WO2019093296A1 - オルガノポリシロキサン組成物 - Google Patents

オルガノポリシロキサン組成物 Download PDF

Info

Publication number
WO2019093296A1
WO2019093296A1 PCT/JP2018/041098 JP2018041098W WO2019093296A1 WO 2019093296 A1 WO2019093296 A1 WO 2019093296A1 JP 2018041098 W JP2018041098 W JP 2018041098W WO 2019093296 A1 WO2019093296 A1 WO 2019093296A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
group
composition
sio
cured product
Prior art date
Application number
PCT/JP2018/041098
Other languages
English (en)
French (fr)
Inventor
吉武 誠
Original Assignee
ダウ・東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダウ・東レ株式会社 filed Critical ダウ・東レ株式会社
Priority to CN201880068296.7A priority Critical patent/CN111247212A/zh
Priority to EP18876531.7A priority patent/EP3708614A4/en
Priority to US16/761,509 priority patent/US11390715B2/en
Priority to JP2019552791A priority patent/JP7176828B2/ja
Priority to KR1020207014540A priority patent/KR20200070356A/ko
Publication of WO2019093296A1 publication Critical patent/WO2019093296A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/247Heating methods
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups

Definitions

  • the present invention relates to a composition curable by a hydrosilylation reaction, a method of producing a cured product cured by a hydrosilylation reaction, and a cured product obtained by the method.
  • the hydrosilylation reaction is an addition reaction between a hydrosilyl group (-SiH) and an aliphatic unsaturated group, and is widely used as an important means of organosilicon compound synthesis.
  • a hydrosilyl group (-SiH)
  • organopolysiloxanes it is used as an important reaction in crosslinking organopolysiloxanes to form a silicone material.
  • the reaction also takes place by light or heat, but usually, radical reaction initiators such as peroxides, and transition metal complex catalysts such as hexachloroplatinum (IV) acid are used.
  • Silicone materials are used in various applications because they have excellent properties such as chemical resistance, heat resistance, and electrical insulation.
  • Pressure-sensitive adhesives which are one of the applications of silicone materials, are widely used for bonding daily goods, medical products, and electronic products.
  • silicone pressure sensitive adhesives a cured product of organopolysiloxane obtained by crosslinking organopolysiloxane having unsaturated group with organohydrogenpolysiloxane is used (Patent Document 1), but the adhesion is high and sufficient strength is obtained.
  • Patent Document 1 a cured product of organopolysiloxane obtained by crosslinking organopolysiloxane having unsaturated group with organohydrogenpolysiloxane is used (Patent Document 1), but the adhesion is high and sufficient strength is obtained.
  • the degree of polymerization of the cured product may be low, or crosslinking may not be sufficient, and the adhesion and mechanical strength of the obtained silicone pressure sensitive adhesive are inferior. It was a thing.
  • the molecular structure of the organohydrogenpolysiloxane used causes a large difference in the molecular weight and crosslink density of the cured product.
  • the organohydrogenpolysiloxane contains a hydrogen atom bonded to a silicon atom, and has a partial structure called MH unit (-OSiR 2 H) or DH unit (-OSiRH-).
  • the MH unit is mainly present at the end of the molecular chain of the organohydrogenpolysiloxane, and the reaction of the MH unit causes molecular chain extension.
  • the DH unit is present in the molecular chain of the organohydrogenpolysiloxane, and the crosslinking reaction is carried out by the reaction of the DH unit.
  • an object of the present invention is to provide a hydrosilylation-reactive composition and a method for producing a cured product using the same, which can obtain an organopolysiloxane cured product having high adhesion and sufficient mechanical strength.
  • the present invention is to provide a hydrosilylation reactive composition capable of performing molecular design by controlling the reaction of MH units / DH units of organohydrogenpolysiloxane, and a method for producing a cured product using the same. .
  • composition of the present invention comprises the following components (A) to (D): (A) a compound containing at least one monovalent hydrocarbon group having an aliphatic unsaturated bond in one molecule; (B) a silicon atom A compound containing at least two bonded hydrogen atoms in one molecule; (C) a first hydrosilylation catalyst and (D) platinum, rhodium, ruthenium or iridium, the temperature showing its activity being (C) It is a composition containing the 2nd hydrosilylation catalyst which is temperature 30 degreeC or more higher than the temperature which shows the activity of a component.
  • the component (D) is preferably a carbene complex or a ⁇ -diketonato complex of platinum, rhodium, ruthenium or iridium. Moreover, it is preferable that at least one of the said (A) component or (B) components is organopolysiloxane.
  • the component (A) has the following average composition formula (1): R 1 a R 2 b SiO (4-a-b) / 2 (1) (Wherein, R 1 is an alkenyl group having 2 to 12 carbon atoms, and R 2 is selected from monovalent hydrocarbon groups having 1 to 12 carbon atoms having no aliphatic unsaturated bond, a hydroxyl group and an alkoxy group And a and b are organopolysiloxanes represented by the following conditions: 1 ⁇ a + b ⁇ 3 and 0.001 ⁇ a / (a + b) ⁇ 0.33.
  • the component (B) has the following average composition formula (2): H c R 3 d SiO (4-c-d) / 2 (2) (Wherein R 3 is a group selected from C 1-12 monovalent hydrocarbon groups having no aliphatic unsaturated bond, a hydroxyl group and an alkoxy group, and c and d are the following conditions: 1 ⁇ c + d ⁇ 3 and 0.01 ⁇ c / (c + d) ⁇ 0.33) It is preferable that it is organopolysiloxane represented by these.
  • the said (B) component is the following average unit formula (3): (HR 4 2 SiO 1/2 ) e (R 4 3 SiO 1/2 ) f (HR 4 SiO 2/2 ) g (R 4 2 SiO 2/2 ) h (HSiO 3/2 ) i (R 4 SiO) 3/2 ) j (SiO 4/2 ) k (R 5 O 1/2 ) l (3)
  • R 4 is a group selected from C 1-12 monovalent hydrocarbon groups having no aliphatic unsaturated group, a hydroxyl group and an alkoxy group
  • R 5 is a hydrogen atom or 1 carbon atom
  • the molar ratio ((C) / (D)) of the component (C) to the component (D) is preferably 0.01 to 0.8.
  • composition of the present invention is heated to a temperature at which the component (C) exhibits activity but the component (D) does not exhibit activity, and then heated at a temperature at which the component (D) exhibits activity. It is preferably a composition for curing.
  • the method of forming the cured product of the present invention comprises the following steps (i) and (ii): (I) heating the composition at a temperature at which the component (C) exhibits activity but the component (D) exhibits no activity, and performing only the first hydrosilylation reaction to obtain a semi-cured product; ii) heating the obtained semi-cured product at a temperature at which the component (D) exhibits activity, and performing a second hydrosilylation reaction to obtain a cured product.
  • the semi-cured product of the present invention is obtained by heating the composition at a temperature at which the component (C) exhibits activity but the component (D) exhibits no activity, and performing only the first hydrosilylation reaction.
  • Be The cured product of the present invention can be obtained by a method comprising the steps (i) and (ii).
  • the composition of the present invention can provide an organopolysiloxane cured product having high adhesion and sufficient mechanical strength.
  • the D H unit for example, (CH 3 ) HSiO 2 is obtained after the M H unit (for example, (CH 3 ) 2 HSiO 1/2 unit) is reacted first to extend the molecular chain. Since a stable semi-hardened state can be produced without an organic solvent by reacting ( 2 units), the moldability of the material is excellent and the curing reaction by crosslinking is performed after sufficiently increasing the molecular weight. As a result, the physical properties of the resulting material (cured product) can be improved.
  • composition The composition of the present invention contains the following components (A) to (D). The following will be described in order.
  • Component (A) The composition of the present invention contains a compound (component (A)) containing at least one monovalent hydrocarbon group having an aliphatic unsaturated bond in one molecule.
  • the component (A) is a compound containing an aliphatic unsaturated group to which a hydrosilyl group (-SiH) is added in the hydrosilylation reaction.
  • examples of the component (A) include linear or branched organopolysiloxane having an alkenyl group, polyether containing an alkenyl group, polyolefin containing an alkenyl group and polyester containing an alkenyl group. Among these, an organopolysiloxane having the following average composition formula (1) is preferable.
  • R 1 is an alkenyl group having 2 to 12 carbon atoms. Specific examples thereof include vinyl, allyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl and dodecenyl groups, and among these, vinyl and allyl groups. Or a hexenyl group is preferred.
  • R 2 is a group selected from C 1 to C 12 monovalent hydrocarbon groups having no aliphatic unsaturated bond, a hydroxyl group and an alkoxy group.
  • the hydrogen atoms may be substituted with a halogen atom or a hydroxyl group.
  • monovalent hydrocarbon groups having 1 to 12 carbon atoms include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl and dodecyl Alkyl group such as phenyl group, tolyl group, xylyl group, naphthyl group, anthracenyl group, phenanthryl group, aryl group such as pyrenyl group, benzyl group, phenethyl group, naphthylethyl group, naphthylpropyl group, anthracenylethyl group And aralkyl groups such as phenanthrylethyl group and pyrenylethyl group, and hydrogen
  • a and b are numbers satisfying the following conditions: 1 ⁇ a + b ⁇ 3 and 0.001 ⁇ a / (a + b) ⁇ 0.33.
  • cured material becomes it high that a / (a + b) is 0.001 or more, and it is because the softness
  • organopolysiloxane As a molecular structure of such organopolysiloxane, linear, branched or cyclic is exemplified.
  • the organopolysiloxane may be a mixture of one or more compounds having such a molecular structure.
  • a component (A) As such a component (A), a general formula: R 6 3 SiO (R 6 2 SiO) m 1 SiR 6 3 A linear organopolysiloxane represented by and / or an average unit formula: (R 7 SiO 3/2 ) o (R 7 2 SiO 2/2 ) p (R 7 3 SiO 1/2 ) q (SiO 4/2 ) r (XO 1/2 ) s
  • the branched organopolysiloxane represented by is preferred.
  • each R 6 and R 7 is independently an unsubstituted or halogen-substituted monovalent hydrocarbon group, and the same groups as described above are exemplified.
  • At least two of R 6 or at least two of R 7 are alkenyl groups.
  • this alkenyl group a vinyl group is preferable.
  • m1 is an integer in the range of 5 to 1,000.
  • o is a positive number
  • p is 0 or a positive number
  • q is 0 or a positive number
  • r is 0 or a positive number
  • s is 0 or a positive number
  • p / o is a number in the range of 0-10
  • q / o is a number in the range of 0-5
  • r / (o + p + q + r) is a number in the range of 0-0.3
  • s / (O + p + q + r) is a number in the range of 0 to 0.4.
  • composition of the present invention contains a compound (component (B)) containing at least two hydrogen atoms bonded to a silicon atom in one molecule.
  • the component (B) is a compound containing a hydrosilyl group (-SiH) added to the aliphatic unsaturated hydrocarbon group in the component (A) during the hydrosilylation reaction.
  • the component (B) is preferably an organopolysiloxane having the following average composition formula (2).
  • R 3 is a group selected from monovalent hydrocarbon groups of 1 to 12 carbon atoms having no aliphatic unsaturated bond, a hydroxyl group and an alkoxy group.
