CN112958116B - 一种Bi2O2.33-CdS复合光催化剂及其制备工艺 - Google Patents

一种Bi2O2.33-CdS复合光催化剂及其制备工艺 Download PDF

Info

Publication number
CN112958116B
CN112958116B CN202110197334.2A CN202110197334A CN112958116B CN 112958116 B CN112958116 B CN 112958116B CN 202110197334 A CN202110197334 A CN 202110197334A CN 112958116 B CN112958116 B CN 112958116B
Authority
CN
China
Prior art keywords
cds
solution
bismuth oxide
composite photocatalyst
nanosheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202110197334.2A
Other languages
English (en)
Other versions
CN112958116A (zh
Inventor
向芸颉
王国景
唐志伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou University
Southwest University
Original Assignee
Lanzhou University
Southwest University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou University, Southwest University filed Critical Lanzhou University
Priority to CN202110197334.2A priority Critical patent/CN112958116B/zh
Publication of CN112958116A publication Critical patent/CN112958116A/zh
Application granted granted Critical
Publication of CN112958116B publication Critical patent/CN112958116B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/18Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/18Arsenic, antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/02Sulfur, selenium or tellurium; Compounds thereof
    • C07C2527/04Sulfides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及新能源技术领域,具体公开了一种Bi2O2.33‑CdS复合光催化剂及其制备工艺。本发明提供的复合光催化剂由Bi2O2.33和CdS复合而成,其中,Bi2O2.33为纳米片芯核结构,CdS包裹于Bi2O2.33纳米片芯核结构形成壳层,Bi2O2.33纳米片芯核结构与CdS壳层形成直接Z型异质结,具有电子‑空穴分离效率高、氧化还原能力强、光催化性能优良的优点。本发明提供的制备工艺包括以下步骤:S1.利用电沉积法制备BiOI纳米片;S2.采用热处理法将BiOI纳米片转化为氧化铋;S3.采用水浴法在氧化铋外面包裹CdS壳层,工艺简单,易于操作,适于工业化推广。

Description

一种Bi2O2.33-CdS复合光催化剂及其制备工艺
技术领域
本发明属于新能源技术领域,具体涉及一种Bi2O2.33-CdS复合光催化剂的制备方法。
背景技术
氢气作为一种可再生、无污染、能量密度高的清洁能源。在冶金、燃料电池、有机合成、石油化工等行业发挥了重要的作用。随着太阳能研究和利用的发展,人们已开始利用阳光分解水来制取氢气。在水中放入催化剂,在阳光照射下,催化剂便能激发光化学反应,把水分解成氢和氧。半导体材料是目前应用最为广泛的光催化剂。
半导体材料光催化反应发生需要满足一定的条件,其中光生电子/空穴的能量(由光催化剂导带/价带能级决定)要满足还原/氧化电势及反应过电位的要求。此外,理想的光催化材料还需要具备较宽的光吸收波段,较高的光生载流子分离效率,以及较强的光腐蚀稳定性。由常用的半导体光催化材料的能带位置可知,具有高还原和氧化活性的单光催化剂禁带宽度较宽。但在光吸收阶段,宽禁带半导体仅能利用紫外光(紫外光占太阳光比例约为4%),太阳光吸收率低。因此,单光催化剂难以兼顾高光吸收率以及高还原和氧化活性,导致光催化活性较低,阻碍了光催化技术的推广应用。
发明内容
本发明的目的是提供一种Bi2O2.33-CdS复合光催化剂及其制备方法,可获得高的催化活性。
第一方面,本发明提供一种Bi2O2.33-CdS复合光催化剂,采用如下的技术方案:
一种Bi2O2.33-CdS复合光催化剂,复合光催化剂由Bi2O2.33和 CdS复合而成,其中,Bi2O2.33形成为纳米片芯核结构,CdS包裹于 Bi2O2.33纳米片芯核结构形成为壳层,Bi2O2.33纳米片芯核结构与CdS 壳层形成直接Z型异质结。
优选的,CdS壳层连续均匀地包裹于所述Bi2O2.33纳米片芯核结构表面,CdS壳层的厚度为10-20nm。
第二方面,本申请提供一种Bi2O2.33-CdS复合光催化剂的制备工艺,采用以下技术方案:
一种Bi2O2.33-CdS复合光催化剂的制备工艺,包括以下步骤:
S1.利用电沉积法制备BiOI纳米片;
S2.采用热处理法将BiOI纳米片转化为氧化铋;
S3.采用水浴法在氧化铋外面包裹CdS壳层,制得Bi2O2.33-CdS 复合光催化剂。
优选的,步骤S1具体包括以下步骤:
(1)取去离子水并除氧,得到处理后的去离子水;
(2)取对苯醌加入无水乙醇,搅拌直至全部溶解得到溶液A;
(3)取碘化钾加入步骤(1)处理后的去离子水,加入硝酸铋,并加入硝酸和乳酸,继续搅拌至硝酸铋全部溶解,得到溶液B;
(4)将溶液A加入到溶液B中得到溶液C;
(5)利用三电极系统电沉积BiOI纳米片,其中电解液采用溶液C。
优选的,电沉积过程包括两步电沉积,第一步电沉积的电位为- 0.35V至-0.4V,时间为15-30s,第二步电沉积的电位为-0.1V至- 0.15V,时间为300-320s。
优选的,步骤S2具体包括以下步骤:将步骤S1制得的BiOI纳米片加热到580-620℃,保温时间为20min-30min。
优选的,步骤S2制备得到蠕虫状纳米氧化铋颗粒。
优选的,步骤S3具体包括如下步骤:
配置氯化铵水溶液,浓度为0.06-0.10mol/L,加入氯化镉得到溶液D,使得溶液D中氯化镉浓度为0.01mol/L-0.08mol/L,搅拌并加热到70℃-80℃,将pH值调至8-12,加入步骤S2转化得到的氧化铋,加入硫脲,使硫脲浓度为0.04-0.08mol/L,反应10-30min后取出试样,清洗烘干。
优选的,所述氯化镉浓度为0.01mol/L-0.03mol/L。
优选的,步骤S3氧化铋在水浴过程中重结晶,所述蠕虫状纳米氧化铋颗粒恢复成纳米片状结构。
综上所述,本发明的有益效果为:
1.本发明提供的Bi2O2.33-CdS复合光催化剂,Bi2O2.33为纳米片芯核结构,CdS包裹于Bi2O2.33纳米片芯核结构形成壳层,Bi2O2.33纳米片芯核与CdS壳层形成直接Z型异质结,具有电子-空穴分离效率高、氧化还原能力强、光催化性能优良的优点。
