WO2019088795A2 - 안전성이 향상된 이차전지용 전극과 이의 제조방법, 및 이 전극을 포함하는 이차전지 - Google Patents

안전성이 향상된 이차전지용 전극과 이의 제조방법, 및 이 전극을 포함하는 이차전지 Download PDF

Info

Publication number
WO2019088795A2
WO2019088795A2 PCT/KR2018/013353 KR2018013353W WO2019088795A2 WO 2019088795 A2 WO2019088795 A2 WO 2019088795A2 KR 2018013353 W KR2018013353 W KR 2018013353W WO 2019088795 A2 WO2019088795 A2 WO 2019088795A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
secondary battery
elongation
active material
current collector
Prior art date
Application number
PCT/KR2018/013353
Other languages
English (en)
French (fr)
Other versions
WO2019088795A3 (ko
Inventor
김혜빈
이혁무
오송택
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180134596A external-priority patent/KR102203691B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880017097.3A priority Critical patent/CN110392948B/zh
Priority to EP18874662.2A priority patent/EP3582296B1/en
Priority to PL18874662T priority patent/PL3582296T3/pl
Priority to US16/491,047 priority patent/US20200020906A1/en
Publication of WO2019088795A2 publication Critical patent/WO2019088795A2/ko
Publication of WO2019088795A3 publication Critical patent/WO2019088795A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode for a secondary battery having improved safety, a method for manufacturing the electrode, and a secondary battery including the electrode. More particularly, The present invention also relates to a method of manufacturing the electrode, and a secondary battery including the electrode.
  • the secondary rechargeable batteries are nickel-cadmium batteries, nickel-hydrogen batteries, nickel-zinc batteries, and lithium secondary batteries.
  • lithium secondary batteries have almost no memory effect compared to nickel- It is very popular because of its low self-discharge rate and high energy density.
  • a secondary battery especially a lithium secondary battery, stores a large amount of energy, there is a possibility that fire or explosion may occur due to an external impact.
  • a secondary battery having low physical durability such as a pouch- So that the risk of ignition or explosion is greater than that of the can-type secondary battery.
  • a secondary battery is often used as a battery pack including a plurality of battery cells rather than a single battery cell. Since such a battery pack has a higher capacity or higher output than a single battery cell, There is greater concern, and the risk of ignition or explosion is also greater.
  • Such an ignition and explosion is often caused by a short circuit between the battery cell and the battery cell in the case where a needle such as a nail penetrates or penetrates into the battery. In such a case, So that it is necessary to secure the safety of the battery.
  • the PTC device A protective circuit using a change in voltage and a safety vent using a change in the internal pressure of the battery belong to the former method and are materials that can be changed physically, chemically, or electrochemically Is added to the latter method.
  • the devices mounted on the outside of the cell use a temperature, a voltage and an internal pressure to provide a clear cutoff, but require additional installation and installation space, and also require quick response such as internal shorting, penetration of the needle, It is known that it does not play a protective role properly.
  • Patent Document 1 Japanese Patent Publication No. 10-2017-0034570 discloses an invention in which the elongation of the positive electrode is set to a specific range (that is, 0.6 to 1.5%) in order to improve the safety of the previous battery.
  • a specific range that is, 0.6 to 1.5%
  • the configuration and the method for realizing the anode having such elongation can not be specifically disclosed.
  • an object of the present invention to solve the problems of the prior art as described above, and it is an object of the present invention to prevent or minimize occurrence of ignition or explosion of a battery even when a needle such as a nail penetrates or penetrates into the battery, And an object of the present invention is to provide an electrode for a secondary battery which can further improve the safety of the secondary battery.
  • the inventors of the present application have found that, in order to prevent ignition or explosion of the battery due to short-circuiting of the battery when the needle-shaped body penetrates into the inside, there is a possibility of contact between the needle- It is necessary to reduce the contact area as much as possible.
  • control of the physical or mechanical properties of the electrode may contribute. That is, when there is penetration of a sludge into the battery, (Elongation) of the electrode as one of the physical characteristics, it is easy to break the electrode, so that the possibility of contact between the electrodes and between the electrode and the needle is reduced The possibility of a short circuit could be reduced.
  • the active material and the electrode assembly are formed by a specific method in the thickness direction of the electrode assembly during the production of the electrode, the electrolyte impregnability is improved or the discharge speed of the gas generated upon charging and discharging is improved.
  • the above-mentioned effect can be more excellently applied to the electrode of the jelly roll type electrode assembly incorporated in the stacked electrode assembly or the can type secondary battery having a slow electrolyte dispersion rate due to high density.
  • the applicant of the present invention has newly discovered that it is possible to reduce the elongation characteristic of the electrode in addition to the electrolyte impregnability and the discharge of gas when the through hole is formed in the electrode in a specific pattern while repeating the experiment for reducing the elongation characteristic Thereby completing the present invention.
  • the electrode according to the present invention it is possible to overcome the limitations of the prior art in which the elongation rate of the material itself is lowered and to further lower the elongation of the electrode, thereby greatly reducing the risk of short circuit and ignition due to invasion of the needle- .
  • an electrode for a secondary battery there is provided an electrode for a secondary battery
  • An electrode for a secondary battery comprising a current collector and an electrode active material layer formed on one or both surfaces of the current collector,
  • the shape of the hole is not particularly limited, but the shape of the cross section may be circular, elliptical, polygonal, and the like, preferably a substantially circular cross section, Mu] m to 5 mm, and more preferably, 400 [mu] m to 1 mm.
  • the holes are formed on the entire surface of the electrode at predetermined intervals, for example, intervals of 1 mm to 8 mm.
  • the arrangement pattern of the holes may be regular or irregular, but it is preferable that the unit pattern is formed to be approximately rectangular (including square) or approximately regular triangle and repeatedly formed.
  • step (2) After the step (2), or simultaneously with the step (2), forming a plurality of holes penetrating the electrode current collector and the electrode active material layer in the thickness direction.
  • the hole forming step may preferably be performed in such a manner that the electrode is pressed using a roller having a perforation means formed on its outer circumferential surface.
  • the hole forming process may be performed after the rolling process of the step (2), or may be performed at the same time as the rolling process by using the roller used for the rolling process of the electrode as the roller having the perforation means formed on the outer circumferential surface have.
  • the secondary battery according to the present invention is characterized in that one or both of the anode and the cathode is the electrode according to the present invention in a secondary battery comprising a cathode, a cathode, a separator and an electrolyte. It is preferable that the anode is an electrode according to the present invention.
  • the elongation of the electrode is lowered by forming the hole penetrating through the electrode in the thickness direction as described above. Accordingly, when the needle such as the nail penetrates into the battery or penetrates the battery, And the possibility of contact between the electrodes and between the electrodes and the syringe body or the contact area is reduced, thereby preventing or reducing the short circuit. Therefore, the possibility of ignition or explosion of the battery is remarkably lowered, and the safety of the battery is improved.
  • FIG. 1A and 1B are schematic plan views showing examples of hole array patterns formed according to an embodiment of the present invention.
  • FIG. 2 is a schematic perspective view showing an example of a roller used in the hole forming step of the present invention.
  • elongation percentage (%) refers to a percentage of the elongation after stretching relative to the original length as a percentage of the original length.
  • the elongation percentage may be different between the longitudinal elongation and the lateral elongation.
  • the longitudinal elongation and the lateral elongation are calculated as arithmetic mean values. For example, when the longitudinal elongation of the electrode is 2% and the lateral elongation is 4%, the elongation of the electrode is 3%.
  • An electrode for a secondary battery according to the present invention is an electrode comprising a current collector and an electrode active material layer formed on one surface or both surfaces of the current collector and having a plurality of holes penetrating the current collector and the electrode active material layer in the thickness direction .
  • the shape of the hole is not particularly limited, but the shape of the cross section may be circular, elliptical, polygonal, or the like, and is preferably a substantially circular cross-section.
  • the diameter of the holes may be preferably 100 ⁇ ⁇ to 5 mm, more preferably 400 ⁇ ⁇ to 1 mm, and these holes are preferably formed on the entire surface of the electrode at predetermined intervals.
  • the total area of the holes may be 10 to 70%, more preferably 20 to 40% of the total area of the electrode.
  • the arrangement pattern of the holes may be regular or irregular, but preferably the unit shape of the array of holes 11 is a square (in the case of FIG. 1A) or an equilateral triangle (in the case of FIG. 1B) ), which are repeatedly formed on the electrode (10).
  • the hole spacing Ls in the longitudinal direction of the sides of the square shape and the hole spacings Lt in the longitudinal direction of the sides of the regular triangle shape are each 1 to 8 mm, and each hole is circular .
  • the material of the electrode current collector used in the present invention particularly, the material, thickness and shape of the positive electrode current collector and the negative electrode current collector, the kind of the slurry for forming the electrode active material layer, particularly the positive electrode active material layer and the negative electrode active material layer, Size, porosity of the active material layer, and the like are well known in the art and are not particularly limited, and those skilled in the art can easily understand and obtain the present invention and use it in the present invention. do.
  • Patent Documents 1 Korean Patent Laid-open Publication No. 10-2017-0034570
  • Patent Document 2 Korean Patent Laid-Open Publication No. 10-2013-0055712