  • the hydrocarbon group having 1 to 12 carbon atoms part of the hydrogen atoms may be substituted with halogen atoms or hydroxyl groups.
  • Examples of monovalent hydrocarbon groups having 1 to 12 carbon atoms include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl and dodecyl Alkyl group such as phenyl group, tolyl group, xylyl group, naphthyl group, anthracenyl group, phenanthryl group, aryl group such as pyrenyl group, benzyl group, phenethyl group, naphthylethyl group, naphthylpropyl group, anthracenylethyl group And aralkyl groups such as phenanthrylethyl group and pyrenylethyl group, and hydrogen atoms of these aryl groups or aralkyl groups as alkyl groups such as methyl group and ethyl group; alkoxy groups such as methoxy
  • c and d are numbers satisfying the following condition: 1 ⁇ c + d ⁇ 3 and 0.01 ⁇ c / (c + d) ⁇ 0.33, preferably, the following condition: 1.5 ⁇ c + d ⁇ 2.5 and It is a number which satisfy
  • cured material becomes it high that c / (c + d) is 1.5 or more, and it is because the softness
  • the viscosity of the organopolysiloxane having the above average composition formula (2) is not limited, the viscosity at 25 ° C. is preferably in the range of 1 to 10,000 mPa ⁇ s, particularly preferably 1 to 1,000 mPa ⁇ s. It is preferable to be within the range.
  • organopolysiloxanes having such an average composition formula (2) 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, tris (dimethylhydrogen) Siloxy) methylsilane, tris (dimethylhydrogensiloxy) phenylsilane, 1- (3-glycidoxypropyl) -1,3,5,7-tetramethylcyclotetrasiloxane, 1,5-di (3-glycidoxy Propyl) -1,3,5,7-tetramethylcyclotetrasiloxane, 1- (3-glycidoxypropyl) -5-trimethoxysilylethyl-1,3,5,7-tetramethylcyclotetrasiloxane, molecule Chain-terminated trimethylsiloxy group-blocked methyl hydrogen polysiloxane, molecular chain-terminated trimethylsiloxy group-blocked dimethylsiloxane, methyl Hydrogen
  • organopolysiloxane which has the said average composition formula (2)
  • the following organopolysiloxane is also illustrated further.
  • Me and Ph each represent a methyl group or a phenyl group
  • m2 is an integer of 1 to 100
  • n2 is an integer of 1 to 50
  • b2, c2, d2 and e2 are each positive.
  • the sum of b2, c2, d2 and e2 in one molecule is 1.
  • the component (B) is preferably an organohydrogenpolysiloxane represented by the following average unit formula (3).
  • R 4 is a group selected from a monovalent hydrocarbon group having 1 to 12 carbon atoms, a hydroxyl group and an alkoxy group (however, the hydrocarbon group is a group having an alkenyl group and an alkenyl group) Not included).
  • the monovalent hydrocarbon group having 1 to 12 carbon atoms, the hydroxyl group and the alkoxy group are as defined above.
  • R 5 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and examples of the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group and a hexyl group.
  • each constituent unit of R 4 SiO 3/2 ”and“ SiO 4/2 ” is an organohydrogenpolymorph referred to as M H unit, M unit, D H unit, D unit, T H unit, T unit, Q unit, respectively.
  • R 5 O 1/2 is a group which bonds to an oxygen atom in D unit, D H unit, T unit, T H unit, or Q unit, and organopolysiloxane Silicon-bonded hydroxyl (Si-OH) or silicon-bonded alkoxy remaining unreacted during the preparation of organopolysiloxane.
  • the MH unit is mainly present at the molecular chain end of the organohydrogenpolysiloxane, and the DH unit is present in the organohydrogenpolysiloxane molecular chain.
  • the content of the component (B) is such that the content of silicon-bonded hydrogen atoms in the component is in the range of 0.1 to 5 mol with respect to 1 mol in total of the alkenyl groups in the component (A).
  • the amount is in the range of 0.5 to 2 moles. This is because the mechanical strength of the cured product is high when the content of the component (B) is at least the lower limit of the above range, while the flexibility of the cured product is high when it is at the upper limit of the above range It is because
  • Component (C) The composition of the present invention contains a first hydrosilylation catalyst (component (C)) which is active in the composition even at relatively low temperatures.
  • Component (C) is a hydrosilylation reaction catalyst for semi-curing the composition.
  • the term "semi-cured” means a thickened body having fluidity at room temperature or a thermoplastic material which is non-flowable at room temperature but is fluid at 100 ° C.
  • thickening means that the viscosity at 25 ° C. is between 1.5 times and 100 times the initial viscosity of the composition.
  • a thermoplastic means that the viscosity at 100 ° C. is 1,000,000 mPa ⁇ s or less.
  • Component (C) is a hydrosilylation reaction catalyst that exhibits activity at a temperature lower by 30 ° C. or more than component (D) described later, and is preferably platinum, rhodium, ruthenium, which is component (D). Or a platinum-based hydrosilylation catalyst other than a carbene complex or a ⁇ -diketonato complex of iridium.
  • the first hydrosilylation catalyst examples include a platinum based catalyst, a rhodium based catalyst, a palladium based catalyst, a nickel based catalyst, an iridium based catalyst, a ruthenium based catalyst and an iron based catalyst, preferably a platinum based catalyst And does not correspond to the component (D) described later.
  • platinum-based catalyst platinum-based compounds such as platinum fine powder, platinum black, fine platinum-supported silica, platinum-supported activated carbon, chloroplatinic acid, chloroplatinic acid alcohol solution, platinum olefin complex, platinum alkenylsiloxane complex, etc. In particular, alkenyl siloxane complexes of platinum are preferred.
  • alkenyl siloxane 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane,
  • the alkenyl siloxane which substituted a part of methyl group of these alkenyl siloxanes by the ethyl group, the phenyl group, etc., and the alkenyl siloxane which substituted the vinyl group of these alkenyl siloxanes with the allyl group, the hexenyl group etc. is illustrated.
  • 1,3-divinyl-1,1,3,3-tetramethyldisiloxane is preferable because the stability of this platinum-alkenylsiloxane complex is good.
  • 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 1,3-diallyl-1,1 may be used as this complex.
  • 1,3,3-Tetramethyldisiloxane 1,3-Divinyl-1,3-dimethyl-1,3-diphenyldisiloxane, 1,3-Divinyl-1,1,3,3-tetraphenyldisiloxane, 1
  • an alkenyl siloxane such as 3,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane or an organosiloxane oligomer such as a dimethylsiloxane oligomer, and particularly to add an alkenyl siloxane. Is preferred.
  • the catalyst of component (C) varies depending on the amount, type and composition of the catalyst, but usually it is at least room temperature, or 25 ° C. or more, 30 ° C. or more and 120 ° C. or less, or 100 ° C. or less It exhibits activity in the composition at temperatures below 80 ° C., optionally below 60 ° C., to promote the hydrosilylation reaction.
  • the content of the component (C) varies depending on the type of catalyst and the type of composition, usually, the metal atom in the catalyst is in the range of 0.01 to 50 ppm by weight relative to the composition. The amount is preferably in the range of 0.1 to 30 ppm.
  • the content of the component (C) is sufficient to contain MH units in the organohydrogenpolysiloxane. It is an amount that can be hydrosilylated.
  • Component (D) The composition of the present invention contains platinum, rhodium, ruthenium or iridium, and the temperature at which the activity is exhibited is 30 ° C. or more higher than the temperature at which the activity of the component (C) is exhibited. It contains a hydrosilylation catalyst (component (D)).
  • a hydrosilylation catalyst component (D)
  • One example of the component (D) is a carbene complex or a ⁇ -diketonato complex of platinum, rhodium, ruthenium, or iridium, and the platinum-based metal and the complexing agent have a strong interaction, so that 30 It shows hydrosilylation reaction catalytic activity at temperatures higher than ° C. Thereby, the reaction can be advanced in two steps due to the temperature difference.
  • ⁇ -diketonate complexes of component (D) include acetylacetonato (Hacac), 3-methylacetylacetonato (Hmaa), propionylacetonato (Hpra), benzoylacetonato (Hbza) and trifluoroacetylacetonato. (Htfa) and the like are used, but acetylacetonato (Hacac) is particularly preferable as a complexing agent.
  • the carbene complex of the component (D) 1,3-bis (2,6-diisopropylphenyl) imidazole-2-ylidene and 1,3-bis (cyclohexyl) imidazole-2-ylidene are preferable as the complexing agent.
  • component (D) is a platinum carbene complex catalyst or a platinum ⁇ -diketonato complex, for example, bis (acetylacetonato) platinum (II) complex, bis (propionylacetonato) platinum (II) complex, 1,3-bis (2,6-diisopropylphenyl) imidazole-2-ylidene] [1,3-divinyl-1,1,3,3-tetramethyldilyloxane [platinum (0)] complex, [1,3 And -bis (cyclohexyl) imidazole-2-ylidene] [1,3-divinyl-1,1,3,3-tetramethyldilyloxane [platinum (0)] complex and the like.
  • platinum carbene complex catalyst or a platinum ⁇ -diketonato complex for example, bis (acetylacetonato) platinum (II) complex, bis (propionylacetonato) platinum (II) complex, 1,3-bis (2
  • the component (D) exhibits catalytic activity at a temperature higher by 30 ° C. or more, preferably 50 ° C. or more than the component (C). Therefore, the temperature at which the catalyst activity is exhibited varies depending on the type of catalyst, but is usually 80 ° C. or higher, preferably 100 ° C., more preferably 120 ° C. or higher.
  • the content of the component (D) is an amount necessary to further cure the composition semi-cured by the component (C).
  • the content of the component (D) is sufficient to sufficiently hydrolyze DH units in the organohydrogenpolysiloxane. Amount that can be
  • the molar ratio ((C) / (D)) of the amount of platinum metal in the component (C) and the component (D) is usually 0.01 to 100, preferably 0.01 to 10, and more preferably 0.01 to 100. It is 0.8.
  • the molar ratio of the amount of platinum metal in both components is below the upper limit, the curing reaction can be accelerated at high temperatures, and when the molar ratio is above the lower limit, curing at low temperature in a short time It is because reaction can be performed.
  • the present composition does not contain a hydrosilylation reaction inhibitor.
  • a hydrosilylation reaction inhibitor is added to the composition in order to improve the pot life of the composition and obtain a stable composition.
  • the present inventor separates the reaction of the M H unit and the reaction of the D H unit by using a very small amount of two or more kinds of catalysts having different catalytic activities depending on the temperature without adding a hydrosilylation reaction inhibitor. It has been found that a semi-cured resin can be obtained by selectively carrying out the reaction of the M H units, and molecular design can be performed by controlling the reaction of M H units / D H units.
  • the present composition is, if necessary, an inorganic filler such as other organopolysiloxane, an adhesive agent, silica, glass, alumina, zinc oxide, etc .; fine powder of an organic resin such as polymethacrylate resin; fluorescence It may contain a body, a heat resistant agent, a dye, a pigment, a flame retardant, a solvent and the like.
  • the inorganic filler is added to increase the composition or reinforce the physical strength or to add functions such as electrical conductivity and thermal conductivity.
