WO2019093654A1 - 배터리 층전 방법 및 배터리 층전 장치 - Google Patents

배터리 층전 방법 및 배터리 층전 장치 Download PDF

Info

Publication number
WO2019093654A1
WO2019093654A1 PCT/KR2018/011167 KR2018011167W WO2019093654A1 WO 2019093654 A1 WO2019093654 A1 WO 2019093654A1 KR 2018011167 W KR2018011167 W KR 2018011167W WO 2019093654 A1 WO2019093654 A1 WO 2019093654A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
discharging
cells
voltage
charging
Prior art date
Application number
PCT/KR2018/011167
Other languages
English (en)
French (fr)
Other versions
WO2019093654A8 (ko
Inventor
박지영
박필규
윤귀섭
이소라
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to PCT/KR2018/011167 priority Critical patent/WO2019093654A1/ko
Priority to CN201880011011.6A priority patent/CN110313099B/zh
Priority to US16/349,018 priority patent/US11081735B2/en
Priority to EP18876050.8A priority patent/EP3579329B1/en
Priority to JP2019525949A priority patent/JP6797438B2/ja
Publication of WO2019093654A1 publication Critical patent/WO2019093654A1/ko
Publication of WO2019093654A8 publication Critical patent/WO2019093654A8/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane

Definitions

  • the present invention relates to a battery field, and more particularly, to a battery charging method and a battery charge apparatus.
  • Lithium-ion batteries among widely used secondary batteries have an advantage in that they have higher operating voltages and energy densities than conventional secondary batteries such as Ni-MH, Ni-Cd, and sulfuric acid-lead batteries using an aqueous electrolyte It is getting popular in various fields.
  • a lithium secondary battery used in an electric vehicle and the like must have high energy density and characteristics capable of exhibiting high output in a short time, and must be used for more than 10 years under severe conditions in which a layer discharge by a large current repeats in a short time, Outstanding power characteristics and long term Life characteristics are inevitably required.
  • the rapid stratification tends to depend on the characteristics of the cathode in particular. Therefore, it is necessary to prevent the deposition of lyrium metal which occurs on the surface of the cathode by reducing the resistance of the cathode and increasing the depth of stratification. Thus, development of an electrolyte solution is required to prevent degradation of the negative electrode characteristics in the rapid stratified charge environment and accelerate diffusion of lithium ions in the active material.
  • a battery using Li is disadvantageous in that it has a high energy density and is light, but can easily form a dendrite.
  • the storage of electricity occurs through the process of Li ions coming from the layer anode into the cathode.
  • Li ions from the initial charging electrode enter the cathode through the electrolyte, causing polarization at the interface between the materials, leading to overvoltage.
  • the amount of movable ions is insufficient relative to the amount of current flowing, lithium ions are precipitated by overvoltage.
  • the lithium precipitation is caused not only by the movement of lithium ions but also by the electrical resistance, and the movement of ions is closely related to the porosity and the like of the electrode.
  • the higher the permeability the greater the mobility of Li ions, but the lower the electrical contact surface, so it is necessary to adjust it properly, but it is very difficult.
  • the high permeability naturally leads to low energy density.
  • Li-metal secondary batteries failed as a cathode for the first commercialization due to safety problems.
  • the lithium metal may break through the separator to cause a short, resulting in explosion.
  • the present invention is to provide a battery charging method and a battery charging apparatus which shortens the charging time.
  • the present invention also provides a battery charging method and a battery charging apparatus which reduce the charging time while suppressing Li-plating of the battery.
  • the present invention is to provide a method cheungjeon the capacity retention is improved, battery and battery cheungjeon device.
  • the present invention provides a battery stacking method comprising a plurality of cells, the stacking method comprising: charging the plurality of cells with a plurality of C-rates, respectively; Calculating a voltage change (dV / dQ) of the sal in each of the plurality of sal and a slope of the voltage change in the plurality of sal; And performing discharging a plurality of times in a period in which the deviation between the periods of the voltage change of the plurality of cells is equal to or greater than a predetermined reference value.
  • the step of performing discharging a plurality of times during a period in which the deviation between the slopes of the voltage changes of the plurality of cells is equal to or greater than a predetermined reference value may include the steps of: Is performed a plurality of times.
  • the step of performing the discharging a plurality of times in pulse form in the interval may include performing the discharging a plurality of times in a pulse form in the interval more than a predetermined number of times to be.
  • the present invention also provides a battery stacking apparatus including a plurality of sals, wherein the battery stacking apparatus is configured to charge the plurality of cells with a plurality of C-rates, respectively,
  • the voltage change (dV / dQ) of the sal and the voltage change The gradient of the voltage change of the cell is calculated and the discharge is performed a plurality of times in a section where the deviation between the slopes of the voltage changes of the plurality of cells is equal to or greater than a predetermined reference value.
  • the battery laminate device is configured to perform discharging a plurality of times in a section in which the deviation between the slopes of the voltage changes of the plurality of cells is equal to or greater than a predetermined reference value, And the discharge is performed a plurality of times in a pulse form in the interval.
  • the battery laminate apparatus may be configured to perform the discharge a plurality of times in a pulse format in the section, the battery laminate apparatus being configured to perform the discharge several times, And the discharge is performed in the form of a field a plurality of times.
  • the battery laminate device is further configured to perform the discharging in the pulse format a plurality of times after the above section.
  • a battery stacking method and a battery stacking apparatus which shortens the stratification time.
  • a battery lay-up method and a battery lay-up apparatus which shorten lay-up time while suppressing Li-plating of the battery.
  • a battery charging method and a battery charging apparatus which shortens the charging time while preventing overvoltage of the battery. Further, according to the present invention, there is provided a battery charging method and a battery stacking apparatus with improved capacity retention.
  • FIG. 1 is a diagram showing a relationship between a charging current and a charge voltage according to a conventional CCCV deposition method.
  • FIG. 2 is a graph showing a charging voltage profile and a voltage change with respect to a charging capacity of the stratification method according to the embodiment of the present invention.
  • FIG. 3 is a graph showing a charge voltage profile for a packed capacitance in a sensitive section of a stratification method according to an embodiment of the present invention.
  • FIG. 4 is a graph showing a laminated voltage profile for a laminated capacitor after a sensitive section of the lamination method according to another embodiment of the present invention.
  • FIG. 5 is a graph showing the discharge capacity versus cycle number of the stratification method according to the embodiment of the present invention.
  • FIG. 6 is a graph showing the energy retention rate for the number of cycles of the stratification method according to the charging method according to the embodiment of the present invention.
  • a constant current (CC) system in which the battery is stratified with a constant current from the beginning to the completion of stratification
  • a constant voltage (CV) system in which charging is performed with a constant voltage from the beginning to the completion of stratification
  • a constant current mode-constant voltage mode charging method (hereinafter referred to as a CCCV charging method) is used, which is charged at a constant voltage in the terminal period.
  • the constant current (CC) method may be a method of supplying electric power of a constant current up to a predetermined set voltage to the battery and layering it. While the constant current layer transition is being performed, the voltage of the battery may be increased along with the charged amount of the battery (black is the stratified charge value). That is, as the layer transfer progresses, the voltage of the battery rises and can reach the predetermined set voltage, and the set voltage can be set based on the accumulated value of the battery to be charged. For example, in a lithium ion battery having a rated voltage of 4.2 V, 3.9 V can be set to a set voltage when the lamination value of the lithium ion battery is 20%. That is, switching to the charging method before the constant current layer and the charging method in the next step can be made based on the charging value of the battery. When performing a plurality of constant current stratification, each constant current stratification may have a corresponding set voltage for each.
  • the constant voltage (CV) method is a method in which when the immediately preceding constant current charging is performed and the voltage of the battery reaches the set voltage, the layer current may be reduced while keeping the set voltage to be maintained. For example, if the rated voltage is
  • the constant voltage lamination may be such that the charge current is reduced while the charge current is maintained so that 4.35 V is maintained.
  • FIG. 1 is a graph showing a relationship between a lamination current and a lamination voltage according to a conventional CCCV charging method Fig.
  • the constant current mode-constant voltage mode charging method (hereinafter referred to as a cccv charging method) is a method in which charging is performed at a maximum current until a constant battery voltage is reached, When the battery voltage is reached, it is a method of gradually transferring the layer current while decreasing the charge current.
  • 'C' is also referred to as C-rate, and is a unit for predicting or indicating the current use value of the battery under various use conditions at the time of discharge of the battery layer, The calculation of the current value calculates the layer discharge current value by dividing the charge or discharge current by the battery rated capacity.
  • the SOC represents the state of charge (SOC) of the battery.
  • the present invention relates to a battery charging method, wherein the battery means a lithium ion battery.
  • the battery means a lithium ion battery and the time taken for the SOC to reach 50% at the time of charging in the CC / CCCV method at a driving voltage (for example, 4.1 V) is within 30 minutes.
  • a driving voltage for example, 4.1 V
  • the embodiment of the present invention uses the CCCV charging method after the CC layering, but the present invention is not limited thereto, and a detailed description of the CC layering method and the CC layering method will be omitted here to avoid redundancy.
  • the embodiment of the present invention classifies the laminated type into a predetermined number of stems (setp) and applies a charging method (for example, lowering the C-rate) in accordance with the charged amount of the battery to achieve a shorter laminated time
  • a charging method for example, lowering the C-rate
  • the present invention is not limited thereto, and the step-and-stack method can use the prior art, so that a detailed description thereof will be omitted here.
  • a region having a large C-rate sensitivity (hereinafter referred to as a sensitive region) is divided into SOC regions and a reverse pulse is divided into a plurality of To reduce Li-plating have.
  • FIG. 2 is a graph showing a charging voltage profile (V tage) and a voltage change (dV / dQ) with respect to a lamination capacity (SOC) of a lamination method according to an embodiment of the present invention.
  • V tage charging voltage profile
  • dV / dQ voltage change
  • SOC lamination capacity
  • the battery is charged with CCCV at a plurality of C-rates (for example, 2.5C, 2.0C, 1.0C, 0.5C and 0.2C) dV / dQ) and the slope of the voltage change of the cell, and a plurality of predetermined intervals (p1 to p5) are arbitrarily set according to the SOC.
  • C-rates for example, 2.5C, 2.0C, 1.0C, 0.5C and 0.2C
  • dV / dQ the slope of the voltage change of the cell
  • the method for battery charging according to the present invention is characterized in that a portion having a slope deviation between the residual pressure changes (dV / dQ) of each of a plurality of C-rate is shortened a plurality of times (for example, 10 times) Set the discharge interval.
  • a battery charging method sets a section (p2, SOC 5-25) in which the slope deviation between a plurality of C-rate voltage changes (dV / dQ) is equal to or greater than a predetermined reference value as a sensitive section.
  • the sensitive section since the charge effect is the greatest according to the C-rate, the discharge in the sensitive section is discharged a plurality of times in a pulse form a number of times greater than a predetermined number of times previously set. Since the conventional technique can be used for the step-and-stacking method, a detailed description of step filling will be omitted here.
  • FIG. 3 is a graph showing a charge-coupled voltage (V tage) of the charge accumulation capacity Capacity (mAh) in the sensitive section of the charging method according to the embodiment of the present invention.
  • FIG. 4 is a graph showing a charging voltage profile (V tage) for a charging capacity (Capacity, mAh) after a sensitive period of the stratification method according to another embodiment of the present invention.
  • V tage a charging voltage profile
  • Capacity, mAh a charging capacity after a sensitive period of the stratification method according to another embodiment of the present invention.
  • the layering method according to an embodiment of the present invention layered to a cutoff voltage (for example, 4.1 V) at 1 C (for example, 4850 mA) and a short discharge in a sensitive section in pulse form Perform several times, for example 10 times, and discharge to 2.5V at 1C.
  • a charging method includes:
  • FIG. 6 is a graph showing energy retention for a cycle number of a charging method according to a stratification method according to an embodiment of the present invention.
  • FIG. Referring to FIGS. 5 and 6, it can be seen that the charging method according to the embodiment of the present invention performs a short discharge several times in the sensitive section, and the energy retention rate is increased as compared with the comparative example.
  • the energy storage ratio of the layering method according to another embodiment of the present invention is higher than that of the comparative example by performing a short discharge several times in a section after the sensitive section.
  • the charging method according to the embodiment of the present invention and the layering method according to another embodiment of the present invention perform a plurality of discharges in a high C-rate (for example, 1 C) layer to alleviate layer display overvoltage.
  • the charging method according to the embodiment of the present invention and the charging method according to another embodiment of the present invention can expect the effect that Li-plating is suppressed by performing discharging a plurality of times.
  • an embodiment of the present invention a charging method and a charging method according to another embodiment of the present invention as is seen that the increase in energy retention than the comparative example.
  • a battery charging device is a device for charging a battery in a CCCV layer at a plurality of C-rates (for example, 2.5C, 2.0C, 1.0C, 0.5C, and 0.2C) (DV / dQ) and a period of the voltage change of the cell, and a plurality of predetermined intervals (p1 to p5) are arbitrarily set according to the charge capacity (SOC).
  • a section in which the slope deviation between the voltage changes (dV / dQ) of each of the plurality of C-rate is set to discharge a short multiple times a predetermined number of times do.
  • the battery charging apparatus sets the interval (p2, SOC 5-25) in which the slope deviation between the plurality of C-rate voltage changes (dV / dQ) do.
  • the discharge in the sensitive region is discharged a plurality of times more times than the predetermined number of times.
  • the battery packed device may have a structure in which a layered breakdown voltage is applied to a cutoff voltage (for example, 4.1 V) at 1 C (for example, 4850 mA) and a short discharge is applied to the sensitive section a plurality of times, And discharges to 5V at 1C.
  • a cutoff voltage for example, 4.1 V
  • 1 C for example, 4850 mA
  • the battery packed device may have a structure in which a capacitor is layered to a cutoff voltage (for example, 4.1 V) at 1 C (for example, 4850 mA) SOC 40-90), a short discharge is performed a plurality of times, for example, 10 times, and the discharge is performed to 2.5V at 1C.
  • a cutoff voltage for example, 4.1 V
  • 1 C for example, 4850 mA

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 복수의 셀을 포함하는 배터리 충전 방법으로서, 이러한 배터리 충전 방법은, 복수의 셀을 복수의 C-레이트로 각각 충전하는 단계; 복수의 셀 각각의 셀의 전압 변화 및 복수의 셀의 전압 변화의 기울기를 계산하는 단계; 및 복수의 셀의 전압 변화의 기울기 사이의 편차가 소정의 기준치 이상인 구간에 방전을 복수 회 수행하는 단계를 포함한다.

Description

【발명의 명칭】
배터리 층전 방법 및 배터리 층전 장치
[기술분야】
관련 출원 (들)과의 상호 인용
본 출원은 2017 년 11 월 13 일자 한국 특허 출원 제 10-2017-
0150907 호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 배터리 분야에 관련된 것으로서, 보다 상세하게는 배터리 충전 방법 및 배터리 층전 장치에 관한 것이다.
【배경기술】
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 그 중에서도 용이하게 층전 /방전할 수 있는 2 차 전지의 개발은 관심의 초점이 되고 있다. 이러한 2 차 전지는, 화석 연료의 사용을 감소시킬 수 있다는 일차적인 장점뿐만 아니라 에너지의 사용에 따른 부산물이 전혀 발생하지 않는다는 점에서 친환경 및 에너지 효율성 제고를 위한 새로운 에너지원으로 주목 받고 있다. , 현재 널리 사용되고 있는 2 차 전지 중 리튬이온 전지는 수용액 전해질을 사용하는 Ni-MH, Ni-Cd, 황산-납 전지 등의 종래의 2 차 전지에 비해서 작동 전압이 높고 에너지 밀도가 월등히 크다는 장점이 있어 다양한 분야에서 각광을 받고 있다.
휴대 전화나 노트북 컴퓨터 등의 휴대용 전자기기가 발달함에 따라 그 에너지원으로서 이차 전지의 수요가 급격히 증가하고 있다. 최근에는, 하이브리드 전기 자동차 (HEV), 전기 자동차 (EV)의 동력원으로서 이차 전지의 사용이 현실화되고 있다. 그에 따라, 다양한 요구에 부응할 수 있는 이차 전지에 대해 많은 연구가 행해지고 있고, 특히, 높은 에너지 밀도, 높은 방전 전압 및 출력을 가지는 리튬 이차 전지에 대한 수요가 높아지는 추세이다. 전기 자동차 등에 사용되는 리튬 이차 전지는 고에너지 밀도와 단시간에 고출력을 발휘할 수 있는 특성을 가져야 함과 아울러 대전류에 의한 층방전이 단시간에 반복되는 가혹한 조건하에서 10 년 이상 사용될 수 있어야 하므로, 기존의 소형 리튬 이차 전지보다 월등히 우수한 출력 특성 및 장기 수명 특성이 필연적으로 요구된다.
특히 급속 층전은 특히 음극의 특성에 의존하는 경향이 있다. 따라서 음극이 과층전 방지, 음극의 저항을 감소시키고 층전 심도를 높여 음극 표면에서 발생하는 리륨 금속의 석출을 방지할 필요가 있다. 이와 같이 급속 층전 환경에서 음극 특성 저하를 방지하기 하고 활물질 내 리튬이온의 확산이 촉진되도록 하기 위한 전해액의 개발이 요구된다.
특히, 리튬 이차전지의 경우, 그 명칭에서 알 수 있듯이 Li 을 이용하는 전지로서, 에너지 밀도가 높고 가볍지만, 덴드라이트를 쉽게 형성할 수 있어 위험하다는 단점이 있다. 구체적으로, 층전시 양극에서 나온 Li 이온이 음극으로 들어가는 과정을 통하여 전기의 저장이 일어나게 된다. 이 과정에서 충전 초기 양극에서 나온 Li 이온이 전해액을 통하여 음극으로 들어가며 각 물질들 사이의 계면에서 분극 현상이 발생하게 되고, 과전압으로 이어지게 된다. 이때, 흐르는 전류량 대비 이동할 수 있는 이온이 부족하면, 과전압에 의해서 리튬이온이 석출되게 된다. 상기 리튬 석출은 리튬이온의 이동뿐만 아니라 전기 저항에 의해서도 발생하게 되며, 이온의 이동은 전극의 투과성 (porosity) 등과도 밀접하게 관련된다. 투과성이 높아질수록 Li 이온의 이동도는 커지게 되지만, 전기적 접촉 면이 낮아지게 되므로 적절히 조절하는 것이 필요하나 매우 어려운 실정이며, 특히 높은 투과성은 당연히 낮은 에너지 밀도로 이어지는 문제점도 내포하고 있다. 이에 첫 상업화에 시도된 음극으로 Li-metal을 이용한 이차전지는 안전성 문제로 실패하고 말았다.
또한, 한 번 석출된 리튬 금속주변으로 부반웅에 의하여 더 많은 부산물이 집적되고, 사이클 (cycle) 성능 저하는 물론 심할 경우 분리막을 뚫고 지나가 미세 쇼트 (short)를 일으켜 폭발등으로 진행될 수 있다.
이에 많은 연구자가 이러한 Li-플레이팅 (Li-plating)을 억제하기 위한 방법을 고안하고 있으나, 점점 더 높은 에너지 밀도를 요구하고 있는 현 실정에서 아직까지 만족할 만한 성과들을 거두지 못하고 있다.