  • the positive electrode current collector may be made of stainless steel, aluminum, nickel, titanium, sintered carbon, or a surface treated with aluminum, stainless steel or the like with carbon, nickel, titanium or silver.
  • Aluminum is preferably used for the purpose of reducing the elongation as much as possible.
  • the anode current collector may be one obtained by surface-treating a surface of copper, stainless steel, aluminum, nickel, titanium, sintered carbon, copper or stainless steel with carbon, nickel, titanium or silver,
  • Cu foil which is widely used as an anode current collector in consideration of various aspects, has a considerably large elongation, it is not easy to have a desired level of elongation by the constitution of the present invention. Therefore, since aluminum and the like are widely used as materials for the positive electrode on the other side, the effect of the present invention can be doubled when applied to the positive electrode rather than the negative electrode.
  • the elongation ratio of the electrode is lowered (this may be because the breaking strength of the electrode is weakened due to a large number of holes)
  • the size of the hole, the forming area, etc. may preferably have an elongation of 1.0% or less, more preferably 0.4% to 0.8%, and most preferably 0.4 to 0.5%.
  • the elongation of the electrode is preferably at least 0.3% or more.
  • the elongation of the anode and the cathode is small and the elongation of the separation membrane is large (for example, if the separation membrane has an elongation lower than that of the electrode current collector,
  • the use of the electrode of the present invention as described above makes it possible to reduce the resistance of the electrode against penetration or penetration of the needle into the needle such as a nail, And when the resistance is exceeded, the breakage of the electrode occurs almost without being elongated, and the possibility of contact between the electrodes and between the electrode and the needle is reduced or the contact area is reduced to prevent or reduce a short circuit, .
  • a method of manufacturing an electrode of the present invention includes the steps of (1) applying an electrode slurry containing an electrode active material on an electrode current collector, and drying the electrode slurry to form an electrode active material layer; and (2) And further comprising the step of forming a plurality of holes through the electrode current collector and the active material layer in the thickness direction.
  • the hole may be formed by any method known in the art.
  • the hole may be formed by pressing the electrode using a pressing apparatus having a perforating means on the pressing die.
  • the electrode 20 can be formed by pressing the electrode using the electrode 20 having the perforation means 21 formed on the outer circumferential surface thereof, as used in the electrode rolling process.
  • Such a hole forming step may be performed after the rolling step of step (2), or may be performed simultaneously with the rolling step by using a roller having a perforation means formed on the outer peripheral surface thereof as a roller used in the rolling step. The latter method is preferable in terms of process efficiency.
  • the pattern for forming the perforation means in the roller may be formed correspondingly to the pattern of the hole to be formed in the electrode.
  • the perforation means may be any material capable of forming a hole by pressing the current collector and the active material layer .
  • the perforation means may be, for example, a pin, a needle, a rod, a tube or the like capable of forming a hole by pressurization.
  • the electrode active material layer forming step, rolling step, and the like are conventional ones known in the art, and can be applied to the present invention without any particular limitation, and those skilled in the art can easily And can be used in the present invention. Therefore, a detailed description thereof will be omitted.
  • Patent Documents 1 and 2 refer to Patent Documents 1 and 2 as described above.
  • the present invention further provides a secondary battery, wherein a secondary battery according to the present invention is a secondary battery comprising a cathode, a cathode, a separator, and an electrolyte, wherein one or both of the anode and the cathode And is an electrode according to the invention.
  • a secondary battery according to the present invention is a secondary battery comprising a cathode, a cathode, a separator, and an electrolyte, wherein one or both of the anode and the cathode And is an electrode according to the invention.
  • the anode is the electrode according to the present invention.
  • the separator, the electrolyte, and the like constituting the secondary battery of the present invention are well known in the art and can be used in the present invention without any particular limitation, and those skilled in the art can easily understand and obtain And therefore detailed descriptions thereof are also omitted.
  • Patent Documents 1 and 2 as described above.
  • the present invention provides an electrode in which a plurality of holes are formed through the current collector and the electrode active material layer in the thickness direction in order to reduce the stretching property.
  • a positive electrode and a negative electrode with a hole according to the present invention were prepared as follows.
  • the positive electrode and the negative electrode were prepared in the same manner except that no hole was formed as the control group.
  • An aluminum foil having a thickness of 12 ⁇ and an elongation of 2.5% was prepared as a positive electrode current collector.
  • a positive active material LiNi 0.6 Mn 0.2 Co 0.2 O 2 (average particle diameter: 14 ⁇ m)
  • a PVDF, binder, conductive material Denka black (Denka black) of 93: 4: 3 ratio with a solvent is N- methylpyrrolidone (NMP) to prepare a positive electrode slurry for forming a positive electrode active material layer.
  • NMP N- methylpyrrolidone
  • the positive electrode slurry was coated on both sides of an aluminum foil, dried and rolled to prepare a positive electrode.
  • the positive electrode was pressed with a roller as shown in Fig. 2 to form a hole.
  • the hole has a circular cross section with a diameter of 500 mu m, and the arrangement pattern of the holes is a square pattern as shown in Fig. 1A, and the hole interval Ls in the longitudinal direction of the sides is 1 mm.
  • the thus-produced positive electrode had a total thickness of about 125 mu m (one of the active material layers had a thickness of about 56 mu m) and a porosity of 25%.
  • a positive electrode was prepared in the same manner as in Example 1, except that the hole interval Ls was 5 mm.
  • a positive electrode was prepared in the same manner as in Example 1, except that the hole interval Ls was changed to 10 mm.
  • a positive electrode was prepared in the same manner as in Example 1, except that no hole was formed.
  • a copper foil having a thickness of 10 ⁇ and an elongation of 3.5% was prepared as an anode current collector.
  • a slurry for forming a negative electrode active material layer was prepared by mixing natural graphite as a negative electrode active material, SBR and CMC as a binder, and denka black as a conductive material in water as a solvent at a composition ratio of 97: 2: 1.
  • the negative electrode slurry was coated on both sides of the negative electrode current collector, followed by drying and rolling to prepare a negative electrode.
  • the final negative electrode thus obtained had a total thickness of about 150 mu m (one of the active material layers had a thickness of about 70 mu m) and a porosity of 35%.
  • a negative electrode was prepared in the same manner as in Production Example 5 except that no hole was formed.
  • Elongation ratios were measured for the positive electrode and the negative electrode according to the respective production examples. At this time, the elongation was measured by UTM equipment, and the longitudinal elongation and transverse elongation were measured at a rate of 0.5 mm / min. The results of measurement of the elongation of the positive electrode and the negative electrode according to each production example are shown in Table 1 below.
  • Electrode Manufacturing Example Elongation of current collector Diameter of hole ( ⁇ ) Spacing of holes (mm) The elongation of the prepared electrode Production Example 1 (anode 1) 2.5% 500 One 0.5% Production Example 2 (anode 2) 2.5% 500 5 0.8% Production Example 3 (anode 3) 2.5% 500 10 1.2% Production Example 4 (anode 4) 2.5% - - 1.5% Production Example 5 (cathode 1) 3.5% 500 One 2.0% Production Example 6 (cathode 2) 3.5% - - 2.5%
  • the secondary batteries were fabricated in accordance with the procedures of Examples and Comparative Examples shown in Table 2 by combining the positive electrode and the negative electrode according to each of the above production examples. Nail penetration test was performed after manufacturing the secondary battery to observe whether or not the battery was ignited.
  • the secondary batteries according to each of the Examples and Comparative Examples were prepared in the same manner as described below except for the combination of production examples of used positive and negative electrodes.
  • the positive electrode and the negative electrode of each of the examples and comparative examples were selected and used as electrodes according to the production example shown in Table 2 below.
  • An electrode assembly was prepared by interposing a separator made of polyethylene between the positive electrode and the negative electrode.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • 1M LiPF 6 1M LiPF 6
  • the nail penetration test was performed on the monocell prepared as described above. Before the experiment, each mono cell was fully charged at a voltage of 4.15 V at 25 ° C. The monocell was pierced through the center at a penetration rate of 80 mm / sec using a nail having a diameter of 3 mm. The results are shown in Table 2 below (O: ignited , X: not ignited).
  • monocells were produced by combining Production Example 1 (anode 1) and Production Example 5 (cathode 1), which had the lowest elongation rates, and then subjected to the nail penetration test. Because of the low elongation, ignition did not occur after penetration of the sludge.
  • Production Example 2 (anode 2) having an elongation of 0.8% and Production Example 5 (cathode 1) were prepared in the same manner as in Example 1, followed by nail penetration test to observe whether or not they were ignited. As in Example 1, ignition did not occur.
  • Example 1 Anode 1 having an elongation of 0.5% and Production Example 6 (cathode 2) having no hole formation and no decrease in elongation characteristics were combined. It was judged that ignition did not occur and that the low elongation of Production Example 1 (anode) was caused.
  • Example 2 the same procedure as in Example 1 was carried out using Preparative Example 3 (anode 3) having a higher elongation than that of Example 2 and Production Example 5 (cathode 1) having a decreased elongation characteristic.
  • the elongation rate of the electrode can be greatly reduced, so that the needle- A short circuit is prevented or reduced in the case of penetration, whereby the possibility of ignition or explosion is significantly lowered.
  • the present invention can prevent or minimize the occurrence of ignition or explosion of a battery even when a needle such as a nail penetrates into or penetrates into the inside of the battery, thereby further improving the safety of the battery. Therefore, it is industrially very useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