  • Another aspect of the present invention is a method of forming a cured product by a hydrosilylation reaction, comprising the following steps. (I) heating the composition at a temperature at which the component (C) exhibits activity but does not (D) exhibit activity to perform a first hydrosilylation reaction to obtain a semi-cured product, and (ii) obtaining Heating the semi-cured product at a temperature at which the component (D) is active, and performing a second hydrosilylation reaction to obtain a silicone cured product.
  • step (i) the composition is heated at a temperature at which the component (C) exhibits activity but the component (D) exhibits no activity, and only the first hydrosilylation reaction is carried out to obtain a semi-cured product. .
  • the second hydrosilylation reaction does not occur.
  • the heating temperature may be 25 ° C. or higher, or 30 ° C. or higher, and sometimes 50 ° C. or higher. it can.
  • the heating temperature is 120 ° C. or less, or 100 ° C. or less, and in some cases, 80 ° C. or less.
  • semi-curing means a thickener having fluidity at room temperature, or a thermoplastic which is non-fluid at room temperature but is fluid at 100 ° C.
  • thickening means that the viscosity at 25 ° C. is between 1.5 times and 100 times the initial viscosity of the composition.
  • a thermoplastic substance reactive hot melt
  • the viscosity at 100 ° C. is 1,000,000 mPa ⁇ s or less.
  • B-staged compounds can also be obtained by step (i).
  • B-stage refers to the state of B-stage (cured intermediate of thermosetting resin) defined in JIS K 6800, and it is possible to use a solvent by incompletely curing the crosslinkable silicone composition. Swelling but not completely dissolved (hereinafter referred to simply as "B-stage" in the present specification).
  • the hydrosilylation reaction of MH units preferentially proceeds according to step (i) to cause extension of the molecular chain. Since the molecular weight of the organopolysiloxane is sufficiently high, the composition loses its fluidity and is considered to be in a semi-cured state.
  • the step (ii) is a step of heating the composition in the semi-cured state to a temperature at which the component (D) exhibits activity, and performing a second hydrosilylation reaction to obtain a cured product.
  • the heating temperature in step (ii) is 20 ° C. or more higher than the temperature in step (i), or the heating temperature in step (ii) is 30 ° C. or more than the temperature in step (i) It is a high temperature, more preferably, the heating temperature of step (ii) is 50 ° C. or more higher than the temperature of step (i).
  • the heating temperature is 80 ° C. or more, or 100 ° C. or more, or 120 ° C. or more. At the same time, optionally, the heating temperature is 200 ° C. or less, or 180 ° C. or less, or 160 ° C. or less.
  • the composition which has been in a semi-cured state becomes a cured product and can be used as various materials.
  • the second hydrosilylation reaction according to step (i) It will be bridge
  • the cured product formed by the method of the present invention exhibits excellent physical properties, and in particular is excellent in adhesion and mechanical strength.
  • the method of the present invention can be used in various applications in order to obtain a cured product through a stable semi-cured state. For example, after the present composition is applied to a film substrate, a tape-like substrate, or a sheet-like substrate, curing can be advanced through the steps (i) and (ii).
  • the present composition is disposed between two substrates, and the step (i) and the step (ii) are continuously performed to cure the two substrates firmly, and at least the substrate
  • the present composition is applied smooth on one surface and semi-cured in step (i) to make it non-fluidized, then the two substrates are bonded to each other and curing is further advanced in step (ii) to achieve firm adhesion There is a case to do.
  • the thickness of the cured product is not limited, but is preferably 1 to 100,000 ⁇ m, more preferably 50 to 30,000 ⁇ m.
  • the cured products formed by the method of the present invention can be used in applications such as pressure sensitive adhesives and adhesive primers.
  • a cured product was obtained from a composition containing the following components.
  • Me and Vi respectively represent a methyl group and a vinyl group.
  • the hardness of the cured product is Type A durometer (hereinafter referred to as “Shore hardness (Shore A)”) or JIS K 6253-1997 “Test method for hardness of vulcanized rubber and thermoplastic rubber” or The penetration of the cured product was measured by the method according to JIS K 2220 [1/4 cone (direct reading)].
  • Example 1 Average unit formula: (Me 2 ViSiO 1/2 ) 0.1 (Me 3 SiO 1/2 ) 0.4 (SiO 4/2 ) 0.5 vinyl-terminated branched polysiloxane (A-1) 58.5 parts by weight, average unit formula: (Me 3 SiO 1/2 ) 0.44 (SiO 4/2 ) 0.56 14.0 parts by weight of branched polysiloxane (E-1), average Formula: ViMe 2 SiO (SiMe 2 O) 160 SiMe 2 Vi 1.8 parts by weight of vinyl-terminated linear polysiloxane (A-2), average formula: HMe 2 SiO (SiMe 2 O) 400 SiMe 2 H 26.1 parts by weight of the linear polysiloxane (B-1) represented by the formula: Me 3 SiO (SiMe 2 O) 30 (SiMeHO) 30 SiMe 3 linear polysiloxane (B-2); 7 weight Part, 0.2 ppm of platinum-1,3-divinyl-1,
  • the viscosity of the composition was 3,500 mPa ⁇ s.
  • the composition was heated at 90 ° C. for 30 minutes to obtain a B-staged solid which was non-flowable at 25 ° C. but flowable at 100 ° C.
  • the resulting B-staged solid remained B-staged even when stored at 25 ° C. for 2 months.
  • the B-staged solid was heated at 150 ° C. within 10 minutes to obtain a silicone elastomer of Shore hardness (Shore A) 80.
  • Example 2 33.8 parts by weight of A-1, 30.0 parts by weight of E-1, 21.8 parts by weight of A-2, 16.5 parts by weight of B-1, and 3 .0 parts by weight of said C-1 as platinum atom and 0.1 ppm as platinum atom and 2 ppm of [1,3-bis (2,6-diisopropylphenyl) imidazole-2-ylidene] [1,3-divinyl-1 as platinum atom
  • a composition was prepared containing 1,3,3-tetramethyldilyloxane [platinum (0)] (D-2). The viscosity of the composition was 2,800 mPa ⁇ s. The composition was heated at 90 ° C.
  • Example 3 Average compositional formula: 94.3% by weight of vinyl-terminated linear polysiloxane (A-3) represented by ViMe 2 SiO (SiMePhO) 36 SiMe 2 Vi, average compositional formula: (ViMe 2 SiO 1/2 ) 0.22 1.0 weight of vinyl group-containing polysiloxane (A-4) represented by (MeXSiO2 / 2 ) 0.12 (PhSiO3 / 2 ) 0.66 (wherein, X represents a glycidoxypropyl group) %, 3.9% by weight of linear polysiloxane (B-3) represented by Ph 2 Si (OSiMe 2 H) 2 and cyclic polysiloxane represented by the average composition formula (HMeSiO 2/2 ) 4 A composition containing 0.8% by weight of (B-4), 0.2 ppm of the C-1 as a platinum atom, and 5 ppm of the D-1 as a platinum atom was prepared.
  • the viscosity of the composition was 6,000 mPa ⁇ s.
  • the composition was heated at 80 ° C. for 30 minutes to obtain a thickener having a viscosity of about 12,000 mPa ⁇ s.
  • the obtained thickened body had fluidity with a viscosity of about 18,000 Pa ⁇ s thickened body after being stored at 25 ° C. for one month, but the penetrability was achieved by heating at 150 ° C. within 10 minutes. There were 30 gel cured products.
  • Comparative Example 1 58.5 parts by weight of the A-1, 14.0 parts by weight of the E-1, 1.8 parts by weight of the A-2, 26.1 parts by weight of the B-1, and 4 of the B-2 A composition containing 7 parts by weight and 2 ppm of said C-1 as platinum atom was prepared.
  • the viscosity of the composition was 3,500 mPa ⁇ s.
  • the composition was heated at 90 ° C. for 30 minutes to obtain a cured product of Shore hardness (Shore A) 80. Moreover, when the said composition was heated at 50 degreeC for 30 minutes, in order to obtain a softer hardened
  • the resulting cured product did not exhibit fluidity even when heated to 100 ° C. but was not in the B-stage state.
  • the cured product gradually increased in hardness with time and reached Shore hardness 75 (Shore A) after 2 weeks at 25 ° C.
  • Comparative Example 2 33.8 parts by weight of A-1, 30.0 parts by weight of E-1, 21.8 parts by weight of A-2, 16.5 parts by weight of B-1, and 3 A composition was prepared containing .0 parts by weight of D-2 as the platinum atom.
  • the viscosity of the composition was 2,800 mPa ⁇ s.
  • the composition was heated at 90 ° C. for 30 minutes, but no change was observed in the composition.
  • the composition was heated at 120 ° C. for 30 minutes to obtain a cured product of Shore hardness (Shore A) 30 which was not in the B-stage state.
  • Comparative Example 3 94.3% by weight of A-3, 1.0% by weight of A-4, 3.9% by weight of B-3, 0.8% by weight of B-4, 2 ppm of platinum atoms
  • a composition containing C-1 was prepared.
  • the viscosity of the composition was 6,000 mPa ⁇ s.
  • the composition thickened immediately after preparation, became non-flowable after 30 minutes, no thickener or B-stage solid was obtained, and a gel cured product with a penetration of 30 after 1 day was obtained.
  • composition of the present invention is suitable as an adhesive or a pressure-sensitive adhesive between layers of an image display device because it can obtain a cured product of organopolysiloxane having high adhesion and sufficient mechanical strength.
  • the composition is useful as various potting agents, sealants, adhesives and adhesives, preferably as optical adhesives and adhesives, and in particular, a semi-cured / thickened body (including B-stage material) By curing via), there is an advantage that it is possible to suppress the volume change associated with the cure shrinkage between the composition and the final cured product at the time of placement, and to suppress the problems of voids and adhesion defects between members .
  • the present composition is useful as an optical adhesive / adhesive for displays.
  • the cured product is suitable as a material for forming an intermediate layer between the image display portion of the display and the protective portion because the cured product is less colored under high temperature or high temperature and high humidity and is less likely to cause turbidity.
  • the composition is excellent in curability, and even when exposed to high temperature and high humidity, it has sharp curing characteristics in the case of reaction while maintaining the pot life, maintains transparency, and produces turbidity and coloring. Since a cured product that hardly forms is formed, it is useful as an adhesive or a pressure-sensitive adhesive used for a display device (including a touch panel) such as an optical display or an optical semiconductor device (including a Micro LED). Furthermore, the present composition and its semi-cured product / thickened body (including B-stage material) can be used without limitation for laminating or filling transparent members, not limited to optical displays etc. For example, solar It can be used for adhesive layers such as battery cells, multilayer glass (smart glass), optical waveguides, and projector lenses (multilayer type lenses, polarizing / optical film bonding).
  • the composition according to the present invention is capable of suppressing display defects such as defects of a display or an optical member, unevenness of display, etc. because the curing shrinkage at the time of forming a final cured product from a semi-cured state is small as well as liquid.
  • display defects such as defects of a display or an optical member, unevenness of display, etc.
  • the curing shrinkage at the time of forming a final cured product from a semi-cured state is small as well as liquid.
  • the present invention can be suitably used for an optical adhesive layer such as a car-mounted display having a flat display surface or a curved display surface, and a head-up display using the above-mentioned projector lens, which effectively suppresses peeling between members.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Silicon Polymers (AREA)

Abstract

[課題]密着性が高く、十分な機械的強度を有するオルガノポリシロキサン硬化物を得ることができる、ヒドロシリル化反応性組成物及びこれを用いた硬化物の製造方法を提供する。[解決手段](A)脂肪族不飽和結合を有する一価炭化水素基を一分子中に少なくとも一つ含有する化合物;(B)珪素原子に結合した水素原子を一分子中に少なくとも二つ含有する化合物;(C)第一のヒドロシリル化触媒及び(D)白金、ロジウム、ルテニウム、またはイリジウムを含み、その活性を示す温度が、(C)成分の活性を示す温度よりも30℃以上高い温度である第二のヒドロシリル化触媒、を含有する組成物、及びこれを用いて二段階の温度でヒドロシリル化反応を行う方法。

Description

オルガノポリシロキサン組成物
 本発明は、ヒドロシリル化反応によって硬化し得る組成物、ヒドロシリル化反応によって硬化される硬化物の製造方法、及び前記方法によって得られた硬化物に関する。
 ヒドロシリル化反応は、ヒドロシリル基(―SiH)と脂肪族不飽和基との間の付加反応であり、有機ケイ素化合物合成の重要な手段として広く使用されている。特にオルガノポリシロキサンを用いる反応においては、オルガノポリシロキサンを架橋させてシリコーン材料を作成する際の重要な反応として用いられている。反応は光や熱でもおこるが、通常は過酸化物などのラジカル反応開始剤や、ヘキサクロロ白金(IV)酸などの遷移金属錯体触媒が用いられている。
 シリコーン材料は耐薬品性、耐熱性、電気絶縁性などの優れた性能を有することから、種々の用途に用いられている。シリコーン材料の用途の一つである感圧接着剤は、日用品や医療用品、さらには電子製品の接着などに広く用いられている。シリコーン感圧接着剤には、不飽和基を有するオルガノポリシロキサンをオルガノハイドロジェンポリシロキサンで架橋したオルガノポリシロキサン硬化物が使用されるが(特許文献1)、接着性が高く、十分な強度を有するシリコーン感圧接着剤を得るためには、十分に重合度の高いオルガノポリシロキサン硬化物を使用する必要がある。しかし、従来のオルガノポリシロキサン硬化物の作成方法では、硬化物の重合度が低いか、架橋が十分ではないなどの場合があり、得られたシリコーン感圧接着剤の接着性や機械強度に劣るものであった。
 一般に、オルガノハイドロジェンポリシロキサンを用いてヒドロシリル化反応による硬化を行う際には、使用するオルガノハイドロジェンポリシロキサンの分子構造によって、硬化物の分子量や架橋密度に大きな相違が生じる。オルガノハイドロジェンポリシロキサンは、珪素原子に結合した水素原子を含有し、MH単位(-OSiRH)またはDH単位(―OSiRH-)と呼ばれる部分構造を有している。MH単位は主にオルガノハイドロジェンポリシロキサンの分子鎖末端に存在し、MH単位が反応することにより分子鎖の延長が行われる。一方でDH単位はオルガノハイドロジェンポリシロキサンの分子鎖中に存在し、DH単位が反応することにより架橋反応が行われる。しかし、現在の技術ではMH単位とDH単位の反応を分離して行うことは困難であり、MH単位/DH単位の反応制御による分子設計は行われていない。
特開2012-149240号公報
 よって、本発明の目的は、密着性が高く、十分な機械的強度を有するオルガノポリシロキサン硬化物を得ることができる、ヒドロシリル化反応性組成物及びこれを用いた硬化物の製造方法を提供することにあり、特にオルガノハイドロジェンポリシロキサンのMH単位/DH単位の反応制御によって分子設計を行うことができる、ヒドロシリル化反応性組成物及びこれを用いた硬化物の製造方法を提供することにある。
 本発明の組成物は、下記(A)~(D)成分:(A)脂肪族不飽和結合を有する一価炭化水素基を一分子中に少なくとも一つ含有する化合物;(B)珪素原子に結合した水素原子を一分子中に少なくとも二つ含有する化合物;(C)第一のヒドロシリル化触媒及び(D)白金、ロジウム、ルテニウム、またはイリジウムを含み、その活性を示す温度が、(C)成分の活性を示す温度よりも30℃以上高い温度である第二のヒドロシリル化触媒、を含有する組成物である。
上記(D)成分は、好ましくは、白金、ロジウム、ルテニウム、またはイリジウムのカルベン錯体またはβジケトナト錯体である。また、上記(A)成分または(B)成分の少なくとも1つが、オルガノポリシロキサンであることが好ましい。
前記(A)成分は、下記平均組成式(1):
SiO(4-a―b)/2 (1)
(式中、R1は炭素数2~12のアルケニル基であり、R2は脂肪族不飽和結合を有さない炭素数1~12の一価炭化水素基、水酸基およびアルコキシ基から選択される基であり、aおよびbは次の条件:1≦a+b≦3及び0.001≦a/(a+b)≦0.33を満たす数である)で表されるオルガノポリシロキサンであり、
前記(B)成分は、下記平均組成式(2):
SiO(4-c-d)/2   (2)
(式中、Rは脂肪族不飽和結合を有さない炭素数1~12の一価炭化水素基、ヒドロキシル基およびアルコキシ基から選択される基であり、cおよびdは次の条件:1≦c+d≦3及び0.01≦c/(c+d)≦0.33を満たす数である)
で表されるオルガノポリシロキサンであることが好ましい。
さらに前記(B)成分は、下記平均単位式(3):
(HR4 2SiO1/2)e(R4 3SiO1/2)f(HR4SiO2/2)g(R4 2SiO2/2)h(HSiO3/2)i(R4SiO3/2)j(SiO4/2)k(R5O1/2)l   (3)
(式中、Rは脂肪族不飽和基を有さない炭素数1~12の一価炭化水素基、ヒドロキシル基およびアルコキシ基から選択される基であり、Rは水素原子または炭素数1~6のアルキル基であり、e,f、g、h、i、j、kおよびlは次の条件:e+f+g+h+i+j+k=1、0≦l≦0.1、0.01≦e+g+i≦0.2、0.01≦e≦0.6、0.01≦g≦0.6、0≦i≦0.4、0.01≦e+f≦0.8、0.01≦g+h≦0.8、0≦i+j≦0.6を満たす数である)
で表されるオルガノハイドロジェンポリシロキサンであることが好ましい。
前記(C)成分と前記(D)成分のモル比((C)/(D))は0.01~0.8であることが好ましい。
また、本発明の組成物は、前記(C)成分は活性を示すが、前期(D)成分は活性を示さない温度に加熱し、次いで、(D)成分が活性を示す温度で加熱するステップ硬化するための組成物であることが好ましい。
本発明の硬化物を形成する方法は、下記工程(i)および(ii):
(i)前記組成物を前記(C)成分は活性を示すが前記(D)成分は活性を示さない温度で加熱し、第一のヒドロシリル化反応のみを行い半硬化物を得る工程;および(ii)得られた半硬化物を前記(D)成分が活性を示す温度で加熱し、第二のヒドロシリル化反応を行って硬化物を得る工程;を含有する。
さらに本発明の半硬化物は、前記組成物を前記(C)成分は活性を示すが前記(D)成分は活性を示さない温度で加熱し、第一のヒドロシリル化反応のみを行うことにより得られる。また本発明の硬化物は、前記工程(i)および(ii)を含有する方法によって得られる。
 本発明の組成物は、密着性が高く、十分な機械的強度を有するオルガノポリシロキサン硬化物を得ることができる。また、本発明の方法によれば、M単位(たとえば、(CH)HSiO1/2単位)を先に反応させて分子鎖を延長した後にD単位(たとえば(CH)HSiO2/2単位)を反応させることにより、有機溶剤なしで安定的な半硬化状態をつくりだすことができるため、材料の成形性に優れ、また十分に分子量を増大させた後に架橋による硬化反応を行うことができるため、得られる材料(硬化物)の物性を改良することができる。
(組成物)
 本発明の組成物は、下記(A)~(D)成分を含有する。以下順に述べる。
(A)成分
本発明の組成物は、脂肪族不飽和結合を有する一価炭化水素基を一分子中に少なくとも一つ含有する化合物((A)成分)を含有する。(A)成分は、ヒドロシリル化反応の際に、ヒドロシリル基(―SiH)が付加する脂肪族不飽和基を含有する化合物である。(A)成分の例としては、アルケニル基を有する直鎖または分岐鎖状のオルガノポリシロキサン、アルケニル基を含有するポリエーテル、アルケニル基を含有するポリオレフィンおよびアルケニル基を含有するポリエステルが挙げられる。これらのうちでも、下記平均組成式(1)を有するオルガノポリシロキサンであることが好ましい。
SiO(4-a―b)/2 (1)
平均組成式(1)中、R1は炭素数2~12のアルケニル基である。具体的には、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基が挙げられ、これらのうちでもビニル基、アリル基またはヘキセニル基が好ましい。R2は脂肪族不飽和結合を有さない炭素数1~12の一価炭化水素基、水酸基およびアルコキシ基から選択される基である。炭素数1~12の一価炭化水素基は、その水素原子の一部がハロゲン原子または水酸基で置換されていてもよい。炭素数1~12の一価炭化水素基の例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基などのアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、アントラセニル基、フェナントリル基、ピレニル基などのアリール基、ベンジル基、フェネチル基、ナフチルエチル基、ナフチルプロピル基、アントラセニルエチル基、フェナントリルエチル基、ピレニルエチル基などのアラルキル基、およびこれらのアリール基またはアラルキル基の水素原子をメチル基、エチル基等のアルキル基;メトキシ基、エトキシ基等のアルコキシ基;塩素原子、臭素原子等のハロゲン原子で置換した基が挙げられる。
aおよびbは次の条件:1≦a+b≦3及び0.001≦a/(a+b)≦0.33を満たす数である。これは、a+bが1以上であると、硬化物の柔軟性が高くなるからであり、3以下であると、硬化物の機械強度が高くなるからである。また、a/(a+b)が0.001以上であると硬化物の機械強度が高くなるからであり、0.33以下であると硬化物の柔軟性が高くなるからである。
このようなオルガノポリシロキサンの分子構造としては、直鎖状、分岐鎖状または環状が例示される。オルガノポリシロキサンは、このような分子構造を有する一種または二種以上の化合物の混合物であってもよい。
このような(A)成分としては、一般式:R SiO(R SiO)m1SiR
で表される直鎖状のオルガノポリシロキサンおよび/または平均単位式:
(RSiO3/2)(R SiO2/2)(R SiO1/2)(SiO4/2)(XO1/2)
で表される分岐鎖状のオルガノポリシロキサンが好ましい。式中、各RおよびRは独立に、非置換又はハロゲン置換の一価炭化水素基であり、前記と同様の基が例示される。ただし、一分子中、Rの少なくとも2個、またはRの少なくとも2個はアルケニル基である。このアルケニル基としては、ビニル基が好ましい。また、式中、m1は5~1,000の範囲内の整数である。また、式中、oは正数であり、pは0又は正数であり、qは0又は正数であり、rは0又は正数であり、sは0又は正数であり、かつ、p/oは0~10の範囲内の数であり、q/oは0~5の範囲内の数であり、r/(o+p+q+r)は0~0.3の範囲内の数であり、s/(o+p+q+r)は0~0.4の範囲内の数である。
(B)成分
本発明の組成物は、珪素原子に結合した水素原子を一分子中に少なくとも二つ含有する化合物((B)成分)を含有する。(B)成分は、ヒドロシリル化反応の際に、前記(A)成分中の脂肪族不飽和炭化水素基に付加するヒドロシリル基(―SiH)を含有する化合物である。(B)成分としては、下記平均組成式(2)を有するオルガノポリシロキサンであることが好ましい。
SiO(4-c-d)/2   (2)
平均組成式(2)中、Rは脂肪族不飽和結合を有さない炭素数1~12の一価炭化水素基、ヒドロキシル基およびアルコキシ基から選択される基である。炭素数1~12の炭化水素基は、その水素原子の一部がハロゲン原子または水酸基で置換されていてもよい。炭素数1~12の一価炭化水素基の例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基などのアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、アントラセニル基、フェナントリル基、ピレニル基などのアリール基、ベンジル基、フェネチル基、ナフチルエチル基、ナフチルプロピル基、アントラセニルエチル基、フェナントリルエチル基、ピレニルエチル基などのアラルキル基、およびこれらのアリール基またはアラルキル基の水素原子をメチル基、エチル基等のアルキル基;メトキシ基、エトキシ基等のアルコキシ基;塩素原子、臭素原子等のハロゲン原子で置換した基が挙げられる。アルコキシ基の例としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンタノキシ基、ヘキサノキシ基、オクタノキシ基などが挙げられる。
cおよびdは次の条件:1≦c+d≦3及び0.01≦c/(c+d)≦0.33を満たす数であり、好ましくは、次の条件:1.5≦c+d≦2.5及び0.05≦c/(c+d)≦0.2を満たす数である。これは、c+dが1以上であると、硬化物の柔軟性が高くなるからであり、3以下であると、硬化物の機械強度が高くなるからである。また、c/(c+d)が1.5以上であると、硬化物の機械強度が高くなるからであり、0.33以下であると、硬化物の柔軟性が高くなるからである。
前記平均組成式(2)を有するオルガノポリシロキサンの粘度は限定されないが、25℃における粘度が1~10,000mPa・sの範囲内であることが好ましく、特に、1~1,000mPa・sの範囲内であることが好ましい。
このような前記平均組成式(2)を有するオルガノポリシロキサンとしては、1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチルシクロテトラシロキサン、トリス(ジメチルハイドロジェンシロキシ)メチルシラン、トリス(ジメチルハイドロジェンシロキシ)フェニルシラン、1-(3-グリシドキシプロピル)-1,3,5,7-テトラメチルシクロテトラシロキサン、1,5-ジ(3-グリシドキシプロピル)-1,3,5,7-テトラメチルシクロテトラシロキサン、1-(3-グリシドキシプロピル)-5-トリメトキシシリルエチル-1,3,5,7-テトラメチルシクロテトラシロキサン、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、トリメトキシシランの加水分解縮合物、(CH)HSiO1/2単位とSiO4/2単位とからなる共重合体、(CH)HSiO1/2単位とSiO4/2単位と(C)SiO3/2単位とからなる共重合体、およびこれらの2種以上の混合物が例示される。
 前記平均組成式(2)を有するオルガノポリシロキサンとして、さらに次のようなオルガノポリシロキサンも例示される。なお、式中、Me、Phは、それぞれ、メチル基、フェニル基を示し、m2は1~100の整数であり、n2は1~50の整数であり、b2、c2、d2、e2はそれぞれ正の数であり、ただし、一分子中のb2、c2、d2、e2の合計は1である。
HMeSiO(PhSiO)m2SiMe
HMePhSiO(PhSiO)m2SiMePhH
HMePhSiO(PhSiO)m2(MePhSiO)n2SiMePhH
HMePhSiO(PhSiO)m2(MeSiO)n2SiMePhH
(HMeSiO1/2)b2(PhSiO3/2)c2
(HMePhSiO1/2)b2(PhSiO3/2)c2
(HMePhSiO1/2)b2(HMeSiO1/2)c2(PhSiO3/2)d2
(HMeSiO1/2)b2(PhSiO2/2)c2(PhSiO3/2)d2
(HMePhSiO1/2)b2(PhSiO2/2)c2(PhSiO3/2)d2
(HMePhSiO1/2)b2(HMeSiO1/2)c2(PhSiO2/2)d2(PhSiO3/2)e2
前記(B)成分は、さらに下記平均単位式(3)で表されるオルガノハイドロジェンポリシロキサンであることが好ましい。
(HR4 2SiO1/2)e(R4 3SiO1/2)f(HR4SiO2/2)g(R4 2SiO2/2)h(HSiO3/2)i(R4SiO3/2)j(SiO4/2)k(R5O1/2)l   (3)
平均単位式(3)中、Rは炭素数1~12の一価炭化水素基、ヒドロキシル基およびアルコキシ基から選択される基である(ただし炭化水素基はアルケニル基及びアルケニル基を有する基を含まない)。炭素数1~12の一価炭化水素基、ヒドロキシル基およびアルコキシ基については、前記と同様である。Rは水素原子または炭素数1~6のアルキル基であり、炭素数1~6のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基などが例示される。e,f、g、h、i、j、kおよびlは次の条件:e+f+g+h+i+j+k=1、0≦l≦0.1、0.01≦e+g+i≦0.2、0.01≦e≦0.6、0.01≦g≦0.6、0≦i≦0.4、0.01≦e+f≦0.8、0.01≦g+h≦0.8、0≦i+j≦0.6を満たす数である。
なお、前記の「HR4 2SiO1/2」、「R4 3SiO1/2」、「HR4SiO2/2」、「R42SiO2/2」、「HSiO3/2」、「R4SiO3/2」および「SiO4/2」の各構成単位は、それぞれM単位,M単位、D単位、D単位、T単位、T単位、Q単位と呼ばれるオルガノハイドロジェンポリシロキサンの部分構造の単位であり、「R5O1/2」は、D単位、D単位、T単位、T単位、またはQ単位中の酸素原子と結合する基であり、オルガノポリシロキサン中のケイ素原子結合水酸基(Si―OH)あるいはオルガノポリシロキサン製造中に未反応で残った珪素原子結合アルコキシ基を意味する。MH単位は主にオルガノハイドロジェンポリシロキサンの分子鎖末端に存在し、DH単位はオルガノハイドロジェンポリシロキサンの分子鎖中に存在する。
(B)成分の含有量は、(A)成分中のアルケニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が0.1~5モルの範囲内となる量であり、好ましくは、0.5~2モルの範囲内となる量である。これは、(B)成分の含有量が上記範囲の下限以上であると、硬化物の機械強度が高くなるからであり、一方、上記範囲の上限以下であると、硬化物の柔軟性が高くなるからである。
(C)成分
本発明の組成物は、比較的低い温度においても組成物中で活性を示す、第一のヒドロシリル化触媒((C)成分)を含有する。(C)成分は本組成物を半硬化するためのヒドロシリル化反応用触媒である。なお、「半硬化」とは、室温で流動性を有する増粘体または室温では非流動性だが100℃では流動性を示す熱可塑体を意味する。ここで増粘体とは、25℃での粘度が組成物の初期粘度の1.5倍~100倍の間であることを意味する。また、熱可塑体とは、100℃での粘度が1,000,000mPa・s以下であることを意味する。なお、(C)成分は、後述する(D)成分に対して、30℃以上低い温度で活性を示すヒドロシリル化反応触媒であり、好適には、(D)成分である白金、ロジウム、ルテニウム、またはイリジウムのカルベン錯体またはβジケトナト錯体以外の白金系ヒドロシリル化触媒から選ばれることが好ましい。
第一のヒドロシリル化触媒の例としては、白金系触媒、ロジウム系触媒、パラジウム系触媒、ニッケル系触媒、イリジウム系触媒、ルテニウム系触媒、および鉄系触媒が挙げられ、好ましくは、白金系触媒であって、後述する(D)成分に該当しないものである。この白金系触媒としては、白金微粉末、白金黒、白金担持シリカ微粉末、白金担持活性炭、塩化白金酸、塩化白金酸のアルコール溶液、白金のオレフィン錯体、白金のアルケニルシロキサン錯体等の白金系化合物が例示され、特に白金のアルケニルシロキサン錯体が好ましい。このアルケニルシロキサンとしては、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン、これらのアルケニルシロキサンのメチル基の一部をエチル基、フェニル基等で置換したアルケニルシロキサン、これらのアルケニルシロキサンのビニル基をアリル基、ヘキセニル基等で置換したアルケニルシロキサンが例示される。特に、この白金-アルケニルシロキサン錯体の安定性が良好であることから、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンが好ましい。また、この白金-アルケニルシロキサン錯体の安定性を向上させることができることから、この錯体に1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン、1,3-ジアリル-1,1,3,3-テトラメチルジシロキサン、1,3-ジビニル-1,3-ジメチル-1,3-ジフェニルジシロキサン、1,3-ジビニル-1,1,3,3-テトラフェニルジシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン等のアルケニルシロキサンやジメチルシロキサンオリゴマー等のオルガノシロキサンオリゴマーを添加することが好ましく、特に、アルケニルシロキサンを添加することが好ましい。
(C)成分の触媒は、触媒の量、種類及び組成物の種類によっても異なるが、通常、室温以上、または25℃以上、あるいは30℃以上で、かつ120℃以下、または100℃以下、あるいは80℃以下、場合によっては60℃以下において組成物中で活性を示し、ヒドロシリル化反応を促進する。(C)成分の含有量は、触媒の種類及び組成物の種類によって異なるが、通常は本組成物に対して、この触媒中の金属原子が重量単位で0.01~50ppmの範囲内となる量であり、好ましくは0.1~30ppmの範囲内となる量である。一例として、(C)成分の含有量は、(B)成分が平均組成式(3)で示されるオルガノハイドロジェンポリシロキサンである場合には、該オルガノハイドロジェンポリシロキサン中のMH単位を十分にヒドロシリル化できる量である。
(D)成分
本発明の組成物は、白金、ロジウム、ルテニウム、またはイリジウムを含み、その活性を示す温度が、(C)成分の活性を示す温度よりも30℃以上高い温度である第二のヒドロシリル化触媒((D)成分)を含有する。(D)成分の一例は、白金、ロジウム、ルテニウム、またはイリジウムのカルベン錯体またはβジケトナト錯体であり、白金系金属と錯化剤が強い相互作用を有することにより、(C)成分よりも、30℃以上高い温度でヒドロシリル化反応触媒活性を示す。これにより、温度差により、2段階で反応を進行させることができる。
このような(D)成分のβジケトナト錯体としては、アセチルアセトナト(Hacac)、3-メチルアセチルアセトナト(Hmaa)、プロピオニルアセトナト(Hpra)、ベンゾイルアセトナト(Hbza)、トリフルオロアセチルアセトナト(Htfa)などを用いるが、特にアセチルアセトナト(Hacac)が錯化剤として好ましい。また、(D)成分のカルベン錯体としては、1,3-ビス(2,6-ジイソプロピルフエニル)イミダゾールー2-イリデンおよび1,3-ビス(シクロヘキシル)イミダゾールー2-イリデンが錯化剤として好ましい。
代表的には、(D)成分は、白金カルベン錯体触媒または白金βジケトナト錯体であり、たとえば、ビス(アセチルアセトナト)白金(II)錯体、ビス(プロピオニルアセトナト)白金(II)錯体、[1,3-ビス(2,6-ジイソプロピルフエニル)イミダゾールー2-イリデン][1,3-ジビニルー1,1,3,3-テトラメチルジリルオキサン[白金(0)]錯体、[1,3-ビス(シクロヘキシル)イミダゾールー2-イリデン][1,3-ジビニルー1,1,3,3-テトラメチルジリルオキサン[白金(0)]錯体などが例示される。
(D)成分は、(C)成分よりも30℃以上、好ましくは50℃以上高い温度で触媒活性を示す。このため、触媒活性を示す温度は、触媒の種類によって異なるが、通常80℃以上、好ましくは100℃、さらに好ましくは120℃以上である。
 (D)成分の含有量は、(C)成分によって半硬化された組成物をさらに硬化するのに必要な量である。一例として、(D)成分の含有量は、(B)成分が一般式(3)で示されるオルガノハイドロジェンポリシロキサンである場合には、該オルガノハイドロジェンポリシロキサン中のDH単位を十分にヒドロシリル化できる量である。
 (C)成分と(D)成分中の白金金属量のモル比((C)/(D))は、通常0.01~100、好ましくは0.01~10、さらに好ましくは0.01~0.8である。両成分中の白金金属量のモル比が前記上限以下であると、高温下での硬化反応の加速ができるからであり、モル比が前記下限以上であると、短時間での低温での硬化反応を行えるからである。
 本組成物は、ヒドロシリル化反応抑制剤を含まないことが好ましい。通常、組成物のポットライフを向上し安定した組成物を得るために、ヒドロシリル化反応抑制剤が組成物中に添加される。しかし本発明者は、ヒドロシリル化反応抑制剤を添加せずに、温度によって触媒活性の異なる2種以上の触媒を極少量用いることで、M単位の反応とD単位の反応を分離し、M単位の反応を選択的に行わせることによって半硬化樹脂を得ることができ、またM単位/D単位の反応制御による分子設計を行うことができることを見出した。
(E)成分
 本組成物は、必要に応じて、他のオルガノポリシロキサン、接着性付与剤、シリカ、ガラス、アルミナ、酸化亜鉛等の無機質充填材;ポリメタクリレート樹脂等の有機樹脂微粉末;蛍光体、耐熱剤、染料、顔料、難燃性付与剤、溶剤等を含有してもよい。無機質充填材は、組成物の増量あるいは物理的強度の補強、または導電性、熱伝導性などの機能を加えるために添加される。
(硬化物を形成する方法)
 本発明の別の形態は、ヒドロシリル化反応による硬化物を形成する方法であって、以下の工程を有する。
(i)前記組成物を(C)成分は活性を示すが(D)成分は活性を示さない温度で加熱し、第一のヒドロシリル化反応を行い半硬化物を得る工程、および
(ii)得られた半硬化物を(D)成分が活性を示す温度で加熱し、第二のヒドロシリル化反応を行ってシリコーン硬化物を得る工程。
(工程(i))
工程(i)は、前記組成物を(C)成分は活性を示すが(D)成分は活性を示さない温度で加熱し、第一のヒドロシリル化反応のみを行い半硬化物を得る工程である。この温度では、第二のヒドロシリル化反応は起こらない。第一のヒドロシリル化は加熱せず室温でも進行するが、半硬化のスピードを速めたい場合には、加熱温度は、25℃以上、または30℃以上、場合によっては50℃以上に加熱することができる。また加熱温度は120℃以下、または100℃以下、場合によっては80℃以下である。
工程(i)により、組成物は半硬化状態となる。本発明では半硬化とは、室温では流動性を有する増粘体、または室温では非流動性だが100℃では流動性を示す熱可塑体を意味する。ここで増粘体とは、25℃での粘度が組成物の初期粘度の1.5倍から100倍の間であることを意味する。また、熱可塑体(反応性ホットメルト)とは、室温(25℃)では流動性を失ったような状態であるが、高温(例えば、120℃以上)に加熱すると再び溶融し、次いで硬化するものをいい、100℃での粘度が1,000,000mPa・s以下である。また、工程(i)によってB-ステージ化化合物を得ることもできる。ここでB-ステージとは、JIS K 6800に定義されているB-ステージ(熱硬化性樹脂の硬化中間体)の状態をいい、架橋性シリコーン組成物を不完全に硬化させることにより、溶剤により膨潤するものの、完全に溶解することがない状態をいう(以下、本明細書において、単に「B-ステージ」という)。組成物として、MH単位およびDH単位を含むオルガノポリシロキサンを含有する組成物を用いる場合には、工程(i)によって、MH単位のヒドロシリル化反応が優先的に進行し、分子鎖の延長が起こり、オルガノポリシロキサンの分子量が十分に高くなるために、組成物の流動性がなくなり、半硬化状態になると考えられる。
(工程(ii))
工程(ii)は、前記半硬化状態の組成物を、(D)成分が活性を示す温度に加熱し、第二のヒドロシリル化反応を行い硬化物を得る工程である。好ましくは、工程(ii)の加熱温度は、工程(i)の温度よりも20℃以上高い温度であり、または、工程(ii)の加熱温度は、工程(i)の温度よりも30℃以上高い温度であり、さらに好ましくは、工程(ii)の加熱温度は、工程(i)の温度よりも50℃以上高い温度である。
また、場合によっては、加熱温度は80℃以上、または100℃以上、または120℃以上である。同時に、場合によっては加熱温度は、200℃以下、または180℃以下、または160℃以下である。
工程(ii)により、半硬化状態であった組成物は硬化物となり、種々の材料として用いることができる。組成物としてM単位およびD単位を含むオルガノポリシロキサンを含有する組成物を用いる場合には、工程(i)によって十分に分子鎖が延長されたオルガノポリシロキサンが第二のヒドロシリル化反応によって架橋されることとなり、架橋密度の高い硬化物を得ることができる。
本発明の方法によって形成された硬化物は優れた物性を示し、特に密着性及び機械的強度に優れる。また、本発明の方法は安定な半硬化状態を経て、硬化物を得るため、様々な用途に用いることが可能である。例えば、フィルム基材、テープ状基材、またはシート状基材に本組成物を塗工した後、前記工程(i)と工程(ii)を経て、硬化を進行させることができる。また、本組成物を二つの基材の間に配置し、工程(i)と工程(ii)を連続して行い硬化して、両基材を強固に接着する場合と、前記基材の少なくとも一つの表面に本組成物を平滑に塗布し、工程(i)により半硬化させて、非流動化させた後、両基材を貼り合わせ、工程(ii)で更に硬化を進めて強固に接着する場合とがある。この硬化物の膜厚は限定されないが、好ましくは、1~100,000μmであり、より好ましくは50~30,000μmである。
本発明の方法によって形成された硬化物は、感圧接着剤、接着剤プライマーなどの用途に用いることができる。
下記成分を含有する組成物より硬化物を得た。なお、各平均組成式中、MeおよびViはそれぞれ、メチル基およびビニル基を表す。また、硬化物の硬さは、JIS K 6253-1997「加硫ゴム及び熱可塑性ゴムの硬さ試験方法」に準じてタイプAデュロメータ(以下、「ショア硬さ(ショアA)」と表記)またはJIS K 2220[1/4コーン(直読)]に準じた方法により硬化物の針入度を測定した。
[実施例1]
平均単位式:(MeViSiO1/20.1(MeSiO1/20.4(SiO4/20.5で示されるビニル末端分岐鎖ポリシロキサン(A-1)を58.5重量部、平均単位式:(MeSiO1/20.44(SiO4/20.56で示される分岐鎖ポリシロキサン(E-1)を14.0重量部、平均式:ViMeSiO(SiMeO)160SiMeViで示されるビニル末端直鎖ポリシロキサン(A-2)を1.8重量部、平均式:HMeSiO(SiMeO)400SiMeHで示される直鎖ポリシロキサン(B-1)を26.1重量部、平均式:MeSiO(SiMeO)30(SiMeHO)30SiMeの直鎖ポリシロキサン(B-2)を4.7重量部、白金原子として0.2ppmの白金-1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体(C-1)、および白金原子として5ppmの、ビス(アセチルアセトナト)白金(II)錯体(D-1)を含有する組成物が調製された。組成物の粘度は、3,500mPa・sであった。組成物を、90℃で30分加熱し、25℃では流動性がないが100℃では流動性のあるB-ステージ固形物を得た。得られたB-ステージ固形物は25℃で2ヶ月間保管されても、B-ステージ状態を保つものであった。B-ステージ固形物は150℃で10分以内の加熱によって、ショア硬さ(ショアA)80のシリコンエラストマーを得た。
[実施例2]
前記A-1を33.8重量部、前記E-1を30.0重量部、前記A-2を21.8重量部、前記B-1を16.5重量部、前記B-2を3.0重量部、白金原子として0.1ppmの前記C-1および白金原子として2ppmの[1,3-ビス(2,6-ジイソプロピルフエニル)イミダゾールー2-イリデン][1,3-ジビニルー1,1,3,3-テトラメチルジリルオキサン[白金(0)](D-2)を含有する組成物が調製された。組成物の粘度は、2,800mPa・sであった。組成物を、90℃で30分加熱し、25℃では流動性がないが100℃では流動性のあるB-ステージ固形物を得た。得られたB-ステージ固形物は25℃で2ヶ月間保管されても、B-ステージ状態を保つものであった。B-ステージ固形物は150℃で10分以内の加熱によって、ショア硬さ(ショアA)35のシリコンエラストマーを得た。
[実施例3]
平均組成式:ViMeSiO(SiMePhO)36SiMeViで示される
ビニル末端直鎖ポリシロキサン(A-3)を94.3重量%、平均組成式:(ViMeSiO1/2)0.22(MeXSiO2/2)0.12(PhSiO3/2)0.66(式中、Xはグリシドキシプロピル基を表す)で示されるビニル基含有ポリシロキサン(A-4)を1.0重量%、分子式:PhSi(OSiMeH)で示される直鎖状ポリシロキサン(B-3)を3.9重量%、平均組成式:(HMeSiO2/2で示される環状ポリシロキサン(B-4)を0.8重量%、白金原子として0.2ppmの前記C-1、および白金原子として5ppmの前記D-1を含有する組成物が調整された。組成物の粘度は、6,000mPa・sであった。組成物を、80℃で30分加熱し、粘度が約12,000mPa・sの増粘体が得られた。得られた増粘体は、25℃で1ヶ月間保管された後に粘度が約18,000Pa・s増粘体で流動性を有していたが、150℃で10分以内の加熱によって、針入度が30のゲル硬化物を得た。
[比較例1]
前記A-1を58.5重量部、前記E-1を14.0重量部、前記A-2を1.8重量部、前記B-1を26.1重量部、前記B-2を4.7重量部および白金原子として2ppmの前記C-1を含有する組成物が調製された。組成物の粘度は、3,500mPa・sであった。組成物を、90℃で30分加熱し、ショア硬さ(ショアA)80の硬化物を得た。また、より軟らかい硬化物を得るために、上記組成物を50℃で30分加熱したところ、ショア硬さ40の硬化物を得た。しかし得られた硬化物は、やわらかいものの100℃に加熱しても流動性を示さず、B-ステージ状態ではなかった。この硬化物は時間とともに徐々に硬さを増し、25℃で2週間後にはショア硬さ75(ショアA)となった。
[比較例2]
前記A-1を33.8重量部、前記E-1を30.0重量部、前記A-2を21.8重量部、前記B-1を16.5重量部、前記B-2を3.0重量部、白金原子として2ppmの前記D-2を含有する組成物が調製された。組成物の粘度は、2,800mPa・sであった。組成物を、90℃で30分加熱したが、組成物に何も変化が見られなかった。組成物を120℃で30分加熱し、B-ステージ状態ではない、ショア硬さ(ショアA)30の硬化物を得た。
[比較例3]
前記A-3を94.3重量%、前記A-4を1.0重量%、前記B-3を3.9重量%、前記B-4を0.8重量%、白金原子として2ppmの前記C-1を含有する組成物が調整された。組成物の粘度は、6,000mPa・sであった。組成物は調製後直ちに増粘し、30分後には非流動性となり、増粘体またはBステージ固形物は得られず、1日後には針入度が30のゲル硬化物を得た。
本発明の組成物は、密着性が高く、十分な機械的強度を有するオルガノポリシロキサン硬化物を得ることができるので、画像表示装置の層間の接着剤や粘着剤として好適である。
本組成物は、各種のポッティング剤、封止剤、接着剤・粘着剤として有用であり、好ましくは光学粘着剤・接着剤として有用であり、特に、半硬化/増粘体(B-stage材料含む)を経由して硬化させることで、配置時における組成物と最終的な硬化物の間での硬化収縮に伴う体積変化を抑制し、部材間の空隙や接着不良の問題を抑制できる利点がある。特に、本組成物は、ディスプレイ用光学粘着剤・接着剤として有用である。その硬化物は高温又は高温・高湿下で着色が少なく、濁りを生じにくいことから、ディスプレイの画像表示部と保護部との間の中間層を形成する材料として好適である。
本組成物は、硬化性に優れ、高温高湿に曝されても、ポットライフを保ちながらも反応の際にはシャープな硬化特性を有し、かつ、透明性を維持し、濁りや着色を生じ難い硬化物を形成するので、光学ディスプレイ等の表示装置(タッチパネルを含む)や光半導体装置(Micro LEDを含む)に使用する接着剤や粘着剤として有用である。さらに、さらに、本組成物およびその半硬化物/増粘体(B-stage材料含む)は、光学ディスプレイ等に限らず、透明部材の貼り合わせ又は充填に制限なく利用することができ、たとえば、太陽電池セル、複層ガラス(スマートガラス)、光導波路、プロジェクターレンズ(複層型レンズ、偏光/光学フィルムの貼り合わせ)などの接着層に使用することができる。
本発明にかかる組成物は、液状だけでなく、半硬化状態から最終的な硬化物を形成する際の硬化収縮が小さいため、ディスプレイや光学部材の欠陥、写りムラ等の表示不良を抑制できるという、シリコーン硬化物の一般的な長所を有することに加えて、硬化収縮に伴う問題を抑制でき、必要に応じて柔軟な性質を備え、接着部材への追従性が高い接着力を発現することから、部材間の剥離を有効に抑制し、平面表示面又は湾曲した表示面を有する車載ディスプレイ、上記のプロジェクターレンズを利用したヘッドアップディスプレイなどの光学接着層に好適に使用することができる。

Claims (10)

  1. 下記(A)~(D)成分:
    (A)脂肪族不飽和結合を有する一価炭化水素基を一分子中に少なくとも一つ含有する化合物、
    (B)珪素原子に結合した水素原子を一分子中に少なくとも二つ含有する化合物、
    (C)第一のヒドロシリル化触媒、及び
    (D)白金、ロジウム、ルテニウム、またはイリジウムを含み、その活性を示す温度が、(C)成分の活性を示す温度よりも30℃以上高い温度である
    第二のヒドロシリル化触媒、
    を含有する組成物。
  2. 上記(D)成分が、白金、ロジウム、ルテニウム、またはイリジウムのカルベン錯体またはβジケトナト錯体である、請求項1に記載の組成物。
  3. 上記(A)成分または(B)成分の少なくとも1つが、オルガノポリシロキサンである、請求項1または2に記載の組成物。
  4. 前記(A)成分が、下記平均組成式(1):
    SiO(4-a―b)/2 (1)
    (式中、R1は炭素数2~12のアルケニル基であり、R2は脂肪族不飽和結合を有さない炭素数1~12の一価炭化水素基、水酸基およびアルコキシ基から選択される基であり、aおよびbは次の条件:1≦a+b≦3及び0.001≦a/(a+b)≦0.33を満たす数である)
    で表されるオルガノポリシロキサンであり、前記(B)成分が、下記平均組成式(2):
    SiO(4-c-d)/2   (2)
    (式中、Rは脂肪族不飽和結合を有さない炭素数1~12の一価炭化水素基、ヒドロキシル基およびアルコキシ基から選択される基であり、cおよびdは次の条件:1≦c+d≦3及び0.01≦c/(c+d)≦0.33を満たす数である)
    で表されるオルガノポリシロキサンである、請求項1ないし3のいずれか1項に記載の組成物。
  5. 前記(B)成分が、下記平均単位式(3):
    (HR4 2SiO1/2)e(R4 3SiO1/2)f(HR4SiO2/2)g(R4 2SiO2/2)h(HSiO3/2)i(R4SiO3/2)j(SiO4/2)k(R5O1/2)l   (3)
    (式中、Rは脂肪族不飽和結合を有さない炭素数1~12の一価炭化水素基、ヒドロキシル基およびアルコキシ基から選択される基であり、Rは水素原子または炭素数1~6のアルキル基であり、e,f、g、h、i、j、kおよびlは次の条件:e+f+g+h+i+j+k=1、0≦l≦0.1、0.01≦e+g+i≦0.2、0.01≦e≦0.6、0.01≦g≦0.6、0≦i≦0.4、0.01≦e+f≦0.8、0.01≦g+h≦0.8、0≦i+j≦0.6を満たす数である)
    で表されるオルガノハイドロジェンポリシロキサンである、請求項4に記載の組成物。
  6. 前記(C)成分と前記(D)成分中の白金金属量のモル比((C)/(D))が0.01~0.8である、請求項1ないし5のいずれか1項に記載の組成物。
  7. 前記(C)成分は活性を示すが、前記(D)成分は活性を示さない温度に加熱し、次いで、(D)成分が活性を示す温度で加熱する、ステップ硬化するための、請求項1ないし6のいずれか1項に記載の組成物。
  8. 下記工程
    (i)請求項1ないし7のいずれか1項に記載の組成物を、前記(C)成分は活性を示すが前記(D)成分は活性を示さない温度で加熱し、第一のヒドロシリル化反応のみを行い半硬化物を得る工程、および
    (ii)得られた半硬化物を前記(D)成分が活性を示す温度で加熱し、第二のヒドロシリル化反応を行って硬化物を得る工程
    を含有する、硬化物を形成する方法。
  9. 請求項1ないし7のいずれか1項に記載の組成物を、前記(C)成分は活性を示すが前記(D)成分は活性を示さない温度で加熱し、第一のヒドロシリル化反応のみを行うことにより得られた、半硬化物。
  10. 請求項8の方法によって得られた、硬化物。
PCT/JP2018/041098 2017-11-07 2018-11-06 オルガノポリシロキサン組成物 WO2019093296A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880068296.7A CN111247212A (zh) 2017-11-07 2018-11-06 有机聚硅氧烷组合物
EP18876531.7A EP3708614A4 (en) 2017-11-07 2018-11-06 COMPOSITION OF ORGANOPOLYSILOXANE
US16/761,509 US11390715B2 (en) 2017-11-07 2018-11-06 Organopolysiloxane composition
JP2019552791A JP7176828B2 (ja) 2017-11-07 2018-11-06 オルガノポリシロキサン組成物
KR1020207014540A KR20200070356A (ko) 2017-11-07 2018-11-06 오가노폴리실록산 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017215136 2017-11-07
JP2017-215136 2017-11-07

Publications (1)

Publication Number Publication Date
WO2019093296A1 true WO2019093296A1 (ja) 2019-05-16

Family

ID=66439208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041098 WO2019093296A1 (ja) 2017-11-07 2018-11-06 オルガノポリシロキサン組成物

Country Status (7)

Country Link
US (1) US11390715B2 (ja)
EP (1) EP3708614A4 (ja)
JP (1) JP7176828B2 (ja)
KR (1) KR20200070356A (ja)
CN (1) CN111247212A (ja)
TW (1) TW201922938A (ja)
WO (1) WO2019093296A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004463A1 (ja) * 2020-06-30 2022-01-06 ダウ・東レ株式会社 硬化性オルガノポリシロキサン組成物およびその使用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019093295A1 (ja) 2017-11-07 2019-05-16 ダウ・東レ株式会社 オルガノポリシロキサン組成物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11236508A (ja) * 1997-11-19 1999-08-31 Shin Etsu Chem Co Ltd オルガノポリシロキサン組成物
JP2012149240A (ja) 2010-12-31 2012-08-09 Dow Corning Toray Co Ltd シリコーン粘着剤用プライマー組成物、積層体およびシリコーン粘着テープ
WO2017079502A1 (en) * 2015-11-05 2017-05-11 Carbon, Inc. Silicone dual cure resins for additive manufacturing
JP2017161779A (ja) * 2016-03-10 2017-09-14 富士ゼロックス株式会社 定着部材、定着装置、及び画像形成装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3220972A (en) * 1962-07-02 1965-11-30 Gen Electric Organosilicon process using a chloroplatinic acid reaction product as the catalyst
JP2665941B2 (ja) 1988-06-29 1997-10-22 東レ・ダウコーニング・シリコーン株式会社 ヒドロシリル化反応用白金系触媒含有粒状物
JPH0214244A (ja) 1988-06-30 1990-01-18 Toray Dow Corning Silicone Co Ltd 加熱硬化性オルガノポリシロキサン組成物
US6040361A (en) * 1997-11-19 2000-03-21 Shin-Etsu Chemical Co., Ltd. Organopolysiloxane compositions
JP2013001824A (ja) * 2011-06-17 2013-01-07 Mitsubishi Chemicals Corp 半導体発光装置用シリコーン樹脂組成物
JP5472241B2 (ja) 2011-09-16 2014-04-16 信越化学工業株式会社 光硬化型シリコーン樹脂組成物を用いる硬化薄膜の製造方法
KR20140103696A (ko) * 2013-02-19 2014-08-27 한국다우코닝(주) 인광체-함유 경화성 실리콘 조성물 및 이로부터 제조된 경화성 핫멜트 필름
KR20160149203A (ko) * 2014-04-29 2016-12-27 헨켈 아게 운트 코. 카게아아 Led 캡슐화제용 폴리카르보실록산 함유 경화성 조성물
CN104098906A (zh) 2014-06-30 2014-10-15 烟台恒迪克能源科技有限公司 一种用于电子封装芯片保护的单组分加成型液体硅橡胶
KR102465006B1 (ko) * 2014-12-18 2022-11-10 듀폰 도레이 스페셜티 머티리얼즈 가부시키가이샤 경화성 유기폴리실록산 조성물, 이의 경화물, 및 경화 필름의 형성 방법
TW201638223A (zh) 2015-03-31 2016-11-01 羅傑斯公司 雙溫度固化型聚矽氧組合物、其製造方法及由其製備之物件
CN106189251A (zh) * 2015-05-29 2016-12-07 弗洛里光电材料(苏州)有限公司 应用于半导体封装的有机硅组合物及其应用
WO2019093295A1 (ja) 2017-11-07 2019-05-16 ダウ・東レ株式会社 オルガノポリシロキサン組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11236508A (ja) * 1997-11-19 1999-08-31 Shin Etsu Chem Co Ltd オルガノポリシロキサン組成物
JP2012149240A (ja) 2010-12-31 2012-08-09 Dow Corning Toray Co Ltd シリコーン粘着剤用プライマー組成物、積層体およびシリコーン粘着テープ
WO2017079502A1 (en) * 2015-11-05 2017-05-11 Carbon, Inc. Silicone dual cure resins for additive manufacturing
JP2017161779A (ja) * 2016-03-10 2017-09-14 富士ゼロックス株式会社 定着部材、定着装置、及び画像形成装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3708614A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004463A1 (ja) * 2020-06-30 2022-01-06 ダウ・東レ株式会社 硬化性オルガノポリシロキサン組成物およびその使用

Also Published As

Publication number Publication date
KR20200070356A (ko) 2020-06-17
CN111247212A (zh) 2020-06-05
TW201922938A (zh) 2019-06-16
EP3708614A4 (en) 2021-08-25
JP7176828B2 (ja) 2022-11-22
US11390715B2 (en) 2022-07-19
EP3708614A1 (en) 2020-09-16
JPWO2019093296A1 (ja) 2020-11-19
US20210179784A1 (en) 2021-06-17

Similar Documents

Publication Publication Date Title
US11655367B2 (en) Organopolysiloxane composition
JP6678388B2 (ja) 硬化性シリコーン樹脂組成物
EP2721108B1 (en) Cross-linkable silicone composition and cross-linked product thereof
JP7053124B2 (ja) 硬化性シリコーン組成物、その硬化物、および光学ディスプレイ
JP6965346B2 (ja) ダイボンディング用硬化性シリコーン組成物
US11555120B2 (en) Organopolysiloxane composition, and half-cured product and cured product produced from same
CN111212876B (zh) 制造有机聚硅氧烷硬化物的方法、有机聚硅氧烷硬化物、叠层体、及光学零件
JP7176828B2 (ja) オルガノポリシロキサン組成物
JP2018172447A (ja) 架橋性オルガノポリシロキサン組成物およびその硬化物
JP6657340B2 (ja) 硬化性シリコーン樹脂組成物
CN115315487A (zh) 固化性液态有机硅组合物、其固化物、包含该组合物的光学填充剂、以及包含由该固化物形成的层的显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18876531

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019552791

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207014540

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018876531

Country of ref document: EP

Effective date: 20200608