특히, 급속 충전이 요구되는 이차 전지에서 이온 전도도가 저하되는 경우에는 흐르는 전류량 대비 이온이 부족하여 음극에서 과전압이 발생하게 되고 이로 인해 음극 표면에서의 Li-플레이팅이 악화될 수 있다. 따라서, Li- 플레이팅을 발생시키지 않으면서 급속 층전을 달성하는 기술이 필요하다. 【발명의 상세한 설명】
[기술적 과제】
본 발명은 층전시간을 단축시키는, 배터리 층전 방법 및 배터리 충전 장치를 제공하기 위함이다.
또한, 본 발명은 전지의 Li-플레이팅을 억제하면서 충전시간을 단축시키는, 배터리 층전 방법 및 배터리 층전 장치를 제공하기 위함이다.
또한, 본 발명은 전지의 과전압을 방지하면서 층전시간을 단축시키는, 배터리 층전 방법 및 배터리 충전 장치를 제공하기 위함이다.
또한, 본 발명은 용량 보유가 개선된' 배터리 층전 방법 및 배터리 층전 장치를 제공하기 위함이다.
【기술적 해결방법】
본 발명은 복수의 셀을 포함하는 배터리 층전 방법을 제공하고, 이러한 층전 방법은, 상기 복수의 셀을 복수의 C-레이트 (C-rate)로 각각 충전하는 단계; 상기 복수의 샐 각각의 상기 샐의 전압 변화 (dV/dQ) 및 상기 복수의 샐의 전압 변화의 기울기를 계산하는 단계; 및 복수의 셀의 전압 변화의 기을기 사이의 편차가 소정의 기준치 이상인 구간에 방전을 복수 회 수행하는 단계를 포함한다.
또한, 본 발명에 따른 배터리 층전 방법에서, 상기 복수의 셀의 전압 변화의 기울기 사이의 편차가 소정의 기준치 이상인 구간에 방전을 복수 회 수행하는 단계는, 상기 구간에 펄스 (pulse) 형식으로 상기 방전을 복수 회 수행하는 단계이다.
또한, 본 발명에 따른 배터리 층전 방법에서, 상기 구간에 펄스 형식으로 상기 방전을 복수 회 수행하는 단계는, 미리 설정된 소정의 횟수보다 많은 횟수로 상기 구간에 펄스 형식으로 상기 방전을 복수 회 수행하는 단계이다.
또한, 본 발명에 따른 배터리 충전 방법에서, 상기 구간 이후에, 상기 펄스 형식으로 방전을 복수 회 수행하는 단계를 더 포함한다.
또한, 본 발명은 복수의 샐을 포함하는 배터리 층전 장치를 제공하고, 이러한 배터리 층전 장치는, 상기 복수의 셀을 복수의 C-레이트 (C-rate)로 각각 충전하고, 상기 복수의 셀 각각의 상기 샐의 전압 변화 (dV/dQ) 및 상기 복수의 셀의 전압 변화의 기울기를 계산하며, 복수의 셀의 전압 변화의 기울기 사이의 편차가소정의 기준치 이상인 구간에 방전을 복수 회 수행하도록 구성된다. 또한, 본 발명에 따른 배터리 층전 장치에서 , 상기 배터리 층전 장치가, 상기 복수의 셀의 전압 변화의 기울기 사이의 편차가 소정의 기준치 이상인 구간에 방전을 복수 회 수행하도록 구성된 것은, 상기 배터리 층전 장치가 상기 구간에 펄스 (pulse) 형식으로 상기 방전을 복수 회 수행하도록 구성된 것이다.
또한, 본 발명에 따른 배터리 층전 장치에서, 상기 배터리 층전 장치가, 상기 구간에 펄스 형식으로 상기 방전을 복수 회 수행하도록 구성된 것은, 상기 배터리 층전 장치가, 미리 설정된 소정의 횟수보다 많은 횟수로 상기 구간에 필스 형식으로 상기 방전을 복수 회 수행하도록 구성된 것이다.
또한, 본 발명에 따른 배터리 층전 장치에서, 상기 배터리 층전 장치는 추가로, 상기 구간 이후에, 상기 펄스 형식으로 방전을 복수 회 수행하도록 구성된 것이다.
【발명의 효과】
본 발명에 따르면, 층전시간을 단축시키는, 배터리 층전 방법 및 배터리 층전 장치가 제공된다.
또한, 본 발명에 따르면, 전지의 Li-플레이팅을 억제하면서 층전시간을 단축시키는, 배터리 층전 방법 및 배터리 층전 장치가 제공된다.
또한, 본 발명에 따르면, 본 발명은 전지의 과전압을 방지하면서 층전시간을 단축시키는, 배터리 충전 방법 및 배터리 충전 장치가 제공된다. 또한, 본 발명에 따르면, 용량 보유가 개선된 배터리 충전 방법 및 배터리 층전 장치가 제공된다.
【도면의 간단한 설명】
도 1은 종래 CCCV층전 방법에 따른 충전 전류와층전 전압의 관계를 나타낸 도면이다.
도 2 는 본 발명의 실시예에 따른 층전 방법의 충전 용량에 대한 충전 전압프로파일 및 전압 변화를 나타내는 그래프이다.
도 3 은 본 발명의 실시예에 따른 층전 방법의 민감 구간에서 층전 용량에 대한 충전 전압 프로파일을 나타내는 그래프이다. 도 4 는 본 발명의 다른 실시예에 따른 층전 방법의 민감 구간 이후에 층전 용량에 대한층전 전압 프로파일을 나타내는 그래프이다.
도 5 는 본 발명의 실시예에 따른 층전 방법의 사이클 횟수에 대한 방전 용량을 나타낸 그래프이다.
도 6 은 본 발명의 실시예에 따른 충전 방법의 따른 층전 방법의 사이클 횟수에 대한 에너지 유지율을 나타낸 그래프이다.
【발명의 실시를 위한 형태】
종래의 전지 층전 방법은 층전 초기부터 완료까지 일정한 전류로 층전을 행하는 정전류 (CC) 방식, 층전 초기부터 완료까지 일정한 전압으로 충전을 행하는 정전압 (CV) 방식 및 층전 초기에는 일정한 전류로 층전하고, 층전 말기에는 일정한 전압으로 충전하는 정전류 (constant current mode)- 정전압 (constant voltage mode) 층전 방법 (이하 CCCV 충전 방법이라 함)이 사용된다.
정전류 (CC) 방식이라 함은, 미리 설정된 설정전압까지 정전류의 전력을 배터리에 공급하여 층전하는 것일 수 있다. 정전류 층전이 수행되는 중에는 배터리의 충전량 (흑은 층전 값)과 함께 배터리의 전압이 상승할 수 있다. 즉, 층전이 진행됨에 따라 배터리의 전압이 상승하고 상기 미리 설정된 설정전압에 이를 수 있는데, 설정전압은 충전 대상인 배터리의 층전 값에 기초하여 설정될 수 있다. 예컨대, 정격 전압이 4.2V 인 리튬이온 전지에서, 3.9V 는 상기 리튬이온 전지의 층전 값이 20%일 때의 설정전압으로 설정될 수 있다. 즉, 정전류 층전의 완료 여하 및 다음 스텝의 층전 방법으로 전환하는 것은 배터리의 충전 값을 기초로 이루어질 수 있다. 복수의 정전류 층전을 수행하는 경우 각 정전류 층전은 각각에 상응하는 설정전압을 가질 수 있다.
또한, 정전압 (CV) 방식이라 함은, 직전의 정전류 충전이 수행되어 배터리의 전압이 설정전압에 이른 경우 당해 설정전압을 유지하도록 층전전류를 감소시키면서 층전하는 ¾일 수 있다. 예를 들어 정격 전압이
4.2V 인 리튬이온 전지에서, 직전의 정전류 층전으로 인해 상기 리튬이온 전지의 전압이 설정전압인 4.35V 에 이르렀다면, 정전압 층전은 4.35V 가 유지되도록 충전전류를 감소시키면서 층전하는 것일 수 있다.
도 1 은, 종래 CCCV충전방법에 따른 층전 전류와 층전 전압의 관계를 나타낸 도면이다.
정전류 (constant current mode)-정전압 (constant voltage mode) 층전 방법 (이하 cccv 충전 방법이라 함)은 도 1 에서 볼 수 있는 바와 같이, 일정전지 전압에 도달할 때까지 최대 전류로 층전을 실행하고, 일정전지 전압에 도달하게 되면, 점차로 층전 전류를 감소시키면서 층전하는 방법이다. 본 명세서에서 'C'는 C-레이트 (C-rate)라고도 불리며, 전지의 층'방전 시 다양한 사용 조건하에서의 전류 값 설정 및 전지의 가능 사용시간을 예측하거나 표기하기 위한 단위로서, 층방전율에 따른 전류 값의 산출은 충전 또는 방전전류를 전지 정격용량으로 나누어 층방전 전류 값을산출한다.
또한, SOC는 배터리의 충전 용량 (State Of Charge: SOC)을 나타낸다. 또한, 본 발명은 배터리 층전 방법에 관한 것으로서, 배터리는 리튬이온 전지를 의미한다.
그러나 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
본 발명의 실시예에서, 배터리는 리튬이온 전지를 의미하고 구동 전압 (예를 들어, 4.1V)에서 CC/CCCV 방법으로 충전 시 SOC 가 50%까지 도달하는 데 걸리는 시간이 30분 이내인 것이다.
본 발명의 실시예는 상술한 CC 층전 후 CCCV 충전 방식을 사용하나 이에 한정되는 것은 아니며, 중복을 방지하기 위해 CC 층전 방식 및 CC 층전 방식의 상세한 설명은 여기에서 생략한다.
본 발명의 실시예는 층전 방식을 소정의 수의 스템 (setp)으로 구분하고 배터리의 충전량에 따라서 각각 적합한 충전 방식 (예를 들어 C-레이트를 낮춤)을 적용함으로써, 더욱 단축된 층전시간을 달성하는 스텝 층전 방식을 사용하지만, 본 발명이 이에 한정되는 것은 아니며, 스텝 층전 방식은 종래 기술을사용할 수 있으므로, 여기에서 상세한 설명은 생략한다.
또한, 본 발명의 실시예는 CCCV 층전 방식에서, SOC 구간 중 C- 레이트 민감도가 큰 영역 (이하, 민감 구간이라 함)을 구분하여, 방전 (reverse pulse)을 짧게 펄스 (pulse) 형식으로 복수 회 수행하여 Li-플레이팅을 줄일 수 있다.
이하, 민감 구간에서 방전을 복수 회 수행하여 Li-플레이팅을 줄일 수 있는 본 발명에 따른 배터리 층전 방법에 대해서 상세히 설명한다.
도 2 는 본 발명의 실시예에 따른 층전 방법의 층전 용량 (SOC)에 대한 충전 전압프로파일 (V tage) 및 전압 변화 (dV/dQ)를 나타내는 그래프이다. 이하, 도 2 를 참조하여 본 발명에 따른 배터리 층전 방법에 대해 보다 상세하게 설명한다.
도 2를 참조하면, 전지를 복수의 C-레이트 (예를 들어, 2.5C, 2.0C, 1.0C, 0.5C, 0.2C)로 각각 CCCV 충전하고, 복수의 C-레이트에 대웅하는 전압 변화 (dV/dQ) 및 상기 셀의 전압 변화의 기울기를 계산하며, SOC 에 따라 소정의 구간 (p1 내지 p5)을 임의로 복수 설정한다.