본 발명은 안전성이 향상된 이차전지용 전극과 이의 제조방법, 및 이 전극을 포함하는 이차전지에 관한 것으로서, 본 발명에 따른 이차전지용 전극은 집전체 및 전극 활물질층을 두께 방향으로 관통하는 다수의 구멍이 형성되어 있는 것을 특징으로 한다. 이와 같은 전극은 못(nail)과 같은 침상체가 전지 내부로 침투하거나 관통하는 경우에도 전지의 발화나 폭발의 발생을 방지하거나 최소화할 수 있어 전지의 안전성을 향상시켜 준다.

Description

안전성이 향상된 이차전지용 전극과 이의 제조방법, 및 이 전극을 포함하는 이차전지
본 출원은 2017.11.06.자 한국 특허 출원 제10-2017-0146387호 및 2018.11.05.자 한국 특허 출원 제10-2018-0134596호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 안전성이 향상된 이차전지용 전극과 이의 제조방법, 및 이 전극을 포함하는 이차전지에 관한 것으로서, 더욱 상세하게는 못(nail)과 같은 침상체가 전지 내부로 침투하거나 관통하는 경우에도 발화나 폭발의 발생을 방지하거나 최소화할 수 있어 안전성이 더욱 향상된 이차전지용 전극과 이의 제조방법, 및 이 전극을 포함하는 이차전지에 관한 것이다.
최근, 노트북, 비디오 카메라, 휴대용 전화기 등과 같은 휴대용 전자 제품의 수요가 급격하게 증대되고, 전기자동차, 에너지 저장용 축전지, 로봇, 위성 등의 개발이 본격화됨에 따라, 반복적인 충방전이 가능한 고성능 이차 전지에 대한 연구가 활발히 진행되고 있다.
현재 상용화된 이차 전지로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 이차 전지 등이 있는데, 이 중에서 리튬 이차 전지는 니켈 계열의 이차 전지에 비해 메모리 효과가 거의 일어나지 않아 충방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.
이러한 이차 전지, 특히 리튬 이차전지는 많은 에너지를 저장하고 있기 때문에, 외부의 충격 등에 의해 화재나 폭발이 발생할 우려가 있으며, 특히, 파우치형 이차 전지와 같이 물리적인 내구성이 낮은 이차 전지는 외부의 충격에 취약하므로 캔형 이차 전지에 비해 발화나 폭발의 위험이 더욱 크다. 또한, 최근에는, 이차 전지가 단일의 배터리 셀로 사용되기 보다는 다수의 배터리 셀을 포함시킨 배터리 팩으로 사용되는 경우가 많은데, 이러한 배터리 팩은 단일의 배터리 셀보다 고용량 또는 고출력을 갖기 때문에 발화나 폭발의 우려가 더욱 크며, 발화나 폭발이 일어날 경우 그 위험성 또한 더욱 클 수밖에 없다.
이와 같은 발화 및 폭발은 못과 같은 침상체가 배터리 내부로 침투하거나 관통하는 경우에 배터리 셀 내부에 또는 배터리 셀과 배터리 셀간에 단락이 유발됨으로써 종종 발생하기도 하는 바, 이러한 경우에 있어서도 전지의 발화나 폭발을 방지하여 전지의 안전성을 확보할 필요성이 있다.
이러한 침상체의 침투나 관통에 대한 안전성을 확보하기 위한 방안으로서, 셀 바깥쪽에 별도의 소자를 장착하는 방법 및 셀 내부의 물질을 이용하는 방법이 주로 연구 개발되어 왔는데, 온도의 변화를 이용하는 PTC 소자, 전압의 변화를 이용하는 보호회로, 전지 내압의 변화를 이용하는 안전 벤트(Safety vent) 등은 전자의 방법에 속하고, 전지내부의 온도나 전압 변화에 따라 물리적, 화학적, 전기화학적으로 변화할 수 있는 물질을 첨가하는 것은 후자의 방법에 속한다.
셀 바깥쪽에 장착하는 소자들은 온도나 전압 그리고 내압을 이용하기 때문에 확실한 차단을 가져올 수 있지만, 추가적인 설치 공정 및 설치 공간이 요구되며, 또한 내부 단락, 침상체 관통, 국부적 손상 등과 같이 빠른 대응이 요구되는 경우에는 제대로 보호역할을 하지 못하는 것으로 알려져 있다.
한편, 셀 내부의 물질을 이용하는 방법으로는, 전해액이나 전극에 안전성을 향상시키는 첨가제를 부가하는 화학적 안전장치에 대한 연구가 진행되고 있는데, 이는 공간을 필요로 하지 않으며 모든 종류의 전지에 적용이 가능하다는 장점을 가지고 있으나, 전극에 부동막을 형성하는 물질을 만들거나 온도 상승시 부피 팽창이 이루어지면서 전극의 저항을 증가시키는 상황 등이 보고되고 있다. 따라서, 이러한 방법은 부동막 형성시 부산물이 발생하여 전지의 성능을 저하시키거나, 전지 내부에서 차지하는 부피가 커서 전지의 용량감소를 가져오는 문제점을 안고 있다.
따라서, 침상체의 침투나 관통에 의한 발화나 폭발을 방지하기 위한 기술 개발이 여전히 필요한 실정이다. 더구나, 전지의 고출력, 고에너지 밀도에 대한 요구가 높아짐에 따라 발화, 폭발 등의 위험이 더욱 높아져 안전성에 대한 대책이 더욱 절실하다.
이러한 이차전지의 안전성에 대한 요구에 부응하기 위하여, 본 출원인은 다각도로 연구를 거듭한 끝에 이미 여러 가지 기술을 개발하여 특허출원한 바 있으며, 일례로서, 본 출원인이 출원한 특허문헌 1(한국 공개특허공보 10-2017-0034570호)에서는, 이전전지의 안전성을 향상시키기 위해 양극의 연신율을 특정 범위(즉, 0.6 내지 1.5%)로 하는 발명을 제공하고 있다. 그러나, 이 발명에서는 이와 같은 연신율을 갖는 양극을 실현하는 구성이나 방법에 대해 더 이상 구체적으로 개시하지 못하고 있다.
이에 본 발명은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위한 것으로, 못(nail)과 같은 침상체가 전지 내부로 침투하거나 관통하는 경우에도 전지의 발화나 폭발의 발생을 방지하거나 최소화할 수 있어 전지의 안전성을 더욱 향상시켜 줄 수 있는 이차전지용 전극을 제공하는 것을 그 목적으로 한다.
또한, 본 발명은 상기와 같은 이차전지용 전극을 효율적으로 제조하는 방법, 및 이러한 전극을 포함하는 이차전지를 제공하는 것을 추가의 목적으로 한다.
상기와 같은 목적을 달성하기 위하여, 본 출원의 발명자들은, 침상체가 내부로 침입하는 경우 전지의 단락에 의한 전지의 발화나 폭발을 방지하기 위해서는, 침상체와 전극간에 그리고 양극과 음극간에 접촉 가능성이나 접촉 면적을 가능한 감소시켜 줄 필요가 있고, 이를 달성하는 데에는 전극의 물리적 또는 기계적 특성의 조절이 기여할 수 있을 것이라는 점, 즉 전지에 침상체의 침입 등이 있게 되면 전극(특히 전극 집전체)이 연신되고 이로 인해 반대 전극과 접촉하게 됨으로써 단락이 발생하는 것을 감안하여, 물리적 특성의 하나로서 전극의 연신 특성(연신율)을 낮추면 전극의 파단이 쉽게 이루어져 전극 상호간에 그리고 전극과 침상체 간에 접촉 가능성이 줄어 들어 단락의 가능성이 줄어들 수 있다는 점을 착안하고 연구를 진행하였다. 그러나, 집전체 소재 자체의 연신율을 낮게 하는 것에는 전극의 요건이나 전극 제조공정상 한계가 있었다. 본 발명자들은 다른 측면에서 다각도로 연구를 거듭한 끝에, 전극의 연신 특성을 줄일 수 있는 새로운 방법을 찾아내고, 이에 기초하여 본 발명을 완성하게 된 것이다.
