CN106000130B - 一种PVDF/碳纤维基MFe2O4型光催化导电过滤膜耦合MBR/MFC的方法 - Google Patents

一种PVDF/碳纤维基MFe2O4型光催化导电过滤膜耦合MBR/MFC的方法 Download PDF

Info

Publication number
CN106000130B
CN106000130B CN201610541618.8A CN201610541618A CN106000130B CN 106000130 B CN106000130 B CN 106000130B CN 201610541618 A CN201610541618 A CN 201610541618A CN 106000130 B CN106000130 B CN 106000130B
Authority
CN
China
Prior art keywords
pvdf
carbon fiber
mfe
photocatalysis
baseds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610541618.8A
Other languages
English (en)
Other versions
CN106000130A (zh
Inventor
柳丽芬
李益华
杨凤林
高常飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201610541618.8A priority Critical patent/CN106000130B/zh
Publication of CN106000130A publication Critical patent/CN106000130A/zh
Application granted granted Critical
Publication of CN106000130B publication Critical patent/CN106000130B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • B01J35/23
    • B01J35/33
    • B01J35/39
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/005Combined electrochemical biological processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/26Electrical properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Abstract

本发明属于新能源与环境污染控制领域,一种PVDF/碳纤维基MFe2O4型光催化导电过滤膜耦合MBR/MFC的方法,采用该膜作为微生物燃料电池的阴极,在生物阳极产电驱动下,阴极辅以光催化提升污染物的去除效率,最后膜过滤出水实现了废水的高效节能处理。该PVDF/碳纤维基MFe2O4光催化导电过滤膜的制备方法如下:在PVDF铸膜液中通过先后添加碳纳米粉末和MFe2O4光催化剂,后以一定厚度涂覆在碳纤维布表面,经相转化法制得了PVDF/碳纤维基MFe2O4光催化导电过滤膜。在H型微生物燃料电池中,将该膜置于阴极,耦合生物产电和光催化及膜过滤实现废水的节能高效处理。

Description

一种PVDF/碳纤维基MFe2O4型光催化导电过滤膜耦合MBR/MFC 的方法
技术领域
本发明属于新能源与环境污染控制领域,特别涉及到耦合生物光电催化与过滤膜实现污水高效处理,提出了一种制备MFe2O4型光催化导电过滤膜在 MBR/MFC体系处理废水的方法。
背景技术
膜生物反应器(Membrane Bioreactor,MBR)是目前废水处理领域常见的二级处理技术,但是膜污染及高能耗两大瓶颈问题严重影响了其广泛应用。近几年,有研究将微生物燃料电池(Microbial Fuel Cell,MFC)与MBR耦合,制备导电膜用作阴极,可大大减缓膜污染程度,提升膜的抗污染性能并延长其使用周期。并且,MFC用作污水处理是往往出水水质不达标准,采用导电膜作为阴极过滤出水,其水质较好,完全达到排放标准。
目前污水处理领域面临的难题较多,并且,各种医药费水,养殖废水、农业废水中含有大量的抗生素,富N有机物、持久性难降解污染物等,这大大增加了废水处理的难度。常规的生化处理法不能将这些污染物高效去除,光催化法可产生羟基自由基、超氧自由基等活性物种,可高效降解水中污染物。将光催化法引入到MFC与MBR耦合体系(MFC/MBR),可实现复杂废水的高效节能处理。徐璇等人(CN103159331A)公开了一种光催化协同微生物燃料电池技术处理污水同时发电的方法及装置,其装置是采用紫外光催化在阳极辅助微生物颜料电池降解废水中有机物好氨氮。李娜娜等人(CN)公开了一种具有导电和光催化功能聚合物/无机物粒子杂化分离膜,在高压反应釜中加入二氧化钛,并与铸膜液高速搅拌后凝固而成。到目前为止,在废水处理领域采用生物阳极产电驱动并在阴极辅以光催化和MBR过滤实现废水处理还未见报道。
发明内容
本发明要解决的技术问题是针对MBR方法处理废水时的膜污染和高能耗问题,制备了一种MFe2O4型光催化剂负载的碳纤维基/PVDF光催化导电过滤膜,并将该膜用在阴极在微生物燃料电池产电驱动下处理污水并辅助光催化及 MBR实现废水的高效处理。
本发明的技术方案:
一种PVDF/碳纤维基MFe2O4型光催化导电过滤膜耦合MBR/MFC的方法,步骤如下:
(1)采用微波加热法制备MFe2O4磁性光催化纳米材料
将三价铁系物和二价金属化合物按照摩尔比为2:1混合,加入乙二醇溶剂中,通过5-13mol/L NaOH溶液调节体系为碱性,搅拌均匀后超声3-20min,然后微波快速加热至溶剂完全蒸发,用去离子水洗涤,过滤,真空干燥得到MFe2O4磁性光催化纳米材料;
所述的三价铁系物是三价铁化合物,如氯化铁、硝酸铁、硫酸铁等;
所述的二价金属化合物包括二价镁化合物,二价锰化合物,二价铁化合物,二价镍化合物,二价锌化合物、二价钴化合物、二价钡化合物等;
(2)PVDF/碳纤维基MFe2O4型光催化导电过滤膜的制备
在质量百分比浓度为5%-16%的PVDF铸膜液中加入碳粉末,碳粉末的质量为PVDF铸膜液质量的1%-10%,搅拌均匀,添加PVDF铸膜液质量的0.5%-10%的MFe2O4磁性光催化纳米材料,继续搅拌,脱泡静置,在碳纤维基上进行涂覆,厚度为200-2000μm,浸水相转化后成膜,得到PVDF/碳纤维基MFe2O4型光催化导电过滤膜;
所述的PVDF铸膜液是PVDF粉末分散在N-甲基吡咯烷酮或N,N-二甲基甲酰胺中,搅拌均匀;PVDF铸膜液的质量百分比浓度是指PVDF质量与总混合体系质量的比值。
所述的碳粉末是碳材料的纳米粒径粉末,如碳纤维粉、碳纳米管、石墨烯、活性炭粉等。
(3)将上述得到的PVDF/碳纤维基MFe2O4型光催化导电过滤膜用在MFC系统阴极,实现MFC、MBR及光催化作用相结合,高效快速的处理污水。
本发明的效果和益处是:
(1)在导电膜基础上制备出光催化导电膜,可进一步提高污水处理效率;
(2)MFe2O4具有光催化特性,在可见光下也具有光催化性能,故制备MFe2O4光催化导电过滤膜在废水处理时可耦合光电催化与过滤出水双重结合,高效节能处理废水。
(3)本发明为废水处理提供了新理念,即采用光催化膜耦合膜过滤、光催化、能源转化等处理工艺,体现多重优势。
附图说明
图1是MFe2O4催化剂在K3Fe(CN)6电解液中的循环伏安图,各催化剂在图中都呈现出氧化还原活性。图中◇表示ZnFe2O4,--表示CoFe2O4,—表示 NiFe2O4,…表示Fe3O4
图2是PVDF/碳纤维基CoFe2O4光催化导电过滤膜在K3Fe(CN)6电解液中的循环伏安图。图中--表示CoFe2O4添加比例为0.49%,﹎表示CoFe2O4添加比例为1%,—表示CoFe2O4添加比例为1.48%。
图3是采用PVDF/碳纤维基CoFe2O4光催化导电过滤膜在阴极对盐酸四环素的去除效率。图中●表示加光照条件;■表示不加光照条件。
具体实施方式
以下结合技术方案和附图,详细叙述本发明的具体实施方式。
实施例1
称取0.90g FeCl3·6H2O和0.40g CoCl2·6H2O,依次加入50mL乙二醇和20mL5mol/L的NaOH溶液,搅拌均匀后超声5min,然后将溶液倒入微波专用的玻璃皿中,微波加热至溶剂完全蒸发,得到CoFe2O4纳米颗粒。结合产物具有磁性的特征,用去离子水清洗产物,以去除离子杂质,然后用水相滤膜抽滤。将所得固体置于真空干燥箱中进行干燥,最终得到纯净的CoFe2O4纳米颗粒。
在5%PVDF铸膜液中,添加0.2g碳粉末,搅拌均匀,后添加0.1g CoFe2O4,搅拌均匀后,脱泡静置,在平整的玻璃板上铺设一张碳纤维布(厚度约为250 μm),在其表面涂覆200μm的PVDF膜,浸入去离子水中相转化一整夜,得到 PVDF/碳纤维基CoFe2O4光催化导电过滤膜。
采用同样的方法将0.40g CoCl2·6H2O换成0.23g ZnCl2、0.48g Ni(NO3)2·6H2O、0.47g FeSO4·7H2O制备出PVDF/碳纤维基ZnFe2O4(NiFe2O4、 Fe3O4)光催化导电过滤膜。
实施例2
称取0.90g FeCl3·6H2O和0.23g CoCl2·6H2O,依次加入100mL乙二醇和5mL13mol/L的NaOH溶液,搅拌均匀后超声20min,然后将溶液倒入玻璃皿中,微波加热至溶剂完全蒸发,得到CoFe2O4纳米颗粒。结合产物具有磁性的特征,用去离子水清洗产物,以去除离子杂质,然后用水相滤膜抽滤。将所得固体置于真空干燥箱中进行干燥,最终得到纯净的CoFe2O4纳米颗粒。
在16%PVDF铸膜液中,添加2g碳粉末,搅拌均匀,后添加2g CoFe2O4,搅拌均匀后,脱泡静置,在平整的玻璃板上铺设一张碳纤维布(厚度约为250 μm),在其表面涂覆2000μm的PVDF膜,浸入去离子水中相转化一整夜,得到 PVDF/碳纤维基CoFe2O4光催化导电过滤膜。
采用同样的方法将0.40g CoCl2·6H2O换成0.23g ZnCl2、0.48g Ni(NO3)2·6H2O、0.47g FeSO4·7H2O制备出PVDF/碳纤维基ZnFe2O4(NiFe2O4、 Fe3O4)光催化导电过滤膜。
实施例3
称取0.90g FeCl3·6H2O和0.48g CoCl2·6H2O,依次加入80mL乙二醇和8mL7.5mol/L的NaOH溶液,搅拌均匀后置于超声波细胞粉碎机中超声15min,然后将溶液倒入微波专用的玻璃皿中,微波加热至溶剂完全蒸发,得到CoFe2O4纳米颗粒。结合产物具有磁性的特征,用去离子水清洗产物,以去除离子杂质,然后用水相滤膜抽滤。将所得固体置于真空干燥箱中进行干燥,最终得到纯净的CoFe2O4纳米颗粒。
在10%PVDF铸膜液中,添加0.3g碳粉末,搅拌均匀,后添加0.1-0.3g CoFe2O4,搅拌均匀后,脱泡静置,在平整的玻璃板上铺设一张碳纤维布(厚度约为250μm),在其表面涂覆300μm的PVDF膜,浸入去离子水中相转化一整夜,得到PVDF/碳纤维基CoFe2O4光催化导电过滤膜。
采用同样的方法将0.40g CoCl2·6H2O换成0.23g ZnCl2、0.48g Ni(NO3)2·6H2O、0.47g FeSO4·7H2O制备出PVDF/碳纤维基ZnFe2O4(NiFe2O4、 Fe3O4)光催化导电过滤膜。制备的四种MFe2O4光催化剂在5mmol/L的 K3Fe(CN)6和1mol/L KCl溶液中中扫描,测定其循环伏安特性曲线,结果可知 (如图1),催化剂均表现出催化活性。
制备的PVDF/碳纤维基CoFe2O4光催化导电过滤膜在5mmol/L的K3Fe(CN)6和1mol/LKCl溶液中扫描,测定其循环伏安特性曲线,如图2所示。结果表明,该PVDF/碳纤维基CoFe2O4光催化导电过滤膜具有催化活性。
实施例4
将实施例3制备的PVDF/碳纤维基CoFe2O4光催化导电过滤膜置于H型 MFC,作为阴极,阳极采用希瓦氏菌负载的石墨颗粒填充,采用碳棒导出电子,外接电阻,后连接阴极膜,阳极与阴极之间用多孔有机隔板隔开(孔径0.2cm),阴极底部放置曝气(空气)设备。模拟污水先通过阳极,后通过阴极,后经膜减压抽滤出水。运行稳定后,出水中COD处理效率均达到90%以上。阴极室加光照,运行一段时间后,发现系统产能电势在加光后有所提高。说明阴极引入光催化作用后对产能有提升效果。
实施例5
将实施例2制备的PVDF/碳纤维基CoFe2O4光催化导电过滤膜置于MFC(左侧阳极,右侧阴极,左右平行放置)阴极,左侧阳极采用希瓦氏菌负载的石墨颗粒填充,采用碳棒导出电子,外接电阻,后连接阴极膜,阳极与阴极之间采用质子交换膜隔开,阴极底部放置曝气(空气)设备。阳极注入模拟污水,阴极室配制50mg/L的盐酸四环素抗生素溶液,每隔一段时间测试阴极液中盐酸四环素浓度。比较体系在加光不加光条件下对盐酸四环素的降解效率。结果如图3 所示,在加光条件下体系对盐酸四环素的降解速率和降解效率有很大提升。

