WO2019091119A1 - 一种光电催化膜耦合微生物燃料电池体系加快voc降解并产电的方法 - Google Patents

一种光电催化膜耦合微生物燃料电池体系加快voc降解并产电的方法 Download PDF

Info

Publication number
WO2019091119A1
WO2019091119A1 PCT/CN2018/091907 CN2018091907W WO2019091119A1 WO 2019091119 A1 WO2019091119 A1 WO 2019091119A1 CN 2018091907 W CN2018091907 W CN 2018091907W WO 2019091119 A1 WO2019091119 A1 WO 2019091119A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
photoelectrocatalytic
fuel cell
microbial fuel
accelerating
Prior art date
Application number
PCT/CN2018/091907
Other languages
English (en)
French (fr)
Inventor
柳丽芬
王丽虹
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Publication of WO2019091119A1 publication Critical patent/WO2019091119A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8671Removing components of defined structure not provided for in B01D53/8603 - B01D53/8668
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the technical field of gas phase organic pollutant purification and waste resource utilization, and relates to the preparation of a novel photocatalytic membrane module and the photoelectrocatalytic degradation of gas phase pollutants in the microbial fuel cell to simultaneously generate electric energy, thereby providing a scientific basis for future air purification technology.
  • VOCs Volatile Organic Pollutants
  • VOCs are a class of organic compounds with a boiling point between 50 and 260 ° C and a saturated vapor pressure of more than 133.32 Pa at room temperature in the form of steam at ambient temperature.
  • VOCs come from a wide range of sources, including petroleum, chemical, printing, pharmaceutical and oil storage and transportation. Emissions of volatile organic compounds from various industrial processes can destroy air quality and endanger human health.
  • Current technologies for controlling VOCs include physical, chemical, and biological technologies, including activated carbon adsorption, membrane separation, condensation, incineration, catalytic oxidation, and biodegradation. However, these technologies still have some limitations in their wide application. For example, adsorption techniques simply transfer organics from the gas phase to the solid phase, followed by further processing. Incineration and condensation technologies are less expensive, but they are only suitable for handling high concentrations of VOCs.
  • Microbial fuel cells are devices that use electrogenic microorganisms to convert chemical energy in organic compounds into electrical energy.
  • a typical MFC consists of an anode and a cathode. Electrogenic microorganisms on the surface of the anode oxidize organic contaminants, produce electrons and protons under anaerobic conditions, and protons pass through the membrane, and electrons pass through an external circuit to the cathode to combine with electron acceptors to generate electricity and remove organic contaminants.
  • MFCs have enormous substrate (fuel) versatility, which can utilize various bio-transformable organic substances such as acetate, glucose, sucrose and other organic substances. In recent years, gas has been used as a substrate to generate electricity. There are research reports.
  • the cathode and anode of a conventional microbial fuel cell are separated by a proton exchange membrane, and the proton exchange membrane is expensive, which increases the cost of treating the pollutants by the microbial fuel cell. Therefore, the present application replaces the proton exchange membrane with a novel PVDF composite membrane to construct a coupling system. In order to rapidly degrade the gas phase pollutants, the effect of air purification and VOC treatment is achieved.
  • the present invention provides a new concept of a photocatalytic membrane coupled microbial fuel cell system for treating VOCs and generating electricity.
  • Photoelectrocatalytic membranes have both photocatalysis and electrical conductivity. Microbial anodes enhance the system's ability to produce electricity, and also promote the rapid degradation of VOCs.
  • the replacement of the proton exchange membrane by the PVDF composite membrane reduces the cost of the system and provides a new idea for the future gas phase pollutant degradation technology.
  • a photocatalytic membrane coupling microbial fuel cell system for accelerating VOC degradation and producing electricity the steps are as follows:
  • PVDF composite membrane 5 wt% TiO 2 and 3 wt% carbon nanofibers were added to 10 wt% PVDF casting solution, NMP was used as solvent in PVDF casting solution, and stirred for 2 h to complete Dispersing, the casting solution is naturally allowed to stand for defoaming, and the film is scraped on the surface of the conductive substrate. After phase transformation for 2 h, a PVDF composite film is obtained;
  • Photoelectrocatalytic membrane coupling microbial fuel cell system construction Photoelectrocatalytic membrane coupling microbial fuel cell system is divided into two chambers through filter paper, graphite particles loaded with electric generating microorganisms are placed in one chamber, graphite rod anode is inserted into graphite particles; The photoelectrocatalytic membrane electrode in the chamber is closely attached to the filter paper to facilitate the diffusion and adsorption of protons in the gas phase, and the two poles are connected by a copper wire and an external resistor to form a circuit, and the ultraviolet lamp vertically illuminates the membrane electrode.
  • the invention has the beneficial effects that the system integrates the functions of photocatalysis and microbial fuel cell to purify VOC, and replaces the proton exchange membrane with a PVDF composite membrane to reduce the cost of the system, and different applied resistances may affect the degradation effect and the electricity production of ethyl acetate.
  • the system explored gas degradation and electricity generation, providing scientific support for future gas treatment technologies.
  • Figure 1 is a comparison of photocatalytic degradation effects of 250 ppm ethyl acetate on different conductive substrates.
  • the abscissa is time (min) and the ordinate is the remaining percentage (%) of ethyl acetate.
  • Figure 2 is a comparison of degradation effects of 125 ppm ethyl acetate in three different ways of photocatalysis (PC), microbial fuel cell electrocatalysis (MFC) and photocatalytic coupled microbial fuel cell (PCMFC).
  • PC photocatalysis
  • MFC microbial fuel cell electrocatalysis
  • PCMFC photocatalytic coupled microbial fuel cell
  • Figure 3 is a graph showing the electricity generation effect of 125 ppm ethyl acetate in a photocatalytically coupled microbial fuel cell (PCMFC) system with different applied resistance.
  • PCMFC photocatalytically coupled microbial fuel cell
  • Example 1 Photocatalytic degradation of ethyl acetate on different conductive substrates
  • the conductive substrate has nickel foam, stainless steel mesh, carbon fiber cloth and carbon felt. It is found that the carbon fiber cloth has better adsorption and degradation rate for ethyl acetate than nickel foam and stainless steel mesh, and the carbon felt cannot be judged because of its strong adsorption. Photocatalytic degradation of ethyl acetate.
  • Embodiment 2 PCMFC Photoelectrocatalytic degradation of ethyl acetate gas
  • the membrane module and the UV lamp were placed in a 4.5 L square column, the system was sealed and 2.18 uL of ethyl acetate solution (125 ppm) was injected therein, and the two copper clips of the connecting wires were respectively sandwiched between the anode graphite rod and the cathode membrane electrode.
  • the wires are connected and led out by a sealed copper nut on a square column, and different external resistors are connected between the two poles to form a circuit.
  • the fan in the square column was opened to rapidly evaporate and uniformly mix the ethyl acetate.
  • PCMFC has the best degradation effect on ethyl acetate, and it degrades completely at 50 minutes.
  • the degradation rate is faster than single photocatalysis (PC) and microbial fuel cell electrocatalysis (MFC).
  • PC single photocatalysis
  • MFC microbial fuel cell electrocatalysis
  • the system has different power generation under different external resistance conditions. Among them, the system has the largest power generation when the external resistance is 200 ohms, which is about 60Mw/m -2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Catalysts (AREA)

Abstract

一种光电催化膜耦合微生物燃料电池体系加快VOC降解并产电的方法,双面分别涂覆光催化剂层和PVDF复合膜的导电基底作为阴极,将负载有产电微生物的石墨颗粒当做阳极,外加电阻并以导线连接构成回路,紫外灯作为光源,构建光电催化膜耦合微生物燃料电池处理VOC及产电系统。

Description

一种光电催化膜耦合微生物燃料电池体系加快VOC降解并产电的方法 技术领域
本发明属于气相有机污染物净化和废物资源化利用技术领域,涉及新型光电催化膜组件的制备及其耦合微生物燃料电池光电催化降解气相污染物同时产生电能,为以后空气净化技术方面提供科学基础。
背景技术
挥发性有机污染物(VOCs)是指沸点在50~260℃之间,室温下饱和蒸汽压超过133.32Pa,常温下以蒸汽形式存在于大气中的一类有机物。VOCs来源广泛,主要有石油、化工、印刷、制药和油品储运等。来自各种工业过程的挥发性有机化合物的排放会破坏空气质量,从而危及人类健康。目前用于控制VOCs的技术主要有物理,化学和生物技术,其中包括活性炭吸附,膜分离、冷凝、焚烧,催化氧化和生物降解等。然而这些技术在广泛应用上仍然存在一些局限性。例如,吸附技术仅是简单地将有机物从气相转移到固相,随后还需要进一步的处理过程。焚烧和冷凝技术成本较低,但它们仅适用于处理中高浓度的VOC。
微生物燃料电池(MFC)是利用产电微生物将有机化合物中的化学能转化为电能的装置。典型的MFC由阳极和阴极组成。阳极表面的产电微生物会氧化有机污染物,在厌氧条件下产生电子和质子,质子穿过膜,而电子通过外部电路到达阴极与电子受体结合,从而产生电能和去除有机污染物。研究表明,MFCs具有极大的底物(燃料)通用性,它可以利用各种生物易转化的有机物如乙酸盐,葡萄糖,蔗糖和其他有机物质,近年来将气体作为底物进行发电也已有研究报道。
另一方面,在光催化氧化中使用光催化剂去除VOC也已经成为非常有吸引力和有前途的替代技术。光催化处理VOC技术作为一种清洁的处理工艺,与其他处理技术相比,具有无害、温和以及广泛适用于各类污染物等优点,而微生物燃料电池处理VOC近年来也因低成本、无二次污染而成为空气污染控制领域的焦点。目前,将光电催化膜作为阴极与微生物燃料电池耦合进行VOC处理的报道还未出现。
传统微生物燃料电池的阴极和阳极通过质子交换膜隔开,而质子交换膜价格昂贵,增加了微生物燃料电池处理污染物的成本,故本申请以制备的新型PVDF复合膜代替质子交换膜构建耦合系统,以期快速降解气相污染物,达到空气净化和VOC处理的效果。
技术问题
本发明提供了光电催化膜耦合微生物燃料电池体系处理VOC并产电的新构想。光电催化膜兼具光催化以及导电作用,微生物做阳极则提升了系统的产电能力,同时也促进了系统整体对VOC的快速降解。PVDF复合膜代替质子交换膜降低了体系费用,为以后的气相污染物降解技术提供了新思路。
技术解决方案
本发明的技术方案:
一种光电催化膜耦合微生物燃料电池体系加快VOC降解并产电的方法,步骤如下:
(1) 聚偏氟乙烯PVDF复合膜的制备:在10 wt%PVDF铸膜液中添加5wt%的TiO 2和3wt%的碳纳米纤维,PVDF铸膜液中NMP作为溶剂,搅拌2 h至完全分散,将铸膜液自然静置至脱泡后,在导电基底表面一侧进行刮膜,经相转化2 h后,得到PVDF复合膜;
(2)光电催化膜组件制备:导电基底的另一侧负载光催化剂,向TiO 2中添加超纯水,超声均匀,将其负载至导电基底另一侧上,室温下自然晾干;其中,每1mg TiO 2中加入超纯水2μL;将膜固定在组装的膜组件上;
 (3)光电催化膜耦合微生物燃料电池系统构建:光电催化膜耦合微生物燃料电池系统通过滤纸分为两室,一室中放置负载有产电微生物的石墨颗粒,石墨棒阳极插入石墨颗粒中;另一室中光电催化膜电极紧贴滤纸,以利于气相污染物扩散吸附和质子传输,两极经铜导线和外电阻连接,形成电路,紫外灯垂直照射膜电极。
有益效果
本发明的有益效果:该系统集成了光催化及微生物燃料电池净化VOC的作用, 用PVDF复合膜代替质子交换膜降低体系费用,不同的外加电阻会影响乙酸乙酯的降解效果和产电量。该体系首次对于气体降解及产电方面进行了探索,可为以后气体处理技术方面提供科学支持。
附图说明
图1是250ppm乙酸乙酯在不同导电基底上光催化降解效果对比图。图中,横坐标为时间(min) ,纵坐标为乙酸乙酯剩余百分比(%)。
图2是125ppm乙酸乙酯在光催化(PC),微生物燃料电池电催化(MFC)和光催化耦合微生物燃料电池(PCMFC)三种不同的方式下的降解效果对比图。图中,横坐标为时间(min) ,纵坐标为乙酸乙酯剩余百分比(%)。
图3是125ppm乙酸乙酯在不同外加电阻的光催化耦合微生物燃料电池(PCMFC)系统下的产电效果对比图。
本发明的实施方式
以下结合技术方案和附图,进一步说明本发明的具体实施方式。
实施例一:乙酸乙酯在不同导电基底上的光催化降解
将0.1g TiO 2纳米片分散在200uL超纯水中,超声均匀,室温下自然晾干形成光催化膜电极,在4.5L方形柱中放入光催化膜电极和紫外灯,将系统密封并向其内注入4.37uL乙酸乙酯溶液(250ppm),反应前将方形柱内的风扇打开以使乙酸乙酯快速挥发并均匀混合,反应时,打开9W紫外灯,每隔10分钟用气相色谱检测系统中乙酸乙酯的浓度,反应时长60min,计算乙酸乙酯的去除效率。
图1中,导电基底有镍泡沫、不锈钢网、碳纤维布和碳毡,发现碳纤维布对于乙酸乙酯的吸附降解速率要优于镍泡沫和不锈钢网,而碳毡因吸附性极强无法判断其对乙酸乙酯的光催化降解效果。
实施例二: PCMFC 系统光电催化降解乙酸乙酯气体
在4.5L方形柱中放入膜组件和紫外灯,将系统密封并向其内注入2.18uL乙酸乙酯溶液(125ppm),将连接导线的两个铜夹分别夹在阳极石墨棒和阴极膜电极上,导线用方形柱上的密封铜螺母连接并导出,两极之间连接不同外电阻形成电路。反应前将方形柱内的风扇打开以使乙酸乙酯快速挥发并均匀混合,反应时,连接电路,打开9W紫外灯,每隔10分钟用气相色谱检测系统中乙酸乙酯的浓度,并用电流表检测系统产电量。反应时长70min,计算乙酸乙酯的去除效率。
图2中,PCMFC对于乙酸乙酯的降解效果最好,50min时即降解完全。降解速率快于单独的光催化(PC)和微生物燃料电池电催化(MFC)。图3中,不同外加电阻条件下系统的产电量不同,其中,外阻为200欧姆时系统的产电量最大,约为60Mw/m -2

Claims (1)

  1. 一种光电催化膜耦合微生物燃料电池体系加快VOC降解并产电的方法,其特征在于,步骤如下:
    (1) 聚偏氟乙烯PVDF复合膜的制备:在10 wt%PVDF铸膜液中添加5wt%的TiO 2和3wt%的碳纳米纤维,PVDF铸膜液中NMP作为溶剂,搅拌2 h至完全分散,将铸膜液自然静置至脱泡后,在导电基底表面一侧进行刮膜,经相转化2 h后,得到PVDF复合膜;
    (2)光电催化膜组件制备:导电基底的另一侧负载光催化剂,向TiO 2中添加超纯水,超声均匀,将其负载至导电基底另一侧上,室温下自然晾干;其中,每1mg TiO 2中加入超纯水2μL;将膜固定在组装的膜组件上;
     (3)光电催化膜耦合微生物燃料电池系统构建:光电催化膜耦合微生物燃料电池系统通过滤纸分为两室,一室中放置负载有产电微生物的石墨颗粒,石墨棒阳极插入石墨颗粒中;另一室中光电催化膜电极紧贴滤纸,以利于气相污染物扩散吸附和质子传输,两极经铜导线和外电阻连接,形成电路,紫外灯垂直照射膜电极。
PCT/CN2018/091907 2017-11-08 2018-06-20 一种光电催化膜耦合微生物燃料电池体系加快voc降解并产电的方法 WO2019091119A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711087827.0A CN107930381B (zh) 2017-11-08 2017-11-08 一种光电催化膜耦合微生物燃料电池体系加快voc降解并产电的方法
CN201711087827.0 2017-11-08

Publications (1)

Publication Number Publication Date
WO2019091119A1 true WO2019091119A1 (zh) 2019-05-16

Family

ID=61933543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091907 WO2019091119A1 (zh) 2017-11-08 2018-06-20 一种光电催化膜耦合微生物燃料电池体系加快voc降解并产电的方法

Country Status (2)

Country Link
CN (1) CN107930381B (zh)
WO (1) WO2019091119A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107930381B (zh) * 2017-11-08 2020-06-16 大连理工大学 一种光电催化膜耦合微生物燃料电池体系加快voc降解并产电的方法
CN108878942A (zh) * 2018-07-05 2018-11-23 浙江工业大学 一种内循环气升式微生物燃料电池装置及其应用
CN109847735B (zh) * 2019-01-18 2021-05-18 大连理工大学 一种高效降解氨气污染物的纳米催化剂及应用
CN109888173B (zh) * 2019-02-26 2021-09-17 天津工业大学 三维连续多孔铜/石墨电极的制备方法
CN110314508A (zh) * 2019-06-14 2019-10-11 大连理工大学 一种新型挥发性有机污染物废气处理装置
CN111420547B (zh) * 2020-02-28 2022-04-08 天津大学 光催化微生物燃料电池高效去除挥发性有机污染物的装置
CN114455775B (zh) * 2022-01-05 2022-12-13 江苏合普环保科技有限公司 一种醛类生产中高盐废水的生物工程菌处理方法
CN115404502A (zh) * 2022-07-26 2022-11-29 电子科技大学 一种光电催化用水平对置双光窗气体扩散电解池及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010005397A1 (en) * 2008-07-08 2010-01-14 National University Of Singapore An improved cathode design
CN102188902A (zh) * 2011-05-06 2011-09-21 中国科学院广州能源研究所 有机气体的光催化燃料电池光电催化及其与相转移相联合的处理方法
CN106823789A (zh) * 2017-03-14 2017-06-13 大连理工大学 光电耦合促进气相污染物分解净化方法
CN107930381A (zh) * 2017-11-08 2018-04-20 大连理工大学 一种光电催化膜耦合微生物燃料电池体系加快voc降解并产电的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106000130B (zh) * 2016-07-09 2018-04-10 大连理工大学 一种PVDF/碳纤维基MFe2O4型光催化导电过滤膜耦合MBR/MFC的方法
CN106422765A (zh) * 2016-12-01 2017-02-22 青岛农业大学 一种光催化去除空气中挥发性有机物的装置及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010005397A1 (en) * 2008-07-08 2010-01-14 National University Of Singapore An improved cathode design
CN102188902A (zh) * 2011-05-06 2011-09-21 中国科学院广州能源研究所 有机气体的光催化燃料电池光电催化及其与相转移相联合的处理方法
CN106823789A (zh) * 2017-03-14 2017-06-13 大连理工大学 光电耦合促进气相污染物分解净化方法
CN107930381A (zh) * 2017-11-08 2018-04-20 大连理工大学 一种光电催化膜耦合微生物燃料电池体系加快voc降解并产电的方法

Also Published As

Publication number Publication date
CN107930381B (zh) 2020-06-16
CN107930381A (zh) 2018-04-20

Similar Documents

Publication Publication Date Title
WO2019091119A1 (zh) 一种光电催化膜耦合微生物燃料电池体系加快voc降解并产电的方法
Bose et al. Biomass derived activated carbon cathode performance for sustainable power generation from Microbial Fuel Cells
CN1263686C (zh) 光电催化氧化处理水中有机物的装置
Wang et al. Efficient gas phase VOC removal and electricity generation in an integrated bio-photo-electro-catalytic reactor with bio-anode and TiO2 photo-electro-catalytic air cathode
WO2019169785A1 (zh) 一种阴极催化膜耦合无膜微生物燃料电池用于焦化废水处理系统
CN109046019B (zh) 一种低能耗的有机挥发性气体处理装置和方法
US20240058748A1 (en) Device and method for electrochemical degradation of gaseous organic pollutants
CN111282410B (zh) 电化学法降解气态污染物的装置及其方法
CN111003788B (zh) 管状多孔钛膜-臭氧接触反应装置及其水处理方法
US20240058749A1 (en) Device and method for degrading gaseous organic pollutant through electrochemical process
CN108675436B (zh) 高级氧化处理废水的一体化方法及装置
CN112744972B (zh) 电芬顿-膜蒸馏协同水处理的装置及方法
CN105293688A (zh) 一种耦合生物阳极电催化去除水中硝酸盐氮的系统
CN1966778A (zh) 电解式臭氧发生器膜电极组件新结构
CN112870939B (zh) 一种用于连续有效去除空气污染物的生物耦合催化反应体系
CN109925874B (zh) 一种电化学空气净化膜结构、净化模块、净化器以及净化方法
CN209138347U (zh) 一种低能耗的有机挥发性气体处理装置
CN109019761B (zh) 一种光电化学过滤器装置及其应用
WO2017208495A1 (ja) 浄化ユニット及び浄化装置
CN110314508A (zh) 一种新型挥发性有机污染物废气处理装置
TWM529283U (zh) 一種可同時處理氣態有機物質暨產電之新穎生物滴濾塔式微生物燃料電池結構
Congyuan et al. Effective constructions of electro-active bacteria-derived bioelectrocatalysis systems and their applications in promoting extracellular electron transfer process
CN106823789A (zh) 光电耦合促进气相污染物分解净化方法
CN111420547B (zh) 光催化微生物燃料电池高效去除挥发性有机污染物的装置
CN110474076A (zh) 一种微生物燃料电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18875642

Country of ref document: EP

Kind code of ref document: A1