본 발명에 따른 배터리 층전 방법은, 복수의 C-레이트 각각의 잔압 변화 (dV/dQ) 간의 기울기 편차가 있는 부분은 미리 설정된 소정의 횟수보다 많은 횟수 (예를 들어, 10회)로 복수 회 짧게 방전하는 구간을 설정한다.
또한, 본 발명에 따른 배터리 층전 방법은, 복수의 C-레이트의 전압 변화 (dV/dQ) 간의 기울기 편차가 소정의 기준치 이상인 구간 (p2, SOC 5-25 구간)을 민감 구간으로 설정한다. 민감 구간에서 C-레이트에 따른 충전 영향이 가장 많은 곳이므로, 민감 구간의 방전은 미리 설정된 소정의 횟수보다 많은 횟수로 펄스 (pulse) 형식으로 복수 회 짧게 방전한다. 스텝 층전 방식은 종래 기술을 사용할 수 있으므로, 여기에서 스텝 충전의 상세한 설명은 생략한다. 이하, 도 3 내지 도 6 을 참조하여 본 발명의 실시예에 따른 충전 방법의 민감 구간에서 층전 방법을 구체적으로 설명한다. 도 3 은 본 발명의 실시예에 따른 충전 방법의 민감 구간에서 층전 용량 (Capacity, mAh 대한 층전 전압 프로파일 (V tage)을 나타내는 그래프이다.
도 4 는 본 발명의 다른 실시예에 따른 층전 방법의 민감 구간 이후에 충전 용량 (Capacity, mAh 대한 충전 전압 프로파일 (V tage)을 나타내는 그래프이다. 도 3을 참조하면, 본 발명의 실시예에 따른 층전 방법은 1 C (예를 들어, 4850mA)로 컷오프 전압 (예를 들어 4.1V)까지 층전하고 민감 구간에 짧은 방전을 펄스 (pulse) 형식으로 복수 회, 예를 들어 10 회 수행하며, 1 C 로 2.5V까지 방전한다.
또한, 도 4 를 참조하면, 본 발명의 다른 실시예에 따른 충전 방법은
1 C (예를 들어, 4850mA)로 컷오프 전압 (예를 들어 4.1 V)까지 층전하고 민감 구간 이후의 구간 (예를 들어, p4, p5: SOC 40-90 구간)에 펄스 (pulse) 형식으로 짧은 방전을 복수 회, 예를 들어 10회 수행하며, 1 C로 2.5V까지 방전한다. 도 5 는 본 발명의 실시예에 따른 층전 방법의 사이클 횟수에 대한 방전 용량을 나타낸 그래프이다.
도 6 은 본 발명의 실시예에 따른 층전 방법의 따른 충전 방법의 사이클 횟수에 대한 에너지 유지율 (Energy Retention)을 나타낸 그래프이다. 도 5 및 도 6 을 참조하면, 본 발명의 실시예에 따른 충전 방법은, 민감 구간에서 짧은 방전을 복수 회 수행하여 에너지 유지율이 비교예보다 증가한 것을 알 수 있다. 또한, 본 발명의 다른 실시예에 따른 층전 방법은 민감 구간 이후의 구간에서 짧은 방전을 복수 회 수행하여 에너지 유지율이 비교예보다 증가한 것을 알 수 있다.
또한, 본 발명의 실시예에 따른 충전 방법 및 본 발명의 다른 실시예에 따른 층전 방법은 고 C-레이트 (예를 들어 1 C) 층전시 복수 회 방전을 수행하여, 층전시 과전압이 완화된다. 또한, 본 발명의 실시예에 따른 층전 방법 및 본 발명의 다른 실시예에 따른 충전 방법은 복수 회 방전을 수행하여, Li-플레이팅 억제되는 효과를 기대할 수 있다.
이에, 본 발명의 실시예에, 따른 충전 방법 및 본 발명의 다른 실시예에 따른 충전 방법은 비교예보다 에너지 유지율이 늘어난 것을 알수 있다.
또한, 본 발명의 실시예에 따른 배터리 충전 장치는, 전지를 복수의 C- 레이트 (예를 들어 , 2.5C, 2.0C, 1.0C, 0.5C, 0.2C)로 각각 CCCV층전하고, 복수의 C-레이트에 대웅하는 전압 변화 (dV/dQ) 및 상기 셀의 전압 변화의 기을기를 계산하며, 충전 용량 (SOC)에 따라 소정의 구간 (p1 내지 p5)를 임의로 복수 설정한다. 또한, 본 발명의 실시예에 따른 배터리 층전 장치는, 복수의 C-레이트 각각의 전압 변화 (dV/dQ) 간의 기울기 편차가 있는 부분은 소정의 횟수보다 많은 횟수로 복수 회 짧게 방전하는 구간을 설정한다.
또한, 본 발명의 실시예에 따른 배터리 충전 장치는, 복수의 C-레이트의 전압 변화 (dV/dQ) 간의 기울기 편차가 소정의 기준치 이상인 구간 (p2, SOC 5-25 구간)을 민감 구간으로 설정한다. 민감 구간에서 C-레이트에 따른 층전 영향이 가장 많은 곳이므로, 민감 구간의 방전은 소정의 횟수보다 많은 횟수로 복수 회 짧게 방전한다.
또한, 본 발명의 실시예에 따른 배터리 층전 장치는, 1 C (예를 들어, 4850mA)로 컷오프 전압 (예를 들어 4.1V)까지 층전하고 민감 구간에 짧은 방전을 복수 회, 예를 들어 10회 수행하며, 1 C로 5V까지 방전한다.
또한, 본 발명의 실시예에 따른 배터리 층전 장치는, 1 C (예를 들어, 4850mA)로 컷오프 전압 (예를 들어 4.1V)까지 층전하고 민감 구간 이후의 구간 (예를 들어, p4, p5: SOC 40-90 구간)에 짧은 방전을 복수 회, 예를 들어 10회 수행하며, 1 C로 2.5V까지 방전한다.

Claims

【청구의 범위】
【청구항 1 1
복수의 셀을 포함하는 배터리 층전 방법으로서,
상기 복수의 샐을 복수의 C-레이트 (C-rate)로 각각 층전하는 단계; 상기 복수의 셀 각각의 상기 ᅳ셀의 전압 변화 (dV/dQ) 및 상기 복수의 셀의 전압 변화의 기울기를 계산하는 단계; 및 .
복수의 셀의 전압 변화의 기울기 사이의 편차가 소정의 기준치 이상인 구간에 방전을 복수 회 수행하는 단계
를 포함하는 배터리 층전 방법.
【청구항 2】
제 1항에 있어서,
상기 복수의 샐의 전압 변화의 기울기 사이의 편차가 소정의 기준치 이상인 구간에 방전을 복수 회 수행하는 단계는,
상기 구간에 펄스 (pulse) 형식으로 상기 방전을 복수 회 수행하는 단계인, 배터리 층전 방법.
【청구항 3】
제 2항에 있어서,
상기 구간에 펄스 형식으로 상기 방전을 복수 회 수행하는 단계는, 미리 설정된 소정의 횟수보다 많은 횟수로 상기 구간에 펄스 형식으로 상기 방전을 복수 회 수행하는 단계인, 배터리 층전 방법.
【청구항 4】
제 3항에 있어서,
상기 구간 이후에, 상기 필스 형식으로 방전을 복수 회 수행하는 단계 를 더 포함하는 배터리 충전 방법.
【청구항 5】
복수의 셀을 포함하는 배터리 층전 장치로서,
상기 복수의 셀을 복수의 C-레이트 (C-rate)로 각각 충전하고, 상기 복수의 샐 각각의 상기 셀의 전압 변화 (dV/dQ) 및 상기 복수의 셀의 전압 변화의 기울기를 계산하며, 복수의 샐의 전압 변화의 기울기 사이의 편차가 소정의 기준치 이상인 구간에 방전을 복수 회 수행하도록 구성된 배터리 충전 장치.
【청구항 6】
제 5항에 있어서,
상기 배터리 층전 장차가, 상기 복수의 셀의 전압 변화의 기울기 사이의 편차가 소정의 기준치 이상인 구간에 방전을 복수 회 수행하도록 구성된 것은,
상기 배터리 층전 장치가 상기 구간에 펄스 (pulse) 형식으로 상기 방전을 복수 회 수행하도록 구성된 것인 배터리 층전 장치.
【청구항 7】
제 6항에 있어서,
상기 배터리 층전 장치가, 상기 구간에 필스 형식으로 상기 방전을 복수 회 수행하도록 구성된 것은,
상기 배터리 층전 장치가, 미리 설정된 소정의 횟수보다 많은 횟수로 상기 구간에 필스 형식으로 상기 방전을 복수 회 수행하도록 구성된 것인 배터리 층전 장치.
【청구항 8】
제 7항에 있어서,
상기 배터리 충전 장치는 추가로,
상기 구간 이후에, 상기 펄스 형식으로 방전을 복수 회 수행하도록 구성된 배터리 충전 장치.
PCT/KR2018/011167 2017-11-13 2018-09-10 배터리 층전 방법 및 배터리 층전 장치 WO2019093654A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/KR2018/011167 WO2019093654A1 (ko) 2017-11-13 2018-09-10 배터리 층전 방법 및 배터리 층전 장치
CN201880011011.6A CN110313099B (zh) 2017-11-13 2018-09-20 对电池进行充电的方法和设备
US16/349,018 US11081735B2 (en) 2017-11-13 2018-09-20 Method and apparatus for charging battery
EP18876050.8A EP3579329B1 (en) 2017-11-13 2018-09-20 Method and apparatus for charging a battery
JP2019525949A JP6797438B2 (ja) 2017-11-13 2018-09-20 バッテリーの充電方法およびバッテリーの充電装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2017-0150907 2017-11-13
KR1020170150907A KR102441469B1 (ko) 2017-11-13 2017-11-13 배터리 충전 방법 및 배터리 충전 장치
PCT/KR2018/011167 WO2019093654A1 (ko) 2017-11-13 2018-09-10 배터리 층전 방법 및 배터리 층전 장치

Publications (2)

Publication Number Publication Date
WO2019093654A1 true WO2019093654A1 (ko) 2019-05-16
WO2019093654A8 WO2019093654A8 (ko) 2019-09-06

Family

ID=66438584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/011167 WO2019093654A1 (ko) 2017-11-13 2018-09-10 배터리 층전 방법 및 배터리 층전 장치

Country Status (6)

Country Link
US (1) US11081735B2 (ko)
EP (1) EP3579329B1 (ko)
JP (1) JP6797438B2 (ko)
KR (1) KR102441469B1 (ko)
CN (1) CN110313099B (ko)
WO (1) WO2019093654A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102253781B1 (ko) * 2017-04-28 2021-05-20 주식회사 엘지화학 방전 제어 장치 및 방법
KR102655792B1 (ko) * 2018-10-19 2024-04-09 삼성전자주식회사 배터리 충전 장치 및 방법
KR20220067328A (ko) * 2020-11-17 2022-05-24 주식회사 엘지에너지솔루션 배터리 관리 장치 및 방법
FR3126664A1 (fr) * 2021-09-03 2023-03-10 Psa Automobiles Sa Contrôle de la recharge en mode 4 d’une batterie de véhicule

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130102647A (ko) * 2005-09-09 2013-09-17 에이일이삼 시스템즈 인코포레이티드 고속 충전 및 방전 능력과 낮은 임피던스 증가를 나타내는 리튬 2차 전지
KR101326118B1 (ko) * 2004-10-29 2013-11-06 메드트로닉 인코포레이티드 리튬 이온 전지의 충전방법
KR20150133587A (ko) * 2014-05-20 2015-11-30 삼성에스디아이 주식회사 배터리의 충전방법 및 이를 위한 배터리 관리 시스템
KR20160094229A (ko) * 2015-01-30 2016-08-09 삼성에스디아이 주식회사 배터리 충방전 제어 시스템 및 방법
KR20170023583A (ko) * 2015-08-24 2017-03-06 주식회사 엘지화학 리튬 석출 탐지 방법, 이를 이용한 이차전지 충전 방법과 장치 및 이차전지 시스템

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4503378A (en) * 1983-05-02 1985-03-05 General Motors Corporation Charging system for nickel-zinc batteries
JP2803991B2 (ja) 1994-06-02 1998-09-24 株式会社多川商事 太陽電池装置及びこれを用いた間欠動作装置
US6495992B1 (en) * 1996-03-26 2002-12-17 Norvik Traction Inc. Method and apparatus for charging batteries utilizing heterogeneous reaction kinetics
JP3479408B2 (ja) * 1996-04-23 2003-12-15 アルプス電気株式会社 Agc電圧補正回路
US6366056B1 (en) * 1999-06-08 2002-04-02 Enrev Corporation Battery charger for lithium based batteries
JP3879598B2 (ja) 2002-06-24 2007-02-14 日産自動車株式会社 組電池の容量調整装置および方法
US7682745B2 (en) * 2004-10-29 2010-03-23 Medtronic, Inc. Medical device having lithium-ion battery
JP4577274B2 (ja) * 2006-06-06 2010-11-10 株式会社デンソー 車両用電源システム
FR2908243B1 (fr) * 2006-11-06 2009-02-13 Commissariat Energie Atomique Procede de gestion de charge d'une batterie rechargeable
JP5349810B2 (ja) * 2007-02-08 2013-11-20 プライムアースEvエナジー株式会社 蓄電装置の異常検出装置及び方法並びにプログラム
JP4827023B2 (ja) * 2007-12-27 2011-11-30 トヨタ自動車株式会社 燃料電池システム
JP5347341B2 (ja) * 2008-06-06 2013-11-20 ソニー株式会社 固体撮像装置、撮像装置、電子機器、ad変換装置、ad変換方法
US8515699B2 (en) * 2009-07-02 2013-08-20 Analog Devices, Inc. Accuracy of battery monitor parts
DE102009035862A1 (de) * 2009-07-31 2011-03-31 Voith Patent Gmbh Vorrichtung zur Speicherung von elektrischer Energie
KR20110024707A (ko) * 2009-09-03 2011-03-09 주식회사 엘지화학 리튬 이차 전지의 충전 방법
JP5481146B2 (ja) * 2009-09-30 2014-04-23 株式会社東芝 電池管理装置、二次電池装置および車両
JP2011150876A (ja) * 2010-01-21 2011-08-04 Sony Corp 組電池および組電池の制御方法
US8970178B2 (en) * 2010-06-24 2015-03-03 Qnovo Inc. Method and circuitry to calculate the state of charge of a battery/cell
US8686744B2 (en) * 2010-07-20 2014-04-01 Texas Instruments Incorporated Precision measurement of capacitor mismatch
KR101288122B1 (ko) * 2011-01-03 2013-07-18 삼성에스디아이 주식회사 배터리 충전방법, 및 이를 적용한 배터리 팩
CN102185167B (zh) * 2011-03-15 2013-06-12 奇瑞汽车股份有限公司 一种车载电池管理系统电池放电终止状态判断方法
CN102904323B (zh) 2011-07-26 2015-03-25 神基科技股份有限公司 脉波调制充电方法及脉波调制充电装置
CN103141006B (zh) * 2011-09-27 2015-07-29 日立麦克赛尔株式会社 锂离子二次电池的充电方法
JP2013089363A (ja) 2011-10-14 2013-05-13 Toyohashi Univ Of Technology リチウムデンドライトの析出判定方法及びリチウムデンドライトの析出判定装置
JP5286456B1 (ja) * 2011-12-09 2013-09-11 本田技研工業株式会社 電力制御装置
KR101472881B1 (ko) * 2012-06-11 2014-12-15 주식회사 엘지화학 이차전지 충전방법 및 이를 포함하는 충전 시스템
JP5724959B2 (ja) * 2012-07-09 2015-05-27 トヨタ自動車株式会社 蓄電システム
US20140295261A1 (en) * 2013-03-28 2014-10-02 Semiconductor Energy Laboratory Co., Ltd. Electrochemical device and method for suppressing deterioration of the electrochemical device
EP2957921B1 (en) * 2013-07-04 2018-04-04 LG Chem, Ltd. Method and system for estimating soc of battery
US20170054184A1 (en) 2014-04-24 2017-02-23 Nec Corporation Lithium ion secondary battery system and lithium secondary battery system operation method
CN105576306A (zh) 2014-10-17 2016-05-11 东莞新能源科技有限公司 电池快速充电方法
KR101985812B1 (ko) 2015-08-18 2019-06-04 주식회사 엘지화학 전지 충전 한계 예측 방법과 이를 이용한 전지 급속 충전 방법 및 장치
KR102010021B1 (ko) 2015-11-18 2019-08-12 주식회사 엘지화학 배터리 팩 관리 장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101326118B1 (ko) * 2004-10-29 2013-11-06 메드트로닉 인코포레이티드 리튬 이온 전지의 충전방법
KR20130102647A (ko) * 2005-09-09 2013-09-17 에이일이삼 시스템즈 인코포레이티드 고속 충전 및 방전 능력과 낮은 임피던스 증가를 나타내는 리튬 2차 전지
KR20150133587A (ko) * 2014-05-20 2015-11-30 삼성에스디아이 주식회사 배터리의 충전방법 및 이를 위한 배터리 관리 시스템
KR20160094229A (ko) * 2015-01-30 2016-08-09 삼성에스디아이 주식회사 배터리 충방전 제어 시스템 및 방법
KR20170023583A (ko) * 2015-08-24 2017-03-06 주식회사 엘지화학 리튬 석출 탐지 방법, 이를 이용한 이차전지 충전 방법과 장치 및 이차전지 시스템

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3579329A4 *

Also Published As

Publication number Publication date
KR20190054513A (ko) 2019-05-22
CN110313099A (zh) 2019-10-08
JP6797438B2 (ja) 2020-12-09
EP3579329A4 (en) 2020-05-13
US11081735B2 (en) 2021-08-03
CN110313099B (zh) 2022-07-05
EP3579329B1 (en) 2021-04-21
JP2020515207A (ja) 2020-05-21
WO2019093654A8 (ko) 2019-09-06
KR102441469B1 (ko) 2022-09-06
US20210104782A1 (en) 2021-04-08
EP3579329A1 (en) 2019-12-11

Similar Documents

Publication Publication Date Title
US8502494B2 (en) Battery charging apparatus and method
WO2019093654A1 (ko) 배터리 층전 방법 및 배터리 층전 장치
US20110189507A1 (en) Extended energy storage unit
US20110189533A1 (en) Integrated energy storage unit
JP2013081357A (ja) 二次電池の制御装置
EP2946433B1 (en) Electrochemical cell or battery with reduced impedance and method for producing same
CN202712358U (zh) 锂离子电池的电芯
JP2015201382A (ja) 二次電池の制御方法
WO2014184861A1 (ja) 電池システム、その電池システムを備える移動体および電力貯蔵システム、および電池システムの制御方法
CN107636884B (zh) 用于运行可充电的电池组电池的方法和电池组控制设备
JPWO2018135668A1 (ja) リチウムイオン組電池
KR102006128B1 (ko) 니켈아연 전지 단위 셀, 상기 단위 셀들이 직렬연결된 단위 스택 및 상기 단위스택들을 병렬 연결하는 방식으로 구성되는 니켈-아연 이차전지 스택모듈
US20240154086A1 (en) Method And System For Silicon-Dominant Lithium-Ion Cells With Controlled Utilization of Silicon
US11695104B2 (en) Method and system for improved performance of silicon anode containing cells through formation
Shukla et al. Electrochemical power sources: 1. Rechargeable batteries
US20210098784A1 (en) Method and system for silicon dominant lithium-ion cells with controlled lithiation of silicon
JP2011216685A (ja) 複合蓄電デバイス
Barsukov Battery selection, safety, and monitoring in mobile applications
JP2024053331A (ja) バイポーラ型積層電池の製造方法
CN114497691A (zh) 锂离子电池分容优化方法
JP2019220260A (ja) 電池システム
Dailey et al. Electro energy bipolar wafer cell battery technology for PHEV applications
CN105609317A (zh) 一种基于锂离子电容器的加速能量包、纯电动汽车电源装置及其加速控制方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019525949

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18876050

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018876050

Country of ref document: EP

Effective date: 20190902

NENP Non-entry into the national phase

Ref country code: DE