CN107913717B - 一种用于污染控制的催化电极的制备方法及应用 - Google Patents

一种用于污染控制的催化电极的制备方法及应用 Download PDF

Info

Publication number
CN107913717B
CN107913717B CN201711201186.7A CN201711201186A CN107913717B CN 107913717 B CN107913717 B CN 107913717B CN 201711201186 A CN201711201186 A CN 201711201186A CN 107913717 B CN107913717 B CN 107913717B
Authority
CN
China
Prior art keywords
sic
catalytic electrode
catalytic
preparation
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711201186.7A
Other languages
English (en)
Other versions
CN107913717A (zh
Inventor
柳丽芬
孙嘉琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201711201186.7A priority Critical patent/CN107913717B/zh
Publication of CN107913717A publication Critical patent/CN107913717A/zh
Application granted granted Critical
Publication of CN107913717B publication Critical patent/CN107913717B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • B01J35/39
    • B01J35/59
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4676Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electroreduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Abstract

本发明提供了一种用于污染控制的催化电极的制备方法及应用,属于废水处理技术技领域,通过微波法制备出含有不同量SiC的复合催化剂WO3‑Co‑SiC,该材料具有电化学活性和光催化活性。通过对制备条件进行进一步优化,未灼烧的WO3‑Co‑SiC具有更优的催化性能,可高效降解染料罗丹明B。将WO3‑Co‑SiC以PVDF为粘结剂负载到碳纤维布上制得催化电极膜,该电极膜在外加可见光、外加电源以及光电同时作用下均可降解70%以上的黄连素,具有良好的电化学活性和光催化活性,能够通过耦合实现膜分离及同时催化,可用于自产电体系及外加电体系的污染控制。

Description

一种用于污染控制的催化电极的制备方法及应用
技术领域
本发明提供了一种含SiC的催化剂及其污染控制催化电极膜的制备方法,属于废水处理技术技领域,涉及到WO3-Co-SiC系列复合催化剂的制备、性能优化,及基于该催化剂的导电膜的制备方法,应用该催化电极膜于废水污染控制及污染物消除过程中发挥光催化与电催化作用。
背景技术
催化电极膜是催化技术与膜技术耦合的产物,将催化剂负载到导电膜上,一方面实现了催化剂的固定,另一方面为高效实现污染控制的膜分离和膜污染控制提供材料和物质的保证,也为耦合其他污水处理体系提供了可能。将含有催化剂的导电膜作为电极应用于废水处理体系中,可在原体系中引入电催化或光催化作用。此外,有研究表明微电场环境可有效减缓膜污染、延长膜的使用寿命,因此催化电极膜不仅可以发挥这些技术各自的优势,还能够产生协同作用,是优化污水处理体系的新方向。
催化电极膜的性能在很大程度上取决于催化剂的性能,也决定了应用过程的处理效率和经济性。因此新型、廉价、高效的催化剂的制备和研究就显得尤为重要。选用常见的元素,通过复合制备高性能催化剂和电极膜,具有重要科学价值和应用价值。三氧化钨(WO3)作为一种能够吸收利用可见光的过渡金属氧化物,在光催化领域显示出巨大的潜力。但纯WO3对可见光的吸收利用率还达不到实际应用的要求,通过元素掺杂或半导体复合可以进一步调控其晶型或能带结构,进而优化其催化性质。
含硅化合物由于其特殊的电子结构,通常具有半导体的特性。SiC作为一种碳基非金属半导体,禁带宽度约为2.4-3.2eV,具有高载流子迁移率和化学稳定性,且环境友好、储量丰富。除此之外,还具有较强的热稳定性和优良的表面性质,具有非常大的应用潜力。SiC能够通过构建异质结调整催化剂的能带结构,在光催化产氢、染料降解等领域表现突出。目前关于SiC在半导体光催化剂改性及产电性能方面的研究仍然较少,未见其对WO3改性的报道。
本发明首次将SiC引入催化电极膜,通过微波法制备出基于WO3的新型催化剂,掺杂Co元素及复合SiC提高了其光催化、电催化活性,通过改变灼烧时间进一步优化WO3-Co-SiC催化剂的性能。将该催化电极膜用于废水中难降解污染物的去除,可实现废水的资源化与能源化,目前未见关于该光催化剂以及膜电极的报道。
发明内容
本发明针对纯WO3对可见光吸收利用率较低的不足,本发明提供一种性能良好的复合催化剂WO3-Co-SiC的制备方法,并将其负载于导电膜,得到催化电极膜。该催化电极膜同时具备优良的导电性、电催化活性和光催化活性,可直接作为电极与其他污水处理体系耦合,达到强化光催化、电催化作用去除废水中难降解污染物的目的。
本发明的技术方案:
一种用于污染控制的催化电极的制备方法,步骤如下:
(1)采用微波法快速制备WO3-Co-SiC纳米光催化剂
按照摩尔比1:1,将H2WO4溶于1MNaOH溶液中,搅拌至完全溶解,得到淡黄色溶液;向淡黄色溶液中加入CoCl2·6H2O和纳米SiC粉末,控制H2WO4、CoCl2·6H2O和SiC的摩尔比为20:7:2,继续搅拌至混合均匀;缓慢滴加浓HCl至pH为1,其间产生沉淀;将悬浊液转移至微波消解罐,并加入等体积的超纯水混合均匀(便于微波响应),密封后在750W的微波条件下加热4.5min,取出冷却至室温;用超纯水洗涤沉淀物,充分干燥,得到WO3-Co-SiC纳米光催化剂,研磨备用;
(2)制备催化电极膜
以聚偏氟乙烯(PVDF)作为粘结剂,采用相转化法在碳纤维布基底上制备催化导电膜,膜厚为300μm;铸膜液以N,N-二甲基甲酰胺(DMF)为溶剂,添加铸膜液的20wt%的PVDF、PVDF的25wt%步骤(1)制得的WO3-Co-SiC纳米光催化剂、PVDF的15wt%的纳米碳纤维和铸膜液的8%的聚乙烯吡咯烷酮(PVP)。将该催化导电膜固定于膜组件,得到催化电极。
该电极膜在外加可见光、外加电源以及光电同时作用下均可降解70%以上的黄连素,具有良好的电化学活性和光催化活性,可以用于自产电体系及外加电体系进行污染控制。
本发明的有益成果:本发明提供了一种催化剂及催化电极膜的制备方法。SiC的引入使得催化剂WO3-Co-SiC在可见光波段有较高的吸光度,并且具有良好的电学性能。以PVDF作为粘结剂,纳米碳纤维作为辅助导电物质,制备出催化电极膜,成功将WO3-Co-SiC负载于碳纤维布上,该电极膜同时具备导电性和优良的光、电催化活性。以微生物燃料电池体系自身产电作为能源供给,该催化电极膜显示出良好的污染物去除能力。
附图说明
图1是WO3-Co-SiC、WO3-Co-SiC(2)和WO3(均为灼烧6h)在可见光下对10mg/L RhB的降解效果对比图。
图2是灼烧时间为0h和6h的WO3-Co-SiC在可见光下对10mg/L RhB的降解效果对比图。
图3是25%WO3-Co-SiC(0h)+15%纳米碳纤维的催化电极膜在5mmol/LK3Fe(CN)6+1mol/L KCl溶液中的循环伏安曲线。
图4是25%WO3-Co-SiC(0h)+15%纳米碳纤维的催化电极膜在可见光光照条件下对10mg/L黄连素的降解效果图。
图5是25%WO3-Co-SiC(0h)+15%纳米碳纤维的催化电极膜在外加电场作用下对10mg/L黄连素的降解效果图。
图6是25%WO3-Co-SiC(0h)+15%纳米碳纤维的催化电极膜在光电耦合体系中对10mg/L黄连素的降解效果图。
具体实施方式
以下结合技术方案和附图详细叙述本发明的具体实施方式。
实施例一:催化剂WO3-Co-SiC的制备及对罗丹明B的降解
催化剂的制备:以催化剂WO3-Co-SiC的制备为例,将2.49g H2WO4溶于10mL 1mol/LNaOH溶液,搅拌30min得到淡黄色溶液。加入0.825g(0.0035mol,35%vs H2WO4)CoCl2·6H2O及0.040g(0.001mol,10%vsH2WO4)平均粒径为40nm的SiC纳米粉末,搅拌20min至混合均匀,然后逐滴加入浓HCl将溶液将pH调至1。将上述混合溶液转移至聚四氟乙烯微波消解罐,并加入等体积的超纯水混合均匀,密封后在750W微波炉中微波加热4.5min,冷却到室温。用超纯水洗涤沉淀物3~5遍,置于105℃烘箱中干燥6h并研磨。将制得的催化剂在马弗炉中600℃条件下灼烧6h,得到最终产物。采用相同方法分别制备出WO3(不添加CoCl2·6H2O和SiC)、WO3-Co-SiC和WO3-Co-SiC(2)(SiC含量为0.002mol)。
催化剂降解罗丹明B(RhB)测试:在100mL石英烧杯中加入50mL 10mg/L罗丹明B溶液,并以1.6L/min的速率曝空气。前30min置于黑暗环境中吸附,之后分别在无光和外加可见光(50W碘钨灯)的条件下进行降解测试,每隔10-15min取样,水样经10000转离心10min后转移到石英比色皿中在波长554nm处测量吸光度,由标准曲线计算得到罗丹明B浓度及降解率。如图1所示,经过165min,催化剂WO3、WO3-Co-SiC和WO3-Co-SiC(2)对罗丹明B的去除率分别可达81.76%、90.29%和72.21%。
因此,引入Co元素和SiC后,WO3的催化性能有所提升,且SiC的含量为10%时,催化剂WO3-Co-SiC具有较好的催化活性和污染物(RhB)降解能力。
实施例二:催化剂WO3-Co-SiC的优化及对罗丹明B的降解
催化剂的制备:采用实施例一的方法制备出复合纳米光催化剂WO3-Co-SiC,在烘箱中干燥6h后使用马弗炉在600℃下分别灼烧样品0h(即未灼烧)和6h,得到两种不同条件下的WO3-Co-SiC,备用。
催化剂降解罗丹明B测试:采用与实施例一相同的方法对未灼烧的催化剂WO3-Co-SiC(0h)做光降解RhB实验,并与灼烧6h的催化剂降解效果作对比,如图2所示。在外加50W可见光条件下,经165min未灼烧催化剂WO3-Co-SiC(0h)对10mg/L RhB的降解率可达到95.16%,光催化降解性能优于WO3-Co-SiC(6h)。
因此,灼烧时间对催化剂WO3-Co-SiC的性能有较大影响,通过改变灼烧时间可以进一步优化催化剂的性能。与在600℃条件下灼烧了6h的催化剂相比,未经灼烧的WO3-Co-SiC(0h)具有更高的催化活性,能够吸收利用更多可见光,并且能够高效去除RhB。
实施例三:催化电极膜的制备及在可见光下对黄连素的降解
催化电极膜的制备:按表1所示组成配制铸膜液,磁力搅拌4-6h使其混合均匀,真空脱泡30min后,使用膜制备器在碳纤维布上刮制300μm的膜,之后将膜置于去离子水中1晚使其完成相转化。
表1铸膜液组成
Figure GDA0002503339500000051
催化电极膜性能的表征:如图3所示,该催化电极膜具有较宽的电流阈值,且具有明显的氧化还原峰,说明该膜具有良好的CV电化学活性。
催化电极膜在可见光下降解黄连素测试:以阴极室侧壁为石英玻璃的MFC反应器作为容器,在阴极室内加入200mL 10mg/L黄连素+0.1mol/L Na2SO4,总面积为2.75cm*5.75cm*2的催化电极膜浸没在溶液中,底部以1.6L/min的速率曝空气。前30min遮光吸附,之后打开外加光源(50W碘钨灯,光源与电极膜相距5cm),受光膜面积为2.75cm*5.75cm。每隔约15min从阴极室内取水样,采用分光光度计在波长343nm处测试吸光度,通过标准曲线计算得到黄连素浓度和去除率。
如图4所示,该催化电极膜通过吸附作用即可去除约40%的黄连素,通过2h的光催化作用,降解率可达73.34%,说明催化电极膜具有光催化活性,可有效去除难降解污染物黄连素。
实施例四:催化电极膜在外加电场条件下对黄连素的降解
以MFC自身产电为外加能源,将实施例三中制备的催化电极膜作为阴极置于双室MFC体系中,通过导线与生物阳极相连,外加电阻300Ω。在阴极室内加入200mL 10mg/L黄连素+0.1mol/L Na2SO4作为电解液,底部以1.6L/min的速率持续曝空气。前30min体系处于断路的状态,用以表征膜的吸附作用,之后连通外电路进行黄连素的降解测试,反应过程中电池电压约为0.2V。膜电极总面积为2.75cm*5.75cm*2,黄连素测试方法与实施例三中相同。
图5显示,在外加约0.2V电压的条件下,该催化电极膜可通过吸附及电化学作用去除71.08%的黄连素(2.5h内),说明该催化电极膜具有电化学活性,可催化降解难降解污染物。
实施例五:催化电极膜在光电耦合体系中对黄连素的降解
构建与实施例四相同的催化电极膜耦合MFC体系,并进行黄连素降解测试,前30min体系处于无光照且断路的状态,之后连通外电路并外加光源为50W碘钨灯光照,光源位于阴极室外侧,与膜电极相距5cm。黄连素测试方法与实施例三中相同。
图6表明,在催化电极膜耦合MFC且外加可见光的光电耦合体系中,该催化电极膜可通过膜吸附、光催化及电催化作用在2.5h内降解70.20%的黄连素,说明该催化电极膜可以作为阴极与MFC耦合,使得该催化电极膜可以在光电共同作用下有效降解黄连素。