2.本发明的Bi2O2.33-CdS复合光催化剂,芯核结构为Bi2O2.33纳米片,相较于纳米棒或者纳米线,具有比表面积大的优点,能够促进电子传输,进一步提高光催化效率。
3.本发明的Bi2O2.33-CdS复合光催化剂,CdS连续均匀地包裹于 Bi2O2.33纳米片芯核结构表面,壳层厚度为10-20nm,能够增强 Bi2O2.33的光吸收率,进一步提高光催化性能。
4.本发明的Bi2O2.33-CdS复合光催化剂,两相界面接触良好,两相接近共格界面,促进光生载流子在Bi2O2.33-CdS界面移动,进而增强光催化性能。
5.本发明所提供的制备工艺,简单易于操作,适合于工业化推广应用。
附图说明
图1为制备例1的BiOI纳米片扫描电镜图;
图2为制备例1制备的试样扫描电镜图;
图3为制备例2制备的试样扫描电镜图;
图4为制备例3制备的试样扫描电镜图;
图5为实施例1制备的试样XRD图谱;
图6为实施例1制备的试样扫描电镜图;
图7为实施例1制备的试样透射电镜图和高分辨透射电镜图;
图8(a)为Bi2O2.33、CdS的UPS数据,图8(b)为Bi2O2.33、CdS 的能带结构,以及图8(c)为Bi2O2.33-CdS复合后的能带结构图;
图9为Bi2O2.33、CdS、Bi2O2.33-CdS的光催化性能;
图10为实施例2制备的试样扫描电镜图。
具体实施方式
Z型异质结光催化剂,Z型异质结是模拟植物光合作用的结构和功能而构建的,Z型异质结通常包括一种导带还原能力较强的半导体(光系统I,photosystem I,PSI)与一种价带氧化能力较强的半导体(光系统II,photosystem II,PSII),两者依靠电子传递媒介相互串联。两种半导体同时受到太阳光激发生成电子和空穴(解决光吸收效率问题),PSII的光生电子通过电子传递媒介与PSI的空穴复合,剩下催化活性较强的PSI电子和PSII空穴分别引发光还原和氧化反应。Z型异质结通过牺牲一半光生载流子的方式,保留了光生电子和空穴的高还原和氧化能力,很好地契合了天然光合作用机制。且Z型异质结能够满足光催化热力学要求的能带结构和有利于电荷传递的动力学界面,解决窄禁带半导体电荷分离效率低、能带电势不匹配的缺点。
构筑Z型异质结的关键因素有两个,一是选择两种合适的半导体满足热力学要求的能带结构,另一是解决电子传递的动力学竞争的问题。但一般情况下,两种半导体接触后形成II型异质结,电子传递的方式与Z型异质结恰恰相反。因此,通过一个电子传递媒介调控电子传递路径构筑Z型异质结成为光催化领域主流的构筑途径。目前常用的电子传递媒介有两种,一种是利用氧化还原离子对(譬如:IO3-/I-、Fe3+/Fe2+或VO2+/VO2+等)来实现电子传递,解决了需要满足能带匹配导致的两种半导体选材有限的问题,但电子传递媒介为液态,稳定性差且易与催化剂引发副反应。另一种是引入固态电子媒介(如:贵金属和石墨烯等),通过镶嵌在两种半导体之间的导电层形成欧姆接触来实现电子传递,虽然此方案解决液态电子传递媒介存在的问题构筑了全固态Z型异质结,但需要贵金属等电子传输材料增加了成本,且会造成一定污染。此外,还可以依靠半导体界面处自身的欧姆接触来实现载流子的Z型传递模式。两种半导体材料中间不需要镶嵌其他电子传输材料,即没有电子传递媒介,光生载流子可以直接穿过PSI和PSII界面,此类被称为直接Z型异质结。针对全固态直接Z型异质结能带理论,本发明提出一种Bi2O2.33-CdS复合光催化剂及其制备方法。
本发明公开了一种Bi2O2.33-CdS复合光催化剂及其制备方法。该方法首先利用电沉积的方法在导电玻璃上生长BiOI纳米片,随后利用热处理的方法将BiOI纳米片转化为蠕虫状氧化铋,最后利用水浴法在氧化铋周围均匀包裹CdS壳层,即可获得Bi2O2.33-CdS直接Z 型异质结,制备的全固态直接Z型异质结外壳分布均匀,结构良好,具备优异的光催化性能。本发明制备工艺简单,成本低廉,适合批量生产。在光照条件下催化还原二氧化碳、分解水产氢和降解有机污染物等温室效应、能源、环境污染问题解决方面都有着良好的应用前景。
本发明的水浴法生长过程中会出现重结晶现象,蠕虫状氧化铋恢复成纳米片状结构。此外,为了使CdS壳层均匀包裹氧化铋水浴过程中,调整了Cd离子浓度和溶液的pH值,使得镉离子的释放速度和CdS的生长速度保持良好的平衡,CdS壳层包裹均匀且致密。获得的Bi2O2.33-CdS直接Z型异质结,芯核结构为Bi2O2.33纳米片,具有大的比表面积,促进电子传输,CdS均匀包裹在纳米片表面,且由于两种材料能带结构匹配,使在复合材料界面处形成内建电场,以及芯核Bi2O2.33表面的氧空位,促进Bi2O2.33导带上的光生电子与 CdS价带上的光生空穴复合,致使光催化性能得以大幅度提升,是一种具备高光催化活性的复合光催化剂。
制备例1:
(1)取25ml去离子水,磁力搅拌,并在搅拌过程中通入惰性气体(氩气)以去除去离子水中的氧气,通气时间为30min。
(2)取0.248g的对苯醌放入棕色容器中,加入10ml的无水乙醇,磁力搅拌直至对苯醌全部溶解得到溶液A。
(3)取1.66g的碘化钾加入到步骤(1)处理后的去离子水中,随后加入0.485g的硝酸铋,并加入31μl的硝酸(质量分数为68%)和 35μl的乳酸(质量分数为60%),继续搅拌至硝酸铋全部溶解得到溶液B。
(4)利用吸管将步骤(2)溶解好的溶液A加入到步骤(3)制备得到的溶液B中得到溶液C。
(5)利用三电极系统电沉积BiOI纳米片,其中电解液是步骤(4) 获得的溶液C,Pt电极为对电极,Ag/AgCl为参比电极,FTO(导电玻璃,面积为1.5cm2,排除电极夹持部分,可供电沉积的面积约为 1cm2)为工作电极,电沉积过程分为两步,第一步电位为-0.35V,时间为15s,第二步电位为-0.1V,时间为300s。
(6)将步骤(5)制得的试样用无水乙醇和水(1:1,V/V)的混合溶液冲洗,冲洗后放入真空烘箱70℃干燥12h获得负载在FTO上的 BiOI(碘氧化铋)纳米片,形貌如图1所示。从图1(c)中可以看出 BiOI均匀地负载在FTO上,从图1(a)、1(b)可以看出BiOI为纳米片结构。
(7)将步骤(6)制得的负载在FTO上的BiOI纳米片,以10℃/min 的升温速率加热至600℃,并保温20min后炉冷至室温,试样形貌如图2所示。从图2可以看出BiOI纳米片完全转化为蠕虫状纳米氧化铋颗粒,I(碘)在热处理过程中升华,且蠕虫状纳米氧化铋颗粒之间相互分散,仍然保持良好的纳米结构。
比较例1:
与制备例1的区别在于,步骤(7)中,负载在FTO上的BiOI纳米片,加热至550℃保温。制备得到的试样形貌如图3所示。从图3 可以看出BiOI纳米片并未完全转化为蠕虫状纳米氧化铋颗粒,同时存在BiOI纳米片和蠕虫状纳米氧化铋颗粒,蠕虫状纳米氧化铋颗粒之间相互分散。
比较例2:
与制备例1的区别在于,步骤(7)中,负载在FTO上的BiOI纳米片,加热至650℃保温。试样形貌如图4所示。从图4可以看出蠕虫状纳米氧化铋颗粒之间相互融合,纳米结构坍塌。
实施例1:
(1)配置0.08mol/L的NH4Cl水溶液;
(2)在步骤(1)配置的NH4Cl水溶液中加入氯化镉得到溶液D,溶液D的氯化镉浓度为0.02mol/L;
(3)溶液D磁力搅拌,并加热到70℃;
(4)利用氨水将步骤(9)的溶液pH值调至10;
(5)在步骤(4)的溶液中放入制备例1制备得到的负载有蠕虫状纳米氧化铋颗粒的FTO,5min后加入硫脲(NH2CSNH2),使硫脲浓度为0.06mol/L,反应15min后取出试样;
(6)用去离子水冲洗试样,并置于真空烘箱70℃干燥12h获得试样。
最终制备得到的试样XRD图谱如图5所示,对比XRD的PDF 卡库发现氧化铋的XRD数据与JCPDS(No.27-0051)完全符合,证实 600℃热处理后为氧化铋为非化学比例的Bi2O2.33相,硫化镉的XRD 数据与JCPDS(No.41-1049)完全符合,证实其为六方结构的CdS,最终制备得Bi2O2.33-CdS复合结构,且Bi2O2.33-CdS各自保持自己的晶体结构。
最终制备得到的Bi2O2.33-CdS试样的形貌结构如图6和图7所示。从图6和图7可以看出,蠕虫状纳米氧化铋颗粒经过重结晶重新转换成纳米片状Bi2O2.33,纳米片状Bi2O2.33为芯核结构,CdS连续均匀地包裹于纳米片状Bi2O2.33表面,形成壳层,壳层厚度为10-20nm。从图7可以看到清晰的两种晶面间距,位于内部的晶面间距为 1.75nm/(5个晶面间距)=0.35nm,与Bi2O2.33的(001)晶面间距相同,位于外部的晶面间距为1.60nm/(5个晶面间距)=0.32nm,与 CdS的(101)晶面间距相同,证明制备的试样为Bi2O2.33-CdS异质结结构,试样晶面间距差距约为8.57%,接近共格,两相界面结合良好,使得Bi2O2.33形成的光生载流子可以直接传递到CdS,显著提高光催化效率。
为了证实复合物为直接Z型异质结结构,利用紫外光电子能谱 (UPS)技术检测Bi2O2.33和CdS样品的能带结构情况,测试结果如图8(a)所示,根据测试结果得到Bi2O2.33(制备例1制备)和CdS样品(实施例1中FTO为空白样品制备)的费米能级分别位于0.75eV 和1.88eV,价带顶位置分别位于2.79eV和3.88eV,导带底位置分别位于5.05eV和4.02eV。此外,Bi2O2.33和CdS样品的禁带宽度分别为2.8eV和2.4eV。由此数据可获得Bi2O2.33和CdS样品的能带结构图,如图8(b)所示。当两种半导体材料接触时,由于两者的费米能级位置不同,两者的费米能级会发生移动直至两者费米能级位于同一位置。费米能级低的半导体材料能级向上移动,费米能级高的半导体材料能级向下移动。向上移动的半导体材料的价带和导带向下弯曲,向下移动的半导体材料的价带和导带向上弯曲,并在界面处形成电荷富集区,形成如图8(c)所示的能带结构,即形成Z 型异质结结构。
光催化性能测试流程:将4片负载Bi2O2.33-CdS复合光催化剂的导电玻璃(样品总面积约为3.2cm2)放在直径为5cm的中空石英玻璃管上面,并将其放在反应器中,将磁子和5ml去离子水加在中间,搅拌半个小时,抽真空半小时,通入高纯度的CO2气体半小时,使反应器中内只有CO2气体存在,静止1小时,开300W的氙灯光照 4小时,同时开始记录时间,每隔一个小时取出0.25ml气体,同时扎进气相色谱中,检测产物。如图9所示,测试得到的Bi2O2.33-CdS 复合结构的CH4产量为0.534μmol/h,CO的产量为9.224μmol/h, Bi2O2.33(制备例1制备,样品总面积约为3.2cm2)的CH4产量为 0.053μmol/h,CO的产量为0.317μmol/h,CdS(实施例1中FTO为空白样品制备,总面积约为3.2cm2)的CH4产量为0.331μmol/h, CO的产量为3.027μmol/h,可见,Bi2O2.33-CdS复合光催化剂的产量远高于Bi2O2.33和CdS的产量,说明Bi2O2.33-CdS复合光催化剂具有更高的光催化活性。
实施例2:
与实施例1的区别在于,步骤(2)中氯化镉浓度为0.08mol/L。试样形貌如图10所示。从图10可以看出,Bi2O2.33-CdS试样同样为纳米片状结构,CdS包裹在Bi2O2.33纳米片上形成壳层。由于氯化镉浓度较高,实施例2的Bi2O2.33-CdS形貌不如实施例1佳。

Claims (4)

1.一种Bi2O2.33-CdS复合光催化剂,其特征在于:所述复合光催化剂由Bi2O2.33和CdS复合而成,其中,所述Bi2O2.33形成为纳米片芯核结构,所述CdS包裹于所述Bi2O2.33纳米片芯核结构形成为壳层,CdS壳层连续均匀地包裹于所述Bi2O2.33纳米片芯核结构表面,所述CdS壳层的厚度为10-20nm,所述Bi2O2.33纳米片芯核结构与所述CdS壳层形成直接Z型异质结,所述Bi2O2.33-CdS复合光催化剂主要由以下步骤制备得到:
S1.利用电沉积法制备BiOI纳米片;
S2.采用热处理法将BiOI纳米片转化为氧化铋,制备得到的氧化铋为蠕虫状纳米氧化铋颗粒;
S3.采用水浴法在氧化铋外面包裹CdS壳层,制得Bi2O2.33-CdS复合光催化剂,步骤S3具体包括如下步骤:
配置氯化铵水溶液,浓度为0.06-0.10mol/L,加入氯化镉得到溶液D,使得溶液D中氯化镉浓度为0.01mol/L-0.03mol/L,搅拌并加热到70℃-80℃,将pH值调至8-12,加入步骤S2转化得到的氧化铋,加入硫脲,使硫脲浓度为0.04-0.08mol/L,反应10-30min后取出试样,清洗烘干;
其中,氧化铋在水浴过程中重结晶,蠕虫状纳米氧化铋颗粒恢复成纳米片状结构,氧化铋形成为Bi2O2.33纳米片芯核结构,CdS连续均匀地包裹于所述Bi2O2.33纳米片芯核结构形成为壳层。
2.根据权利要求1所述的Bi2O2.33-CdS复合光催化剂,其特征在于:步骤S1具体包括以下步骤:
(1)取去离子水并除氧,得到处理后的去离子水;
(2)取对苯醌加入无水乙醇,搅拌直至全部溶解得到溶液A;
(3)取碘化钾加入步骤(1)处理后的去离子水,加入硝酸铋,并加入硝酸和乳酸,继续搅拌至硝酸铋全部溶解,得到溶液B;
(4)将溶液A加入到溶液B中得到溶液C;
(5)利用三电极系统电沉积BiOI纳米片,其中电解液采用溶液C。
3.根据权利要求2所述的Bi2O2.33-CdS复合光催化剂,其特征在于:电沉积过程包括两步电沉积,第一步电沉积的电位为-0.35V至-0.4V,时间为15-30s,第二步电沉积的电位为-0.1V至-0.15V,时间为300-320s。
4.根据权利要求1所述的Bi2O2.33-CdS复合光催化剂,其特征在于:步骤S2具体包括以下步骤:
将步骤S1制得的BiOI纳米片加热到580-620℃,保温时间为20min-30min。
CN202110197334.2A 2021-02-22 2021-02-22 一种Bi2O2.33-CdS复合光催化剂及其制备工艺 Expired - Fee Related CN112958116B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110197334.2A CN112958116B (zh) 2021-02-22 2021-02-22 一种Bi2O2.33-CdS复合光催化剂及其制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110197334.2A CN112958116B (zh) 2021-02-22 2021-02-22 一种Bi2O2.33-CdS复合光催化剂及其制备工艺

Publications (2)

Publication Number Publication Date
CN112958116A CN112958116A (zh) 2021-06-15
CN112958116B true CN112958116B (zh) 2021-11-19

Family

ID=76285497

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110197334.2A Expired - Fee Related CN112958116B (zh) 2021-02-22 2021-02-22 一种Bi2O2.33-CdS复合光催化剂及其制备工艺

Country Status (1)

Country Link
CN (1) CN112958116B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114645286B (zh) * 2022-03-30 2024-03-26 哈尔滨理工大学 一种高催化活性卤氧化铋表相氧空位的调控方法
CN116351437B (zh) * 2022-12-07 2024-01-26 烟台大学 一种硫化铋纳米棒光催化剂及其制备方法与应用
CN116237063B (zh) * 2023-02-17 2023-08-15 兰州大学 钇促进的二氧化碳还原催化剂及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019496A (zh) * 1973-06-20 1975-02-28
CN105642316A (zh) * 2015-12-22 2016-06-08 江苏大学 一种制备BiOI/CdWO4异质结光催化剂的方法
CN107362813A (zh) * 2017-09-05 2017-11-21 云南大学 一种硫化镉/碘氧化铋异质结光催化剂的制备方法和用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019496A (zh) * 1973-06-20 1975-02-28
CN105642316A (zh) * 2015-12-22 2016-06-08 江苏大学 一种制备BiOI/CdWO4异质结光催化剂的方法
CN107362813A (zh) * 2017-09-05 2017-11-21 云南大学 一种硫化镉/碘氧化铋异质结光催化剂的制备方法和用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Oxygen defects engineered CdS/Bi2O2.33 direct Z-Scheme heterojunction for highly sensitive photoelectrochemical assay of Hg2+;Shuo Wu等;《Talanta》;20200429;第217卷;第1-9页 *

Also Published As

Publication number Publication date
CN112958116A (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
CN112958116B (zh) 一种Bi2O2.33-CdS复合光催化剂及其制备工艺
CN111389442B (zh) 负载于泡沫镍表面的p-n异质结复合材料及其制备方法与应用
Tang et al. Fabrication of MOFs’ derivatives assisted perovskite nanocrystal on TiO2 photoanode for photoelectrochemical glycerol oxidation with simultaneous hydrogen production
CN109913898B (zh) 一种WO3/CuWO4/NiFe LDH三元复合光电极薄膜的制备方法
He et al. NiFe-layered double hydroxide decorated BiVO4 photoanode based bi-functional solar-light driven dual-photoelectrode photocatalytic fuel cell
CN109402656B (zh) 一种磷化钴修饰钼掺杂钒酸铋光电极的制备方法
CN112521618B (zh) 一种铋基金属有机框架材料及其制备方法和应用
CN110344029B (zh) 一种表面羟基化氧化铁薄膜光阳极材料的制备方法
Dai et al. ZnIn2S4 modified CaTiO3 nanocubes with enhanced photocatalytic hydrogen performance
CN110424022A (zh) 纳米棒α-氧化铁复合MIL-101异质结光阳极及其制备方法
CN111261413B (zh) 一种Ti掺杂α-Fe2O3纳米棒复合MOFs异质结光阳极及其制备方法与应用
Chen et al. A solar responsive cubic nanosized CuS/Cu2O/Cu photocathode with enhanced photoelectrochemical activity
CN111348728B (zh) 一种MOF和HrGO共修饰的钒酸铋电极及其制备方法和应用
CN111569896A (zh) BiVO4-Ni/Co3O4异质结的合成方法及其应用于光电解水
CN112495401A (zh) 一种Mo掺杂MoO3@ZnIn2S4 Z体系光催化剂及其制备方法与应用
CN108842168B (zh) 一种两步电化学法制备g-C3N4/MMO复合薄膜光电极
CN111172559B (zh) 一种超薄水滑石基复合光电极及其光电分解水耦合有机物氧化反应的应用
Xue et al. A novel pathway toward efficient and stable C3N4-based photocatalyst for light driven H2 evolution: The synergistic effect between Pt and CoWO4
CN108866563A (zh) 一种硼化钴修饰的钒酸铋膜光电阳极、其制备方法与用途
CN115305480A (zh) 一种合金纳米材料催化剂及其制备方法和应用
Sun et al. Promoting photoelectrochemical hydrogen production performance by fabrication of Co1-XS decorating BiVO4 photoanode
CN114411168A (zh) 一种钴镧共掺杂可见光响应BiVO4光电极及其制备方法
Zhang et al. BaTiO3/Fe2O3/MoS2/Ti photoanode for visible light responsive photocatalytic fuel cell degradation of rhodamine B and electricity generation
CN113293404A (zh) 一种异质结光阳极材料及其制备方法和应用
CN111509243A (zh) 一种CNTs修饰的BiOCl/ZnO异质结纳米阵列光阳极在光催化燃料电池中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20211119

CF01 Termination of patent right due to non-payment of annual fee