WO2019088245A1 - シフトレンジ制御装置 - Google Patents

シフトレンジ制御装置 Download PDF

Info

Publication number
WO2019088245A1
WO2019088245A1 PCT/JP2018/040802 JP2018040802W WO2019088245A1 WO 2019088245 A1 WO2019088245 A1 WO 2019088245A1 JP 2018040802 W JP2018040802 W JP 2018040802W WO 2019088245 A1 WO2019088245 A1 WO 2019088245A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
phase
shift range
rotation angle
drive
Prior art date
Application number
PCT/JP2018/040802
Other languages
English (en)
French (fr)
Inventor
坂口 浩二
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201880071078.9A priority Critical patent/CN111295834B/zh
Priority to DE112018005273.7T priority patent/DE112018005273T5/de
Publication of WO2019088245A1 publication Critical patent/WO2019088245A1/ja
Priority to US16/865,718 priority patent/US11313460B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/26Generation or transmission of movements for final actuating mechanisms
    • F16H61/28Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
    • F16H61/32Electric motors actuators or related electrical control means therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/028Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the motor continuing operation despite the fault condition, e.g. eliminating, compensating for or remedying the fault
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1224Adapting to failures or work around with other constraints, e.g. circumvention by avoiding use of failed parts

Definitions

  • the present disclosure relates to a shift range control device.
  • An object of the present disclosure is to provide a shift range control device capable of appropriately switching a shift range even when an abnormality occurs in a signal from a rotation angle sensor.
  • the shift range control device of the present disclosure is a shift range control device that controls switching of the shift range by controlling driving of a motor, and includes a signal acquisition unit and a drive control unit.
  • the signal acquisition unit acquires a rotation angle signal from a rotation angle sensor capable of outputting rotation angle signals of three or more phases different in phase.
  • the drive control unit controls the drive of the motor such that the rotational position of the motor becomes the target rotational position according to the target shift range.
  • the drive control unit performs stationary phase energization to continue energization to the same energization phase, and stops rotation of the motor.
  • a rotation angle sensor one capable of outputting a rotation angle signal of three or more phases is used, and even if an abnormality occurs in one phase, if it jumps over the phase with momentum, it is correctly energized. There is a risk that the motor may rotate. Therefore, when an abnormality occurs in the rotation angle sensor, the motor is reliably stopped by performing fixed phase energization. As a result, after the motor is stopped, the shift range can be appropriately switched by rotating the motor by open control or the like that does not use the detection value of the rotation angle sensor, for example.
  • FIG. 1 is a perspective view of a shift-by-wire system according to a first embodiment
  • FIG. 2 is a schematic block diagram showing a shift-by-wire system according to the first embodiment
  • FIG. 3 is a schematic view for explaining the arrangement of Hall ICs of the encoder according to the first embodiment
  • FIG. 4A is an explanatory view for explaining an encoder pattern and an energization phase according to an electrical angle according to the first embodiment
  • FIG. 4B is an explanatory view for explaining a conducting phase according to the encoder pattern according to the first embodiment
  • FIG. 1 is a perspective view of a shift-by-wire system according to a first embodiment
  • FIG. 2 is a schematic block diagram showing a shift-by-wire system according to the first embodiment
  • FIG. 3 is a schematic view for explaining the arrangement of Hall ICs of the encoder according to the first embodiment
  • FIG. 4A is an explanatory view for explaining an encoder pattern and an energization phase according to an electrical angle according to the first
  • FIG. 5 is a flowchart illustrating encoder interrupt processing according to the first embodiment
  • FIG. 6 is a flowchart illustrating drive control processing according to the first embodiment
  • FIG. 7 is a time chart explaining the motor drive processing according to the first embodiment
  • FIG. 8 is a flowchart illustrating encoder interrupt processing according to the second embodiment
  • FIG. 9 is a flowchart illustrating drive control processing according to the second embodiment
  • FIG. 10 is a flowchart illustrating drive control processing according to the second embodiment
  • FIG. 11 is a time chart explaining the motor drive processing according to the second embodiment
  • FIG. 12 is a time chart explaining the motor drive processing according to the second embodiment.
  • FIGS. 1 and 2 A shift range control device according to a first embodiment is shown in FIGS.
  • the shift-by-wire system 1 includes a motor 10, a shift range switching mechanism 20, a parking lock mechanism 30, a shift range control device 40, and the like.
  • the motor 10 is rotated by being supplied with electric power from a battery mounted on a vehicle (not shown), and functions as a drive source of the shift range switching mechanism 20.
  • the motor 10 of the present embodiment is a switched reluctance motor, any type of motor such as a DC motor may be used.
  • the encoder 13 detects the rotational position of a not-shown rotor of the motor 10 and outputs a rotational angle signal according to the electrical angle.
  • the encoder 13 is, for example, a magnetic rotary encoder, and is a three-phase encoder having a magnet plate 135 that rotates integrally with the rotor, and Hall ICs 131, 132, and 133 for detecting magnetism.
  • the Hall ICs 131 to 133 have Hall elements that output a voltage according to the direction and magnitude of the magnetic field, and output to the shift range control device 40 a signal obtained by converting the analog signal of the Hall element into a digital signal. . As shown in FIG.
  • the Hall ICs 131 to 133 are arranged such that the phase of the rotation angle signal is shifted by 120 ° in electrical angle.
  • the rotation angle signal output from the Hall IC 131 is referred to as an A phase signal
  • the rotation angle signal output from the Hall IC 132 as a B phase signal
  • the rotation angle signal output from the Hall IC 133 as a C phase signal.
  • the reduction gear 14 is provided between the motor shaft 105 of the motor 10 and the output shaft 15, and decelerates the rotation of the motor 10 and outputs it to the output shaft 15. Thus, the rotation of the motor 10 is transmitted to the shift range switching mechanism 20.
  • the output shaft 15 is provided with an output shaft sensor 16 that detects the angle of the output shaft 15.
  • the output shaft sensor 16 is, for example, a potentiometer.
  • the shift range switching mechanism 20 has a detent plate 21 and a detent spring 25 and the like, and the rotational driving force output from the reduction gear 14 is a manual valve 28 and a parking lock mechanism 30. Transmit to
  • the detent plate 21 is fixed to the output shaft 15 and driven by the motor 10.
  • the direction in which the detent plate 21 separates from the base of the detent spring 25 is the forward rotation direction
  • the direction in which the detent plate 21 approaches the base is the reverse rotation direction.
  • the detent plate 21 is provided with a pin 24 projecting in parallel with the output shaft 15.
  • the pin 24 is connected to the manual valve 28.
  • the shift range switching mechanism 20 converts the rotational movement of the motor 10 into a linear movement and transmits it to the manual valve 28.
  • the manual valve 28 is provided on the valve body 29. The manual valve 28 reciprocates in the axial direction, thereby switching the hydraulic pressure supply path to the hydraulic clutch (not shown), and switching the engagement state of the hydraulic clutch changes the shift range.
  • Two recesses 22 and 23 are provided on the detent spring 25 side of the detent plate 21.
  • the side closer to the base of the detent spring 25 is referred to as the recess 22, and the side farther from the base is referred to as the recess 23.
  • the recess 22 corresponds to the NotP range other than the P range
  • the recess 23 corresponds to the P range.
  • the detent spring 25 is an elastically deformable plate-like member, and the detent roller 26 is provided at the tip.
  • the detent spring 25 biases the detent roller 26 toward the rotation center of the detent plate 21.
  • the detent spring 25 elastically deforms, and the detent roller 26 moves in the recessed portions 22 and 23.
  • the detent roller 26 By the detent roller 26 being fitted in either of the recessed portions 22 and 23, the swing of the detent plate 21 is restricted, the axial position of the manual valve 28 and the state of the parking lock mechanism 30 are determined, and automatic shifting is performed.
  • the shift range of machine 5 is fixed.
  • the detent roller 26 fits into the recess 22 when the shift range is the NotP range, and fits into the recess 23 when the shift range is the P range.
  • the parking lock mechanism 30 has a parking rod 31, a cone 32, a parking lock pole 33, a shaft 34 and a parking gear 35.
  • the parking rod 31 is formed in a substantially L-shape, and one end 311 side is fixed to the detent plate 21.
  • a conical body 32 is provided on the other end 312 side of the parking rod 31.
  • the conical body 32 is formed to decrease in diameter toward the other end 312 side.
  • the parking gear 35 is provided on an axle (not shown), and is provided so as to be able to mesh with the convex portion 331 of the parking lock pole 33.
  • the rotation of the axle is restricted.
  • the shift range is the NotP range
  • the parking gear 35 is not locked by the parking lock pole 33, and the rotation of the axle is not blocked by the parking lock mechanism 30.
  • the shift range is the P range
  • the parking gear 35 is locked by the parking lock pole 33, and the rotation of the axle is restricted.
  • the shift range control device 40 has a motor driver 41, an ECU 50, and the like.
  • the motor driver 41 switches energization to each phase (U phase, V phase, W phase) of the motor 10.
  • a motor relay 46 is provided between the motor driver 41 and the battery. The motor relay 46 is turned on when the start switch of the vehicle such as an ignition switch is turned on, and power is supplied to the motor 10 side. Further, the motor relay 46 is turned off when the start switch is turned off, and the power supply to the motor 10 side is cut off.
  • the ECU 50 is mainly composed of a microcomputer and the like, and includes a CPU, a ROM, a RAM, an I / O, and a bus line connecting these components, which are not shown.
  • Each process in the ECU 50 may be a software process by executing a program stored in advance in a tangible memory device (that is, a readable non-transitory tangible recording medium) such as a ROM by a CPU, or may be dedicated It may be hardware processing by an electronic circuit.