전극 제조 시 활물질과 전극조립체를 두께방향으로 관통하는 구멍을 특정 방법으로 형성하는 경우, 전해액 함침성이 향상되거나 충방전 시 발생한 가스의 배출속도가 향상된다는 점은 이미 공지되어 있다. 상기한 방법의 경우 밀집도가 높아 전해액 분산 속도가 느린 적층형 전극조립체나 캔형 이차전지에 내장되는 젤리롤 형 전극조립체의 전극에 적용될 경우 상기한 효과가 더욱 우수하게 나타날 수 있다.
그러나, 본 출원인은 연신 특성을 줄이기 위한 실험을 거듭하던 중 특정 패턴으로 전극에 관통구를 형성하는 경우, 상기한 전해액 함침성이나 가스의 배출 향상 외에 전극의 연신 특성을 줄일 수 있다는 사실을 새로이 발견하여 본 발명을 완성하게 되었다. 본 발명에 의한 전극을 사용하는 경우 소재 자체의 연신율을 낮춘 종래 기술의 한계를 극복하고 전극의 연신율을 더욱 낮출 수 있으며, 이로 인 해 침상체의 침범으로 인한 단락 및 발화의 위험성을 현저히 줄일 수 있다.
따라서, 상기와 같은 목적을 달성하기 위한 본 발명에 따른 이차전지용 전극은,
집전체, 및 상기 집전체의 일면 또는 양면에 형성된 전극 활물질층을 포함하는 이차전지용 전극으로서,
상기 집전체 및 상기 전극 활물질층을 두께 방향으로 관통하는 다수의 구멍이 형성되어 있는 것을 특징으로 한다.
본 발명의 바람직한 일 실시형태에 있어서, 상기 구멍의 형태는 특별히 제한되는 것은 아니지만, 횡단면 모양이 원형, 타원형, 다각형 등일 수 있고, 바람직하게는 대략 원형 단면이며, 그 직경의 크기는 바람직하게는 100㎛ 내지 5mm, 보다 바람직하게는 400㎛ 내지 1mm의 범위이다.
또한, 상기 구멍은 소정의 간격, 예컨대 1mm 내지 8mm의 간격으로 전극의 전체 면에 형성되는 것이 바람직하다. 이때 구멍의 배열 패턴은 규칙적일 수도 있고 비규칙적일 수도 있지만, 단위 패턴을 대략 직사각형(정사각형 포함) 또는 대략 정삼각형으로 하여 이를 반복 형성한 것이 바람직하다.
또한, 본 발명에 따른 이차전지용 전극의 제조방법은,
(1) 전극 집전체 상에, 전극 활물질을 포함하는 전극 슬러리를 도포하고 건조하여 전극 활물질층을 형성하는 단계, 및 (2) 상기 전극 활물질층을 압연하는 단계를 포함하는 전극의 제조방법으로서,
상기 단계(2) 후에, 또는 상기 단계(2)와 동시에, 상기 전극 집전체 및 상기 전극 활물질층을 두께 방향으로 관통하는 다수의 구멍을 형성하는 단계를 추가로 포함하는 것을 특징으로 한다.
상기 구멍 형성 단계는, 바람직하게는 외주면에 천공수단이 형성된 롤러를 이용하여 전극을 가압하는 방식으로 수행할 수 있다. 이러한 구멍 형성 공정은 상기 단계(2)의 압연 공정 후에 수행할 수도 있고, 또는 전극의 압연공정에 사용하는 롤러로서 외주면에 천공수단이 형성된 롤러를 이용함으로써 압연 공정과 동시에 구멍 형성 공정을 수행할 수도 있다.
또한, 본 발명에 따른 이차전지는, 양극, 음극, 분리막 및 전해질을 포함하여 이루어지는 이차전지에 있어서, 상기 양극 및 음극 중 하나 또는 둘 다가 상기한 본 발명에 따른 전극인 것을 특징으로 한다. 상기 양극이 본 발명에 따른 전극인 것이 바람직하다.
본 발명에 따르면, 상기와 같이 전극에 두께 방향으로 관통하는 구멍이 형성됨으로써 전극의 연신율이 낮아지게 되고, 이에 따라 못과 같은 침상체가 전지 내부로 침입하거나 전지를 관통하는 경우에, 전극의 파단이 쉽게 이루어져 전극 상호간에 그리고 전극과 침상체 간에 접촉 가능성이나 접촉 면적이 줄어 들어 단락이 방지되거나 감소된다. 따라서, 전지의 발화나 폭발의 가능성이 현저히 낮아져 전지의 안전성이 향상되는 효과가 있게 된다.
도 1a 및 1b는 본 발명의 일 실시형태에 따라 형성된 구멍 배열 패턴의 예들을 보여주는 개략적 평면도이다.
도 2는 본 발명의 구멍 형성 단계에서 사용하는 롤러의 일례를 나타낸 개략적 사시도이다.
이하, 본 발명을 더욱 구체적으로 설명한다. 이하에서 기재하는 구체적인 사항이나 실시예 및 도면의 내용은 본 발명의 실시형태를 예시하는 것에 불과하므로, 본 발명은 이러한 기재 사항이나 내용에 한정되는 것으로 이해되어서는 아니될 것이다.
먼저, 본 발명에서 사용하는 용어에 대해 설명한다, 본 발명에서의 '연신율(%)'은 통상적인 정의와 같이 원래의 길이에 비해 연신후 늘어난 길이를 백분율로 나타낸 것이지만, 본 발명에서는 선형이 아니라 면형 물체에 적용되는 것이므로, 종방향 연신율과 횡방향 연신율을 모두 포함하는 개념이다. 연신율은 종방향 연신율과 횡방향 연신율이 다를 수 있는데, 이 경우에는 종방향 연신율과 횡방향 연신율을 산술평균한 값으로 한다. 예를 들어, 전극의 종방향 연신율이 2%, 횡방향 연신율이 4%인 경우, 전극의 연신율은 3%이다.
본 발명에 따른 이차전지용 전극은, 집전체, 및 상기 집전체의 일면 또는 양면에 형성된 전극 활물질층을 포함하는 전극으로서, 상기 집전체 및 상기 전극 활물질층을 두께 방향으로 관통하는 다수의 구멍이 형성되어 있는 것을 특징으로 한다.
본 발명의 구체적인 일 실시형태에 있어서, 상기 구멍의 형태는 특별히 제한되는 것은 아니지만, 횡단면 모양이 원형, 타원형, 다각형 등일 수 있고, 바람직하게는 대략 원형 단면이다.
또한 상기 구멍의 직경은 바람직하게는 100㎛ 내지 5mm, 보다 바람직하게는400㎛ 내지 1mm일 수 있으며, 이러한 구멍이 소정의 간격으로 전극의 전체 면에 형성되는 것이 바람직하다. 바람직하게는, 평면상으로 볼 때, 상기 구멍들의 면적 총합은 전극 전체 면적의 10 ~ 70%, 보다 바람직하게는 20% ~ 40%일 수 있다.
상기 구멍의 직경 및 면적 총합이 각각 상기 범위보다 작을 경우, 연신율 감소효과가 잘 나타나지 않는 한편, 구멍의 직경 및 면적 총합이 상기 범위보다 클 경우에는, 전극 활물질의 양이 감소하여 전지의 용량 감소로 이어질 수 있으므로 바람직하지 않다.
상기 구멍의 배열 패턴은 규칙적일 수도 있고 비규칙적일 수도 있지만, 바람직하게는, 도 1에 도시된 바와 같이 구멍(11) 배열의 단위 모양을 정사각형(도 1a의 경우) 또는 정삼각형(도 1b의 경우)으로 하여 이를 전극(10) 상에 반복 형성한 것으로 할 수 있다. 이 경우 정사각형 모양에서 변의 길이 방향으로의 구멍 간격(Ls) 및 정삼각형 모양에서 변의 길이 방향으로의 구멍 간격(Lt)은 각각 1 ~ 8mm인 것이 바람직하고, 각 구멍은 직경 100㎛ 내지 5mm의 원형인 것이 바람직하다.
본 발명에서 사용하는 전극 집전체, 특히 양극 집전체 및 음극 집전체의 소재, 두께, 형태 등, 전극 활물질층, 특히 양극 활물질층 및 음극 활물질층을 형성하기 위한 슬러리의 성분, 활물질의 종류, 입자 크기, 활물질층의 공극률 등은 당업계에 공지되어 있는 통상적인 것으로, 특별히 제한되지 않으며, 또한 당업자가 그에 관한 사항을 용이하게 이해하고 입수하여 본 발명에 사용할 수 있으므로, 이들에 대한 상세한 설명은 생략한다. 이와 관련하여, 예컨대 본 출원인의 특허인 특허문헌 1(한국 공개특허공보 10-2017-0034570) 및 특허문헌 2(한국 공개특허공보 10-2013-0055712)을 참조할 수 있는데, 이 문헌의 전체 기재 내용을 본 발명과 모순되지 않는 범위에서 본 발명에 참고로 인용한다.
다만, 양극 집전체는 그 소재로서 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있지만, 본 발명에서는 연신율을 가능한 감소시키고자 하는 발명의 목적상 바람직하게는 알루미늄이 사용된다. 한편, 음극 집전체는 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있으며, 여러 가지 면을 고려하여 음극 집전체로서 많이 사용되는 구리 호일(Cu foil)은 상당히 큰 연신율을 갖기 때문에 본 발명의 구성에 의해 원하는 수준의 연신율을 갖도록 하는 것이 쉽지가 않다. 따라서, 상기한 알루미늄 등은 다른 측면에서도 양극의 소재로서 많이 사용되고 있으므로, 본 발명은 음극보다는 양극에 적용될 때 그 효과가 배가될 수 있다.
상기한 바와 같이, 본 발명에 따르면, 전극에 다수의 구멍이 형성됨으로써 전극의 연신율이 낮아지게 되는 바(이는 다수의 구멍으로 인해 전극의 파단 강도가 약해지기 때문일 것이다), 연신율의 감소효과는 전극의 사용 소재, 구멍의 크기, 형성 면적 등에 따라 달라질 수 있지만, 본 발명에 따르면 연신율이 구멍 형성 전에 비해 50% 이하의 수준까지 감소될 수 있다. 이와 같이 연신율이 감소된 본 발명의 전극은 바람직하게는 1.0% 이하의 연신율을 가질 수 있으며, 더욱 바람직하게는 0.4% 내지 0.8%, 가장 바람직하게는 0.4 내지 0.5%의 연신율을 가질 수 있다. 연신율이 0%이거나 지나치게 낮은 경우에는 이를 실현하기도 어렵지만, 압연 등의 공정에서 전극이 파쇄될 위험이 있으므로, 전극의 연신율은 적어도 0.3% 이상인 것이 바람직하다.
한편, 침상체의 침입 또는 관통에 대한 안전성을 확보하기 위해서는, 양극과 음극의 연신율은 작고, 분리막의 연신율은 큰 것이 바람직한데(예컨대, 분리막이 전극 집전체보다 낮은 연신율을 가지면 침상체 관통시 양극과 음극이 접촉할 가능성이 커진다), 상기와 같은 본 발명의 전극을 사용하게 되면, 못과 같은 침상체가 전지 내부로 침입하거나 전지를 관통하는 경우에, 침상체의 침입이나 관통에 대한 전극의 저항력이 크고 이 저항력을 초과하는 경우에는 거의 연신됨이 없이 전극의 파단이 이루어져 전극 상호간에 그리고 전극과 침상체 간에 접촉 가능성이나 접촉 면적이 줄어 들어 단락이 방지되거나 감소하게 됨으로써 발화나 폭발의 가능성이 현저히 낮아지게 된다.
다음으로, 본 발명에 따른 이차전지용 전극의 제조방법에 대해 설명한다. 일 실시예에 의하면 본 발명의 전극 제조방법은 (1) 전극 집전체 상에, 전극 활물질을 포함하는 전극 슬러리를 도포하고 건조하여 전극 활물질층을 형성하는 단계, 및 (2) 상기 전극 활물질층을 압연하는 단계를 포함할 수 있으며, 여기에 상기 전극 집전체 및 상기 활물질층을 두께 방향으로 관통하는 다수의 구멍을 형성하는 단계를 추가로 포함할 수 있다.
상기 구멍을 형성하는 방법으로는 당업계에 공지된 임의의 천공 방법을 이용할 수 있으며, 예컨대 프레싱 다이에 천공 수단을 구비하고 있는 프레스 장치를 이용하여 전극을 프레싱함으로써 형성할 수도 있지만, 바람직하게는, 도 2에 도시되어 있는 바와 같이, 전극의 압연 공정에 사용하는 바와 같은 롤러(20)의 외주면에 천공수단(21)을 형성한 것을 이용하여 전극을 가압함으로써 형성할 수 있다. 이러한 구멍 형성 공정은 상기 단계(2)의 압연 공정 후에 수행할 수도 있으며, 또는 압연공정에 사용하는 롤러로서 외주면에 천공수단이 형성된 롤러를 이용함으로써 압연 공정과 동시에 수행할 수도 있다. 공정 효율성의 측면에서는 후자의 방법이 바람직하다.
상기 롤러에 천공수단을 형성하는 패턴은 전극에 형성하고자 하는 구멍 패턴에 따라 그에 상응하게 형성해 주면 되고, 천공수단은 전극의 집전체와 활물질층을 가압함으로써 구멍을 형성해 줄 수 있는 것이면 특별히 제한 없이 이용할 수 있다. 천공 수단은 예컨대 가압하여 구멍을 형성할 수 있는 핀, 바늘, 로드, 관 등과 같은 것일 수 있다.
한편, 본 발명의 전극 제조방법에 있어서 전극 활물질층 형성 공정, 압연 공정 등은 당업계에 공지되어 있는 통상적인 것으로서, 특별한 제한 없이 본 발명에 적용할 수 있으며, 또한 당업자가 그에 관한 사항을 용이하게 이해하고 입수하여 본 발명에 사용할 수 있으므로, 이들에 대한 상세한 설명은 생략한다. 이와 관련하여, 예컨대, 전술한 바와 같이 특허문헌 1 및 2를 참조할 수 있다.
또한, 본 발명은 이차전지를 추가로 제공하는 바, 본 발명에 따른 이차전지는, 양극, 음극, 분리막 및 전해질을 포함하여 이루어지는 이차전지에 있어서, 상기 양극 및 음극 중 하나 또는 둘 다가 상기한 본 발명에 따른 전극인 것을 특징으로 한다. 특히, 전술한 바와 같은 이유로 양극이 본 발명에 따른 전극인 것이 바람직하다.
한편, 본 발명의 이차전지를 구성하는 분리막, 전해질 등에 관한 사항도 당업계에 공지되어 있는 통상적인 것으로서, 특별한 제한 없이 본 발명에 사용할 수 있으며, 또한 당업자가 그에 관한 사항을 용이하게 이해하고 입수하여 본 발명에 사용할 수 있으므로, 이들에 대한 상세한 설명도 역시 생략한다. 이와 관련하여, 예컨대, 전술한 바와 같이 특허문헌 1 및 2를 참조할 수 있다.
이하, 실시예를 들어 본 발명을 더욱 상세히 설명한다. 하기 실시예는 본 발명을 구체적으로 예시하기 위한 것일 뿐이므로, 본 발명의 범위가 이들 실시예에 의해 한정되는 것이 아님은 물론이다.
본 발명은 연신 특성을 줄이기 위하여, 집전체 및 전극 활물질층을 두께 방향으로 관통하는 다수의 구멍이 형성되어 있는 전극을 제공한다. 이에 본 발명에 따라 구멍이 형성된 양극과 음극을 하기와 같이 제조하였다. 한편, 그 대조군으로서 구멍이 형성되지 않은 것을 제외하고 동일한 방법으로 양극과 음극을 가각 제조하였다.
<양극의 제조예>
제조예 1(양극 1)
두께 12㎛이고 연신율이 2.5%인 알루미늄 호일을 양극 집전체로 준비하였다.
또한, 양극 활물질로서 LiNi 0.6Mn 0.2Co 0.2O 2 (평균 입경: 14㎛), 바인더로서 PVDF, 도전재로서 덴카 블랙(Denka black)를 93:4:3 조성비로 용매인 N-메틸 피롤리돈(NMP)에 혼합하여 양극 활물질층을 형성하기 위한 양극 슬러리를 준비하였다.
상기 양극 슬러리를 알루미늄 호일의 양면에 코팅하고, 건조 및 압연시켜 양극을 제조하였다.
상기 양극에 도 2에 도시된 바와 같은 롤러로 가압하여 구멍을 형성하였다. 이때 구멍은 직경 500㎛의 원형 단면을 갖고, 구멍들의 배열 패턴은 도 1a에 도시된 바와 같이 정사각형 패턴이고 변의 길이 방향으로의 구멍 간격(Ls)은 1mm이다.
이와 같이 하여 최종 제조된 양극은 전체 두께가 대략 125㎛(그 중 한쪽 활물질층 두께는 대략 56㎛), 공극률이 25% 이었다.
제조예 2 (양극 2)
구멍 간격(Ls)을 5mm로 한 것을 제외하고는 실시예 1과 같은 방법으로 양극을 제조하였다.
제조예 3 (양극 3)
구멍 간격(Ls)을 10mm로 한 것을 제외하고는 실시예 1과 같은 방법으로 양극을 제조하였다.
제조예 4(양극 4)
구멍을 형성하지 않은 것을 제외하고는 실시예 1과 같은 방법으로 양극을 제조하였다.
<음극의 제조예>
제조예 5 (음극 1)
음극 집전체로서 두께가 10㎛이고 연신율이 3.5%인 구리 호일을 준비하였다.
또한, 음극 활물질로서 천연 흑연, 바인더로서 SBR과 CMC, 도전재로서 덴카 블랙을 97:2:1 조성비로 용매인 물에 혼합하여, 음극 활물질층을 형성하기 위한 슬러리를 준비하였다.
상기 음극 슬러리를 음극 집전체의 양면에 코팅하고, 건조 및 압연시켜 음극을 제조하였다.
상기 음극에 제조예 1(양극 1)에서와 동일한 방법으로 구멍을 형성하였다.
이와 같이 하여 최종 제조된 음극은 전체 두께가 대략 150㎛(그 중 한쪽 활물질층 두께는 약 70㎛), 공극률 35%이었다.
제조예 6(음극 2)
구멍을 형성하지 않은 점을 제외하고는 제조예 5와 동일한 방법으로 음극을 제조하였다.
<전극의 연신율 측정>
상기 각 제조예에 따른 양극 및 음극에 대하여 각각 연신율을 측정하였다. 이때 연신율의 측정은 UTM 장비를 사용하였으며, 0.5mm/min의 속도로 종방향 연신율과 횡방향 연신율을 측정하여 이들을 산술 평균한 것을 제조된 전극의 연신율로 하였다. 각 제조예에 따른 양극 및 음극의 연신율 측정 결과는 하기 표 1에 나타내었다.
전극 제조예 집전체의 연신율 구멍의 직경(㎛) 구멍의 간격(mm) 제조된 전극의 연신율
제조예1(양극 1) 2.5% 500 1 0.5%
제조예2(양극 2) 2.5% 500 5 0.8%
제조예3(양극 3) 2.5% 500 10 1.2%
제조예4(양극 4) 2.5% - - 1.5%
제조예5(음극 1) 3.5% 500 1 2.0%
제조예6(음극 2) 3.5% - - 2.5%
상기 표 1에 나타난 바와 같이 구멍의 간격을 1mm로 한 제조예 1(양극 1)의 경우 연신율이 0.5%로, 집전체의 연신율 대비 5분의 1로 낮아지는 매우 우수한 효과가 나타났다. 이는 본 출원인의 종래 기술인 한국공개특허 제2017-0034570호의 실험 결과와 대비하여도 현저히 우수한 것이다.
다만, 상기 제조예 1(양극)과 동일한 패턴으로 구멍을 형성한 제조예 5(음극 1)의 경우에는 연신율 개선 효과가 양극에 비해 낮게 나타났다. 따라서, 본 기술은 음극 보다는 양극에 적용하는 것이 더욱 효과가 우수하여 바람직하다.
<실시예 및 비교예에 의한 이차전지 제조 및 네일 관통 테스트>
상기 각 제조예에 의한 양극 및 음극을 조합하여 하기 표 2에 나타낸 실시예 및 비교예의 순서에 따라 이차전지를 제조하였으며, 이차전지 제조 후 네일 관통 테스트를 수행하여 발화 여부를 관찰하였다.
파우치형 모노셀 제조
상기 각 실시예 및 비교예에 의한 이차전지는 사용된 양극과 음극의 제조예 조합을 제외하고는 아래와 같이 동일한 방법으로 제조하였다.
하기 표 2에 기재된 제조예에 따라 각 실시예 및 비교예의 양극 및 음극을 선택하여 전극으로서 사용였으며, 이들 양극과 음극 사이에 폴리에틸렌으로 제조된 분리막을 개재시켜 전극 조립체를 제작하였다.
상기 전극 조립체를 파우치에 수납한 후에 에틸렌 카보네이트(EC):디메틸 카보네이트(DMC):에틸메틸 카보네이트(EMC)=3:4:3, LiPF 6 1M로 이루어진 전해액을 주입하여 파우치형 모노셀을 제작하였다.
네일 관통 테스트
상기와 같이 제조된 모노셀에 대하여 네일 관통 실험을 실시하였다. 실험 전, 각 모노셀은 25 ℃에서 4.15V 전압하에 만충전하였다. 이러한 모노셀에 대해 직경 3 mm 네일(nail)을 사용하여 관통속도 80 ㎜/sec로 그 중앙을 관통시킨 후 발화 여부를 관찰하였으며, 그 결과를 하기 표 2에 나타내었다(표에서 O: 발화됨, X: 발화 안됨).
구분 양극 음극 발화 여부
제조예 연신율 제조예 연신율
실시예 1 제조예 1(양극 1) 0.5% 제조예 5(음극 1) 2.0% X
실시예 2 제조예 2(양극 2) 0.8% 제조예 5(음극 1) 2.0% X
실시예 3 제조예 1(양극 1) 0.5% 제조예 6(음극 2) 2.5% X
비교예 1 제조예 3(양극 3) 1.2% 제조예 5(음극 1) 2.0% O
비교예 2 제조예 4(양극 4) 1.5% 제조예 6(음극 2) 2.5% O
실시예 1
먼저 연신율이 가장 낮은 제조예 1(양극 1)과 제조예 5(음극 1)을 조합하여 모노셀을 제조한 후 상기한 방법의 네일 관통 테스트를 시행하고 발화 여부를 관찰하였다. 낮은 연신율로 인하여 침상체 관통 후에도 발화가 발생하지 않았다.
실시예 2
다음으로 연신율이 0.8%인 제조예 2(양극 2)와 제조예 5(음극 1)을 조합하여 실시예 1과 동일한 방법으로 제조한 후 네일 관통 테스트를 진행하여 발화 여부를 관찰하였다. 실시예 1과 마찬가지로 발화가 일어나지 않았다.
실시예 3
연신율이 0.5%인 제조예 1(양극 1)과 구멍을 형성하지 않아 연신율 특성이 감소되지 않은 제조예 6(음극 2)을 조합하여 실시예 1과 동일한 방법으로 실험을 진행하였다. 발화는 일어나지 않았으며, 제조예 1(양극)의 낮은 연신율에 기인한 것으로 판단된다.
비교예 1
이후 상기 실시예 2보다 연신율이 더 높은 양극인 제조예 3(양극 3)과 연신율 특성이 감소된 제조예 5(음극 1)을 이용하여, 실시예 1과 동일한 방법으로 실험을 진행하였다. 예상했던 것과는 달리 발화가 발생하였는데, 음극의 연신율이 낮아졌음에도 불구하고, 양극의 연신율이 1.2% 이상인 경우 발화가 발생할 가능성이 있는 것으로 판단된다. 따라서, 본 발명에 의한 전극 제조방법은 양극에 적용하여 연신율을 최대한 낮추는 것이 침상체에 대한 안정성 향상에 가장 바람직하다는 것을 알 수 있다.
비교예 2
구멍을 형성하지 않은 제조예 4(양극 4)와 마찬가지로 구멍을 형성하지 않은 제조예 6(음극 2)를 이용하여, 실시예 1과 동일한 방법으로 실험을 진행하였다. 예상하였던 대로 발화가 일어났으며, 본 발명에 의한 방법으로 침상체에 의한 위험을 방지할 수 있다는 사실을 검증할 수 있었다.
상기 실시예 및 비교예로부터 알 수 있는 바와 같이, 본 발명에 따르면, 전극에 다수의 구멍이 형성됨으로써 전극의 연신율이 대폭 감소될 수 있고, 이에 따라 못과 같은 침상체가 전지 내부로 침입하거나 전지를 관통하는 경우에 단락이 방지되거나 감소하게 됨으로써 발화나 폭발의 가능성이 현저히 낮아지게 된다.
이상에서 상세히 설명한 바와 같이, 본 발명은 못(nail)과 같은 침상체가 전지 내부로 침투하거나 관통하는 경우에도 전지의 발화나 폭발의 발생을 방지하거나 최소화할 수 있어 전지의 안전성을 더욱 향상시켜 줄 수 있으므로, 산업적으로 매우 유용하다.
한편, 이상에서 구체적인 실시형태나 실시예를 들면서 본 발명을 상세히 설명하였지만, 이러한 내용에 기초하여 본 발명의 범위를 벗어남이 없이 여러 가지 다른 형태로의 변형, 재료 등의 대체, 치수의 변경, 추가적인 구성요소의 부가 등을 할 수 있다는 것은 당업자에게 자명할 것이다.
또한, 하기의 특허청구범위에서는 '정삼각형' 또는 '직사각형'과 같은 표현을 사용하고 있는 바, '대략', '약'과 같은 용어는 발명의 구성을 불명확하게 한다고 하여 청구범위에서는 허용되지 않는 것을 고려하여 이들 용어를 사용하지 않았지만, 상기와 같은 표현들은 '대략 정삼각형' 또는 '대략 직사각형'과 같은 의미로 해석되어야 할 것이다.
[부호의 설명]
10: 전극
11: 구멍
20: 롤러
21: 천공 수단
Ls, Lt: 구멍 간격

Claims (10)

  1. 집전체, 및 상기 집전체의 일면 또는 양면에 형성된 전극 활물질층을 포함하는 이차전지용 전극으로서,
    상기 집전체 및 상기 전극 활물질층을 두께 방향으로 관통하는 다수의 구멍이 형성되어 있고,
    상기 구멍은 그 횡단면 모양이 원형, 타원형 및 다각형으로 이루어진 군 중에서 선택된 1종 이상이고 그 직경이 100㎛ 내지 5mm이며,
    상기 전극의 연신율이 0.3% 내지 1.0%인
    것을 특징으로 이차전지용 전극.
  2. 제 1 항에 있어서,
    상기 구멍의 직경이 400㎛ 내지 1mm인 것을 특징으로 하는 이차전지용 전극.
  3. 제 1 항에 있어서,
    상기 구멍은 그 배열의 단위 패턴을 직사각형 또는 정삼각형으로 하여 이를 반복 형성한 패턴으로 배열되는 것을 특징으로 하는 이차전지용 전극.
  4. 제 3 항에 있어서,
    상기 단위 패턴이 정사각형이고 정사각형의 단위 패턴에서 변의 길이 방향으로의 구멍 간격이 1mm 내지 8mm인 것을 특징으로 하는 이차전지용 전극.
  5. 제 3 항에 있어서,
    상기 단위 패턴이 정삼각형이고 정삼각형의 단위 패턴에서 변의 길이 방향으로의 구멍 간격이 1mm 내지 8mm인 것을 특징으로 하는 이차전지용 전극.
  6. 제 1 항에 있어서,
    상기 전극은 양극인 것을 특징으로 하는 이차전지용 전극.
  7. (1) 전극 집전체 상에, 전극 활물질을 포함하는 전극 슬러리를 도포하고 건조하여 전극 활물질층을 형성하는 단계, 및
    (2) 상기 전극 활물질층을 압연하는 단계를 포함하는 전극의 제조방법으로서,
    상기 단계(2) 후에, 또는 상기 단계(2)와 동시에, 상기 전극 집전체 및 상기 전극 활물질층을 두께 방향으로 관통하는 다수의 구멍을 형성하는 단계를 추가로 포함하는 것을 특징으로 하는 이차전지용 전극의 제조방법.
  8. 제 7 항에 있어서,
    상기 압연 단계에서 롤러를 사용하여 가압하고, 이 롤러의 외주면에 천공수단이 형성된 것을 사용하여 가압함으로써 압연과 동시에 구멍을 형성하는 것을 특징으로 하는 이차전지용 전극의 제조방법.
  9. 양극, 음극, 분리막 및 전해질을 포함하여 이루어지는 이차전지에 있어서,
    상기 양극 및 음극 중 하나 또는 둘 다가 제 1 항 내지 제 6 항 중 어느 한 항에 따른 전극인 것을 특징으로 하는 이차전지.
  10. 제 9 항에 있어서,
    상기 양극 및 음극 중 양극이 상기 전극인 것을 특징으로 하는 이차전지.
PCT/KR2018/013353 2017-11-06 2018-11-06 안전성이 향상된 이차전지용 전극과 이의 제조방법, 및 이 전극을 포함하는 이차전지 WO2019088795A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880017097.3A CN110392948B (zh) 2017-11-06 2018-11-06 安全性改进的二次电池用电极、其制造方法以及包含该电极的二次电池
EP18874662.2A EP3582296B1 (en) 2017-11-06 2018-11-06 Electrode for secondary battery with improved safety, manufacturing method thereof, and secondary battery including same electrode
PL18874662T PL3582296T3 (pl) 2017-11-06 2018-11-06 Elektroda do baterii akumulatorowej o zwiększonym bezpieczeństwie, sposób jej wytwarzania oraz bateria akumulatorowa zawierająca tę samą elektrodę
US16/491,047 US20200020906A1 (en) 2017-11-06 2018-11-06 Electrode for secondary battery with improved safety, manufacturing method thereof, and secondary battery including same electrode

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0146387 2017-11-06
KR20170146387 2017-11-06
KR1020180134596A KR102203691B1 (ko) 2017-11-06 2018-11-05 안전성이 향상된 이차전지용 전극과 이의 제조방법, 및 이 전극을 포함하는 이차전지
KR10-2018-0134596 2018-11-05

Publications (2)

Publication Number Publication Date
WO2019088795A2 true WO2019088795A2 (ko) 2019-05-09
WO2019088795A3 WO2019088795A3 (ko) 2019-06-20

Family

ID=66333587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013353 WO2019088795A2 (ko) 2017-11-06 2018-11-06 안전성이 향상된 이차전지용 전극과 이의 제조방법, 및 이 전극을 포함하는 이차전지

Country Status (2)

Country Link
PL (1) PL3582296T3 (ko)
WO (1) WO2019088795A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114273510A (zh) * 2021-12-23 2022-04-05 上海瑞浦青创新能源有限公司 一种造孔辊及其提升极片孔隙率的方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0146387B1 (ko) 1993-08-09 1998-12-01 세키자와 다다시 플립플롭형 증폭 회로
KR20130055712A (ko) 2011-11-19 2013-05-29 주식회사 엘지화학 안전성이 향상된 전극조립체 및 이를 포함하는 이차전지
KR20170034570A (ko) 2015-09-21 2017-03-29 주식회사 엘지화학 안전성이 향상된 전극 및 이를 포함하는 이차전지
KR20180134596A (ko) 2017-06-09 2018-12-19 삼성전자주식회사 반도체 장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285607A (ja) * 2004-03-30 2005-10-13 Matsushita Electric Ind Co Ltd 非水系二次電池およびその製造方法
WO2013157806A1 (ko) * 2012-04-16 2013-10-24 주식회사 엘지화학 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극
JP6316066B2 (ja) * 2014-03-31 2018-04-25 積水化学工業株式会社 リチウムイオン二次電池の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0146387B1 (ko) 1993-08-09 1998-12-01 세키자와 다다시 플립플롭형 증폭 회로
KR20130055712A (ko) 2011-11-19 2013-05-29 주식회사 엘지화학 안전성이 향상된 전극조립체 및 이를 포함하는 이차전지
KR20170034570A (ko) 2015-09-21 2017-03-29 주식회사 엘지화학 안전성이 향상된 전극 및 이를 포함하는 이차전지
KR20180134596A (ko) 2017-06-09 2018-12-19 삼성전자주식회사 반도체 장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114273510A (zh) * 2021-12-23 2022-04-05 上海瑞浦青创新能源有限公司 一种造孔辊及其提升极片孔隙率的方法与应用
CN114273510B (zh) * 2021-12-23 2024-05-14 上海瑞浦青创新能源有限公司 一种造孔辊及其提升极片孔隙率的方法与应用

Also Published As

Publication number Publication date
WO2019088795A3 (ko) 2019-06-20
PL3582296T3 (pl) 2021-12-27

Similar Documents

Publication Publication Date Title
WO2015065118A1 (ko) 전극조립체 및 그를 포함하는 리튬 이차전지
WO2019035669A2 (ko) 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2020060310A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2020159296A1 (ko) 절연필름을 포함하는 전극 조립체, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2018131899A1 (ko) 미세 패턴을 갖는 리튬 금속층 및 그 보호층으로 이루어진 이차전지용 음극 및 이의 제조방법
WO2016053063A1 (ko) 고무계 바인더를 포함하는 양극 활물질 슬러리 및 이로부터 제조된 양극
WO2019013449A1 (ko) 전극 보호층을 포함하는 음극 및 이를 적용한 리튬 이차전지
WO2019054811A1 (ko) 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2020171661A1 (ko) 리튬이차전지용 세퍼레이터 및 이의 제조방법
WO2019031766A2 (ko) 리튬금속과 무기물 복합박막 제조방법 및 이를 이용한 리튬 이차전지 음극의 전리튬화 방법
WO2022050801A1 (ko) 전기화학소자용 분리막 및 이의 제조방법
WO2020197102A1 (ko) 전기화학소자용 세퍼레이터의 제조방법
WO2021206381A1 (ko) 이차전지용 스웰링 테이프 및 이를 포함하는 원통형 이차전지
WO2019088795A2 (ko) 안전성이 향상된 이차전지용 전극과 이의 제조방법, 및 이 전극을 포함하는 이차전지
WO2021071125A1 (ko) 리튬 이차 전지 및 리튬 이차 전지의 제조방법
WO2022010225A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2018169217A1 (ko) 안전성이 향상된 이차 전지용 외장재 및 이를 포함하는 이차 전지
WO2020251230A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2023008952A1 (ko) 습윤 접착력이 우수한 전극용 절연 조성물, 및 이의 제조방법
WO2022197095A1 (ko) 리튬 이차전지용 음극, 및 이를 구비하는 리튬 이차전지
WO2022015118A1 (ko) 전지 셀 및 이의 제조방법
WO2019146926A1 (ko) 이차 전지 및 이차 전지용 절연판
WO2017217769A1 (ko) 이차전지용 전극 및 이를 포함하는 리튬 이차 전지
WO2018066931A2 (ko) 리튬금속 이차전지용 음극 및 이를 포함하는 리튬금속 이차전지
WO2024090859A1 (ko) 리튬 이차 전지용 전극 일체형 분리막 및 이를 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18874662

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2018874662

Country of ref document: EP

Effective date: 20190910

NENP Non-entry into the national phase

Ref country code: DE