WO2017208495A1 - 浄化ユニット及び浄化装置 - Google Patents

浄化ユニット及び浄化装置 Download PDF

Info

Publication number
WO2017208495A1
WO2017208495A1 PCT/JP2017/003180 JP2017003180W WO2017208495A1 WO 2017208495 A1 WO2017208495 A1 WO 2017208495A1 JP 2017003180 W JP2017003180 W JP 2017003180W WO 2017208495 A1 WO2017208495 A1 WO 2017208495A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
purification unit
carbon
purification
negative electrode
Prior art date
Application number
PCT/JP2017/003180
Other languages
English (en)
French (fr)
Inventor
雄也 鈴木
直毅 吉川
亮 釜井
矢口 充雄
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201780033693.6A priority Critical patent/CN109219579A/zh
Priority to US16/304,161 priority patent/US20200317543A1/en
Priority to EP17806057.0A priority patent/EP3466895A4/en
Priority to JP2018520345A priority patent/JP6902706B2/ja
Publication of WO2017208495A1 publication Critical patent/WO2017208495A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4676Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electroreduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/005Combined electrochemical biological processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/36Biochemical methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/10Reclamation of contaminated soil microbiologically, biologically or by using enzymes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2806Anaerobic processes using solid supports for microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46157Perforated or foraminous electrodes
    • C02F2001/46161Porous electrodes
    • C02F2001/46166Gas diffusion electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2203/00Apparatus and plants for the biological treatment of water, waste water or sewage
    • C02F2203/006Apparatus and plants for the biological treatment of water, waste water or sewage details of construction, e.g. specially adapted seals, modules, connections
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a purification unit and a purification device.
  • the present invention relates to a purification unit for purifying an object to be treated such as wastewater and soil, and a purification apparatus using the purification unit.
  • water treatment methods such as an activated sludge method utilizing aerobic respiration of microorganisms and an anaerobic treatment method utilizing anaerobic respiration of microorganisms are provided.
  • the activated sludge method In the activated sludge method, mud (activated sludge) containing microorganisms and wastewater are mixed in a biological reaction tank, and air necessary for the microorganisms to oxidize and decompose organic matter in the wastewater is sent to the biological reaction tank and agitated. And the wastewater is being purified.
  • the activated sludge method requires a great deal of power for aeration of the biological reaction tank.
  • a large amount of industrial waste material (the death of the microorganism) is generated.
  • the present invention has been made in view of the problems of the prior art. And the object of the present invention is to provide a purification unit which can reduce the amount of generated sludge and can suppress the generation of biogas, and a purification device using the same.
  • the purification unit comprises a first conductor, a second conductor different from the first conductor, a first conductor, and a second conductor. And a different third conductor. Then, at least a portion of the first conductor is electrically connected to one surface of the third conductor, and at least a portion of the second conductor is electrically connected to the other surface of the third conductor. Connect to Furthermore, at least a portion of the first conductor is in contact with the oxygen-containing gas phase, and at least a portion of the second conductor is in contact with the object.
  • a purification device includes the above-described purification unit, and a treatment tank for holding therein the wastewater purified by the purification unit and the purification unit. And a purification unit is installed so that at least one part of the 1st conductor contacts with a gaseous phase, and at least one part of the 2nd conductor contacts with waste water.
  • a purification device includes the purification unit described above. And, the purification unit is installed such that at least a part of the first conductor is in contact with the gas phase and at least a part of the second conductor is in contact with the soil to be purified by the purification unit.
  • FIG. 1 is a perspective view showing an example of the purification apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 3 is an exploded perspective view showing a purification unit in the purification device.
  • FIG. 4 is a cross-sectional view showing another example of the purification device according to the first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing an example of the purification unit according to the second embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing an example of the purification unit according to the third embodiment of the present invention.
  • FIG. 7 is a cross-sectional view showing an example of the purification unit according to the fourth embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing an example of the purification unit according to the fifth embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing an example of the purification unit according to the sixth embodiment of the
  • the purification apparatus 100 which concerns on this embodiment is provided with the purification unit 1, as shown to FIG. 1 and FIG.
  • the purification unit 1 includes the purification structure 40 including the positive electrode 10 as the first conductor, the negative electrode 20 as the second conductor, and the ion transfer layer 30 as the third conductor.
  • the positive electrode 10 is disposed in contact with one surface 30 a of the ion transfer layer 30, and the negative electrode 20 is disposed in contact with the surface 30 b opposite to the surface 30 a of the ion transfer layer 30.
  • the gas diffusion layer 12 of the positive electrode 10 is in contact with the ion transfer layer 30, and the water repellent layer 11 is exposed to the gas phase 50 side.
  • the purification structure 40 is laminated
  • the cassette base 60 is a U-shaped frame member along the outer peripheral portion of the surface 10 a of the positive electrode 10, and the upper portion is open. That is, the cassette base 60 is a frame member in which the bottom surfaces of the two first columnar members 61 are connected by the second columnar member 62.
  • the side surface 63 of the cassette base 60 is joined to the outer periphery of the surface 10 a of the positive electrode 10, and the side 64 opposite to the side 63 is the outer periphery of the surface 70 a of the plate member 70. It is joined with the part.
  • the purification unit 1 formed by laminating the purification structure 40, the cassette base 60 and the plate member 70 is disposed inside the processing tank 80 so that the gas phase 50 is formed.
  • the waste water 90 which is an object to be treated is held inside the treatment tank 80, and the positive electrode 10, the negative electrode 20 and the ion transfer layer 30 are immersed in the waste water 90.
  • the positive electrode 10 is provided with a water repellent layer 11 having water repellency, and the plate member 70 is formed of a flat plate member which does not transmit the waste water 90. Therefore, the waste water 90 held inside the treatment tank 80 and the inside of the cassette base 60 are separated, and the internal space formed by the purification structure 40, the cassette base 60 and the plate member 70 becomes the gas phase 50. ing. Then, in the purification device 100, the gas phase 50 is opened to the outside air, or air is supplied to the gas phase 50 from the outside by, for example, a pump.
  • the positive electrode 10 which is the first conductor according to the present embodiment, includes the water repellent layer 11 and the gas diffusion layer 12 stacked so as to be in contact with the water repellent layer 11. And a gas diffusion electrode.
  • a thin plate-like gas diffusion electrode By using such a thin plate-like gas diffusion electrode, it is possible to easily supply oxygen in the gas phase 50 to the catalyst in the positive electrode 10.
  • the water repellent layer 11 in the positive electrode 10 is a layer having both water repellency and oxygen permeability.
  • the water repellent layer 11 is configured to allow the movement of oxygen from the gas phase 50 to the liquid phase while satisfactorily separating the gas phase 50 and the liquid phase in the electrochemical system in the purification unit 1. That is, while the water repellent layer 11 permeates oxygen in the gas phase 50 and moves it to the gas diffusion layer 12, it is possible to suppress the waste water 90 from moving to the gas phase 50 side.
  • “separation” means to physically shut off.
  • the water repellent layer 11 is in contact with the vapor phase 50 having a gas containing oxygen, and diffuses oxygen in the vapor phase 50.
  • the water repellent layer 11 supplies oxygen to the gas diffusion layer 12 substantially uniformly in the configuration shown in FIG. Therefore, it is preferable that the water repellent layer 11 be a porous body so that the oxygen can be diffused.
  • the water repellent layer 11 has water repellency, it is possible to prevent the pores of the porous body from being blocked by condensation or the like and the decrease in the diffusion of oxygen being suppressed.
  • the waste water 90 hardly penetrates into the water repellent layer 11, oxygen can be efficiently circulated from the surface in contact with the gas phase 50 in the water repellent layer 11 to the surface facing the gas diffusion layer 12 Become.
  • the water repellent layer 11 be formed in a sheet shape by woven fabric or non-woven fabric. Further, the material constituting the water repellent layer 11 is not particularly limited as long as it has water repellency and oxygen in the gas phase 50 can be diffused.
  • the material constituting the water repellent layer 11 is made of, for example, polyethylene, polypropylene, polybutadiene, nylon, polytetrafluoroethylene (PTFE), ethylcellulose, poly-4-methylpentene-1, butyl rubber and polydimethylsiloxane (PDMS). At least one selected from the group can be used. Since these materials easily form a porous body and also have high water repellency, it is possible to suppress clogging of pores and improve gas diffusivity.
  • the water repellent layer 11 preferably has a plurality of through holes in the stacking direction X of the water repellent layer 11 and the gas diffusion layer 12.
  • the water repellent layer 11 may be subjected to a water repellent treatment using a water repellent, if necessary, in order to enhance the water repellency.
  • a water repellent agent such as polytetrafluoroethylene may be attached to the porous body constituting the water repellent layer 11 to improve the water repellency.
  • the gas diffusion layer 12 in the positive electrode 10 preferably includes a porous conductive material and a catalyst supported on the conductive material.
  • the gas diffusion layer 12 may be made of a porous and conductive catalyst.
  • the gas diffusion layer 12 is preferably a porous body having a large number of pores through which oxygen can permeate from the surface facing the water repellent layer 11 to the surface on the opposite side.
  • the shape of the gas diffusion layer 12 is particularly preferably a three-dimensional mesh shape. With such a mesh shape, it is possible to impart high oxygen permeability and conductivity to the gas diffusion layer 12.
  • the water repellent layer 11 is preferably joined to the gas diffusion layer 12 via an adhesive.
  • the adhesive is preferably provided at least in part between the water repellent layer 11 and the gas diffusion layer 12 from the viewpoint of securing the adhesiveness between the water repellent layer 11 and the gas diffusion layer 12.
  • the adhesive is the water repellent layer 11 and the gas diffusion layer More preferably, it is provided on the entire surface between 12 and 12.
  • the adhesive is preferably one having oxygen permeability, and includes at least one selected from the group consisting of polymethyl methacrylate, methacrylic acid-styrene copolymer, styrene-butadiene rubber, butyl rubber, nitrile rubber, chloroprene rubber and silicone. Resin can be used.
  • the gas diffusion layer 12 of the positive electrode 10 in the present embodiment will be described in more detail.
  • the gas diffusion layer 12 can be configured to include a porous conductive material and a catalyst supported on the conductive material.
  • the conductive material in the gas diffusion layer 12 can be made of one or more materials selected from the group consisting of graphite foil, carbon paper, carbon cloth and stainless steel (SUS). More specifically, the conductive material in the gas diffusion layer 12 can be made of, for example, one or more materials selected from the group consisting of carbon-based materials, conductive polymers, semiconductors, and metals.
  • the carbon-based substance refers to a substance containing carbon as a component. Examples of carbon-based materials include, for example, graphite, activated carbon, carbon black, Vulcan (registered trademark) XC-72R, acetylene black, carbon powder such as furnace black and denka black, graphite felt, carbon wool, carbon woven fabric, etc.
  • Carbon fiber, carbon plate, carbon paper, carbon disk, carbon cloth, carbon foil, carbon-based material obtained by compression molding of carbon particles can be mentioned.
  • carbon-based material fine structure materials such as carbon nanotubes, carbon nanohorns, and carbon nanoclusters can also be mentioned.
  • the conductive polymer is a generic term for polymer compounds having conductivity.
  • the conductive polymer for example, a single monomer or a polymer of two or more types of monomers having aniline, aminophenol, diaminophenol, pyrrole, thiophene, paraphenylene, fluorene, furan, acetylene or their derivatives as structural units It can be mentioned.
  • examples of the conductive polymer include polyaniline, polyaminophenol, polydiaminophenol, polypyrrole, polythiophene, polyparaphenylene, polyfluorene, polyfuran, polyacetylene and the like.
  • the conductive material made of metal include metal materials such as mesh and foam, and for example, stainless steel mesh can be used.
  • the conductive material is preferably a carbon-based material.
  • the shape of the conductive material is preferably a powder shape or a fiber shape.
  • the conductive material may be supported by a support.
  • the support refers to a member which itself is rigid and can give the gas diffusion electrode a certain shape.
  • the support may be an insulator or a conductor.
  • examples of the support include glass, plastic, synthetic rubber, ceramics, paper treated with water or water resistance, water repellent or water repellent, plant pieces such as wood pieces, bone pieces, animal pieces such as shells, etc.
  • Examples of the support having a porous structure include porous ceramic, porous plastic, sponge and the like.
  • the support When the support is a conductor, examples of the support include carbon paper, carbon fibers, carbon-based materials such as carbon rods, metals, conductive polymers, and the like.
  • the conductive material supporting a carbon-based material is disposed on the surface of the support, and the support can also function as a current collector.
  • the catalyst in the gas diffusion layer 12 is a platinum-based catalyst, a carbon-based catalyst using iron or cobalt, a transition metal oxide-based catalyst such as partially oxidized tantalum carbonitride (TaCNO) or zirconium carbonitride (ZrCNO), tungsten Alternatively, a carbide-based catalyst using molybdenum, activated carbon or the like can be used.
  • a platinum-based catalyst a carbon-based catalyst using iron or cobalt
  • a transition metal oxide-based catalyst such as partially oxidized tantalum carbonitride (TaCNO) or zirconium carbonitride (ZrCNO)
  • tungsten tungsten
  • a carbide-based catalyst using molybdenum, activated carbon or the like can be used.
  • the catalyst in the gas diffusion layer 12 is preferably a carbon-based material doped with metal atoms.
  • the metal atom is not particularly limited, but titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, silver, hafnium, tantalum, tungsten, rhenium, osmium, iridium It is preferable that it is an atom of at least one metal selected from the group consisting of platinum, and gold. In this case, the carbon-based material exhibits excellent performance as a catalyst for particularly promoting the oxygen reduction reaction.
  • the amount of metal atoms contained in the carbon-based material may be appropriately set so that the carbon-based material has excellent catalytic performance.
  • the carbon-based material is preferably further doped with one or more nonmetallic atoms selected from nitrogen, boron, sulfur and phosphorus.
  • the amount of nonmetal atoms doped in the carbon-based material may also be appropriately set so that the carbon-based material has excellent catalytic performance.
  • the carbon-based material is based on a carbon source material such as graphite and amorphous carbon, and the carbon source material is doped with metal atoms and one or more nonmetal atoms selected from nitrogen, boron, sulfur and phosphorus It is obtained by
  • the combination of metal atoms and nonmetal atoms doped in the carbon-based material is appropriately selected.
  • the nonmetal atom contains nitrogen and the metal atom contains iron.
  • the carbon-based material can have particularly excellent catalytic activity.
  • the nonmetal atom may be only nitrogen or the metal atom may be only iron.
  • the nonmetal atom may contain nitrogen, and the metal atom may contain at least one of cobalt and manganese. Also in this case, the carbon-based material can have particularly excellent catalytic activity.
  • the nonmetal atom may be only nitrogen.
  • the metal atom may be only cobalt, only manganese, or only cobalt and manganese.
  • the shape of the carbon-based material is not particularly limited.
  • the carbon-based material may have a particulate shape or may have a sheet-like shape.
  • the dimensions of the carbon-based material having a sheet-like shape are not particularly limited, and, for example, the carbon-based material may have minute dimensions.
  • the carbonaceous material having a sheet-like shape may be porous. It is preferable that the porous carbon-based material having a sheet-like shape has, for example, a woven-like shape, a non-woven-like shape or the like. Such a carbon-based material can constitute the gas diffusion layer 12 even without the conductive material.
  • the carbon-based material configured as a catalyst in the gas diffusion layer 12 can be prepared as follows. First, a mixture containing, for example, a nonmetal compound containing at least one nonmetal selected from the group consisting of nitrogen, boron, sulfur, and phosphorus, a metal compound, and a carbon source material is prepared. Then, the mixture is heated at a temperature of 800 ° C. or more and 1000 ° C. or less for 45 seconds or more and less than 600 seconds. Thereby, a carbon-based material configured as a catalyst can be obtained.
  • a nonmetal compound containing at least one nonmetal selected from the group consisting of nitrogen, boron, sulfur, and phosphorus, a metal compound, and a carbon source material is prepared. Then, the mixture is heated at a temperature of 800 ° C. or more and 1000 ° C. or less for 45 seconds or more and less than 600 seconds. Thereby, a carbon-based material configured as a catalyst can be obtained.
  • the carbon source material for example, graphite or amorphous carbon can be used.
  • the metal compound is not particularly limited as long as it is a compound containing a metal atom which can coordinately bond with a nonmetal atom doped in the carbon source material.
  • metal compounds include inorganic metal salts such as metal chlorides, nitrates, sulfates, bromides, iodides and fluorides, organic metal salts such as acetates, hydrates of inorganic metal salts, and organic metal salts It is possible to use at least one selected from the group consisting of hydrates of For example, when graphite is doped with iron, the metal compound preferably contains iron (III) chloride.
  • the metal compound When graphite is doped with cobalt, the metal compound preferably contains cobalt chloride. When manganese is doped to the carbon source material, the metal compound preferably contains manganese acetate. The amount of the metal compound used is preferably determined so that, for example, the ratio of metal atoms in the metal compound to the carbon source material is in the range of 5 to 30% by mass, More preferably, it is determined to be within the range.
  • the nonmetallic compound is preferably at least one nonmetallic compound selected from the group consisting of nitrogen, boron, sulfur and phosphorus as described above.
  • nonmetal compounds include pentaethylenehexamine, ethylenediamine, tetraethylenepentamine, triethylenetetramine, ethylenediamine, octylboronic acid, 1,2-bis (diethylphosphinoethane), triphenyl phosphite, and benzyl disalc.
  • At least one compound selected from the group consisting of Fides can be used.
  • the amount of the nonmetallic compound used is appropriately set according to the doping amount of the nonmetallic atom to the carbon source material.
  • the amount of the nonmetallic compound used is preferably determined such that the molar ratio of the metal atom in the metallic compound to the nonmetallic atom in the nonmetallic compound is in the range of 1: 1 to 1: 2. More preferably, it is determined to be in the range of 1: 1.5 to 1: 1.8.
  • a mixture containing a nonmetal compound, a metal compound and a carbon source material in preparing a carbon-based material configured as a catalyst is obtained, for example, as follows. First, a carbon source material, a metal compound and a nonmetal compound are mixed, and if necessary, a solvent such as ethanol is added to adjust the total amount. These are further dispersed by ultrasonic dispersion. Subsequently, after heating them to a suitable temperature (for example 60 ° C.), the mixture is dried to remove the solvent. Thereby, a mixture containing the nonmetal compound, the metal compound and the carbon source material is obtained.
  • a suitable temperature for example 60 ° C.
  • the resulting mixture is then heated, for example under a reducing atmosphere or under an inert gas atmosphere.