Claims (2)

1.一种用于污染控制的催化电极的制备方法,其特征在于,步骤如下:
(1)采用微波法快速制备WO3-Co-SiC纳米光催化剂
按照摩尔比1:1,将H2WO4溶于1M NaOH溶液中,搅拌至完全溶解,得到淡黄色溶液;向淡黄色溶液中加入CoCl6H2O和纳米SiC粉末,控制H2WO4、CoCl6H2O和SiC的摩尔比为20:7:2,继续搅拌至混合均匀;缓慢滴加浓HCl至pH为1,其间产生沉淀;将悬浊液转移至微波消解罐,并加入等体积的超纯水混合均匀,密封后在750W的微波条件下加热4.5min,取出冷却至室温;用超纯水洗涤沉淀物,充分干燥,得到WO3-Co-SiC纳米光催化剂,研磨备用;
(2)制备催化电极膜
以聚偏氟乙烯作为粘结剂,采用相转化法在碳纤维布基底上制备催化导电膜,膜厚为300μm;铸膜液以N,N-二甲基甲酰胺为溶剂,添加铸膜液的20wt%的PVDF、PVDF的25wt%步骤(1)制得的WO3-Co-SiC纳米光催化剂、PVDF的15wt%的纳米碳纤维和铸膜液的8wt%的聚乙烯吡咯烷酮;将该催化导电膜固定于膜组件,得到催化电极。
2.权利要求1所述的制备方法制备的催化电极的应用,其特征在于,用于降解黄连素。
CN201711201186.7A 2017-11-27 2017-11-27 一种用于污染控制的催化电极的制备方法及应用 Active CN107913717B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711201186.7A CN107913717B (zh) 2017-11-27 2017-11-27 一种用于污染控制的催化电极的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711201186.7A CN107913717B (zh) 2017-11-27 2017-11-27 一种用于污染控制的催化电极的制备方法及应用

Publications (2)

Publication Number Publication Date
CN107913717A CN107913717A (zh) 2018-04-17
CN107913717B true CN107913717B (zh) 2020-08-25

Family

ID=61897877

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711201186.7A Active CN107913717B (zh) 2017-11-27 2017-11-27 一种用于污染控制的催化电极的制备方法及应用

Country Status (1)

Country Link
CN (1) CN107913717B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109453798A (zh) * 2018-12-04 2019-03-12 山东科技大学 一种碳化硅基光催化剂的制备方法及应用
CN109534696A (zh) * 2019-01-25 2019-03-29 重庆化工职业学院 负载碳化硅的玻璃纤维材料的制备方法
CN110304734B (zh) * 2019-06-17 2021-05-11 大连理工大学 一种利用菌藻-催化电极强化无机氮去除的养殖尾水处理新方法
CN110171874B (zh) * 2019-07-10 2021-10-08 大连海洋大学 一种用于养殖海水的电极膜生物滤器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6093676A (en) * 1993-10-26 2000-07-25 E. Heller & Company Photocatalyst-binder compositions
CN101252988A (zh) * 2005-08-31 2008-08-27 浦项工科大学 含有氧化锌纳米线的近场光催化剂
CN106000130A (zh) * 2016-07-09 2016-10-12 大连理工大学 一种PVDF/碳纤维基MFe2O4型光催化导电过滤膜耦合MBR/MFC的方法
CN106975352A (zh) * 2017-05-03 2017-07-25 宁夏大学 一种可见光光催化剂wo3及wo3复合涂料与制备和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6093676A (en) * 1993-10-26 2000-07-25 E. Heller & Company Photocatalyst-binder compositions
CN101252988A (zh) * 2005-08-31 2008-08-27 浦项工科大学 含有氧化锌纳米线的近场光催化剂
CN106000130A (zh) * 2016-07-09 2016-10-12 大连理工大学 一种PVDF/碳纤维基MFe2O4型光催化导电过滤膜耦合MBR/MFC的方法
CN106975352A (zh) * 2017-05-03 2017-07-25 宁夏大学 一种可见光光催化剂wo3及wo3复合涂料与制备和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A facile and one-pot synthesis of pure and transition metals (M=Co & Ni) doped WO3 nanoparticles for enhanced photocatalytic performance;P. Sivakarthik,et al;《J Mater Sci: Mater Electron》;20170106;第28卷(第8期);第5990-5996页 *
Photocatalytic behavior of a new composite ternary system:WO3/SiC-TiO2 . Effect of the coupling of semiconductors and oxides in photocatalytic oxidation of methylethylketone in the gas phase;V. Keller,et al;《Catalysis Communications》;20030831;第4卷(第8期);第377-383页 *

Also Published As

Publication number Publication date
CN107913717A (zh) 2018-04-17

Similar Documents

Publication Publication Date Title
CN107913717B (zh) 一种用于污染控制的催化电极的制备方法及应用
CN111584890B (zh) 原位自稳定式固体氧化物燃料电池阴极、电池及其制备方法
CN111346642B (zh) 高分散金属纳米颗粒/生物质碳复合电极材料及其制备方法与应用
CN108336374B (zh) 一种高性能三元Fe-Co-Ni共掺杂含氮碳材料及其制备方法和应用
CN107394217A (zh) 一种掺氮、掺磷的生物质碳材料的合成方法及其在微生物燃料电池阴极方面的应用
CN109876867A (zh) 一种双金属-有机骨架/钒酸铋复合光电阳极材料的制备方法
Sun et al. Effect of light irradiation on the photoelectricity performance of microbial fuel cell with a copper oxide nanowire photocathode
CN112958116B (zh) 一种Bi2O2.33-CdS复合光催化剂及其制备工艺
WO2016011970A1 (zh) 一种含钨材料的用途
CN113594479A (zh) 一种Fe、N共掺杂多孔碳锌空电池催化剂的制备方法
CN101702437B (zh) 铁锰联合修饰材料的制备方法及其在微生物燃料电池中的应用
CN105778088B (zh) 一种石墨烯/聚苯胺纳米棒阵列复合材料及其制备方法与应用
CN109160594A (zh) 阳极负载光催化材料微生物燃料电池及其制备方法与应用
CN107311140B (zh) 一种锂离子电池负极材料的制备方法
Ren et al. Controlled vertical growing of Bi2O3 nano sheets on diatomite disks and its high visible-light photocatalytic performance
Fan et al. Effect of heteropolyacid and heteropolyacid salt on the performance of nanometer proton membrane microbial fuel cell
Louki et al. Preparation of new ferroelectric Li0. 95Ta0. 57Nb0. 38Cu0. 15O3 materials as photocatalysts in microbial fuel cells
CN112670525B (zh) 一种固体氧化物燃料电池电极材料
Peng et al. Assessing the potential of biochar derived from sewage sludge for photoelectrode fabrication: methods, mechanisms, and conclusions
CN110227490B (zh) 一种碳包覆协同碳硫共掺杂的SnO2光催化剂及其制备方法
CN110444768B (zh) 一种活性炭复合阴极的制备及耦合微生物燃料电池系统用于工业有机酸废水处理
CN107268014A (zh) 一种二氧化钛/碳气凝胶光阴极的制备方法和应用
CN111672495A (zh) 一种纳米光催化材料的制备方法
Zhang et al. BaTiO3/Fe2O3/MoS2/Ti photoanode for visible light responsive photocatalytic fuel cell degradation of rhodamine B and electricity generation
CN109516495A (zh) 一种氧化锡光子晶体负载氧化钨和硫化镉半导体薄膜及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant