 表示パネルの製造方法および表示パネル
JP2010139656A (ja) 2008-12-10 2010-06-24 Epson Imaging Devices Corp 液晶表示装置の製造方法
KR101755597B1 (ko) 2009-05-29 2017-07-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정 표시 장치의 제작 방법
US20120044445A1 (en) 2010-08-17 2012-02-23 Semiconductor Energy Laboratory Co., Ltd. Liquid Crystal Device and Manufacturing Method Thereof
TWI472831B (zh) 2011-12-16 2015-02-11 Prologium Technology Co Ltd 電子模組之側封裝結構
KR20120092247A (ko) 2011-02-11 2012-08-21 마승우 스마트 블란인드
JP2014071438A (ja) * 2012-10-02 2014-04-21 Japan Display Inc 液晶表示装置
JP6142268B2 (ja) 2013-05-28 2017-06-07 兵神装備株式会社 吐出幅可変装置、及び吐出装置
CN103785596A (zh) * 2014-01-20 2014-05-14 北京京东方光电科技有限公司 一种封框胶的涂布方法、设备以及显示装置
JP2017068196A (ja) 2015-10-02 2017-04-06 大日本印刷株式会社 調光フィルム及び調光フィルムの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0977536A (ja) * 1995-09-14 1997-03-25 Asahi Glass Co Ltd 複層ガラス
JP2004109448A (ja) * 2002-09-18 2004-04-08 Seiko Epson Corp ディスペンサ、電気光学装置の製造装置および電気光学装置の製造方法
KR20160095128A (ko) * 2013-12-12 2016-08-10 쌩-고벵 글래스 프랑스 개선된 밀봉을 갖는 이중 글레이징
WO2016043164A1 (ja) * 2014-09-17 2016-03-24 旭硝子株式会社 調光窓
KR20170063293A (ko) * 2015-11-30 2017-06-08 김성진 스마트 블라인드 창호

Also Published As

Publication number Publication date
TWI702335B (zh) 2020-08-21
CN111279045B (zh) 2022-04-15
US20200332592A1 (en) 2020-10-22
KR20190052646A (ko) 2019-05-16
CN111279045A (zh) 2020-06-12
US11035170B2 (en) 2021-06-15
KR102101150B1 (ko) 2020-04-17
JP2021500624A (ja) 2021-01-07
JP7102520B2 (ja) 2022-07-19
TW201928485A (zh) 2019-07-16

Similar Documents

Publication Publication Date Title
TWI605881B (zh) 在塗佈以液體之基板上之液體的不連續塗佈及將其用於形成層壓物
TWI641429B (zh) 黏性液體之精密塗佈及形成層壓物之使用
KR20010031379A (ko) 반도체장치에서 기판으로서 유리 라미네이트를 사용하는방법
US20180118982A1 (en) Warm melt optically clear adhesives and their use for display assembly
WO2019093774A1 (ko) 스마트 윈도우의 제조 방법
JP4933510B2 (ja) 液晶表示素子の製造ライン
CN104235642B (zh) 光照射装置和利用其制造显示装置的方法
WO2019168345A1 (ko) 시야각 보상필름, 이를 포함하는 편광판 및 이를 포함하는 디스플레이 장치
WO2016043521A1 (ko) 점착제 조성물, 광학용 점착 필름 및 터치 스크린 패널
WO2017111276A1 (ko) 편광판 및 이의 제조방법 및 이를 포함하는 표시 장치
CN106773364A (zh) 显示屏边框的封胶方法
WO2020159138A1 (ko) 시야각 보상필름, 이를 포함하는 편광판 및 이를 포함하는 디스플레이 장치
WO2016175601A1 (ko) 편광자 보호 필름, 이를 포함하는 편광판 및 편광판의 제조방법
KR101349784B1 (ko) 기능성 패널 합착용 지지부재, 이를 구비한 표시소자 및 표시소자 제조방법
KR101501989B1 (ko) 이형필름이 적용된 광학필름 및 이의 제조방법
KR101147116B1 (ko) 백라이트 유닛의 제조방법
US20230324759A1 (en) Optical path control member and display device comprising same
JP2020112619A (ja) 画像表示装置及び画像表示装置の製造方法
KR20220027470A (ko) 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치
KR20220027474A (ko) 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치
KR101382866B1 (ko) 액정표시장치의 제조방법
KR101166495B1 (ko) 도광필름 제조방법
WO2013109023A1 (ko) 광 합착 경화 방법
WO2018117410A1 (ko) 편광판 및 이를 포함하는 광학 표시 장치
JP2006030931A (ja) 光学補償フィルムおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875510

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020523020

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18875510

Country of ref document: EP

Kind code of ref document: A1