  • the ECU 50 controls the switching of the shift range by controlling the drive of the motor 10 based on the shift signal corresponding to the driver request shift range, the signal from the brake switch, the vehicle speed, and the like. Further, the ECU 50 controls the driving of the shift hydraulic control solenoid 6 based on the vehicle speed, the accelerator opening degree, the driver's requested shift range, and the like. By controlling the shift hydraulic control solenoid 6, the gear is controlled.
  • the transmission hydraulic control solenoid 6 is provided in a number corresponding to the number of shift stages and the like. In the present embodiment, one ECU 50 controls the drive of the motor 10 and the solenoid 6, but the motor control ECU for controlling the motor 10 may be divided into an AT-ECU for solenoid control. Hereinafter, drive control of the motor 10 will be mainly described.
  • the ECU 50 has a signal acquisition unit 51, an abnormality monitoring unit 52, and a drive control unit 55.
  • the signal acquisition unit 51 acquires the rotation angle signal from the encoder 13 and the signal from the output shaft sensor 16.
  • the signal acquisition unit 51 reads an encoder pattern for each pulse edge interruption of the rotation angle signal from the encoder 13.
  • the signal acquisition unit 51 counts up or down the encoder count value ⁇ en according to the signal pattern for each encoder pulse edge.
  • the encoder count value ⁇ en is a value corresponding to the rotational position of the motor 10, and corresponds to “the rotational position of the motor” in the present embodiment.
  • the abnormality monitoring unit 52 monitors an abnormality of the rotation angle signal of the encoder 13.
  • the drive control unit 55 drives the motor 10 so that the motor 10 stops at a rotational position where the encoder count value ⁇ en based on the rotation angle signal from the encoder 13 becomes the target count value ⁇ cmd according to the target shift range. Control.
  • the encoder count value ⁇ en corresponds to the “rotation position of the motor”
  • the target count value ⁇ cmd corresponds to the “target rotation position”.
  • FIG. 4A is a diagram showing an encoder pattern and an energization phase according to an electrical angle
  • FIG. 4B is a map for explaining an energization phase according to the encoder pattern.
  • numbers (0) to (7) are pattern numbers indicating signal patterns and energization phase patterns according to the signal patterns.
  • the state where the rotation angle signal is Lo is described as "0 (Lo)"
  • the state where it is Hi is described as "1 (Hi)”. The same applies to the embodiments described later.
  • Pattern (0) A signal pattern in which the A-phase signal and the B-phase signal are Lo and the C-phase signal is Hi is pattern 0, and the energized phase at this time is V phase.
  • Pattern (1) A signal pattern in which the A-phase signal is Lo and the B-phase signal and the C-phase signal are Hi is Pattern 1, and the energized phases at this time are U and V phases.
  • Pattern (2) A signal pattern in which the A-phase signal and the C-phase signal are Lo and the B-phase signal is Hi is a pattern 2, and the current-carrying phase at this time is a U-phase.
  • Pattern (3) A signal pattern in which the A-phase signal and the B-phase signal are Hi and the C-phase signal is Lo is taken as pattern 3, and the energized phase at this time is taken as the W phase and U phase.
  • Pattern (4) A signal pattern in which the A-phase signal is Hi and the B-phase signal and the C-phase signal are Lo is taken as pattern 4, and the current-carrying phase at this time is taken as the W phase.
  • Pattern (5) A signal pattern in which the A-phase signal and the C-phase signal are Hi and the B-phase signal is Lo is a pattern 5, and the current-carrying phases at this time are V and W phases.
  • the patterns (0) to (5) are normal patterns, and when rotating the motor 10, for each edge interruption of the rotation angle signal from the encoder 13, according to the signal pattern, according to the signal pattern, V ⁇ UV ⁇ U ⁇ Switch in the order of WU ⁇ W ⁇ WV ⁇ VW ⁇ V ⁇ UV ⁇ ....
  • the energized phase is switched in the reverse order.
  • Pattern (6), (7) A signal pattern in which the A-phase signal, B-phase signal and C-phase signal are all Hi
  • the pattern (6) is a signal in which the A-phase signal, B-phase signal and C-phase signal are all Lo
  • the patterns (6) and (7) in which the A-phase signal, the B-phase signal, and the C-phase signal all become Hi or Lo are abnormal patterns that do not occur at normal times. For example, as shown by an alternate long and short dash line in FIG. 4A, when the A-phase signal is fixed to Hi due to the A-phase disconnection of the encoder 13, the pattern (6) is generated at the timing to become the pattern (1). For the sake of explanation, the Hi sticking signal generated at the time of A phase disconnection is described as being shifted from the Hi signal at the normal time.
  • the motor can not be properly controlled, and the motor immediately stops.
  • the Z-phase pulse is a reference signal and not a "rotational angle signal", it can not be used for motor control.
  • the encoder 13 is an A-phase, B-phase and C-phase three-phase encoder system.
  • the three-phase encoder system as described in FIG. 4B, since the current-carrying phase is uniquely determined with respect to the signal pattern, even if one of the three phases is broken, After passing, the rotation of the motor 10 is continued in a matter of course.
  • the motor 10 is stopped when it can not pass through the range which becomes the abnormal pattern with force. That is, when control is continued in a state where an abnormal pattern is generated in the rotation angle signal of encoder 13, whether the motor 10 continues to rotate or to stop is the number of rotations of the motor 10, temperature, voltage, etc. It depends on the environment.
  • the control is switched according to the behavior of the motor 10 when an abnormality occurs in the rotation angle signal of the encoder 13, the control configuration becomes complicated.
  • the rotation angle of the motor 10 is erroneously detected.
  • the motor 10 when abnormality of the rotation angle signal of the encoder 13 is detected, the motor 10 is reliably stopped by stationary phase energization, and the encoder count value ⁇ en is not used, and energization is performed every energization phase switching time. By performing open control to switch the phase, the motor 10 is rotated to the target position.
  • the stationary phase energization may be two phase energization or one phase energization in any of the fail stop mode and the stop mode described later.
  • step S101 is omitted and simply referred to as the symbol “S”.
  • step S101 is omitted and simply referred to as the symbol “S”.
  • the other steps are similar.
  • the signal acquisition unit 51 reads an encoder pattern based on the rotation angle signal from the encoder 13.
  • the signal acquisition unit 51 counts up or down the encoder count value ⁇ en based on the encoder pattern.
  • the counting process may use, for example, the method of Japanese Patent No. 539 4443.
  • the abnormality monitoring unit 52 determines whether the encoder pattern is normal. If it is determined that the encoder pattern is normal (S103: YES), the process proceeds to S105. If it is determined that the encoder pattern is not normal (S103: NO), the process proceeds to S104, and an open drive request flag is set.
  • the drive control unit 55 determines whether the drive mode is a feedback mode.
  • feedback is appropriately described as "F / B”. The process relating to mode selection will be described later. If it is determined that the drive mode is not the F / B mode (S105: NO), the process of S106 is not performed, and this routine is ended. If it is determined that the drive mode is the F / B mode (S105: YES), the process proceeds to S106, and as shown in FIG. 4B, an energization process is performed to energize the energized phase according to the encoder pattern.
  • the drive control process will be described based on the flowchart of FIG. This process is executed by the ECU 50 at a predetermined cycle (for example, 1 ms) when the start switch of the vehicle such as the ignition switch is turned on. After initialization of the microcomputer, the standby mode is set.
  • a predetermined cycle for example, 1 ms
  • the drive control unit 55 determines whether the drive mode is the standby mode. If it is determined that the standby mode is not set (S201: NO), the process proceeds to S205. If it is determined that the drive mode is the standby mode (S201: YES), the process proceeds to S202.
  • the drive control unit 55 determines whether the target shift range has been switched. If it is determined that the target shift range has not switched (S202: NO), this routine is ended. If it is determined that the target shift range has been switched (S202: YES), the process proceeds to S203.
  • the drive control unit 55 determines whether the open drive request flag is set. If it is determined that the open drive request flag is set (S203: YES), the process proceeds to S212 and sets the drive mode to the open drive mode. If it is determined that the open drive request flag is not set (S203: NO), the process proceeds to S204 and sets the drive mode to the F / B mode.
  • the drive control unit 55 determines whether the drive mode is the F / B mode. If it is determined that the drive mode is not the F / B mode (S205: NO), the process proceeds to S209. If it is determined that the drive mode is the F / B mode (S205: YES), the process proceeds to S206.
  • the drive control unit 55 determines whether the open drive request flag is set. If it is determined that the open drive request flag is set (S206: YES), the process proceeds to S208 and sets the drive mode to the fail stop mode. If it is determined that the open drive request flag is not set (S206: NO), the process proceeds to S207. If a negative determination is made in S206, the drive mode is the F / B mode, so the motor 10 is driven by F / B control. In the F / B mode, as described in FIG. 4A, FIG. 4B and FIG. 5, the drive phase of the motor 10 is controlled by switching the energized phase according to the signal pattern for each encoder interrupt.
  • the drive control unit 55 determines whether the rotational position of the motor 10 has reached the target position.
  • the motor 10 is driven by F / B control, when the difference between the encoder count value ⁇ en and the target count value ⁇ cmd becomes equal to or less than a predetermined count (for example, 2 counts), the rotational position of the motor 10 becomes the target position. Determine that it has arrived. If it is determined that the rotational position of the motor 10 has not reached the target position (S207: NO), this routine is ended. If it is determined that the rotational position of the motor 10 has reached the target position (S207: YES), the process proceeds to S216 to set the drive mode to the stop mode.
  • a predetermined count for example, 2 counts
  • the drive control unit 55 determines whether the drive mode is the fail stop mode. If it is determined that the drive mode is not the fail stop mode (S209: NO), the process proceeds to S213. If it is determined that the drive mode is the fail stop mode (S209: YES), the process proceeds to S210, and stop control is performed to stop the motor 10 by energizing the stationary phase.
  • the drive control unit 55 determines whether or not the elapsed time from the start of fixed phase energization in the fail stop mode has exceeded the first determination time Xth1.
  • the first determination time Xth1 is set to a time sufficient to reliably stop the motor 10 in the fail stop mode. If it is determined that the elapsed time since the start of stationary phase energization in fail stop mode has not exceeded the first determination time Xth1 (S211: NO), stationary phase energization in fail stop mode is continued, and the main phase is continued. End the routine If it is determined that the first determination time Xth1 has elapsed since the start of the fixed phase energization in the fail stop mode (S211: YES), the process proceeds to S212 and sets the drive mode to the open drive mode.
  • the drive control unit 55 determines whether the drive mode is the open drive mode. If it is determined that the drive mode is not the open drive mode (S213: NO), that is, if the drive mode is the stop mode, the process proceeds to S217. If it is determined that the drive mode is the open drive mode (S213: YES), the process proceeds to S214.
  • the drive control unit 55 drives the motor 10 by open control.
  • the motor 10 is driven by switching the energized phase every predetermined time without using the encoder count value ⁇ en.
  • the switching pattern of the energized phase is the same as the switching pattern in the normal state described in FIGS. 4A and 4B.
  • the drive control unit 55 determines whether the rotational position of the motor 10 has reached the target position.
  • the energized phase switching counter is incremented or decremented each time the energized phase is switched according to the rotation direction of the motor 10, and based on the count number set according to the required shift range. And make an arrival judgment.
  • the open control is continued and this routine is ended. If it is determined that the rotational position of the motor 10 has reached the target position (S215: YES), the process proceeds to S216 to set the drive mode to the stop mode.
  • the drive control unit 55 performs stop control for stopping the motor 10 by energizing the stationary phase.
  • the drive control unit 55 determines whether or not the second determination time Xth2 has elapsed since the start of fixed phase energization in the stop mode.
  • the second determination time Xth2 is set to a time sufficient to reliably stop the motor 10 in the stop mode.
  • the second determination time Xth2 may be the same as or different from the first determination time Xth1, which is the determination time in the fail stop mode.
  • the motor drive processing will be described based on the time chart of FIG. In FIG. 7, from the top, the required shift range, the open drive request flag, and the motor angle are shown.
  • the motor angle is indicated by an encoder count value.
  • the time scale has been changed as appropriate for the sake of explanation, and does not necessarily match the actual time scale. The same applies to the time chart of the embodiment described later.
  • an open drive request flag is set.
  • the stationary phase energization is performed in the fail stop mode to reliably stop the motor 10.
  • the drive mode is switched to the open drive mode at time x12 when the first determination time Xth1 has elapsed from the start of stationary phase energization in the fail stop mode, and the drive of the motor 10 is restarted with the open control.
  • the open drive mode is shifted to the stop mode, and the motor 10 is stopped by the fixed phase energization. Then, at time x14 when the second determination time Xth2 has elapsed from time x13, the stationary phase energization is ended, and the mode is shifted to the standby mode.
  • the shift range control device of the present embodiment is a shift range control device that controls switching of the shift range by controlling the drive of the motor 10, and includes the signal acquisition unit 51 and the drive control unit 55. And.
  • the signal acquisition unit 51 acquires rotation angle signals from the encoder 13 that can output rotation angle signals of three or more phases different in phase.
  • the drive control unit 55 controls the drive of the motor 10 such that the rotational position of the motor 10 becomes a target rotational position according to the target shift range.
  • the drive control unit 55 performs fixed phase energization to continue energization to the same phase, and stops the rotation of the motor 10.
  • a three-phase encoder is used, and even if an abnormality occurs in one phase, the motor 10 may rotate as a matter of course because it will be correctly energized if it jumps with momentum. Therefore, regardless of the situation at the time of abnormality occurrence, the environment, etc., when an abnormality occurs in the encoder 13, the motor 10 is reliably stopped by performing the stationary phase energization. After that, for example, the motor 10 is rotated by open control or the like. Thereby, the shift range can be switched appropriately.
  • the drive control unit 55 detects an abnormality in the rotation angle signal during shift range switching, stops the motor 10 by fixed phase energization for the first determination time Xth1, and then switches the energized phase without using the rotation angle signal. It transfers to open control which rotates motor 10 by this. As a result, the shift range can be appropriately switched with simple control without being affected by the abnormal encoder pattern.
  • Second Embodiment A second embodiment will be described based on FIGS. 8 to 10.
  • monitoring of the encoder 13 is continued even during open control, and recovery control when the encoder pattern returns to normal is incorporated.
  • the encoder interrupt process will be described based on the flowchart of FIG.
  • S151 to S156 are the same as the processes of S101 to S106 in FIG. If it is determined in S105 that the drive mode is the F / B mode (S155: YES), the process proceeds to S156, and as shown in FIG. 4B, an energization process is performed to energize the energized phase according to the encoder pattern. If it is determined that the drive mode is not the F / B mode (S155: YES), the process proceeds to S157.
  • the drive control unit 55 determines whether the drive mode is the open drive mode. If it is determined that the drive mode is not the open drive mode (S157: NO), this routine ends. If it is determined that the drive mode is the open drive mode (S157: YES), the process proceeds to S158.
  • the abnormality monitoring unit 52 determines whether the encoder pattern is normal. If it is determined that the encoder pattern is normal (S158: YES), this routine ends. If it is determined that the encoder pattern is not normal (S158: NO), the process proceeds to S159, and the abnormality determination counter is incremented.
  • the abnormality monitoring unit 52 determines whether an encoder abnormality has been determined. In the present embodiment, when the count value of the abnormality determination counter becomes larger than the abnormality determination threshold value, the encoder abnormality is determined. If it is determined that the encoder abnormality is not determined (S160: NO), this routine is ended. If it is determined that the encoder abnormality is determined (S160: YES), the process proceeds to S161, and the abnormality determination flag is turned on.
  • S220 to S222 are added after S219 of FIG.
  • the abnormality monitoring unit 52 determines whether the abnormality determination flag is on. If it is determined that the abnormality determination flag is turned on (S220: YES), the process proceeds to S221. If it is determined that the abnormality determination flag is not turned on (S220: NO), the process proceeds to S222.
  • the ECU 50 continues the state in which the open drive request flag is turned on, and turns off the determination flag.
  • the ECU 50 turns the open drive request flag off and continues the off state of the determination flag.
  • the motor drive processing will be described based on time charts of FIGS. 11 and 12.
  • FIG. 11 and FIG. 12 the required shift range, the open drive request flag, the abnormality determination flag, and the motor angle are shown from the top.
  • time x20 to time x21 is the same as that of time x10 to time x11 of FIG.
  • the motor 10 is stopped by performing fixed phase energization in the fail stop mode, and then transition to the open drive mode is performed at time x22.
  • Hi-fixation of one phase occurs due to the disconnection of the encoder 13
  • an abnormal pattern is generated each time the phase passes through the region where the phase should be Lo, and the abnormality determination counter is incremented.
  • an abnormality determination flag is turned on.
  • the mode is shifted to the stop mode, the motor 10 is stopped by stationary phase energization, and then the mode is shifted to the standby mode at time x25.
  • the abnormality confirmation flag is reset, but the open drive request flag is kept set.
  • the process of time x30 to time x32 is the same as that of time x20 to x22 of FIG.
  • the encoder pattern returns to normal, so the abnormality is not determined and the abnormality determination flag is not set.
  • the open drive mode is shifted to the stop mode, and the motor 10 is stopped by fixed phase energization. Then, at time x34 when the second determination time Xth2 has elapsed from time x33, the fixed phase energization is ended, and the mode is shifted to the standby mode. At time x34 when the standby mode is entered, the abnormality determination flag is not set, so the open drive request flag is reset.
  • the drive control unit 55 After the abnormality detection of the rotation angle signal, if the abnormality is not determined, the drive control unit 55 normally restores the drive mode at the time of the next range switching. Thereby, it is possible to prevent a temporary abnormality such as noise from being erroneously determined as a failure. In addition, it is possible to avoid a decrease in responsiveness due to an erroneous determination of a failure. In addition, the same effect as that of the above embodiment can be obtained.
  • an encoder is used as a rotation angle sensor that detects the rotation angle of the motor.
  • the rotation angle sensor is not limited to the encoder, but may be anything such as a resolver as long as it can output rotation angle signals having three or more phases different in phase. Further, the number of phases of the rotation angle signal may be four or more.
  • the detent plate is provided with two recesses.
  • the number of recesses is not limited to two, and for example, recesses may be provided for each range.
  • the shift range switching mechanism, the parking lock mechanism, and the like may be different from the above embodiment.
  • a reduction gear is provided between the motor shaft and the output shaft.
  • the details of the reduction gear are not mentioned in the above embodiment, for example, a cycloid gear, a planetary gear, a spur gear that transmits torque from the reduction mechanism substantially coaxial with the motor shaft to the drive shaft, or these Any configuration may be used, such as one using a combination of
  • the reduction gear between the motor shaft and the output shaft may be omitted, or a mechanism other than the reduction gear may be provided.
  • this indication is not limited at all to the above-mentioned embodiment, and can be carried out in various forms in the range which does not deviate from the meaning.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Gear-Shifting Mechanisms (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

シフトレンジ制御装置(40)は、モータ(10)の駆動を制御することで、シフトレンジの切り替えを制御するものであって、信号取得部(51)と、駆動制御部(55)と、を備える。信号取得部(51)は、位相が異なる3相以上の回転角信号を出力可能な回転角センサ(13)から回転角信号を取得する。駆動制御部(55)は、モータ(10)の回転位置が目標シフトレンジに応じた目標回転位置となるように、モータ(10)の駆動を制御する。駆動制御部(55)は、シフトレンジ切替中に回転角信号の異常が検出された場合、同一相への通電を継続する固定相通電を行い、モータ(10)の回転を停止させる。

Description

シフトレンジ制御装置 関連出願の相互参照
 本出願は、2017年11月6日に出願された特許出願番号2017-213863号に基づくものであり、ここにその記載内容を援用する。
 本開示は、シフトレンジ制御装置に関する。
 従来、モータを駆動源として用いて車両のシフトレンジを切り替えるモータ制御装置が知られている。例えば特許文献1では、モータのF/B制御系の故障が検出された場合、エンコーダカウント値の情報をフィードバックせずにモータの駆動を制御するオープンループ制御に切り替えている。
特許第3849930号
 例えば特許文献1のように、A相およびB相の2相のエンコーダシステムでは、A相信号またはB相信号の一方に一時的な欠けやノイズ重畳が生じると、エンコーダカウント値とロータの回転位置との同期が取れなくなるため、モータが停止する。本開示の目的は、回転角センサからの信号に異常が生じた場合であっても、シフトレンジを適切に切替可能であるシフトレンジ制御装置を提供することにある。
 本開示のシフトレンジ制御装置は、モータの駆動を制御することで、シフトレンジの切り替えを制御するシフトレンジ制御装置であって、信号取得部と、駆動制御部と、を備える。信号取得部は、位相が異なる3相以上の回転角信号を出力可能な回転角センサから回転角信号を取得する。駆動制御部は、モータの回転位置が目標シフトレンジに応じた目標回転位置となるようにモータの駆動を制御する。駆動制御部は、シフトレンジの切替中に回転角信号の異常が検出された場合、同一の通電相への通電を継続する固定相通電を行い、モータの回転を停止させる。
 本開示では、回転角センサとして3相以上の回転角信号を出力可能なものを用いており、1相に異常が生じたとしても、その相を勢いで飛び越えれば正しく通電されるため、成り行きでモータが回転してしまう虞がある。そこで、回転角センサに異常が生じた場合、固定相通電を行うことで、モータを確実に停止させる。これにより、モータを停止させた後に、例えば回転角センサの検出値を用いないオープン制御等にてモータを回転させることで、シフトレンジを適切に切り替えることができる。
 本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態によるシフトバイワイヤシステムを示す斜視図であり、 図2は、第1実施形態によるシフトバイワイヤシステムを示す概略構成図であり、 図3は、第1実施形態によるエンコーダのホールICの配置を説明する模式図であり、 図4Aは、第1実施形態による電気角に応じたエンコーダパターンおよび通電相を説明する説明図であり、 図4Bは、第1実施形態によるエンコーダパターンに応じた通電相を説明する説明図であり、 図5は、第1実施形態によるエンコーダ割込処理を説明するフローチャートであり、 図6は、第1実施形態による駆動制御処理を説明するフローチャートであり、 図7は、第1実施形態によるモータ駆動処理を説明するタイムチャートであり、 図8は、第2実施形態によるエンコーダ割込処理を説明するフローチャートであり、 図9は、第2実施形態による駆動制御処理を説明するフローチャートであり、 図10は、第2実施形態による駆動制御処理を説明するフローチャートであり、 図11は、第2実施形態によるモータ駆動処理を説明するタイムチャートであり、 図12は、第2実施形態によるモータ駆動処理を説明するタイムチャートである。
   (第1実施形態)
 シフトレンジ制御装置を図面に基づいて説明する。以下、複数の実施形態において、実質的に同一の構成には同一の符号を付して説明を省略する。
 第1実施形態によるシフトレンジ制御装置を図1~図7に示す。図1および図2に示すように、シフトバイワイヤシステム1は、モータ10、シフトレンジ切替機構20、パーキングロック機構30、および、シフトレンジ制御装置40等を備える。
 モータ10は、図示しない車両に搭載されるバッテリから電力が供給されることで回転し、シフトレンジ切替機構20の駆動源として機能する。本実施形態のモータ10は、スイッチトリラクタンスモータであるが、DCモータ等、どのような種類のものを用いてもよい。
 図2および図3に示すように、エンコーダ13は、モータ10の図示しないロータの回転位置を検出し、電気角に応じた回転角信号を出力する。エンコーダ13は、例えば磁気式のロータリーエンコーダであって、ロータと一体に回転するマグネットプレート135、および、磁気検出用のホールIC131、132、133を有する3相エンコーダである。ホールIC131~133は、磁界の向きおよび大きさに応じた電圧を出力するホール素子を有しており、ホール素子のアナログ信号をデジタル変換した信号を回転角信号としてシフトレンジ制御装置40に出力する。図3に示すように、ホールIC131~133は、回転角信号の位相が電気角で120°ずれるように配置される。以下適宜、ホールIC131から出力される回転角信号をA相信号、ホールIC132から出力される回転角信号をB相信号、ホールIC133から出力される回転角信号をC相信号とする。
 減速機14は、モータ10のモータ軸105と出力軸15との間に設けられ、モータ10の回転を減速して出力軸15に出力する。これにより、モータ10の回転がシフトレンジ切替機構20に伝達される。出力軸15には、出力軸15の角度を検出する出力軸センサ16が設けられる。出力軸センサ16は、例えばポテンショメータである。
 図1に示すように、シフトレンジ切替機構20は、ディテントプレート21、および、ディテントスプリング25等を有し、減速機14から出力された回転駆動力を、マニュアルバルブ28、および、パーキングロック機構30へ伝達する。
 ディテントプレート21は、出力軸15に固定され、モータ10により駆動される。本実施形態では、ディテントプレート21がディテントスプリング25の基部から離れる方向を正回転方向、基部に近づく方向を逆回転方向とする。
 ディテントプレート21には、出力軸15と平行に突出するピン24が設けられる。ピン24は、マニュアルバルブ28と接続される。ディテントプレート21がモータ10によって駆動されることで、マニュアルバルブ28は軸方向に往復移動する。すなわち、シフトレンジ切替機構20は、モータ10の回転運動を直線運動に変換してマニュアルバルブ28に伝達する。マニュアルバルブ28は、バルブボディ29に設けられる。マニュアルバルブ28が軸方向に往復移動することで、図示しない油圧クラッチへの油圧供給路が切り替えられ、油圧クラッチの係合状態が切り替わることでシフトレンジが変更される。
 ディテントプレート21のディテントスプリング25側には、2つの凹部22、23が設けられる。本実施形態では、ディテントスプリング25の基部に近い側を凹部22、遠い側を凹部23とする。本実施形態では、凹部22がPレンジ以外のNotPレンジに対応し、凹部23がPレンジに対応する。
 ディテントスプリング25は、弾性変形可能な板状部材であり、先端にディテントローラ26が設けられる。ディテントスプリング25は、ディテントローラ26をディテントプレート21の回動中心側に付勢する。ディテントプレート21に所定以上の回転力が加わると、ディテントスプリング25が弾性変形し、ディテントローラ26が凹部22、23を移動する。ディテントローラ26が凹部22、23のいずれかに嵌まり込むことで、ディテントプレート21の揺動が規制され、マニュアルバルブ28の軸方向位置、および、パーキングロック機構30の状態が決定され、自動変速機5のシフトレンジが固定される。ディテントローラ26は、シフトレンジがNotPレンジのとき、凹部22に嵌まり込み、Pレンジのとき、凹部23に嵌まり込む。
 パーキングロック機構30は、パーキングロッド31、円錐体32、パーキングロックポール33、軸部34、および、パーキングギア35を有する。パーキングロッド31は、略L字形状に形成され、一端311側がディテントプレート21に固定される。パーキングロッド31の他端312側には、円錐体32が設けられる。円錐体32は、他端312側にいくほど縮径するように形成される。ディテントプレート21が逆回転方向に揺動すると、円錐体32がP方向に移動する。
 パーキングギア35は、図示しない車軸に設けられ、パーキングロックポール33の凸部331と噛み合い可能に設けられる。パーキングギア35と凸部331とが噛み合うと、車軸の回転が規制される。シフトレンジがNotPレンジのとき、パーキングギア35はパーキングロックポール33によりロックされず、車軸の回転は、パーキングロック機構30により妨げられない。また、シフトレンジがPレンジのとき、パーキングギア35はパーキングロックポール33によってロックされ、車軸の回転が規制される。
 図2に示すように、シフトレンジ制御装置40は、モータドライバ41、および、ECU50等を有する。モータドライバ41は、モータ10の各相(U相、V相、W相)への通電を切り替える。モータドライバ41とバッテリとの間には、モータリレー46が設けられる。モータリレー46は、イグニッションスイッチ等である車両の始動スイッチがオンされているときにオンされ、モータ10側へ電力が供給される。また、モータリレー46は、始動スイッチがオフされているときにオフされ、モータ10側への電力の供給が遮断される。
 ECU50は、マイコン等を主体として構成され、内部にはいずれも図示しないCPU、ROM、RAM、I/O、及び、これらの構成を接続するバスライン等を備えている。ECU50における各処理は、ROM等の実体的なメモリ装置(すなわち、読み出し可能非一時的有形記録媒体)に予め記憶されたプログラムをCPUで実行することによるソフトウェア処理であってもよいし、専用の電子回路によるハードウェア処理であってもよい。
 ECU50は、ドライバ要求シフトレンジに応じたシフト信号、ブレーキスイッチからの信号および車速等に基づいてモータ10の駆動を制御することで、シフトレンジの切り替えを制御する。また、ECU50は、車速、アクセル開度、および、ドライバ要求シフトレンジ等に基づき、変速用油圧制御ソレノイド6の駆動を制御する。変速用油圧制御ソレノイド6を制御することで、変速段が制御される。変速用油圧制御ソレノイド6は、変速段数等に応じた本数が設けられる。本実施形態では、1つのECU50がモータ10およびソレノイド6の駆動を制御するが、モータ10を制御するモータ制御用のモータECUと、ソレノイド制御用のAT-ECUとを分けてもよい。以下、モータ10の駆動制御を中心に説明する。
 ECU50は、信号取得部51、異常監視部52、および、駆動制御部55を有する。信号取得部51は、エンコーダ13からの回転角信号、および、出力軸センサ16からの信号を取得する。信号取得部51は、エンコーダ13からの回転角信号のパルスエッジ割り込みごとに、エンコーダパターンを読み込む。また、信号取得部51は、エンコーダパルスエッジごとに、信号パターンに応じて、エンコーダカウント値θenをカウントアップまたはカウントダウンする。エンコーダカウント値θenは、モータ10の回転位置に応じた値であって、本実施形態では「モータの回転位置」に対応する。異常監視部52は、エンコーダ13の回転角信号の異常を監視する。
 駆動制御部55は、エンコーダ13からの回転角信号に基づくエンコーダカウント値θenが、目標シフトレンジに応じた目標カウント値θcmdとなる回転位置にてモータ10が停止するように、モータ10の駆動を制御する。本実施形態では、エンコーダカウント値θenが「モータの回転位置」、目標カウント値θcmdが「目標回転位置」に対応する。
 エンコーダ13の回転角信号、および、回転角信号に応じた通電相を図4Aおよび図4Bに基づいて説明する。図4Aが電気角に応じたエンコーダパターンおよび通電相を示す図であり、図4Bがエンコーダパターンに応じた通電相を説明するマップである。図4Aおよび図4Bでは、番号(0)~(7)は、信号パターン、および、信号パターンに応じた通電相パターンを示すパターン番号とする。図中、回転角信号がLoである状態を「0(Lo)」、Hiである状態を「1(Hi)」と記載した。後述の実施形態についても同様である。
 パターン(0):A相信号およびB相信号がLo、C相信号がHiである信号パターンをパターン0とし、このときの通電相をV相とする。
 パターン(1):A相信号がLo、B相信号およびC相信号がHiである信号パターンをパターン1とし、このときの通電相をU相およびV相とする。
 パターン(2):A相信号およびC相信号がLo、B相信号がHiである信号パターンをパターン2とし、このときの通電相をU相とする。
 パターン(3):A相信号およびB相信号がHi、C相信号がLoである信号パターンをパターン3とし、このときの通電相をW相およびU相とする。
 パターン(4):A相信号がHi、B相信号およびC相信号がLoである信号パターンをパターン4とし、このときの通電相をW相とする。
 パターン(5):A相信号およびC相信号がHi、B相信号がLoである信号パターンをパターン5とし、このときの通電相をV相およびW相とする。
 パターン(0)~(5)は、正常パターンであって、モータ10を回転させるとき、エンコーダ13からの回転角信号のエッジ割り込み毎に、信号パターンに応じ、通電相を、V→UV→U→WU→W→WV→VW→V→UV→・・・の順に切り替える。逆方向に回転させる場合は、逆順にて通電相を切り替える。
 パターン(6)、(7):A相信号、B相信号およびC相信号が全てHiとなる信号パターンをパターン(6)、A相信号、B相信号およびC相信号が全てLoとなる信号パターンをパターン(7)とする。A相信号、B相信号およびC相信号が全てHiまたはLoとなるパターン(6)およびパターン(7)は、正常時には発生しない異常パターンである。例えば図4Aに一点鎖線で示すように、エンコーダ13のA相断線により、A相信号がHi固着すると、パターン(1)となるべきタイミングにて、パターン(6)が発生する。なお説明のため、A相断線時に発生するHi固着信号を、正常時のHi信号とずらして記載した。
 ところで、参考例として、A相およびB相の2相のエンコーダシステムでは、例えば断線等により1相の信号が異常になると、モータの通電制御を正しく行うことができないため、モータが即停止する。なお補足として、Z相パルスは基準信号であって、「回転角信号」ではないため、モータ制御には用いることができない。
 一方、本実施形態では、エンコーダ13は、A相、B相およびC相の3相のエンコーダシステムである。3相エンコーダシステムの場合、図4Bにて説明したように、信号パターンに対して通電相が一意に決まるため、3相のうちの1相が断線したとしても、異常パターンとなる範囲を勢いで通過すると、成り行きでモータ10の回転が継続される。また、異常パターンとなる範囲を勢いで通過できない場合、モータ10は停止する。すなわち、エンコーダ13の回転角信号に異常パターンが発生した状態にて制御を継続した場合、モータ10が回転しつづけるか、停止するかは、そのときのモータ10の回転数、温度および電圧等、環境次第である。
 例えば、エンコーダ13の回転角信号に異常が生じたときのモータ10の挙動に応じ、制御を切り替えるようにすると、制御構成が複雑になる。また、回転角信号が異常な状態にてモータ10が回転すると、モータ10の回転角を誤検出してしまう。
 そこで本実施形態では、エンコーダ13の回転角信号の異常が検出された場合、固定相通電にてモータ10を確実に停止させた後、エンコーダカウント値θenを用いず、通電相切替時間ごとに通電相を切り替えるオープン制御を行うことで、モータ10を目標位置まで回転させる。固定相通電は、後述のフェイル停止モードおよび停止モードのいずれにおいても、2相通電でもよいし、1相通電でもよい。
 エンコーダ割込処理を図5のフローチャートに基づいて説明する。この処理は、エンコーダ13からの回転角信号のパルスエッジが検出されたタイミングにて、ECU50にて実行される。以下、ステップS101の「ステップ」を省略し、単に記号「S」と記す。他のステップも同様である。
 S101では、信号取得部51は、エンコーダ13からの回転角信号に基づき、エンコーダパターンを読み込む。S102では、信号取得部51は、エンコーダパターンに基づき、エンコーダカウント値θenを、カウントアップまたはカウントダウンする。カウント処理は、例えば特許第5397443号の方法を用いてもよい。
 S103では、異常監視部52は、エンコーダパターンが正常か否かを判断する。エンコーダパターンが正常であると判断された場合(S103:YES)、S105へ移行する。エンコーダパターンが正常ではないと判断された場合(S103:NO)、S104へ移行し、オープン駆動要求フラグをセットする。
 S105では、駆動制御部55は、駆動モードがフィードバックモードか否かを判断する。以下適宜、フィードバックを、「F/B」と記載する。モード選択に係る処理は、後述する。駆動モードがF/Bモードではないと判断された場合(S105:NO)、S106の処理を行わず、本ルーチンを終了する。駆動モードがF/Bモードであると判断された場合(S105:YES)、S106へ移行し、図4Bに示す如く、エンコーダパターンに応じた通電相に通電する通電処理を行う。
 駆動制御処理を図6のフローチャートに基づいて説明する。この処理は、ECU50にて、イグニッションスイッチ等である車両の始動スイッチがオンされているときに、所定の周期(例えば1ms)にて実行される。なお、マイコン初期化後、スタンバイモードとする。
 S201では、駆動制御部55は、駆動モードがスタンバイモードか否かを判断する。スタンバイモードではないと判断された場合(S201:NO)、S205へ移行する。駆動モードがスタンバイモードであると判断された場合(S201:YES)、S202へ移行する。
 S202では、駆動制御部55は、目標シフトレンジが切り替わったか否かを判断する。目標シフトレンジが切り替わっていないと判断された場合(S202:NO)、本ルーチンを終了する。目標シフトレンジが切り替わったと判断された場合(S202:YES)、S203へ移行する。
 S203では、駆動制御部55は、オープン駆動要求フラグがセットされているか否かを判断する。オープン駆動要求フラグがセットされていると判断された場合(S203:YES)、S212へ移行し、駆動モードをオープン駆動モードとする。オープン駆動要求フラグがセットされていないと判断された場合(S203:NO)、S204へ移行し、駆動モードをF/Bモードとする。
 駆動モードがスタンバイモードではないと判断された場合(S201:NO)に移行するS205では、駆動制御部55は、駆動モードがF/Bモードか否かを判断する。駆動モードがF/Bモードではないと判断された場合(S205:NO)、S209へ移行する。駆動モードがF/Bモードであると判断された場合(S205:YES)、S206へ移行する。
 S206では、駆動制御部55は、オープン駆動要求フラグがセットされているか否かを判断する。オープン駆動要求フラグがセットされていると判断された場合(S206:YES)、S208へ移行し、駆動モードをフェイル停止モードとする。オープン駆動要求フラグがセットされていないと判断された場合(S206:NO)、S207へ移行する。S206にて否定判断された場合、駆動モードはF/Bモードであるので、F/B制御にてモータ10を駆動する。F/Bモードでは、図4A、図4Bおよび図5にて説明した通り、エンコーダ割り込みごとに、信号パターンに応じて通電相を切り替えていくことで、モータ10の駆動を制御する。
 S207では、駆動制御部55は、モータ10の回転位置が目標位置に到達したか否かを判断する。F/B制御にてモータ10を駆動している場合、エンコーダカウント値θenと目標カウント値θcmdとの差が所定カウント(例えば2カウント)以下になった場合、モータ10の回転位置が目標位置に到達したと判定する。モータ10の回転位置が目標位置に到達していないと判断された場合(S207:NO)、本ルーチンを終了する。モータ10の回転位置が目標位置に到達したと判断された場合(S207:YES)、S216へ移行し、駆動モードを停止モードとする。
 駆動モードがF/Bモードではないと判断された場合(S205:NO)に移行するS209では、駆動制御部55は、駆動モードがフェイル停止モードか否かを判断する。駆動モードがフェイル停止モードではないと判断された場合(S209:NO)、S213へ移行する。駆動モードがフェイル停止モードであると判断された場合(S209:YES)、S210へ移行し、固定相に通電を行うことでモータ10を停止させる停止制御を行う。
 S211では、駆動制御部55は、フェイル停止モードにて固定相通電を開始してからの経過時間が第1判定時間Xth1を経過したか否かを判断する。第1判定時間Xth1は、フェイル停止モードにて、モータ10を確実に停止させることができる程度の時間に設定される。フェイル停止モードにて固定相通電を開始してからの経過時間が第1判定時間Xth1を経過していないと判断された場合(S211:NO)、フェイル停止モードによる固定相通電を継続し、本ルーチンを終了する。フェイル停止モードにて固定相通電を開始してからの経過時間が第1判定時間Xth1を経過したと判断された場合(S211:YES)、S212へ移行し、駆動モードをオープン駆動モードとする。
 駆動モードがフェイル停止モードではないと判断された場合(S209:NO)に移行するS213では、駆動制御部55は、駆動モードがオープン駆動モードか否かを判断する。駆動モードがオープン駆動モードではないと判断された場合(S213:NO)、すなわち駆動モードが停止モードである場合、S217へ移行する。駆動モードがオープン駆動モードであると判断された場合(S213:YES)、S214へ移行する。
 S214では、駆動制御部55は、オープン制御にてモータ10を駆動する。オープン制御では、エンコーダカウント値θenを用いず、所定時間ごとに通電相を切り替えることで、モータ10を駆動させる。通電相の切り替えパターンは、図4Aおよび図4Bで説明した正常時の切り替えパターンと同様である。
 S215では、駆動制御部55は、モータ10の回転位置が目標位置に到達したか否かを判断する。オープン制御にてモータ10を駆動している場合、モータ10の回転方向に応じ、通電相を切り替えるごとに通電相切替カウンタをインクリメントまたはデクリメントし、要求シフトレンジに応じて設定されるカウント数に基づいて到達判定を行う。モータ10の回転位置が目標位置に到達していないと判断された場合(S215:NO)、オープン制御を継続し、本ルーチンを終了する。モータ10の回転位置が目標位置に到達したと判断された場合(S215:YES)、S216へ移行し、駆動モードを停止モードとする。
 駆動モードが停止モードであるときに移行するS217では、駆動制御部55は、固定相に通電を行うことでモータ10を停止させる停止制御を行う。S218では、駆動制御部55は、停止モードにて固定相通電を開始してから第2判定時間Xth2が経過したか否かを判断する。第2判定時間Xth2は、停止モードにて、モータ10を確実に停止させることができる程度の時間に設定される。第2判定時間Xth2は、フェイル停止モードにおける判定時間である第1判定時間Xth1と同じあってもよいし、異なっていてもよい。第2判定時間Xth2が経過していないと判断された場合(S218:NO)、停止モードによる固定相通電を継続し、本ルーチンを終了する。第2判定時間Xth2が経過したと判断された場合(S218:YES)、S219へ移行し、駆動モードをスタンバイモードとする。
 モータ駆動処理を、図7のタイムチャートに基づいて説明する。図7では、上段から、要求シフトレンジ、オープン駆動要求フラグ、モータ角度を示している。モータ角度は、エンコーダカウント値で示す。説明のため、タイムスケールは適宜変更しており、実際のタイムスケールとは必ずしも一致しない。後述の実施形態のタイムチャートも同様である。
 時刻x10にて、要求シフトレンジがPレンジからPレンジ以外のNotPレンジに切り替えられると、モータ10の駆動が開始される。このとき、エンコーダ13が正常であるので、エンコーダ13の回転角信号に基づき、正常時の通電パターンである通電パターンNにて通電相が切り替えられ、F/B制御によりモータ10の駆動が制御される。
 時刻x11にて、エンコーダ13の異常パターンが検出されると、オープン駆動要求フラグがセットされる。オープン駆動要求フラグがセットされると、フェイル停止モードにて、固定相通電を行い、モータ10を確実に停止させる。フェイル停止モードによる固定相通電開始から第1判定時間Xth1が経過した時刻x12にて、駆動モードをオープン駆動モードに切り替え、オープン制御にて、モータ10の駆動を再開する。
 時刻x13にて、モータ10の回転位置が目標位置に到達すると、オープン駆動モードから停止モードに移行し、固定相通電によりモータ10を停止させる。そして、時刻x13から第2判定時間Xth2が経過した時刻x14にて固定相通電を終了し、スタンバイモードに移行する。
 以上説明したように、本実施形態のシフトレンジ制御装置は、モータ10の駆動を制御することでシフトレンジの切り替えを制御するシフトレンジ制御装置であって、信号取得部51と、駆動制御部55と、を備える。信号取得部51は、位相が異なる3相以上の回転角信号を出力可能なエンコーダ13から回転角信号を取得する。駆動制御部55は、モータ10の回転位置が目標シフトレンジに応じた目標回転位置となるように、モータ10の駆動を制御する。駆動制御部55は、シフトレンジ切替中に回転角信号の異常が検出された場合、同一相への通電を継続する固定相通電を行い、モータ10の回転を停止させる。
 本実施形態では、3相エンコーダを用いており、1相に異常が生じたとしても、その相を勢いで飛び越えれば正しく通電されるため、成り行きでモータ10が回転してしまう虞がある。そこで、異常発生時の状況や環境等によらず、エンコーダ13に異常が生じた場合、固定相通電を行うことで、モータ10を確実に停止させる。また、その後、例えばオープン制御等にてモータ10を回転させる。これにより、シフトレンジを適切に切り替えることができる。
 駆動制御部55は、シフトレンジ切替中に回転角信号の異常が検出され、第1判定時間Xth1の固定相通電にてモータ10を停止させた後、回転角信号を用いずに通電相を切り替えることでモータ10を回転させるオープン制御に移行する。これにより、異常なエンコーダパターンに影響されず、シンプルな制御にてシフトレンジを適切に切り替えることができる。
   (第2実施形態)
 第2実施形態を図8~図10に基づいて説明する。本実施形態では、異常パターンが検出された後、オープン制御中もエンコーダ13の監視を継続し、エンコーダパターンが正常に戻った際の復帰制御を織り込んでいる。エンコーダ割込処理を図8のフローチャートに基づいて説明する。
 S151~S156の処理は、図5中のS101~S106の処理と同様である。S105にて、駆動モードがF/Bモードであると判断された場合(S155:YES)、S156へ移行し、図4Bに示す如く、エンコーダパターンに応じた通電相に通電する通電処理を行う。駆動モードがF/Bモードではないと判断された場合(S155:YES)、S157へ移行する。
 S157では、駆動制御部55は、駆動モードがオープン駆動モードか否かを判断する。駆動モードがオープン駆動モードではないと判断された場合(S157:NO)、本ルーチンを終了する。駆動モードがオープン駆動モードであると判断された場合(S157:YES)、S158へ移行する。
 S158では、S153と同様、異常監視部52は、エンコーダパターンが正常か否かを判断する。エンコーダパターンが正常であると判断された場合(S158:YES)、本ルーチンを終了する。エンコーダパターンが正常ではないと判断された場合(S158:NO)、S159へ移行し、異常確定カウンタをインクリメントする。
 S160では、異常監視部52は、エンコーダ異常が確定したか否かを判断する。本実施形態では、異常確定カウンタのカウント値が異常確定閾値より大きくなった場合に、エンコーダ異常を確定する。エンコーダ異常が確定していないと判断された場合(S160:NO)、本ルーチンを終了する。エンコーダ異常が確定したと判断された場合(S160:YES)、S161へ移行し、異常確定フラグをオンにする。
 駆動制御処理を図9および図10のフローチャートに基づいて説明する。図9および図10に示すように、本実施形態では、図6のS219の後に、S220~S222が追加されている。停止制御の後、S219にて駆動モードをスタンバイモードとした後に移行するS220では、異常監視部52は、異常確定フラグがオンされているか否かを判断する。異常確定フラグがオンされていると判断された場合(S220:YES)、S221へ移行する。異常確定フラグがオンされていないと判断された場合(S220:NO)、S222へ移行する。
 S221では、ECU50は、オープン駆動要求フラグがオンされている状態を継続するとともに、確定フラグをオフにする。S222では、ECU50は、オープン駆動要求フラグがセットされている場合、オープン駆動要求フラグをオフにするとともに、確定フラグのオフ状態を継続する。
 モータ駆動処理を図11および図12のタイムチャートに基づいて説明する。図11および図12では、上段から、要求シフトレンジ、オープン駆動要求フラグ、異常確定フラグ、モータ角度を示している。
 時刻x20~時刻x21の処理は、図7の時刻x10~時刻x11と同様である。時刻x21にて、エンコーダ13の異常パターンが検出されると、フェイル停止モードにて固定相通電を行うことでモータ10を停止させた後、時刻x22にてオープン駆動モードに移行する。エンコーダ13の断線により1相のHi固着が生じている場合、当該相がLoになるべき領域を通過するごとに異常パターンが発生し、異常確定カウンタがインクリメントされる。そして、時刻x23にて、異常が確定されると、異常確定フラグがオンされる。
 オープン制御にてモータ10を回転させ、時刻x24にて目標位置に到達すると、停止モードに移行して固定相通電にてモータ10を停止させた後、時刻x25にてスタンバイモードに移行する。スタンバイモードに移行した時刻x25にて、異常確定フラグはリセットするが、オープン駆動要求フラグはセットされている状態を保持する。
 時刻x26にて、シフトレンジがNotPレンジからPレンジに切り替えられると、再度、モータ10の駆動が開始される。このとき、オープン駆動要求フラグがセットされているので、時刻x26からオープン制御にてモータ10を駆動する。また、時刻x27では、時刻x23と同様、異常が確定されると、異常確定フラグがオンされる。
 図12に示すように、時刻x30~時刻x32の処理は、図11の時刻x20~x22と同様である。ここで、時刻x31にて検出された異常が、ノイズ等による一時的な異常である場合、エンコーダパターンが正常に戻るので、異常が確定されず、異常確定フラグがセットされない。
 時刻x33にて、モータ10の回転位置が目標位置に到達すると、オープン駆動モードから停止モードに移行し、固定相通電にてモータ10を停止させる。そして、時刻x33から第2判定時間Xth2が経過した時刻x34にて固定相通電を終了し、スタンバイモードに移行する。スタンバイモードに移行した時刻x34にて、異常確定フラグがセットされていないので、オープン駆動要求フラグをリセットする。
 時刻x35にて、シフトレンジがNotPレンジからPレンジに切り替えられると、再度、モータ10の駆動が開始される。このとき、オープン駆動要求フラグがセットされていないので、F/B制御にてモータ10を駆動する。すなわち、図12の例では、エンコーダ13にて一時的な異常が発生したとしても、異常が確定されなければ、次のレンジ切替時には正常復帰するので、F/B制御にて応答性よくレンジ切替を行うことができる。
 本実施形態では、駆動制御部55は、回転角信号の異常検出後、異常が確定されなかった場合、次のレンジ切替時における駆動モードを正常復帰させる。これにより、ノイズ等の一時的な異常を、故障と誤判定するのを防ぐことができる。また、故障の誤判定による応答性の低下を回避することができる。また、上記実施形態と同様の効果を奏する。
   (他の実施形態)
 上記実施形態では、モータの回転角を検出する回転角センサとして、エンコーダを用いる。他の実施形態では、回転角センサは、3相以上の位相の異なる回転角信号を出力可能であれば、エンコーダに限らず、レゾルバ等、どのようなものを用いてもよい。また、回転角信号の相数は、4相以上であってもよい。
 上記実施形態では、ディテントプレートには2つの凹部が設けられる。他の実施形態では、凹部の数は2つに限らず、例えばレンジ毎に凹部が設けられていてもよい。また、シフトレンジ切替機構やパーキングロック機構等は、上記実施形態と異なっていてもよい。
 上記実施形態では、モータ軸と出力軸との間に減速機が設けられる。減速機の詳細について、上記実施形態では言及していないが、例えば、サイクロイド歯車、遊星歯車、モータ軸と略同軸の減速機構から駆動軸へトルクを伝達する平歯歯車を用いたものや、これらを組み合わせて用いたもの等、どのような構成であってもよい。また、他の実施形態では、モータ軸と出力軸との間の減速機を省略してもよいし、減速機以外の機構を設けてもよい。以上、本開示は、上記実施形態になんら限定されるものではなく、その趣旨を逸脱しない範囲において種々の形態で実施可能である。
 本開示は、実施形態に準拠して記述された。しかしながら、本開示は当該実施形態および構造に限定されるものではない。本開示は、様々な変形例および均等の範囲内の変形をも包含する。また、様々な組み合わせおよび形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせおよび形態も、本開示の範疇および思想範囲に入るものである。

Claims (3)

  1.  モータ(10)の駆動を制御することで、シフトレンジの切り替えを制御するシフトレンジ制御装置であって、
     位相が異なる3相以上の回転角信号を出力可能な回転角センサ(13)から前記回転角信号を取得する信号取得部(51)と、
     前記モータの回転位置が目標シフトレンジに応じた目標回転位置となるように前記モータの駆動を制御する駆動制御部(55)と、
     を備え、
     前記駆動制御部は、シフトレンジ切替中に前記回転角信号の異常が検出された場合、同一の通電相への通電を継続する固定相通電を行い、前記モータの回転を停止させるシフトレンジ制御装置。
  2.  前記駆動制御部は、シフトレンジ切替中に前記回転角信号の異常が検出され、前記固定相通電にて前記モータを停止させた後、前記回転角信号を用いずに通電相を切り替えることで前記モータを回転させるオープン制御に移行する請求項1に記載のシフトレンジ制御装置。
  3.  前記駆動制御部は、前記回転角信号の異常検出後、異常が確定されなかった場合、次のレンジ切替時における駆動モードを正常復帰させる請求項1または2に記載のシフトレンジ制御装置。
PCT/JP2018/040802 2017-11-06 2018-11-02 シフトレンジ制御装置 WO2019088245A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880071078.9A CN111295834B (zh) 2017-11-06 2018-11-02 换挡挡位控制装置
DE112018005273.7T DE112018005273T5 (de) 2017-11-06 2018-11-02 Schaltbereichssteuervorrichtung
US16/865,718 US11313460B2 (en) 2017-11-06 2020-05-04 Shift range control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017213863A JP7009936B2 (ja) 2017-11-06 2017-11-06 シフトレンジ制御装置
JP2017-213863 2017-11-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/865,718 Continuation US11313460B2 (en) 2017-11-06 2020-05-04 Shift range control device

Publications (1)

Publication Number Publication Date
WO2019088245A1 true WO2019088245A1 (ja) 2019-05-09

Family

ID=66333555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040802 WO2019088245A1 (ja) 2017-11-06 2018-11-02 シフトレンジ制御装置

Country Status (5)

Country Link
US (1) US11313460B2 (ja)
JP (1) JP7009936B2 (ja)
CN (1) CN111295834B (ja)
DE (1) DE112018005273T5 (ja)
WO (1) WO2019088245A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10844954B2 (en) 2017-11-20 2020-11-24 Denso Corporation Shift range control device
US11092236B2 (en) 2017-11-24 2021-08-17 Denso Corporation Vehicle control device
US11112008B2 (en) 2017-11-24 2021-09-07 Denso Corporation Vehicle control device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7021045B2 (ja) 2018-10-10 2022-02-16 株式会社デンソー シフトレンジ制御装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243033A (ja) * 2001-02-20 2002-08-28 Toyota Motor Corp 変速機のシフト制御方法
JP3849930B2 (ja) * 2002-07-16 2006-11-22 株式会社デンソー モータ制御装置
JP2017198250A (ja) * 2016-04-26 2017-11-02 株式会社デンソー シフトレンジ制御装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7312595B2 (en) 2002-07-09 2007-12-25 Denso Corporation Motor control apparatus
JP3871130B2 (ja) * 2003-03-19 2007-01-24 株式会社デンソー モータ制御装置
US6992451B2 (en) 2002-10-07 2006-01-31 Denso Corporation Motor control apparatus operable in fail-safe mode
KR101469279B1 (ko) * 2007-03-09 2014-12-04 쟈트코 가부시키가이샤 자동 변속기
JP2009100534A (ja) * 2007-10-16 2009-05-07 Jtekt Corp モータ制御装置及び車両用操舵装置
JP2010119228A (ja) * 2008-11-13 2010-05-27 Mitsubishi Electric Corp 自動変速機の制御装置
JP5297443B2 (ja) 2010-12-17 2013-09-25 三菱重工業株式会社 車両、及びその走行装置
JP5397443B2 (ja) 2011-09-28 2014-01-22 株式会社デンソー 位置検出装置、回転式アクチュエータ、および、それを用いたシフトバイワイヤシステム
JP2013096436A (ja) * 2011-10-28 2013-05-20 Denso Corp シフトバイワイヤシステム
JP5726274B2 (ja) * 2013-11-15 2015-05-27 三菱電機株式会社 シフトレンジ切替装置
JP6212445B2 (ja) * 2014-07-16 2017-10-11 本田技研工業株式会社 自動変速機の制御装置
KR101714237B1 (ko) * 2015-10-20 2017-03-08 현대자동차주식회사 차량의 변속조작기구 제어방법 및 그 제어시스템
JP6447479B2 (ja) * 2015-12-09 2019-01-09 トヨタ自動車株式会社 動力伝達装置の制御装置
US20170281425A1 (en) 2016-03-30 2017-10-05 Basf Se Fluid-absorbent article
JP6173518B1 (ja) * 2016-04-13 2017-08-02 三菱電機株式会社 自動変速機の制御装置
JP6536465B2 (ja) * 2016-04-26 2019-07-03 株式会社デンソー シフトレンジ制御装置
US10221940B2 (en) * 2016-10-13 2019-03-05 Ford Global Technologies, Llc Neutral state movement protection for an automatic transmission
CN208331226U (zh) * 2016-12-28 2019-01-04 Sl株式会社 车辆用变速器控制装置
JP6426773B2 (ja) * 2017-02-09 2018-11-21 株式会社Subaru 全輪駆動車の制御装置
JP7084816B2 (ja) * 2018-08-06 2022-06-15 カワサキモータース株式会社 変速機付き乗物
JP7115419B2 (ja) * 2019-05-22 2022-08-09 株式会社デンソー シフトレンジ制御装置
JP7072009B2 (ja) * 2020-01-15 2022-05-19 本田技研工業株式会社 車両用自動変速機の制御装置
JP7384118B2 (ja) * 2020-06-16 2023-11-21 トヨタ自動車株式会社 異常要因判定装置、車両用制御装置、および車両用制御システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243033A (ja) * 2001-02-20 2002-08-28 Toyota Motor Corp 変速機のシフト制御方法
JP3849930B2 (ja) * 2002-07-16 2006-11-22 株式会社デンソー モータ制御装置
JP2017198250A (ja) * 2016-04-26 2017-11-02 株式会社デンソー シフトレンジ制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10844954B2 (en) 2017-11-20 2020-11-24 Denso Corporation Shift range control device
US11092236B2 (en) 2017-11-24 2021-08-17 Denso Corporation Vehicle control device
US11112008B2 (en) 2017-11-24 2021-09-07 Denso Corporation Vehicle control device

Also Published As

Publication number Publication date
JP7009936B2 (ja) 2022-01-26
DE112018005273T5 (de) 2020-06-25
CN111295834A (zh) 2020-06-16
CN111295834B (zh) 2023-08-11
US20200263788A1 (en) 2020-08-20
US11313460B2 (en) 2022-04-26
JP2019088075A (ja) 2019-06-06

Similar Documents

Publication Publication Date Title
WO2019088245A1 (ja) シフトレンジ制御装置
JP6844492B2 (ja) シフトレンジ制御装置
JP6614078B2 (ja) シフトレンジ制御装置
CN110832233B (zh) 换挡挡位控制装置
US11092237B2 (en) Shift range control apparatus
US11084493B2 (en) Shift range control device
CN111886427B (zh) 换挡挡位控制装置
WO2019049809A1 (ja) シフトレンジ制御装置
CN111512074B (zh) 换挡挡位控制装置
CN111601990B (zh) 换挡挡位控制装置
CN110382927B (zh) 换挡挡位控制装置
CN111981117B (zh) 换挡挡位控制装置
US20220360207A1 (en) Motor control device
JP7021045B2 (ja) シフトレンジ制御装置
US11316464B2 (en) Shift range control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18872504

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18872504

Country of ref document: EP

Kind code of ref document: A1