  • the carbon source material is doped with the nonmetal atom, and the metal atom is also doped by the coordination bond between the nonmetal atom and the metal atom.
  • the heating temperature is preferably in the range of 800 ° C. to 1000 ° C., and the heating time is preferably in the range of 45 seconds to less than 600 seconds. Since the heating time is short, the carbon-based material is efficiently produced, and the catalytic activity of the carbon-based material is further enhanced.
  • the temperature increase rate of the mixture at the time of a heating start in heat processing is 50 degrees C / s or more. Such rapid heating further improves the catalytic activity of the carbon-based material.
  • the carbon-based material may be further acid-washed.
  • the carbon-based material may be dispersed in pure water for 30 minutes with a homogenizer, and then the carbon-based material may be placed in 2 M sulfuric acid and stirred at 80 ° C. for 3 hours. In this case, the elution of the metal component from the carbon-based material can be suppressed.
  • the catalyst may be bound to the conductive material using a binder. That is, the catalyst may be supported on the surface of the conductive material and inside the pores using a binder. Thereby, the catalyst can be prevented from being desorbed from the conductive material and the oxygen reduction characteristics can be prevented from being degraded.
  • the binder for example, it is preferable to use at least one selected from the group consisting of polytetrafluoroethylene, polyvinylidene fluoride (PVDF), and ethylene-propylene-diene copolymer (EPDM).
  • PVDF polyvinylidene fluoride
  • EPDM ethylene-propylene-diene copolymer
  • Nafion registered trademark
  • Nafion registered trademark
  • the negative electrode 20 which is a second conductor according to the present embodiment, supports the below-described microorganism, and further generates hydrogen ions and electrons from at least one of the organic substance in the waste water 90 and the nitrogen-containing compound by catalytic action of the microorganism. It has a function. Therefore, the negative electrode 20 of the present embodiment is not particularly limited as long as it has a configuration that produces such a function.
  • the negative electrode 20 of the present embodiment has a structure in which microorganisms are supported on a conductive sheet having conductivity.
  • the conductive sheet at least one selected from the group consisting of a porous conductive sheet, a woven conductive sheet and a non-woven conductive sheet can be used.
  • the conductor sheet may be a laminate in which a plurality of sheets are laminated.
  • hydrogen ions generated by a local cell reaction described later are easily moved toward the positive electrode 10, and the rate of the oxygen reduction reaction is increased. It is possible to enhance.
  • the conductor sheet of the negative electrode 20 preferably has a space (void) continuous in the stacking direction X, that is, in the thickness direction.
  • the conductive sheet in the negative electrode 20 can be at least one selected from the group consisting of a graphite foil, a graphite brush, and a carbon felt.
  • the graphite brush is a bundle of carbon fibers attached with a handle, and has conductivity as a whole.
  • the conductor sheet in the negative electrode 20 may be a metal plate having a plurality of through holes in the thickness direction. Therefore, as a material which comprises the conductor sheet of negative electrode 20, conductive metals, such as aluminum, copper, stainless steel, nickel, and titanium, can also be used, for example.
  • the microorganism carried on the negative electrode 20 is not particularly limited as long as it decomposes the organic substance in the waste water 90 or the compound containing nitrogen, but it is preferable to use, for example, an anaerobic microorganism which does not require oxygen for growth. Anaerobic microbes do not require air to oxidatively degrade the organic matter in the waste water 90. Therefore, the power required to feed the air can be significantly reduced. In addition, since the free energy obtained by microorganisms is small, it is possible to reduce the amount of sludge generated.
  • maintained at the negative electrode 20 are anaerobic microorganisms, for example, it is preferable that they are the electric production bacteria which have an extracellular electron transfer mechanism.
  • anaerobic microorganisms include, for example, bacteria belonging to the genus Geobacter, bacteria belonging to the genus Shewanella, bacteria belonging to the genus Aeromonas, bacteria belonging to the genus Geothrix, and bacteria belonging to the genus Saccharomyces.
  • the anaerobic microorganism may be held on the negative electrode 20 by superimposing and fixing a biofilm containing an anaerobic microorganism on the negative electrode 20.
  • an anaerobic microorganism may be held on the surface 20 b opposite to the surface 20 a in contact with the ion transfer layer 30 in the negative electrode 20.
  • Biofilm generally refers to a three-dimensional structure including a microbial population and an extracellular polymeric substance (EPS) produced by the microbial population.
  • EPS extracellular polymeric substance
  • the anaerobic microorganism may be held by the negative electrode 20 without using the biofilm.
  • the anaerobic microorganism may be held not only on the surface of the negative electrode 20 but also on the inside.
  • the anaerobic microorganism is preferably supported on at least one of the surface or the inside of the negative electrode 20.
  • the effect of this embodiment can be exhibited. Therefore, in the purification device 100, it is preferable that at least one of the negative electrode 20 and the waste water 90 retain an anaerobic microorganism.
  • the purification unit 1 of the present embodiment is provided between the positive electrode 10 and the negative electrode 20, further has ion ion permeability, and further includes an ion transfer layer 30 which is a third conductor. Then, as shown in FIGS. 1 and 2, the negative electrode 20 is separated from the positive electrode 10 via the ion transfer layer 30. Furthermore, at least a portion of the positive electrode 10 is electrically connected to one surface 30 a of the ion transfer layer 30, and at least a portion of the negative electrode 20 is electrically connected to the other surface 30 b of the ion transfer layer 30.
  • the ion transfer layer 30 has a function of transmitting hydrogen ions generated at the negative electrode 20 and moving the hydrogen ions to the positive electrode 10 side. Therefore, hydrogen ions generated at the negative electrode 20 move inside the ion transfer layer 30, and react with oxygen at the positive electrode 10 to generate water. Therefore, the configuration of the ion transfer layer 30 is not particularly limited as long as hydrogen ions can be conducted without significantly inhibiting diffusion.
  • the ion transfer layer 30 a porous membrane having pores through which hydrogen ions can pass may be used. That is, the ion transfer layer 30 may be a sheet having a space (air gap) for hydrogen ions to move between the positive electrode 10 and the negative electrode 20. Therefore, it is preferable that the ion transfer layer 30 includes at least one selected from the group consisting of a porous sheet, a woven sheet and a non-woven sheet.
  • the pore diameter of the ion transfer layer 30 is not particularly limited as long as hydrogen ions can move between the positive electrode 10 and the negative electrode 20.
  • the ion transfer layer 30 is preferably made of a conductor. That is, in the purification unit 1, the gas diffusion layer 12 of the positive electrode 10 is disposed in contact with one surface 30 a of the ion transfer layer 30, and the negative electrode 20 is disposed on the surface 30 b opposite to the surface 30 a of the ion transfer layer 30. Are placed in contact with each other. Therefore, when the ion transfer layer 30 has conductivity, the positive electrode 10 and the negative electrode 20 short-circuit. As a result, electrons generated at the negative electrode 20 move to the positive electrode 10, and an oxygen reduction reaction can be caused at the positive electrode 10.
  • the conductive ion transfer layer 30 is not particularly limited as long as it has a space in which hydrogen ions can move and is electrically connected to the positive electrode 10 and the negative electrode 20.
  • the ion transfer layer 30 may extend continuously from the negative electrode 20 toward the positive electrode 10.
  • the ion transfer layer 30 may be composed of a plurality of electrically conductive parts connected electrically, and for example, a plurality of conductive layers may be stacked and electrically connected.
  • At least a portion of the material constituting the ion transfer layer 30 may extend continuously from the negative electrode 20 toward the positive electrode 10, and may further extend across the space. That is, at least a part of the material constituting the ion transfer layer 30 may extend in the direction perpendicular to the stacking direction X of the positive electrode 10, the negative electrode 20 and the ion transfer layer 30.
  • the material of the ion transfer layer 30 is not particularly limited as long as the conductivity can be ensured, and for example, at least one selected from the group consisting of a conductive metal, a carbon material, and a conductive polymer material can be used.
  • a conductive metal for example, at least one selected from the group consisting of aluminum, copper, stainless steel, nickel and titanium can be used.
  • the carbon material for example, at least one selected from the group consisting of carbon paper, carbon felt, carbon cloth and graphite foil can be used.
  • the conductive polymer material at least one selected from the group consisting of polyacetylene, polythiophene, polyaniline, poly (p-phenylenevinylene), polypyrrole and poly (p-phenylene sulfide) can be used.
  • the ion transfer layer 30 includes at least one of a woven conductive sheet and a non-woven conductive sheet. Since the woven conductive sheet and the non-woven conductive sheet have a large number of pores, movement of hydrogen ions can be facilitated.
  • the ion transfer layer 30 may be a metal plate having a plurality of through holes from the negative electrode 20 to the positive electrode 10.
  • the ion transfer layer 30 more preferably comprises a non-woven conductive sheet, and particularly preferably comprises a non-woven conductive sheet. Since the thickness and porosity of the non-woven fabric can be easily changed, the permeability of hydrogen ions can be easily improved.
  • the negative electrode 20 is supplied with waste water 90 containing at least one of an organic substance and a nitrogen-containing compound, and the positive electrode 10 is supplied with air or oxygen. At this time, air and oxygen are continuously supplied through the gas phase 50.
  • the positive electrode 10 shown in FIG. 1 and FIG. 2 air is diffused by the gas diffusion layer 12 through the water repellent layer 11.
  • hydrogen ions and electrons are generated from at least one of the organic matter and the nitrogen-containing compound in the waste water 90 by the catalytic action of the microorganism.
  • the generated hydrogen ions pass through the space inside the ion transfer layer 30 where the waste water 90 exists, and move to the positive electrode 10 side.
  • the generated electrons move to the ion transfer layer 30 through the conductive sheet of the negative electrode 20, and further move to the gas diffusion layer 12 of the positive electrode 10.
  • the hydrogen ions and electrons are combined with oxygen by the action of the catalyst supported on the gas diffusion layer 12 and consumed as water.
  • Negative electrode 20 4 NH 3 ⁇ 2 N 2 + 12 H + + 12 e ⁇ - the positive electrode 10: 3O 2 + 12H + + 12e - ⁇ 6H 2 O
  • the catalytic action of the microorganisms in the negative electrode 20 can decompose the organic matter and the nitrogen-containing compound in the waste water 90 and purify the waste water 90.
  • a hydroxide ion may be produced
  • the ion transfer layer 30, which is the third conductor has a higher electrical resistivity than the positive electrode 10, which is the first conductor, and the negative electrode 20, which is the second conductor. Is preferred. While the ion transfer layer 30 has conductivity, it has an electrical resistivity higher than that of the positive electrode 10 and the negative electrode 20, thereby controlling the positive electrode 10 and the negative electrode 20 to an appropriate potential, and between the positive electrode 10 and the negative electrode 20. Potential difference can be secured. In addition, since the metabolism of the microorganism accompanied by electron conduction is also promoted, it is possible to further enhance the decomposition efficiency of the organic substance and the nitrogen-containing compound in the object to be treated. Furthermore, in the purification unit 1, there is no need to provide wiring such as an external circuit for securing a potential difference and a boosting system, so that the configuration can be simplified and the miniaturization of the purification device 100 can be achieved. .
  • the electrical resistivity of each of the first conductor and the second conductor refers to the electrical resistivity of the surface in contact with the third conductor. That is, in the present embodiment, the electrical resistivity of the first conductor is the electrical resistivity of the surface 10 b of the positive electrode 10. Further, the electrical resistivity of the second conductor is the electrical resistivity of the surface 20 a of the negative electrode 20. The electrical resistivity of the surfaces of the first and second conductors in contact with the third conductor can be measured by the four-point probe method.
  • the electrical resistivity of the third conductor is the electrical resistivity of the surface perpendicular to the surface of the third conductor in contact with the first conductor and the second conductor. That is, in the present embodiment, the electric resistivity of the ion transfer layer 30 which is the third conductor is a value measured on the upper surface 30c and the lower surface 30d shown in FIG. 2 and the right side 30e and the left side 30f shown in FIG. Is the lowest value.
  • the electrical resistivity of the third conductor is a value measured by the four-point probe method along the stacking direction of the first conductor, the second conductor, and the third conductor. That is, in the present embodiment, the electrical resistivity of the ion transfer layer 30 which is the third conductor is a value measured by the four-point probe method along the X-axis direction which is the stacking direction.
  • the purification unit 1 includes the first conductor, the second conductor different from the first conductor, and the third conductor different from the first conductor and the second conductor. And the conductor of Then, at least a portion of the first conductor is electrically connected to one surface of the third conductor, and at least a portion of the second conductor is electrically connected to the other surface of the third conductor. Connect to Furthermore, at least a portion of the first conductor is in contact with the vapor phase 50 containing oxygen, and at least a portion of the second conductor is in contact with the object to be treated.
  • the purification device 100 includes the purification unit 1 described above, and a treatment tank 80 for holding therein the wastewater 90 purified by the purification unit 1 and the purification unit 1. Then, the purification unit 1 is installed such that at least a part of the first conductor contacts with the gas phase 50 and at least a part of the second conductor contacts with the waste water 90.
  • the purification device 100 of the present embodiment can efficiently oxidize and decompose the component (organic matter or nitrogen-containing compound) contained in the wastewater 90 through the electron transfer reaction. Specifically, the organic matter and / or the nitrogen-containing compound contained in the waste water 90 is decomposed and removed by the metabolism of the anaerobic microorganism, that is, the growth of the microorganism. And since this oxidative decomposition treatment is carried out under anaerobic conditions, the conversion efficiency from organic matter to new cells of microorganisms can be suppressed to a lower level than when carried out under aerobic conditions.
  • the third conductor preferably has higher electrical resistivity than the first conductor and the second conductor. That is, it is preferable that the first conductor and the second conductor are not in direct contact and electrically connected to each other through the third conductor having a relatively high electric resistivity. This secures a potential difference between the first conductor and the second conductor, and facilitates the flow of electrons from the second conductor to the first conductor. As a result, since the metabolism of the microorganism accompanied by electron conduction is also promoted, the decomposition efficiency of the organic substance and the nitrogen-containing compound in the object to be treated can be further enhanced.
  • the first conductor preferably includes an oxygen reduction catalyst.
  • the oxygen reduction reaction between the oxygen in the gas phase 50 and the hydrogen ions and electrons generated by the second conductor is promoted, so purification of the object to be treated is made more efficient. It will be possible to do.
  • At least one of the surface and the inside of the second conductor carries an anaerobic microorganism.
  • anaerobic microorganisms it is possible to reduce the growth of microorganisms, that is, the amount of sludge generated, and also to suppress the generation of methane gas.
  • the ion transfer layer 30 which is the third conductor is the surface 10b of the positive electrode 10 which is the first conductor, and the surface 20a of the negative electrode 20 which is the second conductor. It is in contact throughout.
  • the purification unit 1 is not limited to such an aspect, and at least a part of the positive electrode 10 is electrically connected to the surface 30 a of the ion transfer layer 30, and at least a part of the negative electrode 20 to the surface 30 b of the ion transfer layer 30. Should be electrically connected. Therefore, as shown in FIG. 4, the ion transfer layer 30 may be in contact with part of the surface 10 b of the positive electrode 10 and part of the surface 20 a of the negative electrode 20. In addition, in this case, the whole of the ion transfer layer 30 may be immersed in the wastewater 90.
  • the positive electrode 10 as the first conductor and the negative electrode 20 as the second conductor are electrically connected by the ion transfer layer 30 as the third conductor.
  • the positive electrode 10 and the negative electrode 20 are electrically connected by one ion transfer layer 30, this embodiment is not limited to such an aspect. That is, the positive electrode 10 and the negative electrode 20 may be connected using a plurality of ion transfer layers 30.
  • the third conductor itself does not have ion conductivity, it is possible to move hydrogen ions from the second conductor to the first conductor by the waste water 90, so that the third conductor can be used. It does not have to have ion conductivity.
  • the purification unit 1 when a microorganism comes in contact with the positive electrode 10 which is the first conductor, sticking of a coagulated substance by the secretory component, excessive consumption of oxygen by the microorganism, formation of a local pH gradient, etc. occur. The amount of reaction associated with the transfer of electrons may be reduced. Therefore, it is preferable that the adhesion of the microorganism to the positive electrode 10 be inhibited as much as possible.
  • a method for inhibiting the adhesion of the microorganism to the positive electrode 10 a method using the ion transfer layer 30 having a pore diameter which does not pass through physically or a method using chemical / biological action of the ion transfer layer 30 is mentioned.
  • a method of utilizing chemical and biological actions a method of fixing a germicide for sterilizing a microorganism to the ion transfer layer 30 can be mentioned.
  • a germicide for example, a compound capable of releasing germicidal silver ion or copper ion, and tetracycline can be used.
  • a method may be mentioned in which the ion transfer layer 30 itself has a local pH outside the pH range in which microorganisms can reproduce.
  • the treatment tank 80 holds the waste water 90 therein, but the waste water 90 may be circulated.
  • the treatment tank 80 includes a wastewater supply port 81 for supplying the wastewater 90 to the treatment tank 80, and a wastewater for discharging the treated wastewater 90 from the treatment tank 80.
  • An outlet 82 may be provided.
  • the waste water 90 is preferably supplied continuously through the waste water supply port 81 and the waste water discharge port 82.
  • an electron transfer mediator molecule may be modified in the negative electrode 20 which is the second conductor according to the present embodiment.
  • the waste water 90 in the treatment tank 80 may contain an electron transfer mediator molecule. Thereby, electron transfer from the anaerobic microorganism to the negative electrode 20 can be promoted, and more efficient liquid processing can be realized.
  • the mediator molecule in the metabolic mechanism by anaerobic microorganisms, electrons are exchanged in cells or with the final electron acceptor.
  • the mediator molecule acts as a final electron acceptor for metabolism and delivers the received electron to the negative electrode 20.
  • the mediator molecule is supported on the surface 20 b of the negative electrode 20, the same effect can be obtained.
  • Such electron transfer mediator molecules are not particularly limited.
  • the electron transfer mediator molecule for example, at least one selected from the group consisting of neutral red, anthraquinone-2,6-disulfonic acid (AQDS), thionine, potassium ferricyanide, and methyl viologen can be used.
  • AQDS anthraquinone-2,6-disulfonic acid
  • thionine thionine
  • potassium ferricyanide potassium ferricyanide
  • methyl viologen methyl viologen
  • the purification unit includes a first conductor 10A, a second conductor 20A different from the first conductor 10A, a first conductor 10A, and a second conductor. It has a third conductor 30A different from the conductor 20A. Then, at least a portion of the first conductor 10A is electrically connected to one surface 30a of the third conductor 30A, and the other surface 30b of the third conductor 30A is electrically connected to the other surface 30b. At least a part is electrically connected.
  • the first conductor 10A is electrically connected by bringing the first conductor 10A into contact with one surface 30a of the third conductor 30A, and the second surface 30b of the third conductor 30A is The electric conductors 20A are electrically connected by contact.
  • the first conductor 10A is exposed from the water surface 90a of the waste water 90, and is in direct contact with air which is a gas phase containing oxygen. Therefore, in the purification unit, it is not necessary to provide the cassette base 60 and the plate member 70 for forming the gas phase 50 used in the first embodiment.
  • the first conductor 10A does not have to include the water repellent layer 11 in the positive electrode 10 of the first embodiment. Therefore, the first conductor 10A can have the same configuration as the gas diffusion layer 12 of the positive electrode 10 in the first embodiment, and the second conductor 20A has the same configuration as the negative electrode 20 in the first embodiment. Can.
  • the third conductor 30A can have the same configuration as the ion transfer layer 30 in the first embodiment.
  • the purification unit is a waste water in which at least a portion of the first conductor 10A is in contact with the gas phase 50 containing oxygen and at least a portion of the second conductor 20A is an object to be treated It is installed in contact with 90.
  • the second conductor 20A and the third conductor 30A are in contact with the waste water 90, the waste water 90 exists inside them. Therefore, the second conductor 20A and the third conductor 30A allow the movement of hydrogen ions by the waste water 90 inside.
  • the first conductor 10A is also in partial contact with the waste water 90, and the waste water 90 exists inside.
  • the wastewater 90 can be raised by capillary action and held inside the first conductor 10A. Therefore, the first conductor 10A also enables the movement of hydrogen ions by the waste water 90 inside.
  • the purification device of the present embodiment can also operate in the same manner as the first embodiment. Specifically, during operation of the purification device, the waste water 90 containing at least one of an organic substance and a nitrogen-containing compound is supplied to the second conductor 20A, and air or oxygen is supplied to the first conductor 10A. At this time, since the first conductor 10A is exposed to the air, the air is continuously supplied.
  • hydrogen ions and electrons are generated from at least one of the organic matter and the nitrogen-containing compound in the waste water 90 by the catalytic action of the microorganism.
  • the generated hydrogen ions pass through the space inside the third conductor 30A and move to the first conductor 10A side.
  • the generated electrons move to the third conductor 30A through the second conductor 20A, and further to the first conductor 10A.
  • the hydrogen ions and electrons are combined with oxygen by the action of the catalyst supported on the first conductor 10A, and are consumed as water.
  • the purification device of the present embodiment can also efficiently oxidize and decompose the organic matter and the nitrogen-containing compound contained in the waste water 90 through the electron transfer reaction. And since this oxidative decomposition treatment is performed under anaerobic conditions, it is possible to reduce the growth of microorganisms, that is, the amount of generated sludge, as compared with the case of using the activated sludge method.
  • the metabolic product is, for example, carbon dioxide gas, so the generation of methane gas can be suppressed.
  • the purification unit used in the present embodiment since the first conductor 10A is exposed to the air, the water repellent layer 11, the cassette base 60 and the plate member 70 for forming the gas phase 50 are unnecessary. It becomes. Therefore, the structure of the purification unit can be simplified.
  • the purification unit according to this embodiment is particularly limited as long as at least a part of the first conductor 10A can be exposed from the water surface 90a of the wastewater 90 and the second conductor 20A can be immersed in the wastewater 90.
  • the configuration as shown in FIGS. 5 (a) to 5 (d) can be adopted.
  • the first conductor 10A is disposed substantially horizontally with respect to the water surface 90a, and the second conductor 20A is disposed substantially perpendicularly with respect to the first conductor 10A.
  • the third conductor 30A is interposed between the first conductor 10A and the second conductor 20A.
  • the number of the second conductors 20A and the third conductors 30A is not limited to one, and the plurality of second conductors 20A and the third conductors 30A may be one first conductor 10A. It may be connected.
  • the first conductor 10A is disposed substantially horizontally to the water surface 90a, and the second conductor 20A is disposed substantially parallel to the first conductor 10A. ing.
  • the plurality of third conductors 30A are interposed between the first conductor 10A and the second conductor 20A.
  • the first conductor 10A and the second conductor 20A are close to each other, and the first conductor 20A to the third conductor 30A pass the first process.
  • the electron conduction path to the conductor 10A is relatively short. Therefore, the conductivity from the second conductor 20A to the first conductor 10A is high. Therefore, the first conductor 10A and the second conductor 20A may use a substrate having a relatively high electric resistance, and even in that case, it is possible to efficiently purify the waste water 90. .
  • the first conductor 10A is disposed substantially horizontally to the water surface 90a, and the third conductor 30A is between the first conductor 10A and the second conductor 20A. Intervenes in the However, the cross section of the second conductor 20A is substantially T-shaped. Further, in the purification unit 1D of FIG. 5 (d), the first conductor 10A is disposed substantially horizontally to the water surface 90a, and the third conductor 30A includes the first conductor 10A and the second conductor 20A. Intervenes between However, the cross section of the second conductor 20A is substantially U-shaped.
  • an anaerobic microorganism is preferably carried on the surface or inside of the second conductor 20A, it is preferable that the periphery of the second conductor 20A be an anaerobic atmosphere. Therefore, it is preferable that the second conductor 20A be disposed at a position away from the water surface 90a. Further, as described above, in the present embodiment, since the first conductor 10A is disposed on the water surface 90a of the wastewater 90, the second conductor 20A is disposed at a distance from the first conductor 10A. Is preferred.
  • the first conductor 10A when the oxygen reduction catalyst is supported on the upper surface 10c of the first conductor 10A, the first conductor 10A is not conductive to secure the hydrogen ion conductivity to the oxygen reduction catalyst. It is preferable that the waste water 90 is held to the upper surface 10c. However, by arranging the ion conductive material inside the first conductor 10A, it is possible to conduct hydrogen ions to the oxygen reduction catalyst even if the waste water 90 is not held.
  • the ion conductive material for example, Nafion (registered trademark) containing a perfluorosulfonic acid group or Flemion (registered trademark) consisting of a perfluoro type vinyl ether containing a carboxylic acid group can be used.
  • the purification unit according to this embodiment also has the same configuration as that of the second embodiment. As shown in FIG. 6, the purification unit is different from the first conductor 10B, the second conductor 20B different from the first conductor 10B, and the first conductor 10B and the second conductor 20B. And a third conductor 30B. Then, at least a portion of the first conductor 10B is electrically connected to one surface 30a of the third conductor 30B, and the other surface 30b of the third conductor 30B is electrically connected to the other surface 30b of the third conductor 30B. At least a part is electrically connected.
  • the first conductor 10B is electrically connected by bringing the first conductor 10B into contact with one surface 30a of the third conductor 30B, and the second surface 30b of the third conductor 30B is made second. Are connected electrically by contact with the conductor 20B.
  • the first conductor 10B and the second conductor 20B are connected in the vertical direction via the third conductor 30B.
  • the first conductor 10B and the second conductor 20B are connected in the vertical direction via the third conductor 30B. There is. The part of the first conductor 10B, the second conductor 20B, and the third conductor 30B are immersed in the waste water 90. Moreover, in order to increase the contact area with the vapor phase 50, the cassette base material 60 and the plate member 70 are provided on the first conductor 10B. Therefore, the first conductor 10B preferably has the same configuration as the positive electrode 10 including the water repellent layer 11 and the gas diffusion layer 12 in the first embodiment.
  • the second conductor 20B can have the same configuration as the negative electrode 20 in the first embodiment, and the third conductor 30B can have the same configuration as the ion transfer layer 30 in the first embodiment.
  • the first conductor 10B and the second conductor 20B are connected in the vertical direction via the third conductor 30B. Then, the first conductor 10B is exposed in the vapor phase 50, and a part of the second conductor 20B and the third conductor 30B is immersed in the waste water 90. Therefore, the first conductor 10B may have the same configuration as the gas diffusion layer 12 of the positive electrode 10 in the first embodiment, and the second conductor 20B may have the same configuration as the negative electrode 20 in the first embodiment. Can. Furthermore, the third conductor 30B can have the same configuration as the ion transfer layer 30 in the first embodiment.
  • the wastewater 90 can be raised by capillary action and can be held inside the first conductor 10B. Therefore, the first conductor 10B allows the movement of hydrogen ions by the waste water 90 inside.
  • the ion conductive material may be disposed inside the first conductor 10B.
  • the purification device of the present embodiment can also function in the same manner as the first and second embodiments. Specifically, during operation of the purification device, the waste water 90 containing at least one of an organic substance and a nitrogen-containing compound is supplied to the second conductor 20B, and air or oxygen is supplied to the first conductor 10B. Then, in the second conductor 20B, hydrogen ions and electrons are generated from at least one of the organic matter and the nitrogen-containing compound in the waste water 90 by the catalytic action of the microorganism. The generated hydrogen ions pass through the space inside the third conductor 30B and move to the first conductor 10B side. Also, the generated electrons move to the third conductor 30B through the second conductor 20B and further to the first conductor 10B. The hydrogen ions and electrons are combined with oxygen by the action of the catalyst supported on the first conductor 10B, and consumed as water.
  • the purification units 1E and 1F are installed in the vertical direction, the installation space in the waste water 90 can be reduced. Therefore, the plurality of purification units 1E and 1F can be installed in a small space, and the wastewater 90 can be efficiently purified.
  • the purification unit according to this embodiment also has the same configuration as that of the second embodiment. As shown in FIG. 7, the purification unit is different from the first conductor 10C, the second conductor 20C different from the first conductor 10C, and the first conductor 10C and the second conductor 20C. And a third conductor 30C. Then, at least a part of the first conductor 10C is electrically connected to one surface 30a of the third conductor 30C, and the other surface 30b of the third conductor 30C is connected to the second surface 20b. At least a part is electrically connected.
  • the first conductor 10C is electrically connected by bringing the first conductor 10C into contact with one surface 30a of the third conductor 30C, and the second surface 30b of the third conductor 30C is Are connected electrically by contact with the conductor 20C.
  • the first conductor 10C is disposed substantially horizontally to the water surface 90a, and the second conductor 20C is disposed substantially perpendicularly to the first conductor 10C.
  • the third conductor 30C is interposed between the first conductor 10C and the second conductor 20C.
  • the first conductor 10C is disposed substantially horizontally to the water surface 90a, and the second conductor 20C is disposed substantially parallel to the first conductor 10C. ing.
  • the third conductor 30C is interposed between the first conductor 10C and the second conductor 20C.
  • the first conductor 10C is exposed from the water surface 90a of the waste water 90, and is in direct contact with air which is a gas phase containing oxygen. Then, part of the second conductor 20C and the third conductor 30C is immersed in the waste water 90. Therefore, the first conductor 10C can have the same configuration as the gas diffusion layer 12 of the positive electrode 10 in the first embodiment, and the second conductor 20C has the same configuration as the negative electrode 20 in the first embodiment. Can. Furthermore, the third conductor 30C can have the same configuration as the ion transfer layer 30 in the first embodiment.
  • the wastewater 90 can be raised by capillary action and held inside the first conductor 10C. Therefore, the first conductor 10C enables the movement of hydrogen ions by the waste water 90 inside.
  • the ion conductive material may be disposed inside the first conductor 10C.
  • a lid member 110 is provided between the first conductor 10C and the water surface 90a of the wastewater 90.
  • the lid member 110 preferably has low oxygen permeability.
  • the contact between the waste water 90 and the gas phase 50 can be suppressed, and the amount of oxygen dissolved in the waste water 90 can be reduced.
  • the surroundings of the second conductor 20C disposed inside the wastewater 90 can be made into an anaerobic atmosphere, it becomes possible to promote the metabolism of anaerobic microorganisms.
  • the purification unit 1H of FIG. 7B by providing the lid member 110, the vicinity of the water surface 90a can be kept anaerobic, so the second conductor 20C is brought close to the first conductor 10C. Can be arranged.
  • such a lid member 110 be made of a resin material having low oxygen permeability. Further, in order to expose the first conductor 10C from the water surface 90a of the waste water 90, it is preferable to make the specific gravity of the lid member 110 smaller than that of water to generate buoyancy.
  • the purification unit according to this embodiment also has the same configuration as the first and second embodiments. As shown in FIG. 8, the purification unit is different from the first conductor 10D, the second conductor 20D different from the first conductor 10D, and the first conductor 10D and the second conductor 20D. And a third conductor 30D. Then, at least a part of the first conductor 10D is electrically connected to the one surface 30a of the third conductor 30D, and the other surface 30b of the third conductor 30D is the second conductor 20D. At least a part is electrically connected.
  • the first conductor 10D is electrically connected by bringing the first conductor 10D into contact with one surface 30a of the third conductor 30D, and the second surface 30b of the third conductor 30D is made second. Are electrically connected by contact with the conductor 20D.
  • cleaning unit 1I has the structure similar to the purification
  • the first conductor 10D preferably has the same configuration as the positive electrode 10 including the water repellent layer 11 and the gas diffusion layer 12 in the first embodiment.
  • the second conductor 20D can have the same configuration as the negative electrode 20 in the first embodiment.
  • the first conductor 10D is disposed substantially horizontally to the water surface 90a, and the second conductor 20D is disposed substantially parallel to the first conductor 10D. ing. Furthermore, the third conductor 30D is interposed between the first conductor 10D and the second conductor 20D. Then, the first conductor 10D is exposed in the gas phase 50, and a part of the second conductor 20D and the third conductor 30D is immersed in the waste water 90. Therefore, the first conductor 10D can have the same configuration as the gas diffusion layer 12 of the positive electrode 10 in the first embodiment, and the second conductor 20D has the same configuration as the negative electrode 20 in the first embodiment. Can.
  • the third conductor 30D is made of an ion exchange membrane.
  • the ion exchange membrane can suppress migration of microorganisms from the second conductor 20D to the first conductor 10D while transmitting hydrogen ions generated by the second conductor 20D. Therefore, in the first conductor 10D, inhibition of the oxygen reduction reaction by microorganisms can be suppressed.
  • the ion exchange membrane usually has a relatively high electric resistivity, the thickness of the ion exchange membrane is as thin as possible so that the conductivity between the first conductor 10D and the second conductor 20D can be secured. Is preferred.
  • a membrane comprising Nafion or Flemion described above can be used.
  • the purification unit according to this embodiment also has the same configuration as that of the third embodiment. As shown in FIG. 9, the purification unit is different from the first conductor 10E, the second conductor 20E different from the first conductor 10E, and the first conductor 10E and the second conductor 20E. And a third conductor 30E. Then, at least a part of the first conductor 10E is electrically connected to one surface 30a of the third conductor 30E, and the other surface 30b of the third conductor 30E is connected to the other surface 30b. At least a part is electrically connected.
  • the first conductor 10E is electrically connected by bringing the first conductor 10E into contact with one surface 30a of the third conductor 30E, and the second surface 30b of the third conductor 30E is made second. Are connected electrically by contact with the conductor 20E.
  • the first conductor 10E is exposed in the gas phase 50, and a part of the second conductor 20E and the third conductor 30E is immersed in the waste water 90. Therefore, since the first conductor 10E is not immersed in the waste water 90, the first conductor 10E can have the same configuration as the gas diffusion layer 12 of the positive electrode 10 in the first embodiment, and the second conductor The conductor 20E can have the same configuration as the negative electrode 20 in the first embodiment. Furthermore, the third conductor 30E can have the same configuration as the ion transfer layer 30 in the first embodiment.
  • the purification unit 1K of this embodiment the first conductor 10E and the second conductor 20E are connected in the substantially vertical direction via the third conductor 30E.
  • the purification unit 1K is inclined at an angle ⁇ with respect to the vertical direction, and the waste water 90 further flows down to the first conductor 10E. That is, the waste water 90 contacts the upper portion of the first conductor 10E along the arrow B shown in FIG. 9, and after passing through the surface and the inside of the first conductor 10E and the third conductor 30E, The second conductor 20E leads to the accumulated waste water 90 in which it is immersed.
  • waste water 90 is always present on the surface and inside of the first conductor 10E and the third conductor 30E. Therefore, hydrogen ions can reach the oxygen reduction catalyst through the waste water 90 without providing hydrogen ion conductivity in the first conductor 10E and the third conductor 30E themselves.
  • the wastewater 90 flowing down to the first conductor 10E may circulate the wastewater 90 in which the second conductor 20E is immersed. Further, the waste water generated from the pollution source may be made to flow down to the first conductor 10E.
  • the object to be treated is not limited to waste water, and it is possible to use, for example, soil as the object to be treated.
  • anaerobic microorganisms which are electricity producing bacteria, are present.
  • there are potentially present electric producing bacteria such as Geobacter bacteria. Therefore, soil purification can be performed only by inserting the purification unit of the first to sixth embodiments into soil.
  • the first conductor, the second conductor and the third conductor preferably have hydrogen ion conductivity. Therefore, it is preferable to use the purification unit for wetland soil where moisture as a hydrogen ion conductor can intrude into the first conductor, the second conductor and the third conductor. Further, hydrogen ion conductivity is provided by containing an ion conductive substance in the inside of the first conductor, the second conductor and the third conductor, or by supplying water thereto. Is preferred.
  • the purification device includes the above-described purification unit. Then, the purification unit is installed such that at least a portion of the first conductor is in contact with the vapor phase 50, and at least a portion of the second conductor is in contact with the soil to be purified by the purification unit. Ru.
  • the purification apparatus according to the present embodiment can be widely applied to the treatment of liquids containing organic substances and nitrogen-containing compounds, for example, drainage generated from factories of various industries, organic wastewater such as sewage sludge, and soil purification. .
  • the purification device can also be used to improve the environment of the water area.
  • the present invention it is possible to obtain a purification unit capable of suppressing the generation of biogas while reducing the amount of generated sludge, and a purification device using the purification unit.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Mycology (AREA)
  • Soil Sciences (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Processing Of Solid Wastes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

浄化ユニット(1)は、第1の導電体(10)と第2の導電体(20)と第3の導電体(30)とを有する。そして、第3の導電体の一方の面に第1の導電体の少なくとも一部が電気的に接続し、第3の導電体の他方の面に第2の導電体の少なくとも一部が電気的に接続する。さらに、第1の導電体の少なくとも一部は酸素を含む気相(50)と接触し、第2の導電体の少なくとも一部は被処理体と接触する。浄化装置(100)は、上述の浄化ユニットと、浄化ユニット及び浄化ユニットにより浄化される廃水(90)を内部に保持するための処理槽(80)とを備える。そして、浄化ユニットは、第1の導電体の少なくとも一部が気相と接触し、かつ、第2の導電体の少なくとも一部が廃水と接触するように設置される。

Description

浄化ユニット及び浄化装置
 本発明は、浄化ユニット及び浄化装置に関する。詳細には本発明は、廃水及び土壌などの被処理体を浄化するための浄化ユニット、及び当該浄化ユニットを用いた浄化装置に関する。
 従来、廃水中に含まれる有機物等を除去するために、種々の水処理方法が提供されている。具体的には、微生物の好気呼吸を利用する活性汚泥法や、微生物の嫌気呼吸を利用する嫌気性処理法などの水処理方法が提供されている。
 活性汚泥法では、微生物を含んだ泥(活性汚泥)と廃水とを生物反応槽で混合し、微生物が廃水中の有機物を酸化分解するために必要な空気を生物反応槽に送り込んで攪拌することで、廃水を浄化している。しかし、活性汚泥法は、生物反応槽のエアレーションに莫大な電力を要する。また、微生物が酸素呼吸をして活発に代謝を行う結果、産業廃棄物である大量の汚泥(微生物の死骸)が発生してしまう。
 これに対し、嫌気性処理法ではエアレーションが不要となることから、活性汚泥法に比べて必要電力量を大幅に低減することができる。また、微生物が獲得する自由エネルギーが小さいので、汚泥発生量が減少する。このような嫌気性処理法を利用した廃水処理装置としては、水素吸蔵合金の粒子を使用した担体に嫌気性微生物を付着させた装置が開示されている(例えば、特許文献1参照)。
特開平1-47494号公報
 しかしながら、従来の嫌気性処理法では、嫌気呼吸の産物として、可燃性で特有の臭気があるメタンガスを多量に含むバイオガスが発生するという問題があった。
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、本発明の目的は、汚泥発生量を低減でき、かつ、バイオガスの発生を抑制することが可能な浄化ユニット及びそれを用いた浄化装置を提供することにある。
 上記課題を解決するために、本発明の第一の態様に係る浄化ユニットは、第1の導電体と、第1の導電体と異なる第2の導電体と、第1の導電体及び第2の導電体と異なる第3の導電体とを有する。そして、第3の導電体の一方の面に第1の導電体の少なくとも一部が電気的に接続し、第3の導電体の他方の面に第2の導電体の少なくとも一部が電気的に接続する。さらに、第1の導電体の少なくとも一部は酸素を含む気相と接触し、第2の導電体の少なくとも一部は被処理体と接触する。
 本発明の第二の態様に係る浄化装置は、上述の浄化ユニットと、浄化ユニット及び浄化ユニットにより浄化される廃水を内部に保持するための処理槽とを備える。そして、浄化ユニットは、第1の導電体の少なくとも一部が気相と接触し、かつ、第2の導電体の少なくとも一部が廃水と接触するように設置される。
 本発明の第三の態様に係る浄化装置は、上述の浄化ユニットを備える。そして、浄化ユニットは、第1の導電体の少なくとも一部が気相と接触し、かつ、第2の導電体の少なくとも一部が浄化ユニットにより浄化される土壌と接触するように設置される。
図1は、本発明の第一実施形態に係る浄化装置の一例を示す斜視図である。 図2は、図1中のA-A線に沿った断面図である。 図3は、上記浄化装置における浄化ユニットを示す分解斜視図である。 図4は、本発明の第一実施形態に係る浄化装置の他の例を示す断面図である。 図5は、本発明の第二実施形態に係る浄化ユニットの例を示す断面図である。 図6は、本発明の第三実施形態に係る浄化ユニットの例を示す断面図である。 図7は、本発明の第四実施形態に係る浄化ユニットの例を示す断面図である。 図8は、本発明の第五実施形態に係る浄化ユニットの例を示す断面図である。 図9は、本発明の第六実施形態に係る浄化ユニットの例を示す断面図である。
 以下、本実施形態に係る浄化ユニット及び浄化装置について詳細に説明する。なお、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。
[第一実施形態]
 本実施形態に係る浄化装置100は、図1及び図2に示すように、浄化ユニット1を備えている。そして、浄化ユニット1は、第1の導電体である正極10、第2の導電体である負極20、及び第3の導電体であるイオン移動層30からなる浄化構造体40を備えている。浄化ユニット1では、イオン移動層30の一方の面30aに正極10が接触するように配置されており、イオン移動層30の面30aと反対側の面30bに負極20が接触するように配置されている。そして、正極10のガス拡散層12がイオン移動層30と接触し、撥水層11が気相50側に露出している。
 そして、図3に示すように、浄化構造体40は、カセット基材60に積層されている。カセット基材60は、正極10における面10aの外周部に沿うU字状の枠部材であり、上部が開口している。つまり、カセット基材60は、2本の第一柱状部材61の底面を第二柱状部材62で連結した枠部材である。そして、図2に示すように、カセット基材60の側面63は、正極10の面10aの外周部と接合されており、側面63の反対側の側面64は、板部材70の面70aの外周部と接合されている。
 図2に示すように、浄化構造体40、カセット基材60及び板部材70を積層してなる浄化ユニット1は、気相50が形成されるように、処理槽80の内部に配置される。処理槽80の内部には被処理体である廃水90が保持されており、正極10、負極20及びイオン移動層30は廃水90に浸漬されている。
 後述するように、正極10は撥水性を有する撥水層11を備えており、板部材70は廃水90を透過しない平板状の板材からなる。そのため、処理槽80の内部に保持された廃水90とカセット基材60の内部とは隔てられ、浄化構造体40、カセット基材60及び板部材70により形成された内部空間は気相50となっている。そして、浄化装置100では、この気相50が外気に開放されるか、あるいはこの気相50へ例えばポンプによって外部から空気が供給されるように構成されている。
 (第1の導電体(正極))
 本実施形態に係る第1の導電体である正極10は、図1及び図2に示すように、撥水層11と、撥水層11に接触するように重ねられているガス拡散層12とを備えるガス拡散電極からなる。このような薄板状のガス拡散電極を用いることにより、気相50中の酸素を正極10中の触媒に容易に供給することが可能になる。
 正極10における撥水層11は、撥水性と酸素透過性とを併せ持つ層である。撥水層11は、浄化ユニット1における電気化学系中の気相50と液相とを良好に分離しながら、気相50から液相へ向かう酸素の移動を許容するように構成される。つまり、撥水層11は、気相50中の酸素を透過し、ガス拡散層12へ移動させつつも、廃水90が気相50側に移動することを抑制できる。なお、ここでいう「分離」とは、物理的に遮断することをいう。
 撥水層11は、酸素を含む気体を有する気相50と接触しており、気相50中の酸素を拡散している。そして、撥水層11は、図2に示す構成では、ガス拡散層12に対し酸素を略均一に供給している。そのため、撥水層11は、当該酸素を拡散できるように多孔質体であることが好ましい。なお、撥水層11は撥水性を有するため、結露等により多孔質体の細孔が閉塞し、酸素の拡散性が低下することを抑制できる。また、撥水層11の内部に廃水90が染み込み難いため、撥水層11における気相50と接触する面からガス拡散層12と対向する面にかけて、酸素を効率的に流通させることが可能となる。
 撥水層11は、織布又は不織布によりシート状に形成されていることが好ましい。また、撥水層11を構成する材料は、撥水性を有し、気相50中の酸素を拡散できれば特に限定されない。撥水層11を構成する材料としては、例えば、ポリエチレン、ポリプロピレン、ポリブタジエン、ナイロン、ポリテトラフルオロエチレン(PTFE)、エチルセルロース、ポリ-4-メチルペンテン-1、ブチルゴム及びポリジメチルシロキサン(PDMS)からなる群より選ばれる少なくとも一つを使用することができる。これらの材料は多孔質体を形成しやすく、さらに撥水性も高いため、細孔の閉塞を抑制してガス拡散性を向上させることができる。なお、撥水層11は、撥水層11及びガス拡散層12の積層方向Xに複数の貫通孔を有することが好ましい。
 撥水層11は撥水性を高めるために、必要に応じて撥水剤を用いて撥水処理を施してもよい。具体的には、撥水層11を構成する多孔質体にポリテトラフルオロエチレン等の撥水剤を付着させ、撥水性を向上させてもよい。
 正極10におけるガス拡散層12は、多孔質な導電性材料と、この導電性材料に担持されている触媒とを備えることが好ましい。なお、ガス拡散層12が、多孔質かつ導電性を有する触媒から構成されてもよい。正極10にこのようなガス拡散層12を備えることで、後述する局部電池反応により生成した電子を負極20と触媒との間で導通させることが可能となる。つまり、後述するように、ガス拡散層12には触媒が担持されており、さらに触媒は酸素還元触媒である。そして、電子が負極20からガス拡散層12を通じて触媒に移動することにより、触媒によって、酸素、水素イオン及び電子による酸素還元反応を進行させることが可能となる。
 正極10では、安定的な性能を確保するために、酸素が撥水層11及びガス拡散層12を効率よく透過し、触媒に供給されることが好ましい。そのため、ガス拡散層12は、撥水層11と対向する面から反対側の面にかけて、酸素が透過する細孔を多数有する多孔質体であることが好ましい。また、ガス拡散層12の形状は、三次元のメッシュ状であることが特に好ましい。このようなメッシュ状であることにより、ガス拡散層12に対し、高い酸素透過性及び導電性を付与することが可能となる。
 正極10において、ガス拡散層12に効率的に酸素を供給するために、撥水層11は、接着剤を介してガス拡散層12と接合していることが好ましい。これにより、ガス拡散層12に対し、拡散した酸素が直接供給され、酸素還元反応を効率的に行うことができる。接着剤は、撥水層11とガス拡散層12との間の接着性を確保する観点から、撥水層11とガス拡散層12との間の少なくとも一部に設けられていることが好ましい。ただ、撥水層11とガス拡散層12との間の接着性を高め、長期間に亘り安定的に酸素をガス拡散層12に供給する観点から、接着剤は撥水層11とガス拡散層12との間の全面に設けられていることがより好ましい。
 接着剤としては酸素透過性を有するものが好ましく、ポリメチルメタクリレート、メタクリル酸-スチレン共重合体、スチレン-ブタジエンゴム、ブチルゴム、ニトリルゴム、クロロプレンゴム及びシリコーンからなる群より選ばれる少なくとも一つを含む樹脂を用いることができる。
 ここで、本実施形態における正極10のガス拡散層12について、さらに詳しく説明する。上述のように、ガス拡散層12は、多孔質な導電性材料と、当該導電性材料に担持されている触媒とを備えるような構成とすることができる。
 ガス拡散層12における導電性材料は、グラファイトホイル、カーボンペーパー、カーボンクロス及びステンレス鋼(SUS)からなる群より選ばれる一種以上の材料から構成することができる。より詳細に説明すると、ガス拡散層12における導電性材料は、例えば炭素系物質、導電性ポリマー、半導体及び金属からなる群より選ばれる一種以上の材料から構成することができる。炭素系物質とは、炭素を構成成分とする物質をいう。炭素系物質の例としては、例えば、グラファイト、活性炭、カーボンブラック、バルカン(登録商標)XC-72R、アセチレンブラック、ファーネスブラック、デンカブラックなどのカーボンパウダー、グラファイトフェルト、カーボンウール、カーボン織布などのカーボンファイバー、カーボンプレート、カーボンペーパー、カーボンディスク、カーボンクロス、カーボンホイル、炭素粒子を圧縮成形した炭素系材料が挙げられる。また、炭素系物質の例として、カーボンナノチューブ、カーボンナノホーン、カーボンナノクラスターのような微細構造物質も挙げられる。
 導電性ポリマーとは、導電性を有する高分子化合物の総称である。導電性ポリマーとしては、例えば、アニリン、アミノフェノール、ジアミノフェノール、ピロール、チオフェン、パラフェニレン、フルオレン、フラン、アセチレン若しくはそれらの誘導体を構成単位とする単一モノマー又は2種以上のモノマーの重合体が挙げられる。具体的には、導電性ポリマーとして、例えば、ポリアニリン、ポリアミノフェノール、ポリジアミノフェノール、ポリピロール、ポリチオフェン、ポリパラフェニレン、ポリフルオレン、ポリフラン、ポリアセチレン等が挙げられる。金属製の導電性材料としては、メッシュ及び発泡体等の金属材料が挙げられ、例えばステンレスメッシュを用いることができる。なお、入手の容易性、コスト、耐食性、耐久性等を考慮した場合、導電性材料は炭素系物質であることが好ましい。
 また、導電性材料の形状は、粉末形状又は繊維形状であることが好ましい。また、導電性材料は、支持体に支持されていてもよい。支持体とは、それ自身が剛性を有し、ガス拡散電極に一定の形状を付与することのできる部材をいう。支持体は絶縁体であっても導電体であってもよい。支持体が絶縁体である場合、支持体としては、例えばガラス、プラスチック、合成ゴム、セラミックス、耐水又は撥水処理した紙、木片などの植物片、骨片、貝殻などの動物片等が挙げられる。多孔質構造の支持体としては、例えば多孔質セラミック、多孔質プラスチック、スポンジ等が挙げられる。支持体が導電体である場合、支持体としては、例えばカーボンペーパー、カーボンファイバー、炭素棒などの炭素系物質、金属、導電性ポリマー等が挙げられる。支持体が導電体の場合には、炭素系材料を担持した導電性材料が支持体の表面上に配置されることで、支持体が集電体としても機能し得る。
 ガス拡散層12における触媒は、白金系触媒、鉄又はコバルトを用いた炭素系触媒、部分酸化したタンタル炭窒化物(TaCNO)及びジルコニウム炭窒化物(ZrCNO)等の遷移金属酸化物系触媒、タングステン又はモリブデンを用いた炭化物系触媒、活性炭等を用いることができる。
 ガス拡散層12における触媒は、金属原子がドープされている炭素系材料であることが好ましい。金属原子としては特に限定されないが、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、銀、ハフニウム、タンタル、タングステン、レニウム、オスミウム、イリジウム、白金、及び金からなる群より選ばれる少なくとも一種の金属の原子であることが好ましい。この場合、炭素系材料が、特に酸素還元反応を促進させるための触媒として優れた性能を発揮する。炭素系材料が含有する金属原子の量は、炭素系材料が優れた触媒性能を有するように適宜設定すればよい。
 炭素系材料には、更に窒素、ホウ素、硫黄及びリンから選択される一種以上の非金属原子がドープされていることが好ましい。炭素系材料にドープされている非金属原子の量も、炭素系材料が優れた触媒性能を有するように適宜設定すればよい。
 炭素系材料は、例えばグラファイト及び無定形炭素等の炭素源原料をベースとし、この炭素源原料に金属原子と、窒素、ホウ素、硫黄及びリンから選択される一種以上の非金属原子とをドープすることで得られる。
 炭素系材料にドープされている金属原子と非金属原子との組み合わせは、適宜選択される。特に、非金属原子が窒素を含み、金属原子が鉄を含むことが好ましい。この場合、炭素系材料が特に優れた触媒活性を有することができる。なお、非金属原子が窒素のみであってもよく、金属原子が鉄のみであってもよい。
 非金属原子が窒素を含み、金属原子がコバルトとマンガンとのうち少なくとも一方を含んでもよい。この場合も、炭素系材料が特に優れた触媒活性を有することができる。なお、非金属原子が窒素のみであってもよい。また、金属原子がコバルトのみ、マンガンのみ、あるいはコバルト及びマンガンのみであってもよい。
 炭素系材料の形状は特に制限されない。例えば、炭素系材料は、粒子状の形状を有してもよく、またシート状の形状を有してもよい。シート状の形状を有する炭素系材料の寸法は特に制限されず、例えばこの炭素系材料が微小な寸法であってもよい。シート状の形状を有する炭素系材料は、多孔質であってもよい。シート状の形状を有し、かつ、多孔質な炭素系材料は、例えば織布状、不織布状等の形状を有することが好ましい。このような炭素系材料は、導電性材料が無くてもガス拡散層12を構成することができる。
 ガス拡散層12における触媒として構成される炭素系材料は、次のように調製することができる。まず、例えば窒素、ホウ素、硫黄及びリンからなる群より選ばれる少なくとも一種の非金属を含む非金属化合物と、金属化合物と、炭素源原料とを含有する混合物を準備する。そして、この混合物を、800℃以上1000℃以下の温度で、45秒以上600秒未満加熱する。これにより、触媒として構成される炭素系材料を得ることができる。
 ここで、炭素源原料としては、上述の通り、例えばグラファイト又は無定形炭素を使用することができる。さらに、金属化合物としては、炭素源原料にドープされる非金属原子と配位結合し得る金属原子を含む化合物であれば、特に制限されない。金属化合物は、例えば金属の塩化物、硝酸塩、硫酸塩、臭化物、ヨウ化物、フッ化物などのような無機金属塩、酢酸塩などの有機金属塩、無機金属塩の水和物、及び有機金属塩の水和物からなる群より選ばれる少なくとも一種を使用することができる。例えばグラファイトに鉄がドープされる場合には、金属化合物は塩化鉄(III)を含有することが好ましい。グラファイトにコバルトがドープされる場合には、金属化合物は塩化コバルトを含有することが好ましい。また、炭素源原料にマンガンがドープされる場合には、金属化合物は酢酸マンガンを含有することが好ましい。金属化合物の使用量は、例えば炭素源原料に対する金属化合物中の金属原子の割合が5~30質量%の範囲内となるように決定されることが好ましく、更にこの割合が5~20質量%の範囲内となるように決定されることがより好ましい。
 非金属化合物は、上記の通り、窒素、ホウ素、硫黄及びリンからなる群より選ばれる少なくとも一種の非金属の化合物であることが好ましい。非金属化合物としては、例えば、ペンタエチレンヘキサミン、エチレンジアミン、テトラエチレンペンタミン、トリエチレンテトラミン、エチレンジアミン、オクチルボロン酸、1,2-ビス(ジエチルホスフィノエタン)、亜リン酸トリフェニル、ベンジルジサルフィドからなる群より選ばれる少なくとも一種の化合物を使用することができる。非金属化合物の使用量は、炭素源原料への非金属原子のドープ量に応じて適宜設定される。非金属化合物の使用量は、金属化合物中の金属原子と、非金属化合物中の非金属原子とのモル比が、1:1~1:2の範囲内となるように決定されることが好ましく、1:1.5~1:1.8の範囲内となるように決定されることがより好ましい。
 触媒として構成される炭素系材料を調製する際の、非金属化合物と金属化合物と炭素源原料とを含有する混合物は、例えば次のようにして得られる。まず炭素源原料と金属化合物と非金属化合物とを混合し、更に必要に応じてエタノール等の溶媒を加えて全量を調整する。これらを更に超音波分散法により分散させる。続いて、これらを適宜の温度(例えば60℃)で加熱した後に、混合物を乾燥して溶媒を除去する。これにより、非金属化合物と金属化合物と炭素源原料とを含有する混合物が得られる。
 次に、得られた混合物を、例えば還元性雰囲気下又は不活性ガス雰囲気下で加熱する。これにより、炭素源原料に非金属原子がドープされ、さらに非金属原子と金属原子とが配位結合することで金属原子もドープされる。加熱温度は800℃以上1000℃以下の範囲内であることが好ましく、加熱時間は45秒以上600秒未満の範囲内であることが好ましい。加熱時間が短時間であるため、炭素系材料が効率よく製造され、しかも炭素系材料の触媒活性が更に高くなる。なお、加熱処理における、加熱開始時の混合物の昇温速度は、50℃/s以上であることが好ましい。このような急速加熱は、炭素系材料の触媒活性を更に向上する。
 また、炭素系材料を、更に酸洗浄してもよい。例えば炭素系材料を、純水中、ホモジナイザーで30分間分散させ、その後この炭素系材料を2M硫酸中に入れて、80℃で3時間攪拌してもよい。この場合、炭素系材料からの金属成分の溶出が抑えられる。
 このような製造方法により、不活性金属化合物及び金属結晶の含有量が著しく低く、かつ、導電性の高い炭素系材料が得られる。
 ガス拡散層12において、触媒は結着剤を用いて導電性材料に結着していてもよい。つまり、触媒は結着剤を用いて導電性材料の表面及び細孔内部に担持されていてもよい。これにより、触媒が導電性材料から脱離し、酸素還元特性が低下することを抑制できる。結着剤としては、例えばポリテトラフルオロエチレン、ポリフッ化ビニリデン(PVDF)、及びエチレン-プロピレン-ジエン共重合体(EPDM)からなる群より選ばれる少なくとも一つを用いることが好ましい。また、結着剤としては、ナフィオン(登録商標)を用いることも好ましい。
 (第2の導電体(負極))
 本実施形態に係る第2の導電体である負極20は、後述する微生物を担持し、さらに微生物の触媒作用により、廃水90中の有機物及び窒素含有化合物の少なくとも一方から水素イオン及び電子を生成する機能を有する。そのため、本実施形態の負極20は、このような機能を生じさせる構成ならば特に限定されない。
 本実施形態の負極20は、導電性を有する導電体シートに微生物を担持した構造を有する。導電体シートとしては、多孔質の導電体シート、織布状の導電体シート及び不織布状の導電体シートからなる群より選ばれる少なくとも一つを使用することができる。また、導電体シートは複数のシートを積層した積層体でもよい。負極20の導電体シートとして、このような複数の細孔を有するシートを用いることにより、後述する局部電池反応で生成した水素イオンが正極10の方向へ移動しやすくなり、酸素還元反応の速度を高めることが可能となる。また、イオン透過性を向上させる観点から、負極20の導電体シートは、積層方向X、つまり厚さ方向に連続した空間(空隙)を有していることが好ましい。
 負極20における導電体シートは、グラファイトホイル、グラファイトブラシ、及びカーボンフェルトからなる群より選ばれる少なくとも一つを用いることができる。なお、グラファイトブラシは、炭素繊維を束ねて柄をつけたものであり、全体として導電性を有するものである。
 また、負極20における導電体シートは、厚さ方向に複数の貫通孔を有する金属板であってもよい。そのため、負極20の導電体シートを構成する材料としては、例えば、アルミニウム、銅、ステンレス鋼、ニッケル及びチタンなどの導電性金属も用いることができる。
 負極20に担持される微生物としては、廃水90中の有機物又は窒素を含む化合物を分解する微生物であれば特に限定されないが、例えば増殖に酸素を必要としない嫌気性微生物を使用することが好ましい。嫌気性微生物は、廃水90中の有機物を酸化分解するための空気を必要としない。そのため、空気を送り込むために必要な電力を大幅に低減することができる。また、微生物が獲得する自由エネルギーが小さいので、汚泥発生量を減少させることが可能となる。
 負極20に保持される微生物は嫌気性微生物であることが好ましく、例えば細胞外電子伝達機構を有する電気生産細菌であることが好ましい。具体的には、嫌気性微生物として、例えばGeobacter属細菌、Shewanella属細菌、Aeromonas属細菌、Geothrix属細菌、Saccharomyces属細菌が挙げられる。
 負極20に、嫌気性微生物を含むバイオフィルムが重ねられて固定されることで、負極20に嫌気性微生物が保持されていてもよい。例えば、負極20におけるイオン移動層30と接触する面20aと反対側の面20bに、嫌気性微生物が保持されていてもよい。なお、バイオフィルムとは、一般に、微生物集団と、微生物集団が生産する菌体外重合体物質(extracellular polymeric substance、EPS)とを含む三次元構造体のことをいう。ただ、嫌気性微生物は、バイオフィルムによらずに負極20に保持されていてもよい。また、嫌気性微生物は、負極20の表面だけでなく、内部に保持されていてもよい。
 上述のように、嫌気性微生物は負極20の表面又は内部の少なくとも一方に担持されていることが好ましい。ただ、これらの微生物が廃水90中に含まれているだけでも、本実施形態の効果を発揮することができる。そのため、浄化装置100において、負極20及び廃水90の少なくとも一方は、嫌気性微生物を保持することが好ましい。
 (第3の導電体(イオン移動層))
 本実施形態の浄化ユニット1は、正極10と負極20との間に設けられ、水素イオン透過性を有し、第3の導電体であるイオン移動層30をさらに備える。そして、図1及び図2に示すように、負極20は、イオン移動層30を介して正極10と隔てられている。さらに、イオン移動層30の一方の面30aに正極10の少なくとも一部が電気的に接続し、イオン移動層30の他方の面30bに負極20の少なくとも一部が電気的に接続している。
 イオン移動層30は、負極20で生成した水素イオンを透過し、正極10側へ移動させる機能を有している。そのため、負極20で生成した水素イオンがイオン移動層30の内部を移動し、正極10で酸素と反応して水を生成する。したがって、イオン移動層30の構成は、水素イオンを、拡散を大きく阻害することなく伝導できるならば特に限定されない。
 また、イオン移動層30として、水素イオンが透過することが可能な細孔を有する多孔質膜を使用してもよい。つまり、イオン移動層30は、正極10と負極20との間を水素イオンが移動するための空間(空隙)を有するシートであってもよい。そのため、イオン移動層30は、多孔質のシート、織布状のシート及び不織布状のシートからなる群より選ばれる少なくとも一つを備えることが好ましい。なお、イオン移動層30の細孔径は、正極10と負極20との間を水素イオンが移動できれば特に限定されない。
 イオン移動層30は、導電体からなることが好ましい。つまり、浄化ユニット1では、イオン移動層30の一方の面30aに正極10のガス拡散層12が接触するように配置されており、イオン移動層30の面30aと反対側の面30bに負極20が接触するように配置されている。そのため、イオン移動層30が導電性を有する場合には、正極10と負極20とが短絡する。その結果、負極20で生成した電子が正極10に移動し、正極10において酸素還元反応を生じさせることが可能となる。
 より詳細に説明すると、導電性のイオン移動層30は、内部に水素イオンが移動できる空間を有し、さらに正極10及び負極20に対して電気的に接続されていれば特に限定されない。また、イオン移動層30は、負極20から正極10に向かって連続して延びていてもよい。あるいは、イオン移動層30は、電気的に接続された複数の導電部分から構成されていてもよく、例えば複数の導電層を積層し、電気的に接続させた構成であってもよい。
 さらに、イオン移動層30を構成する材料の少なくとも一部は、負極20から正極10に向かって連続して伸びていてもよく、さらに空間を横切るように伸びていてもよい。つまり、イオン移動層30を構成する材料の少なくとも一部は、正極10、負極20及びイオン移動層30の積層方向Xに垂直な方向に延びていてもよい。
 イオン移動層30の材料は、導電性を確保できるならば特に限定されないが、例えば導電性金属、炭素材料及び導電性ポリマー材料からなる群より選ばれる少なくとも一種を用いることができる。導電性金属としては、例えば、アルミニウム、銅、ステンレス、ニッケル及びチタンからなる群より選ばれる少なくとも一種を用いることができる。また、炭素材料としては、例えば、カーボンペーパー、カーボンフェルト、カーボンクロス及びグラファイトホイルからなる群より選ばれる少なくとも一種を用いることができる。さらに導電性ポリマー材料としては、ポリアセチレン、ポリチオフェン、ポリアニリン、ポリ(p-フェニレンビニレン)、ポリピロール及びポリ(p-フェニレンスルフィド)からなる群より選ばれる少なくとも一種を用いることができる。
 なお、イオン移動層30は、織布状の導電体シート及び不織布状の導電体シートの少なくとも一方を備えることが好ましい。織布状の導電体シート及び不織布状の導電体シートは、多数の細孔を有しているため、水素イオンの移動を容易にすることができる。また、イオン移動層30は、負極20から正極10にかけて、複数の貫通孔を有する金属板であってもよい。
 イオン移動層30は、不織布状の導電体シートを備えることがより好ましく、不織布状の導電体シートからなることが特に好ましい。不織布はその厚みや空隙率を変更しやすいため、水素イオンの透過率を容易に向上させることが可能となる。
 次に、本実施形態の浄化装置100の作用について説明する。浄化装置100の動作時には、負極20に有機物及び窒素含有化合物の少なくとも一方を含有する廃水90を供給し、正極10に空気又は酸素を供給する。この際、空気及び酸素は、気相50を通じて連続的に供給される。
 そして、図1及び図2に示す正極10では、撥水層11を透過してガス拡散層12により空気が拡散する。負極20では、微生物の触媒作用により、廃水90中の有機物及び窒素含有化合物の少なくとも一方から水素イオン及び電子を生成する。生成した水素イオンは、廃水90が存在するイオン移動層30の内部の空間を通過して正極10側へ移動する。また、生成した電子は負極20の導電体シートを通じてイオン移動層30へ移動し、さらに正極10のガス拡散層12に移動する。そして、水素イオン及び電子は、ガス拡散層12に担持された触媒の作用により酸素と結合し、水となって消費される。
 例えば、廃水90が有機物としてグルコースを含有する場合、上述した局部電池反応(半セル反応)は、以下の式で表される。
・負極20:C12+6HO→6CO+24H+24e
・正極10:6O+24H+24e→12H
 また、廃水90が窒素含有化合物としてアンモニアを含有する場合、局部電池反応は、以下の式で表される。
・負極20:4NH→2N+12H+12e
・正極10:3O+12H+12e→6H
 このように、負極20における微生物の触媒作用により、廃水90中の有機物及び窒素含有化合物を分解し、廃水90を浄化することが可能となる。なお、正極10では酸素の還元反応により水酸化物イオンが生成する場合がある。そのため、生成した水酸化物イオンがイオン移動層30の内部を移動し、負極20で生成した水素イオンと結合して水が生成する場合がある。
 本実施形態に係る浄化ユニット1において、第3の導電体であるイオン移動層30は、第1の導電体である正極10及び第2の導電体である負極20よりも高い電気抵抗率を有することが好ましい。イオン移動層30が導電性を有しつつも、正極10及び負極20よりも高い電気抵抗率を有することにより、正極10及び負極20を適切な電位に制御し、正極10と負極20との間の電位差を確保することができる。また、電子伝導を伴う微生物の代謝も促進されることから、被処理体における有機物及び窒素含有化合物の分解効率をより高めることが可能となる。さらに浄化ユニット1では、電位差を確保するための外部回路などの配線及び昇圧システムなどを設ける必要がないため、より簡易な構成とすることができ、浄化装置100の小型化を達成することができる。
 なお、第1の導電体及び第2の導電体の電気抵抗率は、それぞれ第3の導電体と接触する面の電気抵抗率をいう。つまり、本実施形態において、第1の導電体の電気抵抗率は、正極10の面10bの電気抵抗率である。また、第2の導電体の電気抵抗率は、負極20の面20aの電気抵抗率である。第1の導電体及び第2の導電体における第3の導電体と接触する面の電気抵抗率は、四探針法により測定することができる。
 第3の導電体の電気抵抗率は、第3の導電体における第1の導電体及び第2の導電体と接触する面に対して垂直な面の電気抵抗率である。つまり、本実施形態において、第3の導電体であるイオン移動層30の電気抵抗率は、図2に示す上面30c及び下面30d、並びに図3に示す右側面30e及び左側面30fで測定した値のうち、最も低い値である。また、第3の導電体の電気抵抗率は、第1の導電体、第2の導電体及び第3の導電体の積層方向に沿って、四探針法により測定した値である。つまり、本実施形態において、第3の導電体であるイオン移動層30の電気抵抗率は、積層方向であるX軸方向に沿って四探針法により測定した値である。
 このように、本実施形態に係る浄化ユニット1は、第1の導電体と、第1の導電体と異なる第2の導電体と、第1の導電体及び第2の導電体と異なる第3の導電体とを有する。そして、第3の導電体の一方の面に第1の導電体の少なくとも一部が電気的に接続し、第3の導電体の他方の面に第2の導電体の少なくとも一部が電気的に接続する。さらに、第1の導電体の少なくとも一部は酸素を含む気相50と接触し、第2の導電体の少なくとも一部は被処理体と接触する。また、浄化装置100は、上述の浄化ユニット1と、浄化ユニット1及び浄化ユニット1により浄化される廃水90を内部に保持するための処理槽80とを備える。そして、浄化ユニット1は、第1の導電体の少なくとも一部が気相50と接触し、かつ、第2の導電体の少なくとも一部が廃水90と接触するように設置される。
 本実施形態の浄化装置100は、電子移動反応を介して、廃水90に含まれる成分(有機物又は窒素含有化合物)を効率的に酸化分解できる。具体的には、廃水90に含まれる有機物及び/又は窒素含有化合物は、嫌気性微生物の代謝、すなわち微生物の増殖によって分解され除去される。そして、この酸化分解処理は嫌気性条件下で行われるため、好気性条件下で行われる場合よりも、有機物から微生物の新しい細胞への変換効率を低く抑えることができる。このため、活性汚泥法を用いる場合よりも、微生物の増殖、すなわち汚泥の発生量を低減できる。また、通常の嫌気性処理では臭気性のメタンガスが生成されるが、本実施形態における酸化分解処理では、代謝生成物は例えば二酸化炭素ガスであるため、メタンガスの生成を抑制できる。
 さらに、浄化ユニット1において、第3の導電体は、第1の導電体及び第2の導電体よりも高い電気抵抗率を有することが好ましい。つまり、第1の導電体と第2の導電体とは直接接触せず、電気抵抗率が比較的高い第3の導電体を介して電気的に接続されていることが好ましい。これにより、第1の導電体と第2の導電体との間の電位差を確保し、第2の導電体から第1の導電体に電子を流れやすくする。その結果、電子伝導を伴う微生物の代謝も促進されることから、被処理体における有機物及び窒素含有化合物の分解効率をより高めることが可能となる。
 浄化ユニット1において、第1の導電体は酸素還元触媒を含むことが好ましい。これにより、第1の導電体において、気相50中の酸素と、第2の導電体で生成した水素イオン及び電子との酸素還元反応が促進するため、被処理体の浄化をより効率的に行うことが可能となる。
 また、第2の導電体の表面及び内部の少なくとも一方には、嫌気性微生物が担持されていることが好ましい。嫌気性微生物を用いることにより、微生物の増殖、すなわち汚泥の発生量を低減でき、さらにメタンガスの生成も抑制することが可能となる。
 ここで、図1乃至図3において、第3の導電体であるイオン移動層30は、第1の導電体である正極10の面10b、及び第2の導電体である負極20の面20aの全体に亘って接触している。しかし、浄化ユニット1はこのような態様に限定されず、イオン移動層30の面30aに正極10の少なくとも一部が電気的に接続し、イオン移動層30の面30bに負極20の少なくとも一部が電気的に接続していればよい。そのため、図4に示すように、正極10の面10b及び負極20の面20aの一部にイオン移動層30が接触するような態様であってもよい。また、この場合、イオン移動層30の全体が廃水90に浸漬していてもよい。
 図4において、第1の導電体である正極10及び第2の導電体である負極20は、第3の導電体であるイオン移動層30により電気的に接続されている。そして、図4では、1つのイオン移動層30により正極10及び負極20を電気的に接続しているが、本実施形態はこのような態様に限定されない。つまり、複数のイオン移動層30を用いて、正極10と負極20とを接続してもよい。また、第3の導電体自体がイオン伝導性を有しない場合でも、廃水90により第2の導電体から第1の導電体へ水素イオンを移動させることが可能であるため、第3の導電体自体はイオン伝導性を有していなくてもよい。
 浄化ユニット1において、第1の導電体である正極10に微生物が接触する場合、その分泌成分による凝固物の固着や、微生物による酸素の過剰な消費、局所的なpH勾配の形成などが生じ、電子の移動に伴う反応量が低下する可能性がある。そのため、微生物の正極10への付着は、可能な限り阻害されることが好ましい。
 正極10への微生物の付着を阻害する方法としては、物理的に微生物が通らない孔径のイオン移動層30を使用する方法、またはイオン移動層30の化学的・生物的作用を利用する方法が挙げられる。化学的・生物的作用を利用する方法としては、イオン移動層30へ微生物を殺菌するための殺菌剤を固定する方法が挙げられる。殺菌剤としては、例えば殺菌性のある銀イオンや銅イオンを放出する化合物、及びテトラサイクリンを用いることができる。また、イオン移動層30自体が、微生物が繁殖可能なpH範囲から外れる局所pHを有する方法が挙げられる。
 浄化装置100において、処理槽80は内部に廃水90を保持しているが、廃水90が流通するような構成であってもよい。例えば、図1及び図2に示すように、処理槽80には、廃水90を処理槽80に供給するための廃水供給口81と、処理後の廃水90を処理槽80から排出するための廃水排出口82とが設けられていてもよい。そして、廃水90は、廃水供給口81及び廃水排出口82を通じて連続的に供給されることが好ましい。
 本実施形態に係る第2の導電体である負極20には、例えば、電子伝達メディエーター分子が修飾されていてもよい。あるいは、処理槽80内の廃水90は、電子伝達メディエーター分子を含んでいてもよい。これにより、嫌気性微生物から負極20への電子移動を促進し、より効率的な液体処理を実現できる。
 具体的には、嫌気性微生物による代謝機構では、細胞内あるいは最終電子受容体との間で電子の授受が行われる。廃水90中にメディエーター分子を導入すると、メディエーター分子が代謝の最終電子受容体として作用し、かつ、受け取った電子を負極20へと受け渡す。この結果、負極20における有機物などの酸化分解速度を高めることが可能になる。なお、メディエーター分子が負極20の面20bに担持されていても同様の効果が得られる。このような電子伝達メディエーター分子は、特に限定されない。電子伝達メディエーター分子としては、例えばニュートラルレッド、アントラキノン-2,6-ジスルホン酸(AQDS)、チオニン、フェリシアン化カリウム、及びメチルビオローゲンからなる群より選ばれる少なくとも一つを用いることができる。
[第二実施形態]
 次に、第二実施形態に係る浄化ユニット及び浄化装置について、図面に基づき詳細に説明する。なお、第一実施形態と同一構成には同一符号を付し、重複する説明は省略する。
 本実施形態に係る浄化ユニットは、図5に示すように、第1の導電体10Aと、第1の導電体10Aと異なる第2の導電体20Aと、第1の導電体10A及び第2の導電体20Aと異なる第3の導電体30Aとを有する。そして、第3の導電体30Aの一方の面30aに第1の導電体10Aの少なくとも一部が電気的に接続し、第3の導電体30Aの他方の面30bに第2の導電体20Aの少なくとも一部が電気的に接続している。具体的には、第3の導電体30Aの一方の面30aに第1の導電体10Aが接触することで電気的に接続されており、第3の導電体30Aの他方の面30bに第2の導電体20Aが接触することで電気的に接続されている。
 そして、図5に示す浄化ユニットにおいて、第1の導電体10Aは廃水90の水面90aから露出しており、酸素を含む気相である空気と直接接触している。そのため、当該浄化ユニットでは、第一実施形態で用いている気相50を形成するためのカセット基材60及び板部材70を備える必要がない。また、第1の導電体10Aは、第一実施形態の正極10における撥水層11も備える必要がない。そのため、第1の導電体10Aは第一実施形態における正極10のガス拡散層12と同じ構成とすることができ、第2の導電体20Aは第一実施形態における負極20と同じ構成とすることができる。さらに、第3の導電体30Aは、第一実施形態におけるイオン移動層30と同じ構成とすることができる。
 本実施形態の浄化装置において、浄化ユニットは、第1の導電体10Aの少なくとも一部が酸素を含む気相50と接触し、第2の導電体20Aの少なくとも一部が被処理体である廃水90と接触するように設置されている。この場合、第2の導電体20A及び第3の導電体30Aは廃水90と接触していることから、これらの内部には廃水90が存在している。そのため、第2の導電体20A及び第3の導電体30Aは、内部の廃水90により水素イオンの移動を可能としている。また、第1の導電体10Aも廃水90に部分的に接触しており、内部には廃水90が存在している。さらに、例えば第1の導電体10Aが多孔質体である場合には、毛管現象により廃水90を上昇させ、第1の導電体10Aの内部に保持することができる。そのため、第1の導電体10Aも、内部の廃水90により水素イオンの移動を可能としている。
 本実施形態の浄化装置も第一実施形態と同様に作用することができる。具体的には、浄化装置の動作時には、第2の導電体20Aに、有機物及び窒素含有化合物の少なくとも一方を含有する廃水90を供給し、第1の導電体10Aに空気又は酸素を供給する。この際、第1の導電体10Aは空気中に露出しているため、空気は連続的に供給される。
 そして、第2の導電体20Aでは、微生物の触媒作用により、廃水90中の有機物及び窒素含有化合物の少なくとも一方から水素イオン及び電子を生成する。生成した水素イオンは、第3の導電体30Aの内部の空間を通過して第1の導電体10A側へ移動する。また、生成した電子は第2の導電体20Aを通じて第3の導電体30Aへ移動し、さらに第1の導電体10Aに移動する。そして、水素イオン及び電子は、第1の導電体10Aに担持された触媒の作用により酸素と結合し、水となって消費される。
 第一実施形態と同様に、本実施形態の浄化装置も電子移動反応を介して、廃水90に含まれる有機物及び窒素含有化合物を効率的に酸化分解することができる。そして、この酸化分解処理は嫌気性条件下で行われるため、活性汚泥法を用いる場合よりも微生物の増殖、すなわち汚泥の発生量を低減できる。また、本実施形態における酸化分解処理では、代謝生成物は例えば二酸化炭素ガスであるため、メタンガスの生成を抑制できる。
 また、本実施形態で用いる浄化ユニットにおいて、第1の導電体10Aは空気中に露出しているため、気相50を形成するための撥水層11、カセット基材60及び板部材70が不要となる。そのため、浄化ユニットの構造を簡略化することが可能となる。
 本実施形態に係る浄化ユニットは、第1の導電体10Aの少なくとも一部が廃水90の水面90aから露出でき、第2の導電体20Aが廃水90に浸漬できるような構成であれば特に限定されず、例えば図5(a)~(d)のような構成とすることができる。
 図5(a)の浄化ユニット1Aでは、第1の導電体10Aは水面90aに対して略水平に配置され、第2の導電体20Aは第1の導電体10Aに対して略垂直に配置され、第3の導電体30Aは第1の導電体10Aと第2の導電体20Aとの間に介在している。なお、第2の導電体20A及び第3の導電体30Aの数は1つに限定されず、複数の第2の導電体20A及び第3の導電体30Aが1つの第1の導電体10Aに接続していてもよい。
 また、図5(b)の浄化ユニット1Bでは、第1の導電体10Aは水面90aに略水平に配置され、第2の導電体20Aは第1の導電体10Aに対して略平行に配置されている。そして、複数の第3の導電体30Aは、第1の導電体10Aと第2の導電体20Aとの間に介在している。なお、図5(b)の浄化ユニット1Bでは、第1の導電体10Aと第2の導電体20Aは互いに近接しており、第2の導電体20Aから第3の導電体30Aを通じて第1の導電体10Aに至る電子伝導パスが比較的短くなっている。そのため、第2の導電体20Aから第1の導電体10Aへの導電性が高くなっている。したがって、第1の導電体10A及び第2の導電体20Aは、電気抵抗が比較的高い基材を用いてもよく、その場合であっても効率的に廃水90を浄化することが可能となる。
 図5(c)の浄化ユニット1Cでは、第1の導電体10Aは水面90aに略水平に配置され、第3の導電体30Aは第1の導電体10Aと第2の導電体20Aとの間に介在している。ただ、第2の導電体20Aは断面が略T字状となっている。また、図5(d)の浄化ユニット1Dでは、第1の導電体10Aは水面90aに略水平に配置され、第3の導電体30Aは第1の導電体10Aと第2の導電体20Aとの間に介在している。ただ、第2の導電体20Aは断面が略Π字状となっている。
 ここで、第2の導電体20Aの表面又は内部には嫌気性微生物が担持されていることが好ましいため、第2の導電体20Aの周囲は嫌気性雰囲気であることが好ましい。そのため、第2の導電体20Aは、水面90aから離れた位置に配置されていることが好ましい。また、上述のように、本実施形態では、第1の導電体10Aは廃水90の水面90aに配置されているため、第2の導電体20Aは第1の導電体10Aから離れた位置に配置されていることが好ましい。
 図5(a)に示すように、第1の導電体10Aの上面10cに酸素還元触媒を担持した場合、酸素還元触媒への水素イオン伝導性を確保するために、第1の導電体10Aは上面10cまで廃水90が保持されていることが好ましい。ただ、第1の導電体10Aの内部にイオン伝導性物質を配置することで、廃水90が保持されていなくても酸素還元触媒まで水素イオンを伝導することが可能となる。イオン伝導性物質としては、例えばパーフルオロスルホン酸基を含有するナフィオン(登録商標)、カルボン酸基を含有するパーフルオロ型ビニルエーテルからなるフレミオン(登録商標)を用いることができる。
[第三実施形態]
 次に、第三実施形態に係る浄化ユニット及び浄化装置について、図面に基づき詳細に説明する。なお、第一及び第二実施形態と同一構成には同一符号を付し、重複する説明は省略する。
 本実施形態に係る浄化ユニットも第二実施形態と同様の構成を有している。図6に示すように、浄化ユニットは、第1の導電体10Bと、第1の導電体10Bと異なる第2の導電体20Bと、第1の導電体10B及び第2の導電体20Bと異なる第3の導電体30Bとを有する。そして、第3の導電体30Bの一方の面30aに第1の導電体10Bの少なくとも一部が電気的に接続し、第3の導電体30Bの他方の面30bに第2の導電体20Bの少なくとも一部が電気的に接続している。具体的には、第3の導電体30Bの一方の面30aに第1の導電体10Bが接触することで電気的に接続されており、第3の導電体30Bの他方の面30bに第2の導電体20Bが接触することで電気的に接続されている。ただ、本実施形態の浄化ユニットは、第1の導電体10B及び第2の導電体20Bが第3の導電体30Bを介して鉛直方向に接続されている。
 具体的には、図6(a)に示すように、浄化ユニット1Eは、第1の導電体10B及び第2の導電体20Bが、第3の導電体30Bを介して鉛直方向に接続されている。そして、第1の導電体10Bの一部、第2の導電体20B及び第3の導電体30Bは、廃水90に浸漬されている。また、第1の導電体10Bには、気相50と接触面積を増やすために、カセット基材60及び板部材70を設けている。そのため、第1の導電体10Bは、第一実施形態における撥水層11及びガス拡散層12を備える正極10と同じ構成とすることが好ましい。また、第2の導電体20Bは第一実施形態における負極20と同じ構成とすることができ、第3の導電体30Bは第一実施形態におけるイオン移動層30と同じ構成とすることができる。
 図6(b)に示すように、浄化ユニット1Fは、第1の導電体10B及び第2の導電体20Bが、第3の導電体30Bを介して鉛直方向に接続されている。そして、第1の導電体10Bは気相50中に露出し、第2の導電体20B及び第3の導電体30Bの一部は廃水90に浸漬されている。そのため、第1の導電体10Bは第一実施形態における正極10のガス拡散層12と同じ構成とすることができ、第2の導電体20Bは第一実施形態における負極20と同じ構成とすることができる。さらに、第3の導電体30Bは、第一実施形態におけるイオン移動層30と同じ構成とすることができる。
 ここで、例えば第1の導電体10Bが多孔質体である場合には、毛管現象により廃水90を上昇させ、第1の導電体10Bの内部に保持することができる。そのため、第1の導電体10Bは、内部の廃水90により水素イオンの移動を可能としている。ただ、水素イオン伝導性を確保するために、上述のように、第1の導電体10Bの内部にイオン伝導性物質を配置してもよい。
 本実施形態の浄化装置も、第一及び第二実施形態と同様に作用することができる。具体的には、浄化装置の動作時には、第2の導電体20Bに、有機物及び窒素含有化合物の少なくとも一方を含有する廃水90を供給し、第1の導電体10Bに空気又は酸素を供給する。そして、第2の導電体20Bでは、微生物の触媒作用により、廃水90中の有機物及び窒素含有化合物の少なくとも一方から水素イオン及び電子を生成する。生成した水素イオンは、第3の導電体30Bの内部の空間を通過して第1の導電体10B側へ移動する。また、生成した電子は第2の導電体20Bを通じて第3の導電体30Bへ移動し、さらに第1の導電体10Bに移動する。そして、水素イオン及び電子は、第1の導電体10Bに担持された触媒の作用により酸素と結合し、水となって消費される。
 本実施形態の浄化装置は、浄化ユニット1E,1Fが鉛直方向に設置されていることから、廃水90中の設置スペースを小さくすることができる。そのため、少ないスペースに複数の浄化ユニット1E,1Fを設置することができ、効率的に廃水90の浄化を行うことが可能となる。
[第四実施形態]
 次に、第四実施形態に係る浄化ユニット及び浄化装置について、図面に基づき詳細に説明する。なお、第一乃至第三実施形態と同一構成には同一符号を付し、重複する説明は省略する。
 本実施形態に係る浄化ユニットも第二実施形態と同様の構成を有している。図7に示すように、浄化ユニットは、第1の導電体10Cと、第1の導電体10Cと異なる第2の導電体20Cと、第1の導電体10C及び第2の導電体20Cと異なる第3の導電体30Cとを有する。そして、第3の導電体30Cの一方の面30aに第1の導電体10Cの少なくとも一部が電気的に接続し、第3の導電体30Cの他方の面30bに第2の導電体20Cの少なくとも一部が電気的に接続している。具体的には、第3の導電体30Cの一方の面30aに第1の導電体10Cが接触することで電気的に接続されており、第3の導電体30Cの他方の面30bに第2の導電体20Cが接触することで電気的に接続されている。
 図7(a)の浄化ユニット1Gでは、第1の導電体10Cは水面90aに対して略水平に配置され、第2の導電体20Cは第1の導電体10Cに対して略垂直に配置され、第3の導電体30Cは第1の導電体10Cと第2の導電体20Cとの間に介在している。また、図7(b)の浄化ユニット1Hでは、第1の導電体10Cは水面90aに略水平に配置され、第2の導電体20Cは第1の導電体10Cに対して略平行に配置されている。そして、第3の導電体30Cは、第1の導電体10Cと第2の導電体20Cとの間に介在している。
 図7に示す浄化ユニットにおいて、第1の導電体10Cは廃水90の水面90aから露出しており、酸素を含む気相である空気と直接接触している。そして、第2の導電体20C及び第3の導電体30Cの一部は廃水90に浸漬している。そのため、第1の導電体10Cは第一実施形態における正極10のガス拡散層12と同じ構成とすることができ、第2の導電体20Cは第一実施形態における負極20と同じ構成とすることができる。さらに、第3の導電体30Cは、第一実施形態におけるイオン移動層30と同じ構成とすることができる。
 ここで、例えば第1の導電体10Cが多孔質体である場合には、毛管現象により廃水90を上昇させ、第1の導電体10Cの内部に保持することができる。そのため、第1の導電体10Cは、内部の廃水90により水素イオンの移動を可能としている。ただ、水素イオン伝導性を確保するために、上述のように、第1の導電体10Cの内部にイオン伝導性物質を配置してもよい。
 本実施形態の浄化ユニットは、第1の導電体10Cと廃水90の水面90aとの間に蓋部材110を設けている。そして、蓋部材110は酸素透過性が低いことが好ましい。酸素透過性が低い蓋部材110を設けることにより、廃水90と気相50との接触を抑制し、廃水90に溶存する酸素量を低減することができる。その結果、廃水90の内部に配置されている第2の導電体20Cの周囲を嫌気性雰囲気にすることができるため、嫌気性微生物の代謝を促進することが可能となる。また、図7(b)の浄化ユニット1Hにおいて、蓋部材110を設けることにより水面90aの近傍を嫌気性に保つことができるため、第2の導電体20Cを第1の導電体10Cに近接して配置することが可能となる。
 このような蓋部材110は、酸素透過性が低い樹脂材料からなることが好ましい。また、第1の導電体10Cを廃水90の水面90aから露出させるために、蓋部材110の比重を水よりも小さくし、浮力を発生させることが好ましい。
[第五実施形態]
 次に、第五実施形態に係る浄化ユニット及び浄化装置について、図面に基づき詳細に説明する。なお、第一乃至第四実施形態と同一構成には同一符号を付し、重複する説明は省略する。
 本実施形態に係る浄化ユニットも第一及び第二実施形態と同様の構成を有している。図8に示すように、浄化ユニットは、第1の導電体10Dと、第1の導電体10Dと異なる第2の導電体20Dと、第1の導電体10D及び第2の導電体20Dと異なる第3の導電体30Dとを有する。そして、第3の導電体30Dの一方の面30aに第1の導電体10Dの少なくとも一部が電気的に接続し、第3の導電体30Dの他方の面30bに第2の導電体20Dの少なくとも一部が電気的に接続している。具体的には、第3の導電体30Dの一方の面30aに第1の導電体10Dが接触することで電気的に接続されており、第3の導電体30Dの他方の面30bに第2の導電体20Dが接触することで電気的に接続されている。
 具体的には、図8(a)に示すように、浄化ユニット1Iは、第一実施形態の浄化ユニット1と同様の構成を有している。つまり、第1の導電体10D、第2の導電体20D及び第3の導電体30Dが積層することにより浄化構造体を形成し、さらに第1の導電体10Dにカセット基材60及び板部材70を設けることで気相50を形成している。そのため、第1の導電体10Dは、第一実施形態における撥水層11及びガス拡散層12を備える正極10と同じ構成とすることが好ましい。また、第2の導電体20Dは第一実施形態における負極20と同じ構成とすることができる。
 また、図8(b)の浄化ユニット1Jでは、第1の導電体10Dは水面90aに略水平に配置され、第2の導電体20Dは第1の導電体10Dに対して略平行に配置されている。さらに、第3の導電体30Dは、第1の導電体10Dと第2の導電体20Dとの間に介在している。そして、第1の導電体10Dは気相50中に露出し、第2の導電体20D及び第3の導電体30Dの一部は廃水90に浸漬されている。そのため、第1の導電体10Dは第一実施形態における正極10のガス拡散層12と同じ構成とすることができ、第2の導電体20Dは第一実施形態における負極20と同じ構成とすることができる。
 ここで、本実施形態の浄化ユニットにおいて、第3の導電体30Dはイオン交換膜からなる。イオン交換膜は、第2の導電体20Dで生成した水素イオンを透過しつつも、第2の導電体20Dから第1の導電体10Dへの微生物の移動を抑制することができる。そのため、第1の導電体10Dにおいて、微生物により酸素還元反応が阻害されることを抑制することが可能となる。ただ、通常、イオン交換膜は電気抵抗率が比較的高いため、第1の導電体10Dと第2の導電体20Dとの間の導電性が確保できるように、イオン交換膜の厚みは極力薄い方が好ましい。このようなイオン交換膜としては、上述のナフィオン又はフレミオンからなる膜を用いることができる。
 図8(b)の浄化ユニット1Jでは、第1の導電体10Dが気相50中に露出しているため、内部に廃水90を保持して水素イオン伝導性を確保することができない場合がある。そのため、第1の導電体10Dの内部にイオン伝導性物質を配置し、酸素還元触媒まで水素イオンを伝導させることが好ましい。
[第六実施形態]
 次に、第六実施形態に係る浄化ユニット及び浄化装置について、図面に基づき詳細に説明する。なお、第一乃至第五実施形態と同一構成には同一符号を付し、重複する説明は省略する。
 本実施形態に係る浄化ユニットも第三実施形態と同様の構成を有している。図9に示すように、浄化ユニットは、第1の導電体10Eと、第1の導電体10Eと異なる第2の導電体20Eと、第1の導電体10E及び第2の導電体20Eと異なる第3の導電体30Eとを有する。そして、第3の導電体30Eの一方の面30aに第1の導電体10Eの少なくとも一部が電気的に接続し、第3の導電体30Eの他方の面30bに第2の導電体20Eの少なくとも一部が電気的に接続している。具体的には、第3の導電体30Eの一方の面30aに第1の導電体10Eが接触することで電気的に接続されており、第3の導電体30Eの他方の面30bに第2の導電体20Eが接触することで電気的に接続されている。
 そして、第1の導電体10Eは気相50中に露出し、第2の導電体20E及び第3の導電体30Eの一部は廃水90に浸漬されている。そのため、第1の導電体10Eは廃水90に浸漬していないことから、第1の導電体10Eは第一実施形態における正極10のガス拡散層12と同じ構成とすることができ、第2の導電体20Eは第一実施形態における負極20と同じ構成とすることができる。さらに、第3の導電体30Eは、第一実施形態におけるイオン移動層30と同じ構成とすることができる。
 本実施形態の浄化ユニット1Kは、第三実施形態と同様に、第1の導電体10E及び第2の導電体20Eが第3の導電体30Eを介して略鉛直方向に接続されている。ただ、浄化ユニット1Kは鉛直方向に対して角度θで傾斜しており、さらに廃水90が第1の導電体10Eに対して流下している。つまり、廃水90は、図9に示す矢印Bに沿って第1の導電体10Eの上部に接触し、第1の導電体10E及び第3の導電体30Eの表面及び内部を通過した後、第2の導電体20Eが浸漬している溜められた廃水90に至る。
 このように浄化ユニット1Kでは、第1の導電体10E及び第3の導電体30Eの表面及び内部に常に廃水90が存在している。そのため、第1の導電体10E及び第3の導電体30E自体に水素イオン伝導性を設けなくても、廃水90を介して酸素還元触媒に水素イオンを到達させることが可能となる。
 なお、第1の導電体10Eに流下する廃水90は、第2の導電体20Eが浸漬している廃水90を循環させてもよい。また、汚染源から発生した廃水を第1の導電体10Eに流下させてもよい。
[第七実施形態]
 次に、第七実施形態に係る浄化ユニット及び浄化装置について詳細に説明する。
 第一乃至第六実施形態では、浄化ユニットが浄化する被処理体として、廃水90を用いた場合を説明している。浄化ユニットでは、第2の導電体において微生物により有機物等から水素イオン及び電子を生成し、生成した水素イオン及び電子が第3の導電体を介して第1の導電体に移動し、その後、第1の導電体で酸素還元反応が生じている。そのため、この一連の反応が生じるならば、被処理体は廃水に限定されず、例えば被処理体として土壌を用いることが可能である。また、土壌中には、電気生産細菌である嫌気性微生物が存在している。例えば、水田土壌にはGeobacter属細菌のような電気生産細菌が潜在的に存在している。そのため、第一乃至第六実施形態の浄化ユニットを土壌中に挿入するだけで、土壌浄化を行うことが可能となる。
 上述のように、第1の導電体、第2の導電体及び第3の導電体は水素イオン伝導性を有していることが好ましい。そのため、浄化ユニットは、第1の導電体、第2の導電体及び第3の導電体の内部に、水素イオン伝導体としての水分が侵入できるような湿地帯の土壌に用いることが好ましい。また、第1の導電体、第2の導電体及び第3の導電体の内部にイオン伝導性物質を含ませるか、又は、これらに水分を供給することにより、水素イオン伝導性を持たせることが好ましい。
 このように、本実施形態に係る浄化装置は、上述の浄化ユニットを備えている。そして、当該浄化ユニットは、第1の導電体の少なくとも一部が気相50と接触し、かつ、第2の導電体の少なくとも一部が浄化ユニットにより浄化される土壌と接触するように設置される。このような浄化ユニット及び浄化装置を用いることにより、バイオガスの発生を抑制しつつも、簡易なシステムで土壌を浄化することが可能となる。また、浄化ユニットに対して外部から運転に必要な電力を付与する必要がなく、浄化ユニットを土壌に挿入するだけで運転できるため、電力供給が困難な場所でも土壌浄化を行うことが可能となる。
 以上、本実施形態を説明したが、本実施形態はこれらに限定されるものではなく、本実施形態の要旨の範囲内で種々の変形が可能である。また、本実施形態に係る浄化装置は、有機物や窒素含有化合物を含む液体、例えば各種産業の工場などから発生する排水、下水汚泥などの有機性廃水などの処理、さらには土壌浄化に広く適用できる。さらに、浄化装置は、水域の環境改善などにも利用できる。
 特願2016-109897号(出願日:2016年6月1日)の全内容は、ここに援用される。
 本発明によれば、汚泥発生量を低減しつつもバイオガスの発生を抑制することが可能な浄化ユニット、及び当該浄化ユニットを用いた浄化装置を得ることができる。
 1,1A,1B,1C,1D,1E,1F,1G,1H,1I,1J,1K 浄化ユニット
 10,10A,10B,10C,10D,10E 第1の導電体(正極)
 20,20A,20B,20C,20D,20E 第2の導電体(負極)
 30,30A,30B,30C,30D,30E 第3の導電体(イオン移動層)
 50 気相
 80 処理槽
 90 廃水
 100 浄化装置

Claims (6)

  1.  第1の導電体と、
     前記第1の導電体と異なる第2の導電体と、
     前記第1の導電体及び前記第2の導電体と異なる第3の導電体と、
     を有し、
     前記第3の導電体の一方の面に前記第1の導電体の少なくとも一部が電気的に接続し、前記第3の導電体の他方の面に前記第2の導電体の少なくとも一部が電気的に接続し、
     前記第1の導電体の少なくとも一部は酸素を含む気相と接触し、前記第2の導電体の少なくとも一部は被処理体と接触する、浄化ユニット。
  2.  前記第3の導電体は、前記第1の導電体及び前記第2の導電体よりも高い電気抵抗率を有する、請求項1に記載の浄化ユニット。
  3.  前記第1の導電体は酸素還元触媒を含む、請求項1又は2に記載の浄化ユニット。
  4.  請求項1乃至3のいずれか一項に記載の浄化ユニットと、
     前記浄化ユニットと前記浄化ユニットにより浄化される廃水とを内部に保持するための処理槽と、
     を備え、
     前記浄化ユニットは、前記第1の導電体の少なくとも一部が前記気相と接触し、かつ、前記第2の導電体の少なくとも一部が前記廃水と接触するように設置される、浄化装置。
  5.  請求項1乃至3のいずれか一項に記載の浄化ユニットを備え、
     前記浄化ユニットは、前記第1の導電体の少なくとも一部が前記気相と接触し、かつ、前記第2の導電体の少なくとも一部が前記浄化ユニットにより浄化される土壌と接触するように設置される、浄化装置。
  6.  前記第2の導電体の表面及び内部の少なくとも一方には、嫌気性微生物が担持されている、請求項4又は5に記載の浄化装置。
PCT/JP2017/003180 2016-06-01 2017-01-30 浄化ユニット及び浄化装置 WO2017208495A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780033693.6A CN109219579A (zh) 2016-06-01 2017-01-30 净化单元及净化装置
US16/304,161 US20200317543A1 (en) 2016-06-01 2017-01-30 Purification unit and purification device
EP17806057.0A EP3466895A4 (en) 2016-06-01 2017-01-30 PURIFICATION UNIT AND PURIFICATION DEVICE
JP2018520345A JP6902706B2 (ja) 2016-06-01 2017-01-30 浄化ユニット及び浄化装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016109897 2016-06-01
JP2016-109897 2016-06-01

Publications (1)

Publication Number Publication Date
WO2017208495A1 true WO2017208495A1 (ja) 2017-12-07

Family

ID=60479410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003180 WO2017208495A1 (ja) 2016-06-01 2017-01-30 浄化ユニット及び浄化装置

Country Status (5)

Country Link
US (1) US20200317543A1 (ja)
EP (1) EP3466895A4 (ja)
JP (1) JP6902706B2 (ja)
CN (1) CN109219579A (ja)
WO (1) WO2017208495A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107303A1 (ja) * 2017-11-30 2019-06-06 パナソニック株式会社 浄化装置及び浄化電極
CN116966704A (zh) * 2023-09-13 2023-10-31 辽宁普雷特环保科技有限公司 一种用于高温烟气处理的水冷除尘设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108557965A (zh) * 2018-01-06 2018-09-21 江苏瑞河环境工程研究院有限公司 带极性的黏土絮凝剂及其制备方法
CN113461138A (zh) * 2021-06-25 2021-10-01 江西师范大学 用于污水处理的装置和污水处理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1147494A (ja) 1997-08-08 1999-02-23 Daiko Kagaku Kogyo Kk カーポート用の物干竿掛
JP2007090232A (ja) * 2005-09-28 2007-04-12 Ebara Corp 有機性物質含有廃液の処理方法及び装置
JP2009093861A (ja) * 2007-10-05 2009-04-30 Kajima Corp 微生物燃料電池及び微生物燃料電池用の隔膜カセット
JP2010033823A (ja) * 2008-07-28 2010-02-12 Kurita Water Ind Ltd 微生物発電装置
WO2013073284A1 (ja) * 2011-11-16 2013-05-23 国立大学法人豊橋技術科学大学 微生物発電装置、微生物発電装置用電極およびその製造方法
JP2016091805A (ja) * 2014-11-05 2016-05-23 国立研究開発法人農業・食品産業技術総合研究機構 微生物燃料電池
JP2016109897A (ja) 2014-12-08 2016-06-20 シャープ株式会社 電子機器、発話制御方法、およびプログラム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3676775B2 (ja) * 2002-11-12 2005-07-27 株式会社荏原製作所 ヘドロの酸化分解方法及び装置
CN101317297A (zh) * 2005-09-28 2008-12-03 株式会社荏原制作所 生物发电装置和利用该生物发电装置处理含有有机固体污染物质的废弃物的方法、处理含有有机聚合物的废液的方法、处理含有有机物质的废液的方法以及实施这些处理方法的装置
WO2007037261A1 (ja) * 2005-09-28 2007-04-05 Ebara Corporation 生物発電装置及び該生物発電装置を利用する有機性固形汚濁物質含有廃棄物の処理方法、有機性高分子物質含有廃液の処理方法、有機性物質含有廃液の処理方法並びにこれらの処理方法を行う装置
US8524402B2 (en) * 2008-05-13 2013-09-03 University Of Southern California Electricity generation using microbial fuel cells
CN101481178B (zh) * 2009-02-10 2011-05-11 清华大学 一种用于同步产电脱盐的污水处理工艺及装置
JP6065321B2 (ja) * 2013-04-22 2017-01-25 パナソニックIpマネジメント株式会社 液体処理装置
US20170210653A1 (en) * 2014-09-26 2017-07-27 Panasonic Intellectual Property Management Co. Ltd. Liquid treatment unit and liquid treatment device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1147494A (ja) 1997-08-08 1999-02-23 Daiko Kagaku Kogyo Kk カーポート用の物干竿掛
JP2007090232A (ja) * 2005-09-28 2007-04-12 Ebara Corp 有機性物質含有廃液の処理方法及び装置
JP2009093861A (ja) * 2007-10-05 2009-04-30 Kajima Corp 微生物燃料電池及び微生物燃料電池用の隔膜カセット
JP2010033823A (ja) * 2008-07-28 2010-02-12 Kurita Water Ind Ltd 微生物発電装置
WO2013073284A1 (ja) * 2011-11-16 2013-05-23 国立大学法人豊橋技術科学大学 微生物発電装置、微生物発電装置用電極およびその製造方法
JP2016091805A (ja) * 2014-11-05 2016-05-23 国立研究開発法人農業・食品産業技術総合研究機構 微生物燃料電池
JP2016109897A (ja) 2014-12-08 2016-06-20 シャープ株式会社 電子機器、発話制御方法、およびプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3466895A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107303A1 (ja) * 2017-11-30 2019-06-06 パナソニック株式会社 浄化装置及び浄化電極
JPWO2019107303A1 (ja) * 2017-11-30 2020-11-19 パナソニック株式会社 浄化装置及び浄化電極
JP7010303B2 (ja) 2017-11-30 2022-01-26 パナソニック株式会社 浄化装置及び浄化電極
CN116966704A (zh) * 2023-09-13 2023-10-31 辽宁普雷特环保科技有限公司 一种用于高温烟气处理的水冷除尘设备
CN116966704B (zh) * 2023-09-13 2024-02-06 辽宁普雷特环保科技有限公司 一种用于高温烟气处理的水冷除尘设备

Also Published As

Publication number Publication date
JPWO2017208495A1 (ja) 2019-03-22
EP3466895A1 (en) 2019-04-10
US20200317543A1 (en) 2020-10-08
JP6902706B2 (ja) 2021-07-14
CN109219579A (zh) 2019-01-15
EP3466895A4 (en) 2019-05-01

Similar Documents

Publication Publication Date Title
JP6368036B2 (ja) 電極構造体及び微生物燃料電池
JP6364529B2 (ja) 電極の製造方法及び電極
JP6438115B2 (ja) 微生物燃料電池システム
WO2017208495A1 (ja) 浄化ユニット及び浄化装置
WO2017119419A1 (ja) 微生物燃料電池用ガス拡散電極、及びそれを用いた微生物燃料電池
JP6643642B2 (ja) 浄化ユニット及び浄化装置
JP6438051B2 (ja) 微生物燃料電池システム
JP2019076833A (ja) 液体処理システム
JP6447932B2 (ja) 液体処理ユニット及び液体処理装置
WO2018061058A1 (ja) 微生物燃料電池及び廃液処理装置
WO2017175260A1 (ja) 電極、燃料電池及び水処理装置
WO2017199475A1 (ja) 液体処理ユニット及び液体処理装置
JP2017148776A (ja) 水処理装置
JP6703859B2 (ja) 微生物燃料電池
WO2019069851A1 (ja) 電極複合体並びにそれを用いた微生物燃料電池及び水処理装置
WO2017195406A1 (ja) 微生物燃料電池及びそれを用いた液体処理ユニット
WO2019078002A1 (ja) 液体処理システム
WO2019064889A1 (ja) 液体処理システム
WO2018203455A1 (ja) 液体処理システム
JP2020099850A (ja) 液体処理システム
JP2020099854A (ja) 液体処理システム
WO2019078003A1 (ja) 微生物燃料電池、液体処理システム、及び液体処理構造体
JP2020082006A (ja) 液体処理システム
JP2020099853A (ja) 液体処理システム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018520345

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017806057

Country of ref document: EP

Effective date: 20190102