Claims (5)

1.一种PVDF/碳纤维基MFe2O4型光催化导电过滤膜耦合MBR/MFC的方法,其特征在于,步骤如下:
(1)采用微波加热法制备MFe2O4磁性光催化纳米材料
将三价铁系物和二价金属化合物按照摩尔比为2:1混合,加入乙二醇溶剂中,通过5-13mol/L NaOH溶液调节体系为碱性,搅拌均匀后超声3-20 min,然后微波快速加热至溶剂完全蒸发,用去离子水洗涤,过滤,真空干燥得到MFe2O4磁性光催化纳米材料;
(2) PVDF/碳纤维基MFe2O4型光催化导电过滤膜的制备
在质量百分比浓度为5%-16%的PVDF铸膜液中加入碳粉末,碳粉末的质量为PVDF铸膜液质量的1%-10%,搅拌均匀,添加PVDF铸膜液质量的0.5%-10% 的MFe2O4磁性光催化纳米材料,继续搅拌,脱泡静置,在碳纤维基上进行涂覆,厚度为200-2000 μm,浸水相转化后成膜,得到PVDF/碳纤维基MFe2O4型光催化导电过滤膜;
(3)将上述得到的PVDF/碳纤维基MFe2O4型光催化导电过滤膜用在MFC系统阴极,实现MFC、MBR及光催化作用相结合,高效快速地处理污水。
2.根据权利要求1所述的方法,其特征在于,所述的三价铁系物是氯化铁、硝酸铁、硫酸铁中的一种或两种以上混合。
3.根据权利要求1或2所述的方法,其特征在于,所述的二价金属化合物包括二价镁化合物、二价锰化合物、二价铁化合物、二价镍化合物、二价锌化合物、二价钴化合物和二价钡化合物。
4.根据权利要求1或2所述的方法,其特征在于,所述的碳粉末是碳材料的纳米粒径粉末,选自碳纤维粉、碳纳米管、石墨烯或活性炭粉。
5.根据权利要求3所述的方法,其特征在于,所述的碳粉末是碳材料的纳米粒径粉末,选自碳纤维粉、碳纳米管、石墨烯或活性炭粉。
CN201610541618.8A 2016-07-09 2016-07-09 一种PVDF/碳纤维基MFe2O4型光催化导电过滤膜耦合MBR/MFC的方法 Active CN106000130B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610541618.8A CN106000130B (zh) 2016-07-09 2016-07-09 一种PVDF/碳纤维基MFe2O4型光催化导电过滤膜耦合MBR/MFC的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610541618.8A CN106000130B (zh) 2016-07-09 2016-07-09 一种PVDF/碳纤维基MFe2O4型光催化导电过滤膜耦合MBR/MFC的方法

Publications (2)

Publication Number Publication Date
CN106000130A CN106000130A (zh) 2016-10-12
CN106000130B true CN106000130B (zh) 2018-04-10

Family

ID=57109522

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610541618.8A Active CN106000130B (zh) 2016-07-09 2016-07-09 一种PVDF/碳纤维基MFe2O4型光催化导电过滤膜耦合MBR/MFC的方法

Country Status (1)

Country Link
CN (1) CN106000130B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107930381B (zh) * 2017-11-08 2020-06-16 大连理工大学 一种光电催化膜耦合微生物燃料电池体系加快voc降解并产电的方法
CN107913717B (zh) * 2017-11-27 2020-08-25 大连理工大学 一种用于污染控制的催化电极的制备方法及应用
CN108054367B (zh) * 2017-12-12 2020-06-09 江西理工大学 一种用于钠离子电池的碳包覆MgFe2O4负极材料的制备方法
CN109286026B (zh) * 2018-09-13 2022-01-04 大连理工大学 一种新型(膜)电极催化过一硫酸盐辅助构建光催化燃料电池系统
CN109745865B (zh) * 2019-02-20 2021-11-19 山东大学 一种基于石墨/二氧化钛复合材料的聚偏氟乙烯电催化超滤膜
CN111054341A (zh) * 2020-01-10 2020-04-24 北京工业大学 一种负载双金属氧化物活性炭纤维复合电极的制备方法与应用
CN111807477B (zh) * 2020-07-16 2022-06-10 山东大学 一种基于太阳能发热膜电解去除抗生素抗性基因的方法
CN112678926B (zh) * 2021-01-08 2022-05-17 烟台大学 一种多晶杂化金属催化电极膜的制备方法
CN113000071B (zh) * 2021-03-05 2022-07-29 成都理工大学 一种多孔可见光光催化ZnFe2O4-TiO2/PVDF复合膜的制备方法及再生方法
CN114349127A (zh) * 2022-01-10 2022-04-15 烟台大学 一种不锈钢基镧/钐/二氧化铈抗污电极膜及其制备工艺、应用
CN116161745B (zh) * 2023-04-25 2023-07-11 湖南环宏环保科技有限公司 一种垃圾压榨液的预处理方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101579628B (zh) * 2009-06-24 2011-05-04 中国铝业股份有限公司 一种铁酸镍基磁载型二氧化钛光催化剂的制备方法
CN103159331B (zh) * 2013-04-10 2014-06-18 重庆大学 光催化协同微生物燃料电池技术处理污水同时发电的方法及装置
CN104722263A (zh) * 2015-03-14 2015-06-24 彭晓领 一种TiO2/ZnFe2O4/活性炭复合材料制备方法

Also Published As

Publication number Publication date
CN106000130A (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
CN106000130B (zh) 一种PVDF/碳纤维基MFe2O4型光催化导电过滤膜耦合MBR/MFC的方法
Zhao et al. Photocatalytic Cr (VI) reduction over MIL-101 (Fe)–NH2 immobilized on alumina substrate: From batch test to continuous operation
Wu et al. Amidoxime-functionalized macroporous carbon self-refreshed electrode materials for rapid and high-capacity removal of heavy metal from water
CN107473337B (zh) 电催化膜与三维电极耦合处理难降解废水的装置和方法
Venkatesan et al. Effect of cation transport of SPEEK–Rutile TiO2 electrolyte on microbial fuel cell performance
Yu et al. Marriage of membrane filtration and sulfate radical-advanced oxidation processes (SR-AOPs) for water purification: Current developments, challenges and prospects
CN101224401B (zh) 固定床非均相三维电极光电催化反应器
Ramírez-Moreno et al. Comparative performance of microbial desalination cells using air diffusion and liquid cathode reactions: study of the salt removal and desalination efficiency
Hui et al. Optimal design and evaluation of electrocatalytic reactors with nano-MnOx/Ti membrane electrode for wastewater treatment
WO2019169785A1 (zh) 一种阴极催化膜耦合无膜微生物燃料电池用于焦化废水处理系统
CN107162118A (zh) 一种适用于水源水污染物去除的阴阳极内置式陶瓷微滤膜反应器
Li et al. A composite cathode membrane with CoFe 2 O 4–rGO/PVDF on carbon fiber cloth: synthesis and performance in a photocatalysis-assisted MFC-MBR system
Yang et al. Structurally-controlled FeNi LDH/CNTs electro-Fenton membrane for in-situ electro-generation and activation of hydroxyl radicals toward organic micropollutant treatment
CN110180598A (zh) 一种高效非均相电芬顿磁性包膜催化剂的制备方法
CN102424465A (zh) 一种电催化氧化和电Fenton技术协同降解酚类废水的方法
Wang et al. Self-sustained bioelectrical reduction system assisted iron–manganese doped metal-organic framework membrane for the treatment of electroplating wastewater
CN105214524A (zh) 可吸附去除重金属离子和光催化降解有机污染物的纤维膜及其制备方法
CN108658177A (zh) 一种适用于水中难降解有机物去除的电化学活性炭纤维毡膜反应器
Wang et al. Reactivation of Fenton catalytic performance for Fe3O4 catalyst: optimizing the cyclic performance by low voltage electric field
CN105668711A (zh) 一种用于污染物降解的海绵电极及其制备和应用
Song et al. Catalytic degradation of carbamazepine by metal organic frameworks (MOFs) derived magnetic catalyst Fe@ PC in an electro-Fenton coupled membrane filtration system: Performance, pathway, and mechanism
CN105498552B (zh) 一种半导体氧化物改性的导电滤膜及其制备方法和应用
CN105906113B (zh) 一种苯胺类废水的处理方法
Duan et al. Carbon materials in electrocatalytic oxidation systems for the treatment of organic pollutants in wastewater: A review
Xie et al. ZIF-67 derived Co/N carbon hollow fiber membrane with excellent decontamination performance

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant