WO2019093198A1 - 飛行制御装置及び飛行制御システム - Google Patents

飛行制御装置及び飛行制御システム Download PDF

Info

Publication number
WO2019093198A1
WO2019093198A1 PCT/JP2018/040374 JP2018040374W WO2019093198A1 WO 2019093198 A1 WO2019093198 A1 WO 2019093198A1 JP 2018040374 W JP2018040374 W JP 2018040374W WO 2019093198 A1 WO2019093198 A1 WO 2019093198A1
Authority
WO
WIPO (PCT)
Prior art keywords
flight
flying object
aircraft
type
unit
Prior art date
Application number
PCT/JP2018/040374
Other languages
English (en)
French (fr)
Inventor
山田 武史
健 甲本
陽平 大野
英利 江原
雄一朗 瀬川
由紀子 中村
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2019552738A priority Critical patent/JP6983903B2/ja
Priority to US16/647,216 priority patent/US11501651B2/en
Publication of WO2019093198A1 publication Critical patent/WO2019093198A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0013Transmission of traffic-related information to or from an aircraft with a ground station
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/104Simultaneous control of position or course in three dimensions specially adapted for aircraft involving a plurality of aircrafts, e.g. formation flying
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/106Change initiated in response to external conditions, e.g. avoidance of elevated terrain or of no-fly zones
    • G05D1/1064Change initiated in response to external conditions, e.g. avoidance of elevated terrain or of no-fly zones specially adapted for avoiding collisions with other aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0017Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information
    • G08G5/0021Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information located in the aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management
    • G08G5/0039Modification of a flight plan
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0052Navigation or guidance aids for a single aircraft for cruising
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0073Surveillance aids
    • G08G5/0082Surveillance aids for monitoring traffic from a ground station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/04Anti-collision systems
    • G08G5/045Navigation or guidance aids, e.g. determination of anti-collision manoeuvers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power

Definitions

  • the present invention relates to technology for controlling the flight of a flying object.
  • Patent Document 1 based on information on the position of a moving object and information on the presence or absence of other moving objects, an area where moving objects often meet is identified and a movement plan is generated so as to avoid the area It is disclosed that.
  • unmanned air vehicles such as drone
  • air vehicles that can fly according to a predetermined flight plan without human operation.
  • a flying body is generally managed at a predetermined engine.
  • various types of flying objects including a flying object whose flight is controlled by a given engine and a flying object whose flight is not controlled, such as a drone flying by personal control There is.
  • the aircraft may perform collision avoidance during flight so as not to collide with such other types of other aircraft.
  • An object of the present invention is to perform collision avoidance in accordance with the type of the other aircraft.
  • the present invention relates to a detection unit that detects another flying object present in a predetermined range from a flying object, a specifying unit that identifies the type of the detected other flying object, and movement of the other flying object.
  • a determination unit that determines the possibility of a collision between the aircraft and the other aircraft based on an attribute, and, when it is determined that the possibility exists, the determination is made according to the specified type;
  • a flight control unit for controlling the flight of a flying object to avoid collision with the other flying object.
  • the flight control device further includes a measurement unit that measures the moving direction of the other flight vehicle viewed from the flight vehicle, and the identification unit determines the type of the other flight vehicle when a predetermined condition is satisfied.
  • the first type is identified as the first type, and the determination unit determines the first type as the first type, and the flying object and the other type when the measured moving direction approaches the aircraft. It is determined that there is a possibility of collision with a flying object, and the flight control unit controls the flight of the flying object when it is determined that the possibility is present when the first type is specified. And avoid collision with the other aircraft.
  • the predetermined condition may include that an identification signal is not received from the other aircraft.
  • the flight control unit controls the flight of the flight body according to a first flight plan in which the flight path and flight time of the flight body are described, and the flight control device controls the flight path and flight time of the other flight body
  • an acquisition unit for acquiring from the server device the priority of the flight purpose in the second flight plan described in the second flight plan and the second flight plan, and the identification unit acquires the second flight plan and the priority.
  • the second type is specified as the type of the other flight vehicle
  • the determination unit determines, when the second type is specified, the first flight plan and the second flight plan.
  • the flight control unit identifies the second type.
  • it is determined that there is the possibility Depending on the relationship between the priority of the flight object in the first flight plan and the acquired priority, to control the flight of the aircraft may avoid the collision with the other aircraft.
  • the flight control device may further include a receiving unit that receives an identification signal from the other flying object, and the acquisition unit may transmit the received identification signal to the server device.
  • the flight control device further includes a measurement unit that measures the moving direction of the other flight vehicle viewed from the flight vehicle, and the acquisition unit determines whether the other flight vehicle is under predetermined management.
  • the server device sends a response indicating that the other flying object is not under the predetermined management.
  • the first type is specified as the type of another flying body, and the determination unit determines that the measured movement direction approaches the flying body when the first type is specified.
  • the flight control unit determines that there is the possibility, when the first type is specified, Control the flight of the aircraft to avoid collision with the other aircraft It may be.
  • the flight control apparatus further includes a measurement unit that measures the moving direction of the other flight vehicle viewed from the flight vehicle, and the acquisition unit is a server device that indicates the flight status of the other flight vehicle. And the identification unit acquires the second flight plan, the priority, and the status information, and the status information indicates that the other flight vehicle departs from the second flight plan. If the third type is specified as the type of the other flight vehicle, and the third type is specified, the determination unit determines the third type regardless of the second flight plan.
  • the flight control unit determines that the third type is the third type If it is determined that there is a possibility, Regardless serial priority may avoid the collision with the other aircraft by controlling the flight of the aircraft.
  • the flight control device may further include a prediction unit that predicts a path followed by the other flight object, and the flight control unit may control the flight of the flight object to avoid the predicted path.
  • the flight control device may further include a measuring unit that measures the moving direction of the other flying object viewed from the flying object at a predetermined time interval, and the flight control unit may determine that the measured moving direction is the flying object. You may stop in the air until you move away from the
  • a detection unit for detecting another flying object present in a predetermined range from a flying object, a specifying unit for identifying the type of the detected other flying object, and the other flying object.
  • a determination unit that determines the possibility of a collision between the flying object and the other flying object based on an attribute relating to movement; and if it is determined that the possibility is present, according to the specified type
  • a flight control system comprising: a flight control unit for controlling the flight of the flight body to avoid a collision with the other flight body.
  • FIG. 1 shows an example of the configuration of a flight control system 1.
  • FIG. FIG. 2 is a view showing an example of the appearance of a flying object 10; It is a figure which shows the hardware constitutions of the flying body 10.
  • FIG. 2 is a diagram showing a hardware configuration of a server device 20.
  • FIG. 2 is a diagram showing an example of a functional configuration of a flight control system 1; It is a figure which shows an example of the operation management database 123.
  • FIG. 5 is a sequence chart showing an example of the operation of the flight control system 1; It is a figure which shows an example of the determination method of collision possibility.
  • FIG. 1 is a diagram showing an example of the configuration of a flight control system 1.
  • the flight control system 1 is a system that controls the flight of the flying object 10.
  • the flight control system 1 includes a plurality of aircraft 10 and a server device 20.
  • FIG. 2 is a view showing an example of the appearance of the flying object 10.
  • the flying object 10 is an unmanned aerial vehicle capable of autonomously flying without human operations.
  • the flying object 10 is, for example, a drone.
  • the flying object 10 includes a propeller 101, a drive device 102, and a battery 103.
  • the propeller 101 rotates about an axis. As the propeller 101 rotates, the flying object 10 flies.
  • the driving device 102 powers and rotates the propeller 101.
  • the drive device 102 is, for example, a motor.
  • the drive device 102 may be directly connected to the propeller 101, or may be connected to the propeller 101 via a transmission mechanism that transmits the power of the drive device 102 to the propeller 101.
  • the battery 103 supplies power to each part of the aircraft 10 including the drive device 102.
  • FIG. 3 is a diagram showing the hardware configuration of the aircraft 10.
  • the flying object 10 may be physically configured as a computer device including the processor 11, the memory 12, the storage 13, the communication device 14, the positioning device 15, the imaging device 16, the beacon device 17, the bus 18, and the like.
  • the term “device” can be read as a circuit, a device, a unit, or the like.
  • the processor 11 operates an operating system, for example, to control the entire computer.
  • the processor 11 may be configured by a central processing unit (CPU) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the processor 11 reads a program (program code), a software module or data from the storage 13 and / or the communication device 14 to the memory 12 and executes various processing according to these.
  • a program a program that causes a computer to execute at least a part of the operation of the flying object 10 is used.
  • the various processes performed in the aircraft 10 may be performed by one processor 11 or may be performed simultaneously or sequentially by two or more processors 11.
  • the processor 11 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 12 is a computer readable recording medium, and includes, for example, at least one of a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically Erasable Programmable ROM), and a RAM (Random Access Memory). It may be done.
  • the memory 12 may be called a register, a cache, a main memory (main storage device) or the like.
  • the memory 12 can store a program (program code), a software module, and the like that can be executed to implement the flight control method according to the embodiment of the present invention.
  • the storage 13 is a computer readable recording medium, and is, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magnetooptical disk (for example, a compact disk, a digital versatile disk, Blu-ray A (registered trademark) disk, a smart card, a flash memory (for example, a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, and the like may be used.
  • the storage 13 may be called an auxiliary storage device.
  • the communication device 14 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the positioning device 15 measures the three-dimensional position of the aircraft 10.
  • the positioning device 15 is, for example, a GPS (Global Positioning System) receiver, and measures the current position of the aircraft 10 based on GPS signals received from a plurality of satellites.
  • GPS Global Positioning System
  • the imaging device 16 captures an image around the flying object 10.
  • the imaging device 16 is, for example, a camera, and captures an image by forming an image on an imaging element using an optical system.
  • the imaging device 16 may also capture an image using ultrasonic waves.
  • the imaging device 16 captures an image of a predetermined range in front of the aircraft 10, for example.
  • the imaging direction of the imaging device 16 is not limited to the front of the aircraft 10, and may be above, below, or behind the aircraft 10. Further, for example, the imaging direction may be changed by rotating a pedestal supporting the imaging device 16.
  • the beacon unit 17 transmits and receives a beacon signal of a predetermined frequency.
  • the beacon device 17 transmits a beacon signal within a predetermined range at predetermined time intervals.
  • the predetermined range is, for example, a range of 10 m in radius.
  • the beacon device 17 receives beacon signals transmitted from other aircrafts 10.
  • the beacon signal includes the identifier of the flying object 10 of the transmission source of the beacon signal.
  • each device such as the processor 11 and the memory 12 is connected by a bus 18 for communicating information.
  • the bus 18 may be configured as a single bus or may be configured as different buses among the devices.
  • FIG. 4 is a diagram showing a hardware configuration of the server device 20.
  • the server device 20 has a role of managing the flight of the aircraft 10.
  • the “operation management” refers to managing the air traffic of the aircraft 10.
  • the flying object 10 is an unmanned aerial vehicle such as a drone
  • the operation management includes setting of the flying airspace of the flying object 10 and control of the flight path.
  • “operation management” is a concept that may include not only management of such unmanned aircraft, but also air traffic control of manned aircraft, for example, grasping and notification of the entire airspace where the manned aircraft flies.
  • the server device 20 may be physically configured as a computer device including the processor 21, the memory 22, the storage 23, the communication device 24, the bus 25 and the like.
  • the processor 21, the memory 22, the storage 23, the communication device 24, and the bus 25 are similar to the processor 11, the memory 12, the storage 13, the communication device 14, and the bus 18 described above, and thus the description thereof is omitted.
  • FIG. 5 is a diagram showing an example of a functional configuration of the flight control system 1.
  • the flight control system 1 includes a transmission unit 111, a reception unit 112, a detection unit 113, an acquisition unit 114, a reception unit 115, a determination unit 116, a response unit 117, a specification unit 118, a measurement unit 119, and the like. Functions as a determination unit 120, a prediction unit 121, and a flight control unit 122.
  • the transmitting unit 111, the receiving unit 112, the detecting unit 113, the acquiring unit 114, the specifying unit 118, the measuring unit 119, the determining unit 120, the predicting unit 121, and the flight control unit 122 Implemented.
  • the transmitting unit 111 and the receiving unit 112 are realized by the beacon device 17.
  • the detection unit 113, the acquisition unit 114, the identification unit 118, the measurement unit 119, the determination unit 120, the prediction unit 121, and the flight control unit 122 read predetermined software (programs) on hardware such as the processor 11 and the memory 12.
  • the processor 11 carries out an operation to realize communication and control of communication by the communication device 14 and data reading and / or writing in the memory 12 and the storage 13.
  • the flying object 10 functions as a flight control device.
  • the receiving unit 115, the determination unit 116, and the response unit 117 are implemented in the server device 20.
  • the reception unit 115, the determination unit 116, and the response unit 117 cause the processor 21 to perform an operation by reading predetermined software (program) on hardware such as the processor 21 and the memory 22, and the communication by the communication device 24 This is realized by controlling reading and / or writing of data in the memory 22 and the storage 23.
  • the transmitting unit 111 transmits an identification signal from the aircraft 10 within a predetermined range.
  • This identification signal is a signal for identifying the flying object 10.
  • the identification signal is a beacon signal including an identifier of the aircraft 10.
  • the receiver 112 receives an identification signal from another flying object 10.
  • This identification signal is a signal that identifies another flight vehicle 10.
  • the identification signal is a beacon signal including an identifier of another flight vehicle 10.
  • the detecting unit 113 detects another flying object 10 present in a predetermined range from the flying object 10. This detection may be performed, for example, according to whether or not an identification signal has been received from another flight vehicle 10.
  • the acquisition unit 114 indicates the flight plan of the other flight 10, the priority of the flight purpose in the flight plan, and the flight status of the other flight 10 when the other flight 10 is under predetermined management.
  • Information is acquired from the server device 20.
  • the term "under predetermined management" means that the flight is managed using the server device 20 at a predetermined organization, for example.
  • the acquisition unit 114 transmits, to the server device 20, a request for inquiring as to whether or not another flight vehicle 10 is under predetermined management.
  • the receiver 115 receives this request from the aircraft 10.
  • the determination unit 116 refers to the operation management database 123 and determines whether or not another flight vehicle 10 is under predetermined management.
  • FIG. 6 is a diagram showing an example of the operation management database 123.
  • the operation management database 123 is stored, for example, in the storage 23.
  • the operation management database 123 stores the identifier of each airframe 10, the flight plan of the airframe 10, and the priority of the flight purpose in the flight plan in association with each other.
  • the operation management database 123 includes only the identifiers of the aircraft 10 under predetermined management. That is, the operation management database 123 does not include the identifier of the aircraft 10 which is not under predetermined management.
  • a flight plan means information indicating a flight plan.
  • the departure point, transit point, destination, flight path, estimated departure time, estimated arrival time, and flight speed of the flying object 10 are described.
  • airspace cells three-dimensional spaces
  • the departure place, the transit place, the destination, and the flight path are divided by this airspace cell. It may be represented.
  • the estimated departure time and the estimated arrival time indicate the flight time. For example, the time from the scheduled departure time to the scheduled arrival time is flight time.
  • the priority of flight purpose indicates the degree of priority of flight purpose.
  • the priority when the aircraft 10 flies for delivery of a package, the higher the importance of the package or the urgency of delivery, the higher the priority may be. In another example, the priority may be higher if the aircraft 10 flies for an incident or accident response.
  • the priority is represented by the numbers "1" to "3". The priority “1” indicates that the flight has the highest priority, and the priority “3” indicates that the flight has the lowest priority.
  • the expression indicating priority is not limited to this example. The priority may be expressed by symbols other than numerals.
  • the response unit 117 transmits a response indicating the determination result by the determination unit 116 to the aircraft 10.
  • the response includes the flight plan of the other flight vehicle 10, the priority of the flight purpose in the flight plan, and the like.
  • the identifying unit 118 identifies the type of another flying object 10 detected by the detecting unit 113. This specification may be performed, for example, based on the response transmitted from the response unit 117.
  • the “type” refers to a distinction according to the management status of the flying object 10 and the type according to the flight status.
  • the types include first to third types. The first type is a type to which an aircraft 10 not under predetermined management belongs. The second type is a type which is under predetermined management and to which the flying object 10 flying according to the flight plan belongs. The third type is a type to which an aircraft 10 which is under predetermined management but which flies out of the flight plan belongs.
  • the measuring unit 119 measures the moving direction of another flying object 10 seen from the flying object 10.
  • the measurement of the moving direction may be performed based on, for example, a change in the strength of the identification signal received from the other flying object 10 by the receiving unit 112.
  • the determination unit 120 determines the possibility of the collision between the flying object 10 and the other flying object 10 based on the attribute relating to the movement of the other flying object 10.
  • the "attribute related to movement” refers to information related to movement.
  • the concept of “attribute related to movement” includes the movement direction measured by the measurement unit 119 and the flight plan acquired by the acquisition unit 114.
  • the attribute related to movement different information may be used according to the type of another flying object 10 identified by the identification unit 118. For example, when the first type or the third type is specified by the specifying unit 118, the moving direction measured by the measuring unit 119 may be used as an attribute related to movement.
  • the second type is identified by the identifying unit 118, the flight plan acquired by the acquiring unit 114 may be used as an attribute related to movement.
  • the prediction unit 121 predicts a path on which another flight vehicle 10 flies.
  • the prediction of the path may be performed, for example, based on the identification signal of the other aircraft 10 received by the receiver 112.
  • the flight control unit 122 basically controls the drive unit 102 to fly the aircraft 10 in accordance with a predetermined flight plan. By driving the drive device 102 under the flight control unit 122, the propeller 101 rotates and the flying object 10 flies. However, if the determination unit 120 determines that there is a possibility of a collision, the flight control unit 122 controls the flight of the flying object 10 according to the type specified by the specification unit 118 to perform another flight. Avoid collision with body 10
  • the determining unit 120 determines that there is a possibility of a collision
  • collision avoidance is performed based on the route predicted by the prediction unit 121. It may be done.
  • the second type is specified by the specifying unit 118
  • the determining unit 120 determines that there is a possibility of a collision
  • the priority of the flight purpose of the other aircraft 10 acquired by the acquiring unit 114 is prioritized. Collision avoidance may be performed depending on the relationship between the degree of flight and the priority of the flight object 10 for the purpose of flight.
  • the processor 11 is read by reading predetermined software (program) on hardware such as the processor 11 and the memory 12.
  • program a software
  • the process is executed by performing an operation and controlling communication by the communication device 14 and reading and / or writing of data in the memory 12 and the storage 13. The same applies to the server device 20.
  • FIG. 7 is a sequence chart showing an example of the operation of the flight control system 1.
  • the plurality of flying bodies 10 include the flying bodies 10A and 10B.
  • the flight plan of the flight 10 and the priority of the flight purpose which are included in the operation management database 123, are distributed from the server device 20 and stored in the storage 13 before the flight.
  • each flying object 10 flies according to this flight plan.
  • the flight plan (an example of the first flight plan) stored in the storage 13 of the aircraft 10B in association with the identifier "D002" of the aircraft 10B in the operation management database 123 shown in FIG. Is stored.
  • the flying body 10B leaves the departure point "P4" at the scheduled departure time "T3", and then flies at the flight speed "V2" through the flight path "R2" to transit via point "P5" Fly to arrive at the destination "P6” at the estimated arrival time "T4" via the route.
  • each flying object 10 measures the current position by the positioning device 15 at predetermined time intervals, and transmits position information indicating the measured current position to the server device 20.
  • the server device 20 grasps the flight status of each flying object 10 based on the position information received from each flying object 10 and the flight plan of the flight object 10 included in the operation management database 123.
  • each flight vehicle 10 transmits beacon signals at predetermined time intervals from the transmitting unit 111 during flight.
  • the flying object 10A exists within a predetermined range from the flying object 10B.
  • the beacon signal reaches the aircraft 10B.
  • step S101 the receiving unit 112 of the aircraft 10B receives a beacon signal transmitted from another aircraft 10A within a predetermined range.
  • the beacon signal includes the identifier "D001" of the aircraft 10A.
  • step S102 since the beacon signal received in step S101 includes the identifier "D001" of the aircraft 10A, the detection unit 113 of the aircraft 10B detects another aircraft 10A within a predetermined range.
  • step S103 the acquiring unit 114 of the flying object 10B transmits, to the server device 20, a request for inquiring as to whether or not the other flying object 10A detected in step S102 is under predetermined management.
  • This request includes the identifier "D001" included in the beacon signal received in step S101.
  • the receiving unit 115 of the server device 20 receives this request from the flying object 10B.
  • step S104 the determination unit 116 of the server device 20 performs a process of determining whether or not the aircraft 10A is under predetermined management with reference to the operation management database 123. Specifically, the determination unit 116 determines whether the identifier included in the request is included in the operation management database 123.
  • the flight management database 123 does not include the identifier "D001" of the aircraft 10A, it is determined that the aircraft 10A is not under predetermined management.
  • the operation management database 123 includes the identifier "D001" of the aircraft 10A. In this case, the flying object 10A is determined to be under predetermined management.
  • status information indicating the flight status of the flying object 10A is generated.
  • This situation information is, for example, information indicating whether or not the flying object 10A is flying according to the flight plan, and includes position information received from the flying object 10A and the flight plan of the flight object 10A included in the operation management database 123. Generated based on.
  • step S105 the response unit 117 of the server device 20 transmits a response to the request received in step S103 to the aircraft 10B.
  • This response includes the determination result in step S104. Further, if it is determined that the flying object 10A is under predetermined management, this response further includes the flight plan of the flying object 10A (an example of the second flight plan) and the priority of the flight purpose in the flight plan. , And status information indicating the flight status of the flying object 10A. For example, when the flying object 10A is under predetermined management and is flying according to the flight plan, the determination result that the flying object 10A is under predetermined management and the flight object 10A in the operation management database 123 shown in FIG.
  • a response including the flight plan associated with the identifier “D001” and the priority “1” of the flight purpose, and the status information indicating that the aircraft 10A is flying according to the flight plan is transmitted to the aircraft 10B Ru.
  • the acquisition unit 114 of the aircraft 10B receives a response from the server device 20.
  • the flight plan of the flying object 10A, the priority of the flight purpose, and the status information included in this response are stored in the storage 13 of the flying object 10B.
  • step S106 the identifying unit 118 of the aircraft 10B identifies the type of another aircraft 10A based on the response received from the server device 20 in step S105. For example, when the response includes a determination result indicating that the flying object 10A is not under predetermined management, the first type is determined as the type of the flying object 10A. On the other hand, if the response received in step S105 includes the determination result that the flying object 10A is under predetermined management and the status information indicating that the flight is being performed according to the flight plan, the type of the flying object 10A is The second type is determined. In the case where the response received in step S105 includes the determination result that the aircraft 10A is under predetermined management and the status information indicating that the flight is out of the flight plan, the response of the aircraft 10A is included. The third type is determined as the type.
  • the measurement unit 119 of the flying object 10B measures the moving direction of the other flying object 10A viewed from the flying object 10B based on the change in the strength of the beacon signal received from the flying object 10A.
  • the flying object 10A is within a predetermined range from the flying object 10B, beacon signals are received from the flying object 10A at predetermined time intervals. For example, if the strength of the beacon signal received from aircraft 10A increases, then the direction towards aircraft 10B is measured. On the other hand, when the strength of the beacon signal received from the flying object 10A decreases, the direction away from the flying object 10B is measured.
  • step S108 the determination unit 120 of the flying object 10B performs processing to determine the possibility that another flying object 10A may collide with the flying object 10B.
  • the method of determining the possibility of collision differs depending on the type of the flying object 10A specified in step S106.
  • FIG. 8 is a diagram showing an example of a method of determining the possibility of collision.
  • the flying object 10A belongs to the first type or the third type
  • the moving direction measured in step S107 is a direction approaching the flying object 10B
  • it is determined that there is a collision possibility when the moving direction measured in step S107 is the direction of moving away from the flying object 10B, it is determined that there is no collision possibility.
  • flight paths overlap means that at least a part of the flight paths overlap.
  • the concept of "overlapping flight paths” includes a state in which the flight paths coincide, a state in which part of the flight paths coincide, and a state in which the flight paths intersect.
  • the concept of “overlapping flight paths” includes a state in which the same airspace cell is scheduled to fly at the same time.
  • step S109 the determination unit 120 of the flying object 10B determines whether there is a possibility that another flying object 10A may collide with the flying object 10B. If it is determined in step S108 described above that there is a possibility of collision (the determination in step S109 is YES), the process proceeds to step S110. On the other hand, when it is determined that there is no collision possibility in step S108 described above (the determination in step S109 is NO), this process ends.
  • step S110 the flight control unit 122 of the flying object 10B determines whether the type of the other flying object 10A identified in step S106 is the second type. For example, if the type of the flying object 10A is the first type or the third type, the process proceeds to step S112. On the other hand, if the type of the flying object 10A is the second type, the process proceeds to step S111.
  • step S111 the flight control unit 122 of the flying object 10B determines whether the priority of the flight purpose of the other flying object 10A is higher than the priority of the flight purpose of the aircraft 10B. For example, when the priority of the flight purpose of the aircraft 10A is lower than the priority of the flight purpose of the aircraft 10B (NO in step S111), this process ends. On the other hand, in the example shown in FIG. 6, the priority of the flight purpose of the flying object 10A is “1”, which is higher than the priority “2” of the flight purpose of the flying object 10B (YES in step S111). In this case, the process proceeds to step S112.
  • step S112 the flight control unit 122 of the flying object 10B performs collision avoidance control for controlling the flight of the flying object 10B in order to avoid a collision with another flying object 10A.
  • the method of this collision avoidance control may differ depending on the type of the other flying object 10.
  • the prediction unit 121 predicts the flight path of the flying object 10A based on the beacon signal received from the flying object 10A. Do. For example, the prediction unit 121 measures the moving direction and the moving speed of the flying object 10A based on the change in the strength of the beacon signal and the reception interval of the beacon signal. Subsequently, the prediction unit 121 predicts a flight path in the case where the flying object 10A flies in the same moving direction at the same moving speed, based on the measured moving direction and moving speed. In this case, the flight control unit 122 controls the flight of the flying object 10B so as to avoid the predicted flight path. For example, the flight control unit 122 may change the flight path of the flying object 10B so as not to overlap with the predicted flight path, and control the drive device 102 to fly according to the changed flight path.
  • the flight control unit 122 controls the driving device 102 to stop in the air until the flying object 10A moves in the direction away. It is also good.
  • the measurement unit 119 of the flying object 10B is a flying object viewed from the flying object 10B at a predetermined time interval based on the change in the strength of the beacon signal received from the flying object 10A, as in step S107 described above. Measure the moving direction of 10A. While the moving direction of the flying object 10A approaches the flying object 10B, the flying object 10B stops in the air. On the other hand, when the moving direction of the flying object 10A moves away from the flying object 10B, the flying object 10B resumes flight according to the flight plan.
  • the flight object 10B performs collision avoidance control. It will not be.
  • the flying object 10A belongs to the second type, the same processing as the flying object 10B is performed in the flying object 10A.
  • the determination in step S111 is YES. In this case, since the collision avoidance control is performed by the flying object 10A, the collision between the flying object 10A and the flying object 10B is avoided even if the flight object 10B does not perform the collision avoidance control.
  • the flying object 10 collides when the opponent's flying object 10 moves in the direction in which the opponent's flying object 10 approaches when the flying object 10 belongs to the first type or the third type.
  • Evasion control is performed.
  • the other party's flying object 10 belongs to the first type or the third type the flight path of the other party's flying object 10 can not be accurately grasped.
  • the opponent's flying object 10 does not perform collision avoidance. Therefore, when the opponent's flight object 10 is moving in the direction approaching the flight object 10, the collision avoidance control can be performed to surely avoid the collision of these flight objects 10.
  • the flying object 10 has overlapping flight paths at the same time between the flight plan of the flying object 10 and the flight plan of the other flying object 10.
  • the priority of the flight object of the opponent's flight object 10 is higher than the priority of the flight object 10 of flight object 10
  • collision avoidance control is performed.
  • the flight paths of the opponent's flight body 10 and the flight plan of the flight body 10 do not overlap at the same time, the opponent's flight body 10 is within a predetermined range from the flight body 10
  • the flying object 10 does not have to perform collision avoidance control.
  • the plurality of flying vehicles 10 may include a flying vehicle 10 that does not transmit a beacon signal such as a bird. That is, the flying object 10 may include not only an unmanned aerial vehicle such as a drone, but also a flying animal such as a bird or a manned aircraft, as long as it flies.
  • a device other than the beacon device 17 may be used to detect another flying object 10 within a predetermined range from the flying object 10.
  • the imaging device 16 of the flying object 10 may be used to detect another flying object 10 with the beacon device 17 or in place of the beacon device 17. In this case, image recognition is performed on the image captured by the imaging device 16 of the flying object 10.
  • an ultrasonic sensor may be used to detect other aircraft 10 within a predetermined range from the aircraft 10. According to this modification, it is also possible to detect a flying object 10 which does not transmit a beacon signal such as a bird.
  • the identifying unit 118 may identify the first type as the type of another flying object 10. That is, in the case where there is no transmission of a beacon signal from another flying object 10 and the condition that another flying object 10 is detected by a device other than the beacon device 17, the identification unit 118 determines the other flying object.
  • the first type may be specified as the type of 10. This condition is an example of a predetermined condition. According to this modification, it is possible to avoid a collision with the flying object 10 which does not transmit a beacon signal such as a bird.
  • the flight control unit 122 may perform collision avoidance control in accordance with whether or not the other flying object 10 detected by the detection unit 113 has the collision avoidance function.
  • the response transmitted by the response unit 117 includes function information indicating whether the other flight vehicle 10 has the collision avoidance function. If the flight control unit 122 determines that there is a possibility of a collision, the flight control unit 122 determines that there is a possibility of a collision if the function information indicates that the other flight vehicle 10 does not have the collision avoidance function. Regardless of this, collision avoidance control may be performed.
  • the airspace in which the aircraft 10 flies may include a shared airspace and an exclusive airspace.
  • the shared airspace multiple aircrafts 10 can fly simultaneously.
  • the exclusive airspace only one flying object 10 can fly at a time.
  • the flight control unit 122 determines whether the collision avoidance control is necessary depending on whether the airspace where the aircraft 10 flies is a shared airspace or an exclusive airspace. You may judge no. For example, in this case, while the collision avoidance control is performed when the aircraft 10 is flying in the common airspace, the collision avoidance control may not be performed when the aircraft 10 is flying in the exclusive airspace.
  • the aircraft 10 may perform this flight operation when performing collision avoidance control.
  • This flight operation may be, for example, an operation of turning in a predetermined direction or an operation of lowering the altitude.
  • the aircraft 10 may emit a stop signal when stopping in the air.
  • the stop signal may be transmitted from, for example, the beacon device 17.
  • the following flight vehicle 10 may fly to avoid the flight vehicle 10 when it receives a stop signal from the preceding flight vehicle 10.
  • the flight control unit 122 may change the flight path of the flying object 10 instead of stopping the flying object 10 in the air when the second type is specified by the specifying unit 118. Good.
  • the flight control unit 122 does not overlap the flight path of the other flight vehicle 10 predicted by the prediction unit 121. The flight path may be changed.
  • the flight control unit 122 changes the flight path of the aircraft 10 in place of changing the flight path of the aircraft 10 when the first type or the third type is specified by the specifying unit 118, and You may stop it.
  • the flight control unit 122 sets the flying object 10 in the air until the moving direction of the other flying object 10 becomes a direction away from the flying object 10. It may be stopped at
  • the collision avoidance control of The necessity may be determined.
  • the predetermined condition may be, for example, a condition that one with a late arrival scheduled time performs collision avoidance control, and one with a higher flight performance may perform collision avoidance control.
  • the determination unit 120 may determine the height of the possibility of collision instead of whether or not there is the possibility of collision.
  • the flight control unit 122 may perform collision avoidance control according to the type specified by the specifying unit 118 if the possibility of the collision determined by the determining unit 120 is equal to or greater than a predetermined value. . In other words, even if the determination unit 120 determines that there is a possibility of a collision, the flight control unit 122 does not perform the collision avoidance control if the possibility of the collision is smaller than a predetermined value. Good.
  • priorities for flight purposes may be included in the beacon signal.
  • the flight control unit 122 may determine the necessity of the collision avoidance control using the priority of the flight purpose included in the beacon signal received by the receiving unit 112.
  • the method of measuring the position of the flying object 10 is not limited to the method using GPS.
  • the position of the aircraft 10 may be measured by a method that does not use GPS.
  • At least a part of the functions of the aircraft 10 may be implemented in the server device 20 or another device.
  • at least one of the identification unit 118, the measurement unit 119, the determination unit 120, and the prediction unit 121 may be mounted on the server device 20.
  • at least some of the functions of the server device 20 may be implemented in the aircraft 10 or other devices.
  • the present invention may be provided as a flight control method comprising the steps of processing performed in the flight control system 1. Also, the present invention may be provided as a program executed on the airframe 10 or the server device 20.
  • each functional block may be realized by one physically and / or logically coupled device, or directly and / or indirectly two or more physically and / or logically separated devices. It may be connected by (for example, wired and / or wireless) and realized by the plurality of devices.
  • the hardware configuration of the airframe 10 or the server device 20 may be configured to include one or more of the devices shown in FIG. 3 or FIG. 4 or may be configured without including some devices. Good. Further, the flying object 10 or the server device 20 may be a hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA).
  • the hardware may be configured to include hardware, and some or all of the functional blocks of the airframe 10 or the server device 20 may be realized by the hardware. For example, processor 11 or 21 may be implemented in at least one of these hardware.
  • notification of information is not limited to the aspects / embodiments described herein, and may be performed in other manners.
  • notification of information may be physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • Each aspect / embodiment described in the present specification is LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA (Registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, UWB (Ultra-Wide Band),
  • the present invention may be applied to a system utilizing Bluetooth (registered trademark), other appropriate systems, and / or an advanced next-generation system based on these.
  • Information and the like may be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input and output may be performed via a plurality of network nodes.
  • the input / output information or the like may be stored in a specific place (for example, a memory) or may be managed by a management table. Information to be input or output may be overwritten, updated or added. The output information etc. may be deleted. The input information or the like may be transmitted to another device.
  • the determination may be performed by a value (0 or 1) represented by one bit, may be performed by a boolean value (Boolean: true or false), or may be compared with a numerical value (for example, a predetermined value). Comparison with the value).
  • notification of predetermined information is not limited to what is explicitly performed, but is performed by implicit (for example, not notifying of the predetermined information) It is also good.
  • Software may be called software, firmware, middleware, microcode, hardware description language, or any other name, and may be instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules. Should be interpreted broadly to mean applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc.
  • software, instructions, etc. may be sent and received via a transmission medium.
  • software may use a wireline technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or a website, server or other using wireless technology such as infrared, radio and microwave When transmitted from a remote source, these wired and / or wireless technologies are included within the definition of transmission medium.
  • wireline technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or a website, server or other using wireless technology such as infrared, radio and microwave
  • data, instructions, commands, information, signals, bits, symbols, chips etc may be voltage, current, electromagnetic waves, magnetic fields or particles, optical fields or photons, or any of these May be represented by a combination of
  • the channels and / or symbols may be signals.
  • the signal may be a message.
  • the component carrier (CC) may be called a carrier frequency, a cell or the like.
  • system and "network” as used herein are used interchangeably.
  • radio resources may be indexed.
  • determining may encompass a wide variety of operations.
  • “Judgment”, “decision” are, for example, judging, calculating, calculating, processing, processing, deriving, investigating, looking up (for example, a table) (Searching in a database or another data structure), ascertaining may be regarded as “decision”, “decision”, etc.
  • “determination” and “determination” are receiving (e.g. receiving information), transmitting (e.g. transmitting information), input (input), output (output), access (Accessing) (for example, accessing data in a memory) may be regarded as “judged” or “decided”.
  • the phrase “based on” does not mean “based only on,” unless expressly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to an element using the designation "first,” “second,” etc. as used herein does not generally limit the quantity or order of those elements. These designations may be used herein as a convenient way of distinguishing between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be taken there, or that in any way the first element must precede the second element.
  • the operation management database 123 shown in FIG. 6 includes situation information indicating whether or not each flight vehicle 10 is flying according to the flight plan. Then, for example, when it is determined by the determination unit 116 that the aircraft 10A is under predetermined management, status information of the aircraft 10A may be extracted from the operation management database 123 and transmitted to the aircraft 10A.
  • Flight control system 10 Flying object 20: Server device 111: Transmission unit 112: Reception unit 113: Detection unit 114: Acquisition unit 115: Reception unit 116: Judgment unit 117: Response unit , 118: identification unit, 119: measurement unit, 120: determination unit, 121: prediction unit, 122: flight control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

相手の飛行体の種別に応じた衝突回避を行う。 検出部は、飛行体(10B)から所定の範囲内に存在する他の飛行体(10A)を検出する。特定部は、検出された他の飛行体(10A)の種別を特定する。判定部は、他の飛行体(10A)の移動に関する属性に基づいて、飛行体(10B)と他の飛行体(10A)とが衝突する可能性を判定する。飛行制御部は、衝突の可能性があると判定された場合には、特定された種別に応じて、飛行体(10B)の飛行を制御して他の飛行体(10A)との衝突を回避する。

Description

飛行制御装置及び飛行制御システム
 本発明は、飛行体の飛行を制御する技術に関する。
 飛行体の飛行を制御する技術が知られている。例えば特許文献1には、移動体の位置に関する情報及び他の移動体の存否に関する情報に基づいて、移動体同士が出合うことの多いエリアを特定し、そのエリアを回避するように移動計画を生成することが開示されている。
特開2009-205652号公報
 ドローン等の無人の飛行体の中には、人が操作を行わなくても、予め定められた飛行計画に従って飛行できる飛行体がある。このような飛行体は、一般的に、所定の機関において飛行が管理されている。ところで、空域には、所定の機関において飛行が管理されている飛行体と、個人の操縦によって飛行するドローン等、飛行が管理されていない飛行体とを含む様々な種別の飛行体が飛行している。そのため、飛行体は、飛行中に、このような様々な種別の他の飛行体と衝突しないように衝突回避を行う場合がある。しかし、相手の飛行体の種別によっては、相手の飛行体が所定の範囲内に存在していても、衝突回避を行った方がよい場合と衝突回避を行わなくてもよい場合とがある。
 本発明は、相手の飛行体の種別に応じた衝突回避を行うことを目的とする。
 本発明は、飛行体から所定の範囲内に存在する他の飛行体を検出する検出部と、前記検出された他の飛行体の種別を特定する特定部と、前記他の飛行体の移動に関する属性に基づいて、前記飛行体と前記他の飛行体とが衝突する可能性を判定する判定部と、前記可能性があると判定された場合には、前記特定された種別に応じて、前記飛行体の飛行を制御して前記他の飛行体との衝突を回避する飛行制御部とを備える飛行制御装置を提供する。
 前記飛行制御装置は、前記飛行体から見た前記他の飛行体の移動方向を測定する測定部をさらに備え、前記特定部は、所定の条件を満たす場合には、前記他の飛行体の種別として第1種別を特定し、前記判定部は、前記第1種別が特定された場合には、前記測定された移動方向が前記飛行体に近づく方向であるときは、前記飛行体と前記他の飛行体とが衝突する可能性があると判定し、前記飛行制御部は、前記第1種別が特定された場合には、前記可能性があると判定されると、前記飛行体の飛行を制御して前記他の飛行体との衝突を回避してもよい。
 前記所定の条件は、前記他の飛行体から識別信号が受信されないことを含んでもよい。
 前記飛行制御部は、前記飛行体の飛行経路及び飛行時間が記載された第1飛行計画に従って前記飛行体の飛行を制御し、前記飛行制御装置は、前記他の飛行体の飛行経路及び飛行時間が記載された第2飛行計画と前記第2飛行計画における飛行目的の優先度とをサーバ装置から取得する取得部をさらに備え、前記特定部は、前記第2飛行計画及び前記優先度が取得された場合には、前記他の飛行体の種別として第2種別を特定し、前記判定部は、前記第2種別が特定された場合には、前記第1飛行計画と前記第2飛行計画との間で、同一の時間において前記飛行経路が重なるときは、前記飛行体と前記他の飛行体とが衝突する可能性があると判定し、前記飛行制御部は、前記第2種別が特定された場合には、前記可能性があると判定されると、前記取得された優先度と前記第1飛行計画における飛行目的の優先度との関係に応じて、前記飛行体の飛行を制御して前記他の飛行体との衝突を回避してもよい。
 前記飛行制御装置は、前記他の飛行体から識別信号を受信する受信部をさらに備え、前記取得部は、前記受信された識別信号を前記サーバ装置に送信してもよい。
 前記飛行制御装置は、前記飛行体から見た前記他の飛行体の移動方向を測定する測定部をさらに備え、前記取得部は、前記他の飛行体が所定の管理下にあるか否かを問い合わせる要求を前記サーバ装置に送信し、前記特定部は、前記要求に応じて前記サーバ装置から前記他の飛行体が前記所定の管理下にないことを示す応答が送信された場合には、前記他の飛行体の種別として第1種別を特定し、前記判定部は、前記第1種別が特定された場合には、前記測定された移動方向が前記飛行体に近づく方向であるときは、前記飛行体と前記他の飛行体とが衝突する可能性があると判定し、前記飛行制御部は、前記第1種別が特定された場合には、前記可能性があると判定されると、前記飛行体の飛行を制御して前記他の飛行体との衝突を回避してもよい。
 前記飛行制御装置は、前記飛行体から見た前記他の飛行体の移動方向を測定する測定部をさらに備え、前記取得部は、前記他の飛行体の飛行状況を示す状況情報を前記サーバ装置から取得し、前記特定部は、前記第2飛行計画、前記優先度、及び前記状況情報が取得され、且つ、前記状況情報が、前記他の飛行体が前記第2飛行計画から外れて飛行していることを示す場合には、前記他の飛行体の種別として第3種別を特定し、前記判定部は、前記第3種別が特定された場合には、前記第2飛行計画に関わらず、前記測定された移動方向が前記飛行体に近づく方向であるときは、前記飛行体と前記他の飛行体とが衝突する可能性があると判定し、前記飛行制御部は、前記第3種別が特定された場合には、前記可能性があると判定されると、前記優先度に関わらず、前記飛行体の飛行を制御して前記他の飛行体との衝突を回避してもよい。
 前記飛行制御装置は、前記他の飛行体が飛行する経路を予測する予測部をさらに備え、前記飛行制御部は、前記飛行体の飛行を制御して前記予測された経路を避けてもよい。
 前記飛行制御装置は、所定の時間間隔で前記飛行体から見た前記他の飛行体の移動方向を測定する測定部をさらに備え、前記飛行制御部は、前記測定された移動方向が前記飛行体から遠ざかる方向になるまで、空中において停止してもよい。
 また、本発明は、飛行体から所定の範囲内に存在する他の飛行体を検出する検出部と、前記検出された他の飛行体の種別を特定する特定部と、前記他の飛行体の移動に関する属性に基づいて、前記飛行体と前記他の飛行体とが衝突する可能性を判定する判定部と、前記可能性があると判定された場合には、前記特定された種別に応じて、前記飛行体の飛行を制御して前記他の飛行体との衝突を回避する飛行制御部とを備える飛行制御システムを提供する。
 本発明によれば、相手の飛行体の種別に応じた衝突回避を行うことができる。
飛行制御システム1の構成の一例を示す図である。 飛行体10の外観の一例を示す図である。 飛行体10のハードウェア構成を示す図である。 サーバ装置20のハードウェア構成を示す図である。 飛行制御システム1の機能構成の一例を示す図である。 運航管理データベース123の一例を示す図である。 飛行制御システム1の動作の一例を示すシーケンスチャートである。 衝突可能性の判定方法の一例を示す図である。
構成
 図1は、飛行制御システム1の構成の一例を示す図である。飛行制御システム1は、飛行体10の飛行を制御するシステムである。飛行制御システム1は、複数の飛行体10と、サーバ装置20とを備える。
 図2は、飛行体10の外観の一例を示す図である。飛行体10は、人が操作を行わなくても自律的に飛行可能な無人航空機である。飛行体10は、例えばドローンである。飛行体10は、プロペラ101と、駆動装置102と、バッテリー103とを備える。
 プロペラ101は、軸を中心に回転する。プロペラ101が回転することにより、飛行体10が飛行する。駆動装置102は、プロペラ101に動力を与えて回転させる。駆動装置102は、例えばモーターである。駆動装置102は、プロペラ101に直接接続されてもよいし、駆動装置102の動力をプロペラ101に伝達する伝達機構を介してプロペラ101に接続されてもよい。バッテリー103は、駆動装置102を含む飛行体10の各部に電力を供給する。
 図3は、飛行体10のハードウェア構成を示す図である。飛行体10は、物理的には、プロセッサ11、メモリ12、ストレージ13、通信装置14、測位装置15、撮像装置16、ビーコン装置17、バス18などを含むコンピュータ装置として構成されてもよい。なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。
 プロセッサ11は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ11は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central  Processing  Unit)で構成されてもよい。
 また、プロセッサ11は、プログラム(プログラムコード)、ソフトウェアモジュールやデータを、ストレージ13及び/又は通信装置14からメモリ12に読み出し、これらに従って各種の処理を実行する。プログラムとしては、飛行体10の動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。飛行体10において実行される各種処理は、1つのプロセッサ11により実行されてもよいし、2以上のプロセッサ11により同時又は逐次に実行されてもよい。プロセッサ11は、1以上のチップで実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。
 メモリ12は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ12は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ12は、本発明の一実施の形態に係る飛行制御方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ13は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact  Disc  ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。ストレージ13は、補助記憶装置と呼ばれてもよい。
 通信装置14は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。
 測位装置15は、飛行体10の三次元の位置を測定する。測位装置15は、例えばGPS(Global Positioning  System)受信機であり、複数の衛星から受信したGPS信号に基づいて飛行体10の現在位置を測定する。
 撮像装置16は、飛行体10の周囲の画像を撮影する。撮像装置16は、例えばカメラであり、光学系を用いて撮像素子上に像を結ばせることにより、画像を撮影する。また、撮像装置16は、超音波を用いて画像を撮影してもよい。撮像装置16は、例えば飛行体10の前方において所定の範囲の画像を撮影する。ただし、撮像装置16の撮影方向は、飛行体10の前方に限定されず、飛行体10の上方、下方、又は後方であってもよい。また、例えば撮像装置16を支持する台座が回転することにより、撮影方向が変更されてもよい。
 ビーコン装置17は、所定の周波数のビーコン信号を発信及び受信する。例えばビーコン装置17は、所定の時間間隔で所定の範囲内にビーコン信号を発信する。この所定の範囲は、例えば半径10mの範囲である。また、ビーコン装置17は、他の飛行体10から送信されたビーコン信号を受信する。このビーコン信号には、ビーコン信号の送信元の飛行体10の識別子が含まれる。
 また、プロセッサ11やメモリ12などの各装置は、情報を通信するためのバス18で接続される。バス18は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
 図4は、サーバ装置20のハードウェア構成を示す図である。サーバ装置20は、飛行体10に対して運航管理を行う役割を担う。この「運航管理」とは、飛行体10の航空交通を管理することをいう。例えば飛行体10がドローン等の無人航空機である場合、運航管理には、飛行体10の飛行空域の設定及び飛行経路の制御が含まれる。ただし、「運航管理」とは、このような無人航空機の管理だけでなく、有人航空機の航空交通管制、例えば有人航空機が飛行する空域全体の把握及び報知も含み得る概念である。
 サーバ装置20は、物理的には、プロセッサ21、メモリ22、ストレージ23、通信装置24、バス25などを含むコンピュータ装置として構成されてもよい。プロセッサ21、メモリ22、ストレージ23、通信装置24、及びバス25は、上述したプロセッサ11、メモリ12、ストレージ13、通信装置14、及びバス18と同様であるため、その説明を省略する。
 図5は、飛行制御システム1の機能構成の一例を示す図である。飛行制御システム1は、発信部111と、受信部112と、検出部113と、取得部114と、受信部115と、判定部116と、応答部117と、特定部118と、測定部119と、判定部120と、予測部121と、飛行制御部122として機能する。
 図5に示す例では、発信部111、受信部112、検出部113、取得部114、特定部118、測定部119、判定部120、予測部121、及び飛行制御部122は、飛行体10に実装される。このうち、発信部111及び受信部112は、ビーコン装置17により実現される。検出部113、取得部114、特定部118、測定部119、判定部120、予測部121、及び飛行制御部122は、プロセッサ11、メモリ12などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ11が演算を行い、通信装置14による通信や、メモリ12及びストレージ13におけるデータの読み出し及び/又は書き込みを制御することにより実現される。この場合、飛行体10は、飛行制御装置として機能する。
 また、受信部115、判定部116、及び応答部117は、サーバ装置20に実装される。受信部115、判定部116、及び応答部117は、プロセッサ21、メモリ22などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ21が演算を行い、通信装置24による通信や、メモリ22及びストレージ23におけるデータの読み出し及び/又は書き込みを制御することにより実現される。
 発信部111は、飛行体10から所定の範囲内に識別信号を発信する。この識別信号は、飛行体10を識別する信号である。例えば識別信号は、飛行体10の識別子を含むビーコン信号である。
 受信部112は、他の飛行体10から識別信号を受信する。この識別信号は、他の飛行体10を識別する信号である。例えば識別信号は、他の飛行体10の識別子を含むビーコン信号である。
 検出部113は、飛行体10から所定の範囲内に存在する他の飛行体10を検出する。この検出は、例えば他の飛行体10から識別信号を受信したか否かに応じて行われてもよい。
 取得部114は、他の飛行体10が所定の管理下にある場合、他の飛行体10の飛行計画、この飛行計画における飛行目的の優先度、及び他の飛行体10の飛行状況を示す状況情報をサーバ装置20から取得する。この「所定の管理下にある」とは、例えば所定の機関においてサーバ装置20を用いて飛行が管理されていることをいう。例えば取得部114は、他の飛行体10が所定の管理下にあるか否かを問い合わせる要求をサーバ装置20に送信する。受信部115は、飛行体10からこの要求を受信する。判定部116は、運航管理データベース123を参照して、他の飛行体10が所定の管理下にあるか否かを判定する。
 図6は、運航管理データベース123の一例を示す図である。運航管理データベース123は、例えばストレージ23に記憶される。運航管理データベース123には、各飛行体10の識別子と、この飛行体10の飛行計画と、この飛行計画における飛行目的の優先度とが対応付けて記憶される。運航管理データベース123には、所定の管理下にある飛行体10の識別子だけが含まれる。すなわち、運航管理データベース123には、所定の管理下にない飛行体10の識別子は含まれない。
 飛行計画とは、飛行の計画を示す情報を意味する。飛行計画には、飛行体10の出発地、経由地、目的地、飛行経路、出発予定時刻、到着予定時刻、及び飛行速度が記載される。なお、飛行体10が飛行する空域が複数の三次元の空間(以下、「空域セル」という。)に分割される場合、出発地、経由地、目的地、及び飛行経路は、この空域セルによって表されてもよい。出発予定時刻及び到着予定時刻は、飛行時間を示す。例えば出発予定時刻から到着予定時刻までの時間が飛行時間となる。飛行目的の優先度は、飛行目的の優先の度合を示す。例えば飛行体10が荷物の配送のために飛行する場合、荷物の重要度又は配送の緊急度が高い程、優先度が高くなってもよい。他の例において、飛行体10が事件又は事故の対応のために飛行する場合、優先度が高くなってもよい。図6に示す例では、優先度は、「1」から「3」の数字で表される。優先度「1」は飛行の優先度が最も高く、優先度「3」は飛行の優先度が最も低いことを示す。ただし、優先度を示す表現は、この例に限定されない。優先度は、数字以外の記号により表現されてもよい。
 応答部117は、判定部116による判定結果を示す応答を飛行体10に送信する。また、判定部116により他の飛行体10が所定の管理下にあると判定された場合、この応答には、他の飛行体10の飛行計画、この飛行計画における飛行目的の優先度、及び他の飛行体10の飛行状況を示す状況情報が含まれる。
 特定部118は、検出部113により検出された他の飛行体10の種別を特定する。この特定は、例えば応答部117から送信された応答に基づいて行われてもよい。この「種別」とは、飛行体10の管理状況及び飛行状況に応じた種類による区別をいう。この種別には、第1種別から第3種別が含まれる。第1種別は、所定の管理下にない飛行体10が属する種別である。第2種別は、所定の管理下にあり、飛行計画に従って飛行する飛行体10が属する種別である。第3種別は、所定の管理下にあるが、飛行計画から外れて飛行する飛行体10が属する種別である。
 測定部119は、飛行体10から見た他の飛行体10の移動方向を測定する。この移動方向の測定は、例えば受信部112により他の飛行体10から受信された識別信号の強度の変化に基づいて行われてもよい。
 判定部120は、他の飛行体10の移動に関する属性に基づいて、飛行体10と他の飛行体10とが衝突する可能性を判定する。この「移動に関する属性」とは、移動に関連する情報をいう。この「移動に関する属性」の概念には、測定部119により測定された移動方向と取得部114により取得された飛行計画とが含まれる。また、移動に関する属性としては、特定部118により特定された他の飛行体10の種別に応じて、異なる情報が用いられてもよい。例えば特定部118により第1種別又は第3種別が特定された場合には、測定部119により測定された移動方向が移動に関する属性として用いられてもよい。一方、特定部118により第2種別が特定された場合には、取得部114により取得された飛行計画が移動に関する属性として用いられてもよい。
 予測部121は、他の飛行体10が飛行する経路を予測する。この経路の予測は、例えば受信部112により受信された他の飛行体10の識別信号に基づいて行われてもよい。
 飛行制御部122は、基本的には、駆動装置102を制御して、予め定められた飛行計画に従って飛行体10を飛行させる。飛行制御部122の下、駆動装置102が駆動することにより、プロペラ101が回転して飛行体10が飛行する。ただし、飛行制御部122は、判定部120により衝突する可能性があると判定された場合には、特定部118により特定された種別に応じて、飛行体10の飛行を制御して他の飛行体10との衝突を回避する。
 例えば特定部118により第1種別又は第3種別が特定された場合には、判定部120により衝突の可能性があると判定されると、予測部121により予測された経路に基づいて衝突回避が行われてもよい。一方、特定部118により第2種別が特定された場合には、判定部120により衝突の可能性があると判定されると、取得部114により取得された他の飛行体10の飛行目的の優先度と飛行体10の飛行目的の優先度との関係に応じて、衝突回避が行われてもよい。
 なお、以下の説明において、飛行体10を処理の主体として記載する場合には、具体的にはプロセッサ11、メモリ12などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ11が演算を行い、通信装置14による通信や、メモリ12及びストレージ13におけるデータの読み出し及び/又は書き込みを制御することにより、処理が実行されることを意味する。サーバ装置20についても同様である。
動作
 図7は、飛行制御システム1の動作の一例を示すシーケンスチャートである。ここでは、複数の飛行体10には、飛行体10Aと10Bとが含まれる場合を想定する。各飛行体10には、飛行前に、運航管理データベース123に含まれるその飛行体10の飛行計画及び飛行目的の優先度がサーバ装置20から配信され、ストレージ13に記憶される。そして、各飛行体10は、この飛行計画に従って飛行する。例えば飛行体10Bのストレージ13には、図6に示す運航管理データベース123において飛行体10Bの識別子「D002」と対応付けて記憶された飛行計画(第1飛行計画の一例)及び飛行目的の優先度が記憶される。飛行体10Bは、この飛行計画に従って、出発予定時刻「T3」に出発地「P4」を出発した後、飛行経路「R2」を通って飛行速度「V2」で飛行し、経由地「P5」を経由して、到着予定時刻「T4」に目的地「P6」に到着するように飛行する。
 また、各飛行体10は、飛行中に、測位装置15により所定の時間間隔で現在位置を測定し、測定した現在位置を示す位置情報をサーバ装置20に送信する。サーバ装置20は、各飛行体10から受信した位置情報と、運航管理データベース123に含まれるこの飛行体10の飛行計画とに基づいて、各飛行体10の飛行状況を把握する。
 さらに、各飛行体10は、飛行中に、発信部111から所定の時間間隔でビーコン信号を発信する。ここでは、飛行体10Bから所定の範囲内に、飛行体10Aが存在する場合を想定する。この場合、飛行体10Aからビーコン信号が発信されると、このビーコン信号が飛行体10Bに到達する。
 ステップS101において、飛行体10Bの受信部112は、所定の範囲内にいる他の飛行体10Aから発信されたビーコン信号を受信する。このビーコン信号には、飛行体10Aの識別子「D001」が含まれる。
 ステップS102において、飛行体10Bの検出部113は、ステップS101において受信されたビーコン信号に飛行体10Aの識別子「D001」が含まれるため、所定の範囲内にいる他の飛行体10Aを検出する。
 ステップS103において、飛行体10Bの取得部114は、ステップS102において検出された他の飛行体10Aが所定の管理下にあるか否かを問い合わせる要求をサーバ装置20に送信する。この要求には、ステップS101において受信されたビーコン信号に含まれる識別子「D001」が含まれる。サーバ装置20の受信部115は、飛行体10Bからこの要求を受信する。
 ステップS104において、サーバ装置20の判定部116は、運航管理データベース123を参照して、飛行体10Aが所定の管理下にあるか否かを判定する処理を行う。具体的には、判定部116は、要求に含まれる識別子が運航管理データベース123に含まれるか否かを判定する。
 例えば運航管理データベース123に飛行体10Aの識別子「D001」が含まれない場合、飛行体10Aは、所定の管理下にないと判定される。一方、図6に示す例では、運航管理データベース123に飛行体10Aの識別子「D001」が含まれる。この場合、飛行体10Aは、所定の管理下にあると判定される。
 また、飛行体10Aが所定の管理下にあると判定された場合には、飛行体10Aの飛行状況を示す状況情報が生成される。この状況情報は、例えば飛行体10Aが飛行計画に従って飛行しているか否かを示す情報であり、飛行体10Aから受信した位置情報と、運航管理データベース123に含まれる飛行体10Aの飛行計画とに基づいて生成される。
 図6に示す例では、飛行体10Aから受信した位置情報が、飛行経路「R1」上の位置を示す場合、飛行体10Aが飛行計画に従って飛行していると判定される。この場合、飛行体10Aが飛行計画に従って飛行していることを示す状況情報が生成される。一方、飛行体10Aから受信した位置情報が、飛行経路「R1」から離れた位置を示す場合、飛行体10Aが飛行計画から外れて飛行していると判定される。この場合、飛行体10Aが飛行計画から外れて飛行していることを示す状況情報が生成される。
 ステップS105において、サーバ装置20の応答部117は、ステップS103において受信した要求に対する応答を飛行体10Bに送信する。この応答には、ステップS104における判定結果が含まれる。また、飛行体10Aが所定の管理下にあると判定された場合、この応答にはさらに、飛行体10Aの飛行計画(第2飛行計画の一例)と、その飛行計画における飛行目的の優先度と、飛行体10Aの飛行状況を示す状況情報とが含まれる。例えば飛行体10Aが所定の管理下にあり、且つ、飛行計画に従って飛行している場合、飛行体10Aが所定の管理下にあるという判定結果と、図6に示す運航管理データベース123において飛行体10Aの識別子「D001」と対応付けられた飛行計画及び飛行目的の優先度「1」と、飛行体10Aが飛行計画に従って飛行していることを示す状況情報とを含む応答が飛行体10Bに送信される。飛行体10Bの取得部114は、サーバ装置20から応答を受信する。この応答に含まれる飛行体10Aの飛行計画、飛行目的の優先度、及び状況情報は、飛行体10Bのストレージ13に記憶される。
 ステップS106において、飛行体10Bの特定部118は、ステップS105においてサーバ装置20から受信した応答に基づいて、他の飛行体10Aの種別を特定する。例えば、この応答に飛行体10Aが所定の管理下にないことを示す判定結果が含まれる場合、飛行体10Aの種別として第1種別が判定される。一方、ステップS105において受信された応答に、飛行体10Aが所定の管理下にあるという判定結果と、飛行計画に従って飛行していることを示す状況情報とが含まれる場合、飛行体10Aの種別として第2種別が判定される。また、ステップS105において受信された応答に、飛行体10Aが所定の管理下にあるという判定結果と、飛行計画から外れて飛行していることを示す状況情報とが含まれる場合、飛行体10Aの種別として第3種別が判定される。
 ステップS107において、飛行体10Bの測定部119は、飛行体10Aから受信されたビーコン信号の強度の変化に基づいて、飛行体10Bから見た他の飛行体10Aの移動方向を測定する。飛行体10Aが飛行体10Bから所定の範囲内にいる限り、所定の時間間隔で飛行体10Aからビーコン信号が受信される。例えば飛行体10Aから受信されたビーコン信号の強度が増加する場合、飛行体10Bに近づく方向が測定される。一方、飛行体10Aから受信されたビーコン信号の強度が減少する場合、飛行体10Bから遠ざかる方向が測定される。
 ステップS108において、飛行体10Bの判定部120は、他の飛行体10Aが飛行体10Bに衝突する可能性を判定する処理を行う。この衝突可能性を判定する方法は、ステップS106において特定された飛行体10Aの種別によって相違する。
 図8は、衝突可能性の判定方法の一例を示す図である。この例では、飛行体10Aが第1種別又は第3種別に属する場合において、ステップS107において測定された移動方向が飛行体10Bに近づく方向であるときは、衝突可能性があると判定される。一方、この場合において、ステップS107において測定された移動方向が飛行体10Bから遠ざかる方向であるときは、衝突可能性がないと判定される。
 飛行体10Aが第2種別に属する場合において、ストレージ13に記憶された飛行体10Aの飛行計画と飛行体10Bの飛行計画との間で、同一の時間において飛行経路が重なるときは、衝突可能性があると判定される。一方、この場合において、ストレージ13に記憶された飛行体10Aの飛行計画と飛行体10Bの飛行計画との間で、同一の時間において飛行経路が重ならないときは、衝突可能性がないと判定される。
 図6に示す例では、同一の時間において、飛行体10Aの飛行計画に記載された飛行経路「R1」と飛行体10Bの飛行計画に記載された飛行経路「R2」とが重なる場合には、衝突可能性があると判定される。この「飛行経路が重なる」とは、飛行経路の少なくとも一部が重なることをいう。「飛行経路が重なる」という概念には、飛行経路が一致する状態、飛行経路の一部が一致する状態、及び飛行経路が交わる状態が含まれる。また、飛行経路が複数且つ連続的な空域セルで表現されている場合、「飛行経路が重なる」という概念には、同じ空域セルを同じ時間で飛行予定である状態が含まれる。一方、飛行体10Aの飛行計画と飛行体10Bの飛行計画との間で、同一の時間において、これらの飛行経路が重ならない場合には、衝突可能性がないと判定される。
 ステップS109において、飛行体10Bの判定部120は、他の飛行体10Aが飛行体10Bに衝突する可能性があるか否かを判定する。上述したステップS108において衝突可能性があると判定された場合(ステップS109の判定がYES)、ステップS110に進む。一方、上述したステップS108において衝突可能性がないと判定された場合(ステップS109の判定がNO)、この処理を終了する。
 ステップS110において、飛行体10Bの飛行制御部122は、ステップS106において特定された他の飛行体10Aの種別が第2種別であるか否かを判定する。例えば飛行体10Aの種別が第1種別又は第3種別である場合、ステップS112に進む。一方、飛行体10Aの種別が第2種別である場合、ステップS111に進む。
 ステップS111において、飛行体10Bの飛行制御部122は、他の飛行体10Aの飛行目的の優先度が飛行体10Bの飛行目的の優先度より高いか否かを判定する。例えば飛行体10Aの飛行目的の優先度が飛行体10Bの飛行目的の優先度より低い場合には(ステップS111の判定がNO)、この処理を終了する。一方、図6に示す例では、飛行体10Aの飛行目的の優先度が「1」であり、飛行体10Bの飛行目的の優先度「2」より高い(ステップS111の判定がYES)。この場合には、ステップS112に進む。
 ステップS112において、飛行体10Bの飛行制御部122は、他の飛行体10Aとの衝突を回避するために飛行体10Bの飛行を制御する衝突回避制御を行う。この衝突回避制御の方法は、他の飛行体10の種別によって異なってもよい。
 例えばステップS106において特定された飛行体10Aの種別が第1種別又は第3種別である場合、予測部121は、飛行体10Aから受信されたビーコン信号に基づいて、飛行体10Aの飛行経路を予測する。例えば予測部121は、ビーコン信号の強度の変化及びビーコン信号の受信間隔に基づいて、飛行体10Aの移動方向及び移動速度を測定する。続いて予測部121は、測定した移動方向及び移動速度に基づいて、飛行体10Aが同一の移動方向に同一の移動速度で飛行した場合の飛行経路を予測する。この場合、飛行制御部122は、予測された飛行経路を避けるように飛行体10Bの飛行を制御する。例えば飛行制御部122は、予測された飛行経路と重ならないように飛行体10Bの飛行経路を変更し、変更後の飛行経路に従って飛行するよう駆動装置102を制御してもよい。
 一方、ステップS106において特定された飛行体10Aの種別が第2種別である場合、飛行制御部122は、飛行体10Aが遠ざかる方向に移動するまで、空中において停止するよう駆動装置102を制御してもよい。この場合、飛行体10Bの測定部119は、上述したステップS107と同様に、飛行体10Aから受信されたビーコン信号の強度の変化に基づいて、所定の時間間隔で飛行体10Bから見た飛行体10Aの移動方向を測定する。飛行体10Aの移動方向が飛行体10Bに近づく方向である間は、飛行体10Bは空中において停止する。一方、飛行体10Aの移動方向が飛行体10Bから遠ざかる方向になると、飛行体10Bは飛行計画に従って飛行を再開する。
 なお、上述したステップS111において、飛行体10Aの飛行目的の優先度が飛行体10Bの飛行目的の優先度より低い場合には(ステップS111の判定がNO)、飛行体10Bは衝突回避制御を行わないことになる。しかし、飛行体10Aが第2種別に属する場合には、飛行体10Aにおいても飛行体10Bと同様の処理が行われる。そして、飛行体10Aにおいては、他の飛行体10Bの飛行目的の優先度が飛行体10Aの飛行目的の優先度より高いため、ステップS111の判定がYESになる。この場合、飛行体10Aにより衝突回避制御が行われるため、飛行体10Bが衝突回避制御を行わなくても、飛行体10Aと飛行体10Bとの衝突が回避される。
 以上説明した実施形態によれば、飛行体10は、相手の飛行体10が第1種別又は第3種別に属する場合には、相手の飛行体10が近づく方向に移動しているときは、衝突回避制御が行われる。相手の飛行体10が第1種別又は第3種別に属する場合には、相手の飛行体10の飛行経路を正確に把握することができない。また、この場合には、相手の飛行体10が衝突回避を行わない可能性がある。よって、相手の飛行体10が飛行体10に近づく方向に移動しているときに、衝突回避制御を行うことにより、これらの飛行体10の衝突を確実に回避することができる。
 また、飛行体10は、相手の飛行体10が第2種別に属する場合には、飛行体10の飛行計画と相手の飛行体10の飛行計画との間で、同一時間において飛行経路が重なっており、且つ、相手の飛行体10の飛行目的の優先度が飛行体10の飛行目的の優先度より高いときは、衝突回避制御を行う。例えば相手の飛行体10の飛行計画と飛行体10の飛行計画との間で、同一時間において飛行経路が重なっていない場合には、相手の飛行体10が飛行体10から所定の範囲内に存在していても、これらの飛行体10が衝突する可能性は基本的にはないと考えられる。よって、飛行体10が衝突回避制御を行う必要はない。また、相手の飛行体10が所定の管理下にある場合には、相手の飛行体10においても飛行体10と同様の処理が行われるため、相手の飛行体10の飛行目的の優先度が飛行体10の飛行目的の優先度より低いときは、相手の飛行体10が衝突回避制御を行うことになる。よって、飛行体10が衝突回避制御を行う必要はない。
 このように、上述した実施形態によれば、相手の飛行体10の種別に応じた衝突回避を行うことができる。よって、飛行体10同士の衝突を効率よく回避することができる。
変形例
 本発明は、上述した実施形態に限定されない。上述した実施形態を以下のように変形してもよい。また、以下の2つ以上の変形例を組み合わせて実施してもよい。
 上述した実施形態において、複数の飛行体10には、鳥等のビーコン信号を発信しない飛行体10が含まれてもよい。すなわち、飛行体10は、飛行するものであれば、ドローン等の無人航空機だけでなく、鳥等の飛翔する動物、有人航空機を含んでもよい。この場合、ビーコン装置17以外の装置を用いて、飛行体10から所定の範囲内に存在する他の飛行体10を検出してもよい。例えばビーコン装置17と共に又はビーコン装置17に代えて、飛行体10の撮像装置16を用いて他の飛行体10を検出してもよい。この場合、飛行体10の撮像装置16により撮影された画像に対して画像認識が施される。この画像認識の結果、画像中に他の飛行体10が認識された場合には、所定の範囲内に存在する他の飛行体10が検出されてもよい。他の例において、ビーコン装置17と共に又はビーコン装置17に代えて、超音波センサーを用いて飛行体10から所定の範囲内に存在する他の飛行体10が検出されてもよい。この変形例によれば、鳥等のビーコン信号を発信しない飛行体10も検出することができる。
 また、ビーコン装置17とビーコン装置17以外の装置とを用いて飛行体10から所定の範囲内に存在する他の飛行体10を検出する場合、ビーコン装置17以外の装置のみにより他の飛行体10が検出されたときは、特定部118は、他の飛行体10の種別として第1種別を特定してもよい。すなわち、他の飛行体10からビーコン信号の送信がなく、且つ、ビーコン装置17以外の装置により他の飛行体10が検出されたという条件を満たす場合には、特定部118は、他の飛行体10の種別として第1種別を特定してもよい。この条件は、所定の条件の一例である。この変形例によれば、鳥等のビーコン信号を発信しない飛行体10との衝突も回避することができる。
 上述した実施形態において、飛行制御部122は、検出部113により検出された他の飛行体10が衝突回避機能を有しているか否かに応じて、衝突回避制御を行ってもよい。この場合、応答部117により送信される応答には、他の飛行体10が衝突回避機能を有しているか否かを示す機能情報が含まれる。飛行制御部122は、この機能情報が他の飛行体10が衝突回避機能を有していないことを示す場合、判定部120により衝突の可能性があると判定されると、飛行目的の優先度に関わらず、衝突回避制御を行ってもよい。
 上述した実施形態において、飛行体10が飛行する空域には、共有空域と排他空域とが含まれてもよい。共有空域においては、同時に複数の飛行体10が飛行することができる。一方、排他空域においては、同時に1つの飛行体10しか飛行することができない。飛行制御部122は、特定部118により特定された他の飛行体10の種別が第2種別である場合において、飛行体10が飛行する空域が共有空域か排他空域かによって、衝突回避制御の要否を判断してもよい。例えば、この場合において飛行体10が共有空域を飛行しているときは、衝突回避制御を行う一方、飛行体10が排他空域を飛行しているときは、衝突回避制御を行わなくてもよい。
 上述した実施形態において、衝突を回避するための飛行動作が予め定められている場合には、飛行体10は、衝突回避制御を行うときにこの飛行動作を行ってもよい。この飛行動作は、例えば所定の方向に旋回するという動作であってもよいし、高度を下げるという動作であってもよい。
 上述した実施形態において、飛行体10は、空中において停止するときに、停止信号を発信してもよい。この停止信号は、例えばビーコン装置17から発信されてもよい。後続の飛行体10は、先行の飛行体10から停止信号を受信すると、その飛行体10を避けるように飛行してもよい。
 上述した実施形態において、飛行制御部122は、特定部118により第2種別が特定された場合に、飛行体10を空中において停止させるのに代えて、飛行体10の飛行経路を変更してもよい。この場合、上述した実施形態において第1種別が特定された場合と同様に、飛行制御部122は、予測部121により予測された他の飛行体10の飛行経路と重ならないように飛行体10Bの飛行経路を変更してもよい。
 上述した実施形態において、飛行制御部122は、特定部118により第1種別又は第3種別が特定された場合に、飛行体10の飛行経路を変更するのに代えて、飛行体10を空中において停止させてもよい。この場合、上述した実施形態において第2種別が特定された場合と同様に、飛行制御部122は、他の飛行体10の移動方向が飛行体10から遠ざかる方向になるまで、飛行体10を空中において停止させてもよい。
 上述した実施形態において、検出部113により検出された他の飛行体10の飛行目的の優先度と、飛行体10の飛行目的の優先度とが同じ場合には、所定の条件に従って衝突回避制御の要否を判断してもよい。この所定の条件は、例えば到着予定時刻が遅い方が衝突回避制御を行うという条件であってもよいし、飛行性能が高い方が衝突回避制御を行うという条件であってもよい。
 上述した実施形態において、判定部120は、衝突の可能性があるか否かに代えて、衝突の可能性の高さを判定してもよい。この場合、飛行制御部122は、判定部120により判定された衝突の可能性が所定値以上である場合には、特定部118により特定された種別に応じて、衝突回避制御を行ってもよい。言い換えると、飛行制御部122は、判定部120により衝突の可能性があると判定された場合であっても、衝突の可能性が所定値より小さい場合には、衝突回避制御を行わなくてもよい。
 上述した実施形態において、飛行目的の優先度は、ビーコン信号に含まれてもよい。この場合、飛行制御部122は、受信部112により受信されたビーコン信号に含まれる飛行目的の優先度を用いて、衝突回避制御の要否を判断してもよい。
 上述した各実施形態において、飛行体10の位置を測定する方法は、GPSを用いた方法に限定されない。GPSを用いない方法により、飛行体10の位置が測定されてもよい。
 上述した各実施形態において、飛行体10の機能の少なくとも一部がサーバ装置20又は他の装置に実装されてもよい。例えば特定部118、測定部119、判定部120、及び予測部121の少なくとも1つがサーバ装置20に実装されてもよい。同様に、サーバ装置20の機能の少なくとも一部が飛行体10又は他の装置に実装されてもよい。
 本発明は、飛行制御システム1において行われる処理のステップを備える飛行制御方法として提供されてもよい。また、本発明は、飛行体10又はサーバ装置20において実行されるプログラムとして提供されてもよい。
 図5のブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
 飛行体10又はサーバ装置20のハードウェア構成は、図3又は図4に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。また、飛行体10又はサーバ装置20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital  Signal  Processor)、ASIC(Application  Specific  Integrated  Circuit)、PLD(Programmable Logic  Device)、FPGA(Field  Programmable  Gate  Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、飛行体10又はサーバ装置20の機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ11又は21は、これらのハードウェアの少なくとも1つで実装されてもよい。
 情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control  Information)、UCI(Uplink Control  Information))、上位レイヤシグナリング(例えば、RRC(Radio  Resource  Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information  Block)、SIB(System Information  Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio  Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra  Mobile  Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 情報等は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報等は、上書き、更新、または追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)などの有線技術及び/又は赤外線、無線及びマイクロ波などの無線技術を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナル)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC)は、キャリア周波数、セルなどと呼ばれてもよい。
 本明細書で使用する「システム」および「ネットワーク」という用語は、互換的に使用される。
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースはインデックスで指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的なものではない。さらに、これらのパラメータを使用する数式等は、本明細書で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素(例えば、TPCなど)は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的なものではない。
 本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking  up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本明細書で使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1および第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 「含む(including)」、「含んでいる(comprising)」、およびそれらの変形が、本明細書あるいは特許請求の範囲で使用されている限り、これら用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。
 本開示の全体において、例えば、英語でのa、an、及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含むものとする。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 上述した実施形態において、飛行体10からの要求に関わらず、所定の時間間隔で各飛行体10が飛行計画に従って飛行しているか否かが判定され、その判定結果に基づいて状況情報が生成されてもよい。この場合、図6に示す運航管理データベース123には、各飛行体10が飛行計画に従って飛行しているか否かを示す状況情報が含まれる。そして、例えば判定部116により飛行体10Aが所定の管理下にあると判定されると、運航管理データベース123から飛行体10Aの状況情報が抽出され飛行体10Aに送信されてもよい。
1:飛行制御システム、10:飛行体、20:サーバ装置、111:発信部、112:受信部、113:検出部、114:取得部、115:受信部、116:判定部、117:応答部、118:特定部、119:測定部、120:判定部、121:予測部、122:飛行制御部

Claims (10)

  1.  飛行体から所定の範囲内に存在する他の飛行体を検出する検出部と、
     前記検出された他の飛行体の種別を特定する特定部と、
     前記他の飛行体の移動に関する属性に基づいて、前記飛行体と前記他の飛行体とが衝突する可能性を判定する判定部と、
     前記可能性があると判定された場合には、前記特定された種別に応じて、前記飛行体の飛行を制御して前記他の飛行体との衝突を回避する飛行制御部と
     を備える飛行制御装置。
  2.  前記飛行体から見た前記他の飛行体の移動方向を測定する測定部をさらに備え、
     前記特定部は、所定の条件を満たす場合には、前記他の飛行体の種別として第1種別を特定し、
     前記判定部は、前記第1種別が特定された場合には、前記測定された移動方向が前記飛行体に近づく方向であるときは、前記飛行体と前記他の飛行体とが衝突する可能性があると判定し、
     前記飛行制御部は、前記第1種別が特定された場合には、前記可能性があると判定されると、前記飛行体の飛行を制御して前記他の飛行体との衝突を回避する
     請求項1に記載の飛行制御装置。
  3.  前記所定の条件は、前記他の飛行体から識別信号が受信されないことを含む
     請求項2に記載の飛行制御装置。
  4.  前記飛行制御部は、前記飛行体の飛行経路及び飛行時間が記載された第1飛行計画に従って前記飛行体の飛行を制御し、
     前記他の飛行体の飛行経路及び飛行時間が記載された第2飛行計画と前記第2飛行計画における飛行目的の優先度とをサーバ装置から取得する取得部をさらに備え、
     前記特定部は、前記第2飛行計画及び前記優先度が取得された場合には、前記他の飛行体の種別として第2種別を特定し、
     前記判定部は、前記第2種別が特定された場合には、前記第1飛行計画と前記第2飛行計画との間で、同一の時間において前記飛行経路が重なるときは、前記飛行体と前記他の飛行体とが衝突する可能性があると判定し、
     前記飛行制御部は、前記第2種別が特定された場合には、前記可能性があると判定されると、前記取得された優先度と前記第1飛行計画における飛行目的の優先度との関係に応じて、前記飛行体の飛行を制御して前記他の飛行体との衝突を回避する
     請求項1から3のいずれか1項に記載の飛行制御装置。
  5.  前記他の飛行体から識別信号を受信する受信部をさらに備え、
     前記取得部は、前記受信された識別信号を前記サーバ装置に送信する
     請求項4に記載の飛行制御装置。
  6.  前記飛行体から見た前記他の飛行体の移動方向を測定する測定部をさらに備え、
     前記取得部は、前記他の飛行体が所定の管理下にあるか否かを問い合わせる要求を前記サーバ装置に送信し、
     前記特定部は、前記要求に応じて前記サーバ装置から前記他の飛行体が前記所定の管理下にないことを示す応答が送信された場合には、前記他の飛行体の種別として第1種別を特定し、
     前記判定部は、前記第1種別が特定された場合には、前記測定された移動方向が前記飛行体に近づく方向であるときは、前記飛行体と前記他の飛行体とが衝突する可能性があると判定し、
     前記飛行制御部は、前記第1種別が特定された場合には、前記可能性があると判定されると、前記飛行体の飛行を制御して前記他の飛行体との衝突を回避する
     請求項4又は5に記載の飛行制御装置。
  7.  前記飛行体から見た前記他の飛行体の移動方向を測定する測定部をさらに備え、
     前記取得部は、前記他の飛行体の飛行状況を示す状況情報を前記サーバ装置から取得し、
     前記特定部は、前記第2飛行計画、前記優先度、及び前記状況情報が取得され、且つ、前記状況情報が、前記他の飛行体が前記第2飛行計画から外れて飛行していることを示す場合には、前記他の飛行体の種別として第3種別を特定し、
     前記判定部は、前記第3種別が特定された場合には、前記第2飛行計画に関わらず、前記測定された移動方向が前記飛行体に近づく方向であるときは、前記飛行体と前記他の飛行体とが衝突する可能性があると判定し、
     前記飛行制御部は、前記第3種別が特定された場合には、前記可能性があると判定されると、前記優先度に関わらず、前記飛行体の飛行を制御して前記他の飛行体との衝突を回避する
     請求項4から6のいずれか1項に記載の飛行制御装置。
  8.  前記他の飛行体が飛行する経路を予測する予測部をさらに備え、
     前記飛行制御部は、前記飛行体の飛行を制御して前記予測された経路を避ける
     請求項1から7のいずれか1項に記載の飛行制御装置。
  9.  所定の時間間隔で前記飛行体から見た前記他の飛行体の移動方向を測定する測定部をさらに備え、
     前記飛行制御部は、前記測定された移動方向が前記飛行体から遠ざかる方向になるまで、空中において停止する
     請求項1から8のいずれか1項に記載の飛行制御装置。
  10.  飛行体から所定の範囲内に存在する他の飛行体を検出する検出部と、
     前記検出された他の飛行体の種別を特定する特定部と、
     前記他の飛行体の移動に関する属性に基づいて、前記飛行体と前記他の飛行体とが衝突する可能性を判定する判定部と、
     前記可能性があると判定された場合には、前記特定された種別に応じて、前記飛行体の飛行を制御して前記他の飛行体との衝突を回避する飛行制御部と
     を備える飛行制御システム。
PCT/JP2018/040374 2017-11-09 2018-10-30 飛行制御装置及び飛行制御システム WO2019093198A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019552738A JP6983903B2 (ja) 2017-11-09 2018-10-30 飛行制御装置及び飛行制御システム
US16/647,216 US11501651B2 (en) 2017-11-09 2018-10-30 Flight control apparatus and flight control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017216451 2017-11-09
JP2017-216451 2017-11-09

Publications (1)

Publication Number Publication Date
WO2019093198A1 true WO2019093198A1 (ja) 2019-05-16

Family

ID=66438920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040374 WO2019093198A1 (ja) 2017-11-09 2018-10-30 飛行制御装置及び飛行制御システム

Country Status (3)

Country Link
US (1) US11501651B2 (ja)
JP (1) JP6983903B2 (ja)
WO (1) WO2019093198A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020153172A1 (ja) * 2019-01-22 2020-07-30 株式会社Nttドコモ 情報処理装置
WO2021131037A1 (ja) * 2019-12-27 2021-07-01 日本電気株式会社 飛行物体管理装置、飛行物体管理方法、及び、記録媒体
JP7261334B1 (ja) 2022-03-15 2023-04-19 Kddi株式会社 飛行管理装置、飛行管理方法及びプログラム
KR102539005B1 (ko) * 2022-08-26 2023-06-01 한화시스템 주식회사 도심 항공 모빌리티를 위한 통제 장치, 비행 장치 및 비행 방법

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11550340B2 (en) * 2019-12-10 2023-01-10 Here Global B.V. Method and apparatus for providing dynamic obstacle data for a collision probability map

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004175209A (ja) * 2002-11-27 2004-06-24 Fuji Heavy Ind Ltd 無人航空機
US20090027253A1 (en) * 2007-07-09 2009-01-29 Eads Deutschland Gmbh Collision and conflict avoidance system for autonomous unmanned air vehicles (UAVs)
WO2016154942A1 (en) * 2015-03-31 2016-10-06 SZ DJI Technology Co., Ltd. Systems and methods for mobile geo-fencing
WO2017061589A1 (ja) * 2015-10-07 2017-04-13 ブルーイノベーション株式会社 飛行体の飛行管理システム
WO2017115807A1 (ja) * 2015-12-28 2017-07-06 Kddi株式会社 飛行体制御装置、飛行許可空域設定システム、飛行体制御方法及びプログラム
JP2017182638A (ja) * 2016-03-31 2017-10-05 キヤノンマーケティングジャパン株式会社 無人航空機、その制御方法、及びプログラム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009205652A (ja) 2008-02-29 2009-09-10 Nec Corp 移動体制御システム及び移動体制御方法
US20160140851A1 (en) * 2014-11-18 2016-05-19 Ziv LEVY Systems and methods for drone navigation
US10061328B2 (en) * 2015-08-12 2018-08-28 Qualcomm Incorporated Autonomous landing and control
AU2016313150A1 (en) * 2015-08-27 2018-03-08 Dronsystems Limited A highly automated system of air traffic control (ATM) for at least one Unmanned Aerial Vehicle (Unmanned Aerial Vehicles UAV)
EP3357040A4 (en) * 2015-09-30 2019-06-26 Alarm.com Incorporated SYSTEMS FOR DRILL DETECTION
WO2017195274A1 (ja) * 2016-05-10 2017-11-16 株式会社プロドローン 無人移動体の確認システム
US20180033318A1 (en) * 2016-07-29 2018-02-01 Ge Aviation Systems Llc Sense and avoid maneuvering
US9847034B1 (en) * 2016-09-02 2017-12-19 Northrop Grumman Systems Corporation Compliant autonomous aircraft maneuvering
EP3500903B1 (en) * 2016-12-01 2021-04-28 SZ DJI Technology Co., Ltd. Systems and methods of unmanned aerial vehicle flight restriction for stationary and moving objects

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004175209A (ja) * 2002-11-27 2004-06-24 Fuji Heavy Ind Ltd 無人航空機
US20090027253A1 (en) * 2007-07-09 2009-01-29 Eads Deutschland Gmbh Collision and conflict avoidance system for autonomous unmanned air vehicles (UAVs)
WO2016154942A1 (en) * 2015-03-31 2016-10-06 SZ DJI Technology Co., Ltd. Systems and methods for mobile geo-fencing
WO2017061589A1 (ja) * 2015-10-07 2017-04-13 ブルーイノベーション株式会社 飛行体の飛行管理システム
WO2017115807A1 (ja) * 2015-12-28 2017-07-06 Kddi株式会社 飛行体制御装置、飛行許可空域設定システム、飛行体制御方法及びプログラム
JP2017182638A (ja) * 2016-03-31 2017-10-05 キヤノンマーケティングジャパン株式会社 無人航空機、その制御方法、及びプログラム

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020153172A1 (ja) * 2019-01-22 2020-07-30 株式会社Nttドコモ 情報処理装置
JPWO2020153172A1 (ja) * 2019-01-22 2021-10-14 株式会社Nttドコモ 情報処理装置
JP7164633B2 (ja) 2019-01-22 2022-11-01 株式会社Nttドコモ 情報処理装置
WO2021131037A1 (ja) * 2019-12-27 2021-07-01 日本電気株式会社 飛行物体管理装置、飛行物体管理方法、及び、記録媒体
JPWO2021131037A1 (ja) * 2019-12-27 2021-07-01
JP7283580B2 (ja) 2019-12-27 2023-05-30 日本電気株式会社 飛行物体管理装置、飛行物体管理方法、及び、プログラム
JP7261334B1 (ja) 2022-03-15 2023-04-19 Kddi株式会社 飛行管理装置、飛行管理方法及びプログラム
JP2023135255A (ja) * 2022-03-15 2023-09-28 Kddi株式会社 飛行管理装置、飛行管理方法及びプログラム
KR102539005B1 (ko) * 2022-08-26 2023-06-01 한화시스템 주식회사 도심 항공 모빌리티를 위한 통제 장치, 비행 장치 및 비행 방법

Also Published As

Publication number Publication date
JPWO2019093198A1 (ja) 2020-11-26
JP6983903B2 (ja) 2021-12-17
US20210035459A1 (en) 2021-02-04
US11501651B2 (en) 2022-11-15

Similar Documents

Publication Publication Date Title
WO2019093198A1 (ja) 飛行制御装置及び飛行制御システム
US20160330771A1 (en) Radio access network for unmanned aerial vehicles
JP7194682B2 (ja) 飛行制御装置
WO2019089149A1 (en) Managing operation of a package delivery robotic vehicle
WO2019098016A1 (ja) 情報処理装置
US20200101600A1 (en) Control system to control intelligent robot device
JP7167327B2 (ja) 制御装置、プログラム及び制御方法
JP6643962B2 (ja) サーバ装置、ドローン、ドローン制御システム、プログラム
WO2019054029A1 (ja) 飛行制御装置及び飛行制御システム
WO2019054027A1 (ja) 飛行制御システム及び飛行制御装置
JP7260281B2 (ja) 情報処理装置
WO2019146516A1 (ja) 飛行制御装置及び飛行制御システム
JP7157823B2 (ja) 情報処理装置
WO2019107047A1 (ja) 情報処理装置
JP2019101451A (ja) 情報処理装置
JP7182426B2 (ja) 情報処理装置
WO2019146577A1 (ja) 情報処理装置
JP7167326B2 (ja) 制御装置、プログラム及び制御方法
JPWO2019012836A1 (ja) 飛行体管理システム
WO2020262528A1 (ja) 情報処理装置及び情報処理方法
JP2019061358A (ja) 情報処理装置
WO2019146578A1 (ja) 情報処理装置及び情報処理方法
US11891176B2 (en) Determination of position sending interval for flying vehicle dependent upon ground surface below vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18876601

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019552738

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18876601

Country of ref document: EP

Kind code of ref document: A1