CN110304734B - 一种利用菌藻-催化电极强化无机氮去除的养殖尾水处理新方法 - Google Patents

一种利用菌藻-催化电极强化无机氮去除的养殖尾水处理新方法 Download PDF

Info

Publication number
CN110304734B
CN110304734B CN201910520382.3A CN201910520382A CN110304734B CN 110304734 B CN110304734 B CN 110304734B CN 201910520382 A CN201910520382 A CN 201910520382A CN 110304734 B CN110304734 B CN 110304734B
Authority
CN
China
Prior art keywords
algae
catalytic electrode
bacteria
tail water
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910520382.3A
Other languages
English (en)
Other versions
CN110304734A (zh
Inventor
柳丽芬
孙嘉琦
李林子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201910520382.3A priority Critical patent/CN110304734B/zh
Publication of CN110304734A publication Critical patent/CN110304734A/zh
Application granted granted Critical
Publication of CN110304734B publication Critical patent/CN110304734B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • B01J27/224Silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/005Combined electrochemical biological processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • C02F3/322Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae use of algae
    • C02F3/325Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae use of algae as symbiotic combination of algae and bacteria
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Biotechnology (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Ecology (AREA)
  • Botany (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种利用菌藻‑催化电极强化无机氮去除的养殖尾水处理新方法,属于废水处理技术领域。催化剂Co‑WO3/SiC/TiO2在紫外及可见光区域均有较高的吸光度,并且具有良好的电催化活性。将该催化剂负载于导电膜上得到的新型催化电极可直接作为电极应用于废水处理体系中。在双室光电耦合的微生物燃料电池体系中,该催化阴极可在6h内去除70%以上的氨氮,且氮气选择性高,副产物少。利用该催化电极膜构建菌藻共生催化电极耦合体系处理海水养殖尾水,在生物阳极、催化阴极以及藻的协同作用下氨氮去除率可达95%以上,平均无机氮去除率达90%左右,强化了尾水中无机氮的去除。

Description

一种利用菌藻-催化电极强化无机氮去除的养殖尾水处理新 方法
技术领域
本发明提供了一种新型光电催化电极的制备方法及其在菌藻共生体系中处理养殖尾水的应用,属于废水处理技术领域,涉及到催化剂Co-WO3/SiC/TiO2及其导电膜的制备方法和菌藻-催化电极耦合体系的构建,将该体系用于海水养殖尾水处理,能够在利用微生物产电的同时结合光、电催化及藻的协同作用实现无机氮的高效转化和去除。
背景技术
水产养殖业在我国具有重要地位,随着产业规模的扩大,养殖尾水的处理、排放和循环利用成为产业发展与环境保护之间重要的平衡点。养殖过程中投加的饵料和鱼类产生的粪便是尾水中的主要污染物来源,造成水体无机氮含量较高。无机态氮主要包括氨氮(NH4 +-N)、硝态氮(NO3 --N)和亚硝态氮(NO2 --N)等,均会对水体或鱼类产生直接或间接的危害,因此,在尾水排放或循环利用之前有效去除水体中的无机氮具有重要意义。
在无机氮中,氨氮是污染水体中含量较大的氮素存在形式,传统氨氮处理方法有折点加氯法、吹脱法、离子交换吸附法、生物脱氮法和反渗透方法等,随着氮素污染的加剧,这些方法因成本或副产物等因素的限制无法满足废水处理的需求,因此,一些新型脱氮技术,如厌氧氨氧化、短程硝化反硝化、光催化技术等近年来得到了深入研究和发展。此外,藻类对氨氮的吸收作用也在脱氮技术中逐渐得到应用。
光催化技术由于其高效、节能、矿化度高等优点被广泛应用于环境污染控制。作为光催化材料的半导体能够吸收利用光能,激发内部电子跃迁,生成具有强还原性的光生电子和具有强氧化性的空穴,空穴又可激发超氧自由基、羟基自由基等氧化因子,从而降解大部分污染物。然而自然光下半导体的电子-空穴对极易复合,通常需要对单一的半导体材料进行改性,元素掺杂和半导体复合是常见的改性策略。本发明以过渡金属三氧化钨(WO3),非金属半导体碳化硅(SiC)和二氧化钛(TiO2)为原材料,通过微波法和溶胶凝胶法两步快速合成多元复合催化剂Co-WO3/SiC/TiO2,并将其负载于导电膜上,制备出具有优良光催化脱氮性能的新型膜电极。
海水养殖尾水盐度较大,无机氮含量偏高,对传统微生物处理技术来说具有更大的挑战。本发明对传统MFC结构进行改良,利用砂仓代替质子交换膜,节省了成本。将制备的新型催化电极膜作为阴极与生物阳极耦合,通过驯化使微生物适应高盐度废水,保留产电能力的同时实现污染物的去除。提供可见光照射后,阴极膜可发挥光、电催化作用促进产电和污染物去除,同时阴极室藻类的生长也进一步促进了无机氮的去除,这种菌藻-催化电极耦合体系强化了养殖尾水无机氮的脱除能力,并且具有成本较低的优势,具有巨大的应用潜力。
发明内容
本发明针对废水中无机氮降解转化率较低的不足,提供了一种利用菌藻-催化电极强化无机氮去除的养殖尾水处理新技术,包括复合催化剂Co-WO3/SiC/TiO2及其催化电极膜的制备方法。通过对膜组分的优化使该催化电极具有良好的导电性和催化活性,并可在光、电催化作用下去除无机氮。应用该电极膜作为阴极构建的废水处理体系在可见光照射下增加了藻的作用,构成菌藻-催化电极耦合体系,极大地强化了无机氮的转化和去除。
本发明的技术方案:
一种利用菌藻-催化电极强化无机氮去除的养殖尾水处理新方法,步骤如下:
(1)新型纳米光催化剂Co-WO3/SiC/TiO2的制备
按摩尔比1:1将H2WO4溶于1M NaOH溶液,再加入CoCl2·6H2O和SiC搅拌均匀,其中H2WO4、CoCl2·6H2O和SiC的摩尔比为20:7:2;用质量分数37%的浓盐酸将上述混合溶液pH调节为1,转移至微波炉,750W条件下密封消解4.5min,洗涤沉淀物Co-WO3/SiC并干燥研磨待用;
将钛酸四丁酯以0.85:1的体积比溶于无水乙醇,搅拌0.5h得到溶液A;按照体积比2.4:8:1.4:1将去离子水、无水乙醇、冰乙酸和质量分数37%的浓盐酸混合为溶液B;将溶液B缓慢滴加入溶液A中,控制溶液B中无水乙醇的体积为溶液A中的一半;再加入与TiO2的质量比为0.06-0.26的Co-WO3/SiC搅拌至形成溶胶状,在空气中干燥后于500℃灼烧2h,研磨备用;
(2)新型催化电极的制备
以碳纤维布为基底,采用相转化法制备改性的聚偏氟乙烯PVDF膜使其具备导电性和催化活性;铸膜液以N,N-二甲基甲酰胺DMF为溶剂,将PVDF、步骤(1)中制得的催化剂Co-WO3/SiC/TiO2、纳米碳纤维和聚乙烯吡咯烷酮PVP,分别以相对于铸膜液总重的4%-5%、2%-5%、2%-3%和2%-4%加入,搅拌4-6h后刮制成厚度为300-400μm的膜,在去离子水中浸泡8-10h完成相转化,得到改性的催化电极作为阴极;
(3)菌藻-催化电极耦合体系的构建
反应器由下到上依次为底泥层、负载产电菌的碳颗粒微生物层、砂仓和阴极室,体积比为4:5:1.6:4.7,砂仓上下放置滤布分隔;负载产电菌的碳颗粒微生物层中放置碳棒,由钛丝导出电子,经外电阻与阴极相连;反应器底部设置进水口,上部设置溢流口,阴极室设置曝气装置;未加光阶段利用微生物及光、电作用去除污染物;在阴极室上方提供可见光后,经3-5天形成菌藻-催化电极耦合体系,进一步强化无机氮的去除能力;
(4)菌藻-催化电极耦合体系用于海水养殖尾水处理
将步骤(2)制备的催化电极作为阴极应用于步骤(3)构建的菌藻-催化电极耦合体系中,以水力停留时间34-48h连续进出水运行,富含无机氮的海水养殖尾水从底部进入,经生物阳极处理和砂仓过滤进入阴极室,在光照下与催化阴极和藻类作用,进一步实现无机氮的降解。
所述的可见光光源为50W碘钨灯,距阴极11cm。
所述的外电阻为570Ω。
本发明的有益效果:本发明提供了一种新型菌藻-催化电极耦合体系用于养殖尾水处理并强化无机氮的去除。该体系结构简单,运行成本较低,其中阴极采用具有无机氮脱除能力的含有Co-WO3/SiC/TiO2的新型催化电极膜。除传统生物阳极去除污染物的作用之外,一方面通过阴极的光、电催化作用强化无机氮的去除,另一方面结合藻的作用进一步提高无机氮——特别是氨氮的去除和转化。
附图说明
图1是催化剂Co-WO3/SiC/TiO2和TiO2的紫外可见漫反射光谱。
图2是催化电极膜在5mmol/L K3Fe(CN)6+1mol/L KCl溶液中的循环伏安曲线。
图3是催化电极在不同条件下对200mL 100mg/L氨氮的去除。
图4是菌藻-催化电极耦合体系在加光和不加光条件下对海水养殖尾水中氨氮的去除。
图5是菌藻-催化电极耦合体系在加光和不加光条件下对海水养殖尾水中无机氮的去除。
具体实施方式
以下结合技术方案和附图详细叙述本发明的具体实施方式。
实施例一:新型催化电极的制备及光、电性能表征
催化剂的制备:配制10mL 1mol/L NaOH溶液并加入2.49g H2WO4,搅拌30min;加入0.825g CoCl6H2O和0.040g平均粒径为40nm的SiC纳米粉末,搅拌至混合均匀后逐滴加入浓盐酸调pH至1;加入等体积的超纯水,混匀密封,在750W微波炉中加热反应4.5min;待冷却到室温,沉淀物经洗涤后在105℃烘箱中干燥得到Co-WO3/SiC。配制含有13.6mL钛酸四丁酯与16mL无水乙醇的溶液A和2.4mL去离子水,8mL无水乙醇,1.4mL冰乙酸和1mL浓盐酸的溶液B,将B缓慢加入A,同时加入0.8g制备好的Co-WO3/SiC搅至溶胶状,于105℃烘干并在马弗炉中500℃灼烧2h,升温速率为2℃/min。研磨后得到粉末状复合催化剂Co-WO3/SiC/TiO2
催化电极的制备:将上述制备的催化剂分别以相对于总重(下同)2.5%和5.0%的比例加入以DMF为溶剂的铸膜液,其中碳纳米纤维的含量分别为2.5%和2.7%,PVDF为5%和4.7%,PVP为4%和2.7%,搅拌4h后刮制成厚度分别为300μm和375μm的催化膜,经12h相转化后得到1#和2#电极膜。
由图1紫外可见光谱图可知,复合催化剂Co-WO3/SiC/TiO2(0.26:1)比单一成分的TiO2在紫外和可见光波段均有更高的吸光度,具有优良的光催化活性。
由图2循环伏安曲线可知1#和2#膜均表现出催化活性,且随着催化剂含量的增多,2#膜的催化活性更高。
实施例二:新型催化电极在光电耦合体系中强化氨氮的去除
将实施实例一中制备的2#催化电极(4.6×7.8cm2)作为阴极应用于传统双室MFC中,经560Ω外电阻与生物阳极连通,阴极室以0.6L/min的速率持续曝空气,由300W氙灯提供可见光,光源距阴极10cm。分别在外电路连通且加光(记为MFC+light),外电路连通且不加光(记为MFC)和外电路断路且不加光(即仅曝气,记为Blank)三种条件下降解200mL含有100mg/L氨氮的阴极液。
由图3氨氮浓度变化及去除率曲线可知,该催化电极在光电耦合体系中可以强化阴极对氨氮的去除,仅在阴极的作用下依靠曝气和膜的光电催化作用即可在6h内去除70%以上的氨氮,且氮气选择性高,副产物少。
实施例三:菌藻-催化电极耦合体系的构建及强化养殖尾水中无机氮的去除
反应器为直径10.5cm的圆柱形,由下到上依次填充4cm厚的海水底泥,5cm厚的产电微生物(负载在活性炭颗粒上)、1.6cm厚的砂仓,阴极室深度为4.7cm。由碳棒和钛丝导出生物阳极的电子,经560Ω电阻与阴极相连。阴极催化电极采用实施例一中制备的2#催化电极膜构成的膜组件,有效面积为6.0×2.6×2cm2,可单侧受光,阴极室持续曝气。海水养殖尾水由反应器底部进入,顶部溢流出水,分别在HRT=48h、不加光和HRT=34h、加光条件下运行,光源为50W碘钨灯,距阴极11cm。提供可见光3-5天后阴极室内出现藻类,形成菌藻-催化电极耦合体系。
由图4和图5可以看出,与不加光的阶段相比,加光后在菌、藻和催化电极共同的作用下,氨氮的去除率有了明显的提升,可达95%以上,并且总无机氮的去除率也有了大幅提升,达到90%左右。由此说明该菌藻-催化电极耦合体系能够有效去除氨氮等无机氮,与传统生物法相比,新型催化电极和藻的作用相结合可进一步强化海水养殖尾水中无机氮的去除。

Claims (3)

1.一种利用菌藻-催化电极强化无机氮去除的养殖尾水处理新方法,其特征在于,步骤如下:
(1)新型纳米光催化剂Co-WO3/SiC/TiO2的制备
按摩尔比1:1将H2WO4溶于1M NaOH溶液,再加入CoCl6H2O和SiC搅拌均匀,其中H2WO4、CoCl6H2O和SiC的摩尔比为20:7:2;用质量分数37%的浓盐酸将上述混合溶液pH调节为1,转移至微波炉,750W条件下密封消解4.5 min,洗涤沉淀物Co-WO3/SiC并干燥研磨待用;
将钛酸四丁酯以0.85:1的体积比溶于无水乙醇,搅拌0.5 h得到溶液A;按照体积比2.4:8:1.4:1将去离子水、无水乙醇、冰乙酸和质量分数37%的浓盐酸混合为溶液B;将溶液B缓慢滴加入溶液A中,控制溶液B中无水乙醇的体积为溶液A中的一半;再加入与TiO2的质量比为0.06-0.26的Co-WO3/SiC搅拌至形成溶胶状,在空气中干燥后于500 °C灼烧2 h,研磨备用;
(2)新型催化电极的制备
以碳纤维布为基底,采用相转化法制备改性的聚偏氟乙烯PVDF膜使其具备导电性和催化活性;铸膜液以N,N-二甲基甲酰胺DMF为溶剂,将PVDF、步骤(1)中制得的催化剂Co-WO3/SiC/TiO2、纳米碳纤维和聚乙烯吡咯烷酮PVP,分别以相对于铸膜液总重的4%-5%、2%-5%、2%-3%和2%-4%加入,搅拌4-6 h后刮制成厚度为300-400 μm的膜,在去离子水中浸泡8-10 h完成相转化,得到改性的催化电极作为阴极;
(3)菌藻-催化电极耦合体系的构建
反应器由下到上依次为底泥层、负载产电菌的碳颗粒微生物层、砂仓和阴极室,体积比为4:5:1.6:4.7,砂仓上下放置滤布分隔;负载产电菌的碳颗粒微生物层中放置碳棒,由钛丝导出电子,经外电阻与阴极相连;反应器底部设置进水口,上部设置溢流口,阴极室设置曝气装置;未加光阶段利用微生物及电作用去除污染物;在阴极室上方提供可见光后,经3-5天形成菌藻-催化电极耦合体系,进一步强化无机氮的去除能力;
(4)菌藻-催化电极耦合体系用于海水养殖尾水处理
将步骤(2)制备的催化电极作为阴极应用于步骤(3)构建的菌藻-催化电极耦合体系中,以水力停留时间34-48 h连续进出水运行,富含无机氮的海水养殖尾水从底部进入,经生物阳极处理和砂仓过滤进入阴极室,在光照下与催化阴极和藻类作用,进一步实现无机氮的降解。
2.根据权利要求1所述的养殖尾水处理新方法,其特征在于,所述的可见光光源为50 W碘钨灯,距阴极11 cm。
3.根据权利要求1或2所述的养殖尾水处理新方法,其特征在于,所述的外电阻为570Ω。
CN201910520382.3A 2019-06-17 2019-06-17 一种利用菌藻-催化电极强化无机氮去除的养殖尾水处理新方法 Active CN110304734B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910520382.3A CN110304734B (zh) 2019-06-17 2019-06-17 一种利用菌藻-催化电极强化无机氮去除的养殖尾水处理新方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910520382.3A CN110304734B (zh) 2019-06-17 2019-06-17 一种利用菌藻-催化电极强化无机氮去除的养殖尾水处理新方法

Publications (2)

Publication Number Publication Date
CN110304734A CN110304734A (zh) 2019-10-08
CN110304734B true CN110304734B (zh) 2021-05-11

Family

ID=68076644

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910520382.3A Active CN110304734B (zh) 2019-06-17 2019-06-17 一种利用菌藻-催化电极强化无机氮去除的养殖尾水处理新方法

Country Status (1)

Country Link
CN (1) CN110304734B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114231406B (zh) * 2021-12-16 2023-02-28 江苏通用环境工程有限公司 一种菌藻耦合一体化设备及产油去污方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3542657A (en) * 1968-04-16 1970-11-24 Hydronics Corp Electrolytic reduction of nitrate from solutions of alkali metal hydroxides
CN104505529A (zh) * 2014-12-02 2015-04-08 哈尔滨工业大学 藻菌协同生态型微生物燃料电池及利用其净水产电的方法
CN105140550A (zh) * 2015-07-29 2015-12-09 大连理工大学 一种用于处理难降解污染物的光电催化与微生物燃料电池耦合系统
CN107913717A (zh) * 2017-11-27 2018-04-17 大连理工大学 一种用于污染控制的催化电极的制备方法及应用
CN108275777A (zh) * 2018-03-06 2018-07-13 大连理工大学 一种阴极催化膜耦合无膜微生物燃料电池用于焦化废水处理系统
CN108793342A (zh) * 2018-07-03 2018-11-13 青岛理工大学 一种水中硝氮还原的高分散钴钛复合纳米电极的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3542657A (en) * 1968-04-16 1970-11-24 Hydronics Corp Electrolytic reduction of nitrate from solutions of alkali metal hydroxides
CN104505529A (zh) * 2014-12-02 2015-04-08 哈尔滨工业大学 藻菌协同生态型微生物燃料电池及利用其净水产电的方法
CN105140550A (zh) * 2015-07-29 2015-12-09 大连理工大学 一种用于处理难降解污染物的光电催化与微生物燃料电池耦合系统
CN107913717A (zh) * 2017-11-27 2018-04-17 大连理工大学 一种用于污染控制的催化电极的制备方法及应用
CN108275777A (zh) * 2018-03-06 2018-07-13 大连理工大学 一种阴极催化膜耦合无膜微生物燃料电池用于焦化废水处理系统
CN108793342A (zh) * 2018-07-03 2018-11-13 青岛理工大学 一种水中硝氮还原的高分散钴钛复合纳米电极的制备方法

Also Published As

Publication number Publication date
CN110304734A (zh) 2019-10-08

Similar Documents

Publication Publication Date Title
CN109896598B (zh) 基于碳毡负载铁纳米颗粒的电芬顿阴极材料的制备方法及其在降解水中有机污染物中的应用
CN109201065B (zh) 一种泡沫镍复合材料及其制备方法与在光电催化去除水体污染物中的应用
CN101653728B (zh) 铁酸锌/二氧化钛纳米复合可见光光催化剂的制备方法及其应用
Liu et al. Emerging high-ammonia‑nitrogen wastewater remediation by biological treatment and photocatalysis techniques
CN107758836B (zh) 一种微生物燃料电池原位耦合过硫酸盐类芬顿技术强化难降解有机物去除方法
CN112194236A (zh) 一种利用生物炭-氧化铜复合材料活化过一硫酸盐处理含盐难降解废水的方法
CN107952464B (zh) 一种新型光催化材料及双光催化电极自偏压污染控制系统
CN112093856A (zh) 具有可转换氧化态铜的单金属一体化电极及其制备方法和应用方法
CN108079984A (zh) 一种圆角立方体型羟基锡酸锌太阳光催化剂的制备方法
CN110743575B (zh) 一种具有吸附-光催化协同效应的AgIn5S8/SnS2固溶体催化剂的制备方法
CN110304734B (zh) 一种利用菌藻-催化电极强化无机氮去除的养殖尾水处理新方法
CN113896299B (zh) 一种锰铁层状双金属氢氧化物负载生物炭的电芬顿反应阴极材料及其制备方法与应用
CN109395759B (zh) 一种具有核壳结构的Fe3C纳米粒子及其制备方法和应用
CN108940349B (zh) 利用铬酸银/硫掺氮化碳z型光催化剂去除染料污染物的方法
CN108940348B (zh) 铬酸银/硫掺氮化碳z型光催化剂及其制备方法
CN112221525B (zh) 一种具有可持续高效净水功能的人工浮萍
CN104525114A (zh) 一种改性活性炭处理异丙醇废水的方法
CN110357223B (zh) 一种锌铋协同修饰氧化铈复合电极及其制备方法和应用
CN108417873A (zh) 一种自偏压微生物耦合光电催化燃料电池污染控制系统及电极制备方法
CN115814829B (zh) 一种Co与Mo2C共掺杂的生物炭基复合材料及其制备方法与应用
CN113800605B (zh) 一种基于光电催化生成自由基处理养殖海水尾水的方法
CN112142168A (zh) 改善换流阀外冷水系统膜污染的阳极材料和电化学方法
CN110526484B (zh) 一种有机磷农药工业废水处理工艺
CN114044554A (zh) 光电协同强化铁基催化剂活化过硫酸盐降解抗生素的方法
CN110586139B (zh) Fe(Ⅲ)团簇/碘酸氧铋复合光催化材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant