WO2019088235A1 - 有機無機ペロブスカイト、膜、発光膜、遅延蛍光放射膜、発光素子および発光素子の製造方法 - Google Patents
有機無機ペロブスカイト、膜、発光膜、遅延蛍光放射膜、発光素子および発光素子の製造方法 Download PDFInfo
- Publication number
- WO2019088235A1 WO2019088235A1 PCT/JP2018/040758 JP2018040758W WO2019088235A1 WO 2019088235 A1 WO2019088235 A1 WO 2019088235A1 JP 2018040758 W JP2018040758 W JP 2018040758W WO 2019088235 A1 WO2019088235 A1 WO 2019088235A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- organic
- inorganic
- perovskite
- film
- inorganic perovskite
- Prior art date
Links
- 230000003111 delayed effect Effects 0.000 title claims description 24
- 238000004519 manufacturing process Methods 0.000 title description 8
- 230000005284 excitation Effects 0.000 claims description 77
- -1 halogen ion Chemical group 0.000 claims description 22
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 claims description 21
- 239000000203 mixture Substances 0.000 claims description 18
- 150000002892 organic cations Chemical class 0.000 claims description 17
- 238000004020 luminiscence type Methods 0.000 claims description 14
- 125000003118 aryl group Chemical group 0.000 claims description 12
- 229910052736 halogen Inorganic materials 0.000 claims description 12
- 150000001768 cations Chemical class 0.000 claims description 9
- 229910021645 metal ion Inorganic materials 0.000 claims description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 5
- BAVYZALUXZFZLV-UHFFFAOYSA-O Methylammonium ion Chemical compound [NH3+]C BAVYZALUXZFZLV-UHFFFAOYSA-O 0.000 claims description 5
- BHHGXPLMPWCGHP-UHFFFAOYSA-N Phenethylamine Chemical group NCCC1=CC=CC=C1 BHHGXPLMPWCGHP-UHFFFAOYSA-N 0.000 claims description 4
- 230000001443 photoexcitation Effects 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 158
- 239000010408 film Substances 0.000 description 117
- 230000000903 blocking effect Effects 0.000 description 39
- 239000000463 material Substances 0.000 description 37
- 150000001875 compounds Chemical class 0.000 description 31
- 238000000034 method Methods 0.000 description 27
- 238000002347 injection Methods 0.000 description 21
- 239000007924 injection Substances 0.000 description 21
- 230000000052 comparative effect Effects 0.000 description 19
- 230000005525 hole transport Effects 0.000 description 17
- 238000000576 coating method Methods 0.000 description 15
- 239000000758 substrate Substances 0.000 description 15
- 239000000243 solution Substances 0.000 description 14
- 230000001052 transient effect Effects 0.000 description 13
- 239000002243 precursor Substances 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 9
- 0 CC(C12)C=CC=C1C(CC*=C1)=C1N2c(cc1*23c(cc(cc4)-[n]5*6ccccc6c6c5cccc6)c4-c(cc4)c2cc4-[n]2c(cccc4)c4c4c2**C=C4)ccc1-c1c3cc(*C2C=C*=CC2*(C=C*=CC)=C)cc1 Chemical compound CC(C12)C=CC=C1C(CC*=C1)=C1N2c(cc1*23c(cc(cc4)-[n]5*6ccccc6c6c5cccc6)c4-c(cc4)c2cc4-[n]2c(cccc4)c4c4c2**C=C4)ccc1-c1c3cc(*C2C=C*=CC2*(C=C*=CC)=C)cc1 0.000 description 8
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 239000011777 magnesium Substances 0.000 description 8
- 229910052749 magnesium Inorganic materials 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000007772 electrode material Substances 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000012044 organic layer Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- IRAGENYJMTVCCV-UHFFFAOYSA-N 2-phenylethanamine;hydrobromide Chemical compound [Br-].[NH3+]CCC1=CC=CC=C1 IRAGENYJMTVCCV-UHFFFAOYSA-N 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 238000000295 emission spectrum Methods 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 238000001296 phosphorescence spectrum Methods 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000009849 deactivation Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000002189 fluorescence spectrum Methods 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- ISWNAMNOYHCTSB-UHFFFAOYSA-N methanamine;hydrobromide Chemical compound [Br-].[NH3+]C ISWNAMNOYHCTSB-UHFFFAOYSA-N 0.000 description 4
- 238000005424 photoluminescence Methods 0.000 description 4
- 238000006862 quantum yield reaction Methods 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 238000005215 recombination Methods 0.000 description 4
- 230000006798 recombination Effects 0.000 description 4
- MSXVEPNJUHWQHW-UHFFFAOYSA-N 2-methylbutan-2-ol Chemical compound CCC(C)(C)O MSXVEPNJUHWQHW-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 3
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical group C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 3
- 238000000862 absorption spectrum Methods 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 125000002947 alkylene group Chemical group 0.000 description 3
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 3
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 3
- ZASWJUOMEGBQCQ-UHFFFAOYSA-L dibromolead Chemical compound Br[Pb]Br ZASWJUOMEGBQCQ-UHFFFAOYSA-L 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 150000002170 ethers Chemical class 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- 150000002576 ketones Chemical class 0.000 description 3
- 230000031700 light absorption Effects 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 150000004866 oxadiazoles Chemical class 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000004528 spin coating Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical group C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000004411 aluminium Substances 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 238000010549 co-Evaporation Methods 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 229910052805 deuterium Inorganic materials 0.000 description 2
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Chemical compound CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 150000008040 ionic compounds Chemical group 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- PGMYKACGEOXYJE-UHFFFAOYSA-N pentyl acetate Chemical compound CCCCCOC(C)=O PGMYKACGEOXYJE-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 125000003373 pyrazinyl group Chemical group 0.000 description 2
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical group C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 2
- 125000000714 pyrimidinyl group Chemical group 0.000 description 2
- 125000001567 quinoxalinyl group Chemical class N1=C(C=NC2=CC=CC=C12)* 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 125000004434 sulfur atom Chemical group 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- UWRZIZXBOLBCON-VOTSOKGWSA-N (e)-2-phenylethenamine Chemical class N\C=C\C1=CC=CC=C1 UWRZIZXBOLBCON-VOTSOKGWSA-N 0.000 description 1
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical group C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- VERMWGQSKPXSPZ-BUHFOSPRSA-N 1-[(e)-2-phenylethenyl]anthracene Chemical class C=1C=CC2=CC3=CC=CC=C3C=C2C=1\C=C\C1=CC=CC=C1 VERMWGQSKPXSPZ-BUHFOSPRSA-N 0.000 description 1
- LHENQXAPVKABON-UHFFFAOYSA-N 1-methoxypropan-1-ol Chemical compound CCC(O)OC LHENQXAPVKABON-UHFFFAOYSA-N 0.000 description 1
- NBUKAOOFKZFCGD-UHFFFAOYSA-N 2,2,3,3-tetrafluoropropan-1-ol Chemical compound OCC(F)(F)C(F)F NBUKAOOFKZFCGD-UHFFFAOYSA-N 0.000 description 1
- MVWPVABZQQJTPL-UHFFFAOYSA-N 2,3-diphenylcyclohexa-2,5-diene-1,4-dione Chemical class O=C1C=CC(=O)C(C=2C=CC=CC=2)=C1C1=CC=CC=C1 MVWPVABZQQJTPL-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- PTTPXKJBFFKCEK-UHFFFAOYSA-N 2-Methyl-4-heptanone Chemical compound CC(C)CC(=O)CC(C)C PTTPXKJBFFKCEK-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 1
- GGDYAKVUZMZKRV-UHFFFAOYSA-N 2-fluoroethanol Chemical compound OCCF GGDYAKVUZMZKRV-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- VGVHNLRUAMRIEW-UHFFFAOYSA-N 4-methylcyclohexan-1-one Chemical compound CC1CCC(=O)CC1 VGVHNLRUAMRIEW-UHFFFAOYSA-N 0.000 description 1
- LBKMJZAKWQTTHC-UHFFFAOYSA-N 4-methyldioxolane Chemical compound CC1COOC1 LBKMJZAKWQTTHC-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910000799 K alloy Inorganic materials 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N N-phenyl amine Natural products NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- ZCJJIQHVZCFSGZ-UHFFFAOYSA-N O=P(c1ccccc1)(c1ccccc1)c(cc1c2c3)ccc1[s]c2ccc3P(c1ccccc1)(c1ccccc1)=O Chemical compound O=P(c1ccccc1)(c1ccccc1)c(cc1c2c3)ccc1[s]c2ccc3P(c1ccccc1)(c1ccccc1)=O ZCJJIQHVZCFSGZ-UHFFFAOYSA-N 0.000 description 1
- ATTVYRDSOVWELU-UHFFFAOYSA-N O=P(c1ccccc1)(c1ccccc1)c1ccccc1Oc(cccc1)c1P(c1ccccc1)(c1ccccc1)=O Chemical compound O=P(c1ccccc1)(c1ccccc1)c1ccccc1Oc(cccc1)c1P(c1ccccc1)(c1ccccc1)=O ATTVYRDSOVWELU-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- RHQDFWAXVIIEBN-UHFFFAOYSA-N Trifluoroethanol Chemical compound OCC(F)(F)F RHQDFWAXVIIEBN-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000005577 anthracene group Chemical group 0.000 description 1
- 150000008425 anthrones Chemical class 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 238000007611 bar coating method Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- NSXJEEMTGWMJPY-UHFFFAOYSA-N c(cc1)cc(c2ccccc22)c1[n]2-c1cccc(-c2cccc(-[n]3c4ccccc4c4ccccc34)c2)c1 Chemical compound c(cc1)cc(c2ccccc22)c1[n]2-c1cccc(-c2cccc(-[n]3c4ccccc4c4ccccc34)c2)c1 NSXJEEMTGWMJPY-UHFFFAOYSA-N 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 150000001767 cationic compounds Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000005578 chrysene group Chemical group 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 125000004431 deuterium atom Chemical group 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- NKDDWNXOKDWJAK-UHFFFAOYSA-N dimethoxymethane Chemical compound COCOC NKDDWNXOKDWJAK-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 125000006575 electron-withdrawing group Chemical group 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 150000008376 fluorenones Chemical class 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- WBJINCZRORDGAQ-UHFFFAOYSA-N formic acid ethyl ester Natural products CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 229940083761 high-ceiling diuretics pyrazolone derivative Drugs 0.000 description 1
- 150000007857 hydrazones Chemical class 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- VVVPGLRKXQSQSZ-UHFFFAOYSA-N indolo[3,2-c]carbazole Chemical class C1=CC=CC2=NC3=C4C5=CC=CC=C5N=C4C=CC3=C21 VVVPGLRKXQSQSZ-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910001411 inorganic cation Inorganic materials 0.000 description 1
- 229910001410 inorganic ion Inorganic materials 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229940079865 intestinal antiinfectives imidazole derivative Drugs 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- LRDFRRGEGBBSRN-UHFFFAOYSA-N isobutyronitrile Chemical compound CC(C)C#N LRDFRRGEGBBSRN-UHFFFAOYSA-N 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- NVSYANRBXPURRQ-UHFFFAOYSA-N naphthalen-1-ylmethanamine Chemical group C1=CC=C2C(CN)=CC=CC2=C1 NVSYANRBXPURRQ-UHFFFAOYSA-N 0.000 description 1
- PCMACBQOVLUODT-UHFFFAOYSA-N naphthalen-1-ylmethanamine;hydrobromide Chemical compound Br.C1=CC=C2C(CN)=CC=CC2=C1 PCMACBQOVLUODT-UHFFFAOYSA-N 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical group C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- 150000007978 oxazole derivatives Chemical class 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical group C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 1
- DLRJIFUOBPOJNS-UHFFFAOYSA-N phenetole Chemical compound CCOC1=CC=CC=C1 DLRJIFUOBPOJNS-UHFFFAOYSA-N 0.000 description 1
- 150000004986 phenylenediamines Chemical class 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- BITYAPCSNKJESK-UHFFFAOYSA-N potassiosodium Chemical compound [Na].[K] BITYAPCSNKJESK-UHFFFAOYSA-N 0.000 description 1
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- JEXVQSWXXUJEMA-UHFFFAOYSA-N pyrazol-3-one Chemical class O=C1C=CN=N1 JEXVQSWXXUJEMA-UHFFFAOYSA-N 0.000 description 1
- 150000003219 pyrazolines Chemical class 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical class C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 229940042055 systemic antimycotics triazole derivative Drugs 0.000 description 1
- 125000005579 tetracene group Chemical group 0.000 description 1
- 238000007725 thermal activation Methods 0.000 description 1
- 150000004867 thiadiazoles Chemical class 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
- C07F7/24—Lead compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/66—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/10—Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/14—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/50—Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C211/00—Compounds containing amino groups bound to a carbon skeleton
- C07C211/01—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
- C07C211/26—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring
- C07C211/27—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring having amino groups linked to the six-membered aromatic ring by saturated carbon chains
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C257/00—Compounds containing carboxyl groups, the doubly-bound oxygen atom of a carboxyl group being replaced by a doubly-bound nitrogen atom, this nitrogen atom not being further bound to an oxygen atom, e.g. imino-ethers, amidines
- C07C257/10—Compounds containing carboxyl groups, the doubly-bound oxygen atom of a carboxyl group being replaced by a doubly-bound nitrogen atom, this nitrogen atom not being further bound to an oxygen atom, e.g. imino-ethers, amidines with replacement of the other oxygen atom of the carboxyl group by nitrogen atoms, e.g. amidines
- C07C257/12—Compounds containing carboxyl groups, the doubly-bound oxygen atom of a carboxyl group being replaced by a doubly-bound nitrogen atom, this nitrogen atom not being further bound to an oxygen atom, e.g. imino-ethers, amidines with replacement of the other oxygen atom of the carboxyl group by nitrogen atoms, e.g. amidines having carbon atoms of amidino groups bound to hydrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1007—Non-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1011—Condensed systems
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/20—Delayed fluorescence emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/351—Thickness
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
Definitions
- the present invention relates to an organic-inorganic perovskite useful as a material of a light emitting film of a light emitting device.
- Organic-inorganic perovskite consists of monovalent cations such as organic cations, divalent metal ions such as Sn 2+ and Pb 2+ , and halogen ions, and these ions have the same crystal structure as perovskite (perovskite) It is an ionic compound regularly arranged to form a perovskite type structure).
- Organic-inorganic perovskites are expected as various functional materials in order to combine semiconductor characteristics of inorganic substances with flexibility of organic substances and diversity of molecular design, and development of devices using them is actively promoted. Among them, research on a light emitting element using a film made of an organic inorganic perovskite as a light emitting film is also seen.
- Non-Patent Document 1 discloses a light emitting device using a film made of (C 6 H 5 C 2 H 4 NH 3 ) 2 (CH 3 NH 3 ) n-1 Pb n I 3 n + 1 (PEA-MA perovskite) It has been reported that near-infrared light emission was observed.
- Non-Patent Document 2 reports that green light emission was observed from a light emitting element using a film made of PEA-MA perovskite.
- the film of the PEA-MA perovskite used in these documents consists of a crystal lattice of a composition represented by (CH 3 NH 3 ) n-1 Pb n I 3n + 1 , and has a two-dimensional unit cell
- the organic layer in which the organic cation represented by C 6 H 5 C 2 H 4 NH 3 has cationic groups oriented to the inorganic layer side is formed on both sides of the inorganic layer having two or more layers. , which corresponds to a so-called pseudo two-dimensional perovskite.
- the luminous efficiency is measured by variously changing n, which is the number of laminations of the above two-dimensional array structure, and among them, relatively high luminous efficiency is obtained when n is 5 That has been confirmed.
- Non-Patent Documents 1 and 2 high luminous efficiency can be obtained by using a film made of PEA-MA perovskite for a light emitting element and controlling the number n of layers of the secondary arrangement structure of the inorganic layer. And, when the present inventors examined the luminous efficiency of PEA-MA perovskite in the same manner, the luminous efficiency reached a certain level when the number n of inorganic layers was controlled. It turned out that it would not be expected to dramatically improve the luminous efficiency. Therefore, the inventors of the present invention have conducted researches to control the physical properties of the organic / inorganic perovskite from the viewpoint of novelness different from the conventional ones and to improve the luminous efficiency.
- the organic-inorganic perovskite according to [1] or [2], which is a pseudo two-dimensional perovskite. [4] is represented by the following general formula (10), R 2 A n-1 B n X 3n + 1 (10) [In the general formula (10), R represents a monovalent organic cation, A represents a monovalent cation, B represents a divalent metal ion, and X represents a halogen ion. n is an integer of 2 or more.
- the inorganic layer of the composition represented by BX 4n of the general formula (10) constitutes the inorganic component, and the organic cation represented by R of the general formula (10) constitutes the organic component,
- R in the general formula (10) is ammonium represented by the following general formula (11).
- Ar (CH 2 ) n 1 NH 3 + (11) [In the general formula (11), Ar represents an aromatic ring. n1 is an integer of 1 to 20.
- the light-emitting device according to [13] which emits delayed fluorescence at 300 K.
- the organic-inorganic perovskite of the present invention is useful as a material of a light emitting film.
- a light emitting element in which a light emitting film is formed using the organic inorganic perovskite of the present invention can realize high luminous efficiency.
- 5 is a graph showing current density-voltage-brightness characteristics of an electroluminescent device using PEA-FA perovskite and an electroluminescent device using NMA-FA perovskite. It is a graph which shows the current density-voltage-external quantum efficiency (EQE) characteristic of the electroluminescent element using PEA-FA perovskite, and the electroluminescent element using NMA-FA perovskite.
- EQE current density-voltage-external quantum efficiency
- a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
- the term "main component” refers to the component having the largest content among the constituent components.
- the isotope species of the hydrogen atom present in the molecule of the compound used in the present invention is not particularly limited. For example, all hydrogen atoms in the molecule may be 1 H, or some or all of the hydrogen atoms may be 2 H (Deuterium D) may be used.
- the organic-inorganic perovskite of the present invention satisfies the following conditions (1) and (2).
- E S represents the luminescence excitation singlet energy level of the inorganic component constituting the organic inorganic perovskite
- E T represents the luminescence excitation triplet of the inorganic component constituting the organic inorganic perovskite It represents an energy level
- E T1 represents the emission excitation triplet energy level of the organic component constituting the organic-inorganic perovskite.
- the “emission excitation singlet energy level of the inorganic component constituting the organic / inorganic perovskite” refers to an energy level capable of causing fluorescence emission to the inorganic component via the energy level
- the “emission excitation triplet energy level of the inorganic component constituting the organic / inorganic perovskite” refers to an energy level capable of causing the inorganic component to emit phosphorescence through the energy level.
- the term “inorganic component” refers to an inorganic layer constituting an organic / inorganic perovskite, and more specifically, a divalent metal ion B is disposed at the center of an octahedron having a halogen ion X at the top. It refers to the inorganic layer BX 4 in which unit lattices BX 6 are in a two-dimensional array with vertex sharing.
- the “emission excitation triplet energy level of the organic component constituting the organic / inorganic perovskite” in the present invention means an energy level capable of causing phosphorescence in the organic component via the energy level.
- the "organic component” refers to the organic cation of organic-inorganic perovskite. In this specification, it represents a "light-emitting excited singlet energy level of the organic components constituting the organic-inorganic perovskite" in E S1.
- the light emission excitation singlet energy level of the organic component constituting the organic / inorganic perovskite refers to an energy level capable of causing fluorescence emission in the organic component via the energy level.
- high luminous efficiency is obtained by satisfying the above conditions (1) and (2).
- FIG. 1 shows energy level diagrams of the organic / inorganic perovskite, the inorganic component and the organic component.
- ⁇ 1 and ⁇ 2 represent emission excitation triplet energy levels E T having different vibration levels
- ⁇ 5 represents emission excitation singlet energy levels E S.
- the number of vibrational levels of the term energy level E T1 is not limited to the number shown in FIG. In the present invention, what satisfies the conditions (1) and (2) is that among the energy levels E S , E T , and E T1 , at least the energy levels having the lowest vibration levels are at least one another. I assume.
- the light emission excitation singlet energy level E S of the inorganic component and the light emission excitation triplet energy level E T Because the energy level difference between them is small, reverse intersystem crossing from the excited triplet state to the excited singlet state is likely to occur, and the energy of singlet excitons generated thereby is also the excited singlet energy of the organic inorganic perovskite. It moves to the level E P , undergoes energy transfer to the lower excited singlet energy level, and deactivates while emitting fluorescence to the ground singlet energy level S 0 .
- the fluorescence emitted at this time is observed as delayed fluorescence whose emission lifetime is longer than the fluorescence derived from singlet excitons directly generated in the inorganic component by current injection or the like.
- singlet excitons generated directly from the inorganic component by current injection or the like, and singlet generated through the inverse intersystem crossing from the excited triplet state to the excited singlet state from both exciton since the energy to excited singlet energy level E P of the organic-inorganic perovskite supplied, it emits light efficiently as compared to systems that do not satisfy the condition (2).
- E T EE T1 Since the term energy level E T1 is smaller than the light emission excitation triplet energy level E T of the inorganic component, the energy of the triplet exciton generated in the inorganic material is transferred to the light emission excitation triplet energy level E T1 of the organic component As a result, conversion from triplet excitons to singlet excitons due to reverse intersystem crossing does not occur sufficiently. Therefore, the energy of the triplet exciton generated in the inorganic component can not be effectively used for the fluorescence emission of the organic / inorganic perovskite.
- the energy of the triplet exciton generated in the inorganic component is an organic component because the E T ⁇ E T1 of the condition (2) is satisfied together with the above condition (1). It does not move to the light emission excitation triplet energy level ET1 , but conversion from triplet excitons to singlet excitons occurs with high probability due to reverse intersystem crossing. Therefore, both singlet excitons and triplet excitons generated in the inorganic component are efficiently used for fluorescence emission and delayed fluorescence emission of organic inorganic perovskite, and high emission efficiency is obtained. For example, although the generation probability of singlet excitons and triplet excitons generated by current excitation is 25%: 75%, according to this mechanism, in principle, all excitons are 100% as singlet excitons. It is possible to achieve an internal quantum yield of
- (E S ⁇ E T ) in the condition (2) is preferably 0.5 eV or less, more preferably 0.2 eV or less, from the viewpoint of achieving higher emission efficiency. It is more preferable that it is the following. Further, under the condition (1), the difference in emission excitation triplet energy level of the organic component (E T1) and emitting excitation triplet energy level of the inorganic component (E T) (E T1 -E T) is 0.01eV It is preferable that it is more than.
- the relationship of the luminous excitation energy level of the organic component (E S1) and the light-emitting excited singlet energy level of the inorganic component (E S), is preferably E S ⁇ E S1, and the difference (E S 1 -E S ) is preferably 0.01 eV or more.
- the light emission excitation singlet energy level (E S1 ) and the light emission excitation triplet energy level (E T1 ) of the organic component constituting the organic-inorganic perovskite are measured as follows.
- the compound to be measured in the case of measuring E S and E T is an inorganic component constituting an organic-inorganic perovskite
- the compound to be measured in the case of measuring E S1 and E T1 constitutes an organic-inorganic perovskite It is an organic cation.
- the fluorescence spectrum of this sample at 337 nm excitation light is measured at 30 K.
- a fluorescence spectrum whose emission intensity is on the vertical axis and whose wavelength is on the horizontal axis is obtained.
- a tangent is drawn to the rise on the short wavelength side of the fluorescence spectrum, and a wavelength value ⁇ edge [nm] at the intersection of the tangent and the horizontal axis is determined.
- Conversion formula: luminescence excitation singlet energy level [eV] 1239.85 / ⁇ edge
- the measurement of the fluorescence spectrum can be performed, for example, using a nitrogen laser (MNL 200 manufactured by Lasertechnik Berlin) as an excitation light source and a streak camera (C 4334 manufactured by Hamamatsu Photonics K. K.) as a detector.
- a tangent line is drawn to the rise on the short wavelength side of this phosphorescence spectrum, and a wavelength value ⁇ edge [nm] at the intersection of the tangent line and the horizontal axis is determined.
- Conversion formula: Luminescent excitation triplet energy level [eV] 1239.85 / ⁇ edge
- the tangent to the rise on the short wavelength side of the phosphorescence spectrum is drawn as follows. When moving on the spectrum curve from the short wavelength side of the phosphorescence spectrum to the maximum value on the shortest wavelength side among the maximum values of the spectrum, the tangent at each point on the curve is considered toward the long wavelength side.
- the tangent increases as the curve rises (ie, as the vertical axis increases).
- the tangent drawn at the point where the value of the slope takes the maximum value is taken as the tangent to the rise on the short wavelength side of the phosphorescence spectrum.
- the maximum point with a peak intensity of 10% or less of the maximum peak intensity of the spectrum is not included in the above-described local maximum on the shortest wavelength side, and the slope value closest to the local maximum on the short wavelength side is the maximum
- the tangent drawn at the value taking point is taken as the tangent to the rise on the short wavelength side of the phosphorescence spectrum.
- the difference between the light emission excited singlet energy level of the inorganic component (E S) and emitting excitation triplet energy level (E T) (E S -E T) (E S -E T ) is the measurement of the emission excitation triplet energy level (E T ) by the method of (2) from the measurement value of the emission excitation singlet energy level (E S ) by the method of (1) It asks by subtracting a value.
- the organic-inorganic perovskite of the present invention is an ionic compound containing at least an organic cation, a divalent metal ion and a halogen ion, and may further contain another ion such as a monovalent cation.
- Other ions may be organic ions or inorganic ions.
- the organic-inorganic perovskite of the present invention includes an inorganic semiconductor layer and an organic component, and may be any of a two-dimensional perovskite, a pseudo two-dimensional perovskite, and a three-dimensional perovskite. It is preferable that there be a pseudo two-dimensional perovskite.
- a two-dimensional perovskite an inorganic semiconductor layer in which an inorganic skeleton corresponding to an octahedral part of a perovskite structure is formed in a two-dimensional arrangement, and an organic cation arrange a cationic group toward the inorganic semiconductor layer.
- the pseudo two-dimensional perovskite has a layer corresponding to the inorganic semiconductor layer and the organic layer of the two-dimensional perovskite, respectively, but has two or more two-dimensional array structures in the inorganic semiconductor layer. And monovalent cations are arranged at positions corresponding to respective vertices of cubic crystals of the perovskite structure.
- a pseudo two-dimensional perovskite will be described as a preferable example of the organic inorganic perovskite.
- the pseudo two-dimensional perovskite as the organic inorganic perovskite of the present invention is preferably a compound represented by the following general formula (10).
- R represents a monovalent organic cation
- A represents a monovalent cation
- B represents a divalent metal ion
- X represents a halogen ion.
- n is an integer of 2 or more.
- Two R's, a plurality of B's and a plurality of X's may be identical to or different from each other. When two or more A exist, A may mutually be same or different.
- the crystal lattice of the composition represented by A n-1 B n X 3n + 1 constitutes the inorganic semiconductor layer, and the monovalent organic cation represented by R represents the organic component.
- Configure. n corresponds to the number of stacked layers of the two-dimensional array structure in the inorganic semiconductor layer, and is preferably an integer of 2 to 100.
- the monovalent organic cation represented by R preferably has an aromatic ring, more preferably an alkylene group and an aromatic ring, still more preferably a structure in which an alkylene group and an aromatic ring are connected, and an alkylene group It is still more preferable that it is an ammonium having a structure in which and the aromatic ring are linked, and it is particularly preferable that the ammonium be represented by the following general formula (11).
- Ar represents an aromatic ring.
- n1 is an integer of 1 to 20.
- the aromatic ring possessed by the organic cation may be an aromatic hydrocarbon or an aromatic heterocycle, but is preferably an aromatic hydrocarbon.
- the aromatic hydrocarbon is preferably a fused polycyclic hydrocarbon having a structure in which a benzene ring and a plurality of benzene rings are fused, and a benzene ring, a naphthalene ring, a phenanthrene ring, an anthracene ring, a chrysene ring, a tetracene ring, A perylene ring is preferable, a benzene ring and a naphthalene ring are preferable, and a benzene ring is more preferable.
- the aromatic heterocycle is preferably a pyridine ring, a pyrazine ring, a pyrimidine ring, a pyridazine ring, a pyrrole ring, a thiophene ring, a furan ring, a carbazole ring or a triazine ring, and a pyridine ring, a pyrazine ring, a pyrimidine ring or a pyridazine ring Is more preferably a pyridine ring.
- the aromatic ring possessed by the organic cation may have a substituent such as an alkyl group, an aryl group, a halogen atom (preferably a fluorine atom), etc., and is present in an aromatic ring or a substituent bonded to an aromatic ring
- the hydrogen atom may be a deuterium atom.
- the monovalent cation represented by A may be an organic cation or an inorganic cation.
- Formamidium, ammonium, cesium etc. can be mentioned as a monovalent cation, It is preferable that it is formamidium.
- Examples of the divalent metal ion represented by B include Cu 2+ , Ni 2+ , Mn 2+ , Fe 2+ , Co 2+ , Pd 2+ , Ge 2+ , Sn 2+ , Pb 2+ , Eu 2+, etc. 2+ and Pb 2+ are preferred, and Pb 2+ is more preferred.
- a halogen ion represented by X each ion of a fluorine, chlorine, a bromine, and an iodine can be mentioned.
- the halogen ions represented by a plurality of X may be all the same, or may be a combination of two or three types of halogen ions. It is preferable that a plurality of X's are all the same halogen ion, and it is more preferable that a plurality of X's be all bromine ions.
- a compound represented by General formula (10) the compound represented by the compound represented by a following formula (A) and a following formula (B) can be mentioned.
- the organic-inorganic perovskite that can be used in the present invention is not limitedly interpreted by this specific example.
- PEA 2 FA n-1 Pb n Br 3n + 1 (A) PEA 2 Man -1 Pb n Br 3n + 1 (B)
- PEA stands for phenylethylammonium
- FA stands for formamidium
- MA stands for methylammonium.
- n is an integer of 2 or more.
- the compounds represented by formulas (A) and (B) are novel compounds. For the synthesis method, reference can be made to the description of the section of "Formation of membrane" and (Example 1) described later.
- the film of the present invention is characterized by containing the organic-inorganic perovskite of the present invention.
- the film of the present invention is characterized by containing the organic-inorganic perovskite of the present invention.
- preferable range, and specific examples of the organic-inorganic perovskite reference can be made to the corresponding description in the ⁇ organic-inorganic perovskite> section.
- high luminous efficiency is obtained by satisfying the conditions (1) and (2). Therefore, the film of the present invention can be effectively used as a light emitting film.
- the organic-inorganic perovskite of the present invention is characterized in that, in the inorganic component, reverse intersystem crossing from the excited triplet state to the excited singlet state Is easy to happen. Therefore, this organic-inorganic perovskite is a singlet produced through an inverse intersystem crossing and a radiation deactivation from an excited singlet state derived from a singlet exciton directly produced as an inorganic component by excitation light irradiation or current injection. It emits light by both radiative deactivation from the excited singlet state derived from excitons.
- the radiation deactivation from the singlet exciton state derived from the singlet exciton generated through the reverse intersystem crossing is from the excited singlet state derived from the singlet exciton directly generated by current injection or the like.
- the emission lifetime is observed as delayed fluorescence emission because it is delayed from the radiation deactivation.
- the film of the present invention can also be used effectively as a delayed fluorescence emission film.
- the fact that the film is a delayed fluorescent emission film is determined by measuring both the fluorescent component having a short emission lifetime and the fluorescent component having a long emission lifetime (delayed fluorescence component) when measuring a transient decay curve of emission at 300 K. Can.
- the method for forming the film of the present invention is not particularly limited, and may be a dry process such as vacuum evaporation or a wet process such as a solution coating method.
- a dry process such as vacuum evaporation
- a wet process such as a solution coating method.
- the solution coating method since film formation can be performed in a short time with a simple apparatus, there is an advantage that cost can be reduced and mass production can be easily performed.
- using a vacuum evaporation method has the advantage that a film with a better surface condition can be formed.
- PEA 2 FA n-1 Pb n Br 3 n + 1 an organic-inorganic perovskite represented by PEA 2 FA n-1 Pb n Br 3 n + 1 using a vacuum evaporation method
- lead bromide (PbBr 2 ) and phenylethylammonium bromide (PEABr) are used.
- a co-evaporation method can be used which co-evaporates formamide and bromide (FABr) from different evaporation sources.
- a film containing this other organic / inorganic perovskite is also applied with this method, and a compound consisting of a metal halide, a compound consisting of a monovalent organic cation and a halogen ion, and a compound consisting of another monovalent cation and a halogen ion Can be formed by co-evaporation.
- a film containing a perovskite type compound represented by this general formula and an organic light emitting material is also applied to this method to synthesize an organic / inorganic perovskite in a solvent, and a paint containing the organic / inorganic perovskite and the organic light emitting material
- the working fluid can be applied to the surface of the support and dried. Moreover, after applying a coating liquid, you may perform a baking process as needed.
- the coating method for the coating liquid is not particularly limited, and conventionally known coating methods such as a gravure coating method, a bar coating method, a printing method, a spray method, a spin coating method, a dip method, and a die coating method can be used. It is preferable to use a spin coating method because it can uniformly form a relatively thin coating film.
- the solvent of the coating liquid is not particularly limited as long as it can dissolve the perovskite type compound.
- esters methyl formate, ethyl formate, propyl formate, pentyl formate, methyl acetate, ethyl acetate, pentyl acetate etc.
- ketones ⁇ -butyrolactone, N-methyl-2-pyrrolidone, acetone
- ethers diethyl ether, methyl tert-butyl ether, diisopropyl ether, dimethoxymethane, dimethoxyethane, dimethoxyethane, 1,4-dioxane, 1,3-dioxolane , 4-Methyldioxolane, tetrahydrofuran, methyltetra
- Amide solvents N, N-dimethylformamide, acetamide, N, N-dimethylacetamide etc.
- nitrile solvents acetonitrile, isobutyronitrile, propionitrile, Toxiacetonitrile, etc.
- carbatics ethylene carbonate, propylene carbonate, etc.
- halogenated hydrocarbons methylene chloride, dichloromethane, chloroform, etc.
- hydrocarbons n-pentane, cyclohexane, n-hexane, benzene, toluene, xylene, etc.
- dimethyl sulfoxide and the like dimethyl sulfoxide and the like.
- esters, ketones, ethers and alcohols may have two or more functional groups of esters, ketones, ethers and alcohols (ie, -O-, -CO-, -COO-, -OH).
- hydrogen atoms in the hydrocarbon portion of esters, ketones, ethers and alcohols may be substituted with halogen atoms (in particular, fluorine atoms).
- the content of the perovskite type compound in the coating liquid is preferably 1 to 50% by mass, more preferably 2 to 30% by mass, and 5 to 20% by mass with respect to the total amount of the coating liquid. Is more preferred.
- the content of the organic light emitting material in the coating liquid is preferably 0.001% by mass or more and less than 50% by mass with respect to the total amount of the perovskite compound and the organic light emitting material. Further, drying of the coating liquid applied to the surface of the support is preferably performed by natural drying or heat drying in an atmosphere substituted with an inert gas such as nitrogen.
- the light emitting device of the present invention has a film containing the organic-inorganic perovskite of the present invention.
- the film of the present invention included in the light emitting device may have any function, and may be, for example, a light emitting layer or a delayed fluorescence emitting layer, and is used as both the light emitting layer and the delayed fluorescence emitting layer It is also good.
- the light-emitting element may have only one layer or two or more layers of the film containing the organic-inorganic perovskite of the present invention.
- the organic / inorganic perovskites contained in these layers may be the same or different.
- the organic / inorganic perovskite contained in the film of the present invention has high light emission efficiency, the light emission element can realize high light emission efficiency by having the film. In particular, a light emitting element which emits delayed fluorescence at 300 K can obtain remarkably high luminous efficiency at room temperature.
- the organic inorganic perovskite is inexpensive, it is possible to reduce the material cost of the light emitting element by using a film containing the organic inorganic perovskite.
- the light emitting element to which the present invention is applied may be a photoluminescence element (sometimes referred to as a PL element), or an electroluminescence element (sometimes referred to as an EL element).
- a perovskite electroluminescent element In the present invention, a perovskite electroluminescent element ).
- the photoluminescent element has a structure in which at least a light emitting layer is formed on a substrate.
- the electroluminescent device includes at least an anode, a cathode, and a light emitting layer between the anode and the cathode.
- the film containing the organic inorganic perovskite of the present invention can be suitably used as a light emitting layer of these light emitting devices.
- the film containing the organic-inorganic perovskite of the present invention has an effect of realizing high luminous efficiency, particularly when applied to an electroluminescent element among these light-emitting elements.
- the electroluminescent element includes at least a light emitting layer containing an organic inorganic perovskite, may be formed only of the light emitting layer, or may have one or more organic layers in addition to the light emitting layer. Good.
- Such other organic layers can be selected from the organic layers constituting the organic electroluminescent device as required, and for example, a hole transport layer, a hole injection layer, an electron blocking layer, a hole A blocking layer, an electron injection layer, an electron transporting layer, an exciton blocking layer and the like can be mentioned.
- the hole transport layer may be a hole injection transport layer having a hole injection function
- the electron transport layer may be an electron injection transport layer having an electron injection function.
- a specific structural example of the electroluminescent element is shown in FIG. In FIG. 1, 1 is a substrate, 2 is an anode, 3 is a hole injection layer, 4 is a hole transport layer, 5 is a light emitting layer, 6 is an electron transport layer, and 7 is a cathode.
- Each member and each layer of an electroluminescent element are demonstrated below. The description of the substrate and the light emitting layer also applies to the substrate and the light emitting layer of the photoluminescence element.
- the electroluminescent device of the present invention is preferably supported on a substrate.
- the substrate is not particularly limited as long as it is conventionally used conventionally in organic electroluminescent devices, and for example, those made of glass, transparent plastic, quartz, silicon or the like can be used.
- anode As an anode in an electroluminescent element, what makes an electrode material the large (4 eV or more) metal of a work function, an alloy, an electrically conductive compound, and these mixtures is used preferably.
- electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
- conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
- ITO indium tin oxide
- ZnO ZnO
- an amorphous material such as IDIXO (In 2 O 3 -ZnO) which can be used to form a transparent conductive film may be used.
- the anode may form a thin film by depositing or sputtering these electrode materials, and may form a pattern of a desired shape by photolithography, or if it does not require much pattern accuracy (about 100 ⁇ m or more). ), A pattern may be formed through a mask of a desired shape during deposition or sputtering of the electrode material. Or when using the material which can be apply
- cathode one having a metal having a small work function (4 eV or less) (referred to as electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
- electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O) 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals etc. may be mentioned.
- a mixture of an electron-injectable metal and a second metal which is a stable metal having a larger work function value such as a magnesium / silver mixture, Magnesium / aluminium mixtures, magnesium / indium mixtures, aluminum / aluminium oxide (Al 2 O 3 ) mixtures, lithium / aluminium mixtures, aluminum etc. are preferred.
- the cathode can be produced by forming a thin film of such an electrode material by a method such as vapor deposition or sputtering. Further, the sheet resistance as the cathode is preferably several hundred ohms / square or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
- the light emission luminance is advantageously improved.
- a transparent or translucent cathode can be produced, and by applying this, an element in which both the anode and the cathode are transparent can be produced. It can be made.
- the light emitting layer is a layer which emits light after excitons are generated by recombination of holes and electrons respectively injected from the anode and the cathode, and the light emitting layer is formed of a film (light emitting film) containing the organic-inorganic perovskite of the present invention It is configured.
- the thickness of the light emitting film used for the light emitting layer of the electroluminescent element is preferably 20 to 500 nm, and more preferably 50 to 300 nm.
- the injection layer is a layer provided between the electrode and the organic layer to lower the driving voltage and improve the luminance, and includes the hole injection layer and the electron injection layer, and between the anode and the light emitting layer or the hole transport layer, And between the cathode and the light emitting layer or the electron transport layer.
- An injection layer can be provided as needed.
- the blocking layer is a layer capable of blocking the diffusion of charges (electrons or holes) present in the light emitting layer and / or excitons out of the light emitting layer.
- An electron blocking layer can be disposed between the light emitting layer and the hole transport layer to block electrons from passing through the light emitting layer towards the hole transport layer.
- a hole blocking layer can be disposed between the light emitting layer and the electron transport layer to block holes from passing through the light emitting layer towards the electron transport layer.
- the blocking layer can also be used to block the diffusion of excitons out of the light emitting layer. That is, each of the electron blocking layer and the hole blocking layer can also have the function as an exciton blocking layer.
- the electron blocking layer or the exciton blocking layer as used herein is used in a sense including one layer having a function of the electron blocking layer and the exciton blocking layer.
- the hole blocking layer has a function of an electron transport layer in a broad sense.
- the hole blocking layer plays the role of transporting electrons and blocking the arrival of holes to the electron transporting layer, which can improve the recombination probability of electrons and holes in the light emitting layer.
- the material of the hole blocking layer the material of the electron transport layer described later can be used as needed.
- the electron blocking layer has a function of transporting holes in a broad sense.
- the electron blocking layer plays the role of transporting holes and blocking the arrival of electrons to the hole transport layer, which can improve the probability of recombination of electrons and holes in the light emitting layer. .
- the exciton blocking layer is a layer for blocking the diffusion of excitons generated by the recombination of holes and electrons in the light emitting layer into the charge transport layer, and the insertion of this layer results in the formation of excitons.
- the light can be efficiently confined in the light emitting layer, and the light emission efficiency of the device can be improved.
- the exciton blocking layer can be inserted on either the anode side or the cathode side adjacent to the light emitting layer, or both of them can be simultaneously inserted.
- the layer when an exciton blocking layer is provided on the anode side, the layer can be inserted between the hole transport layer and the light emitting layer adjacent to the light emitting layer, and when inserted on the cathode side, the light emitting layer and the cathode And the light emitting layer may be inserted adjacent to the light emitting layer.
- a hole injection layer or an electron blocking layer can be provided between the anode and the exciton blocking layer adjacent to the anode side of the light emitting layer, and the cathode and the excitation adjacent to the cathode side of the light emitting layer.
- an electron injecting layer, an electron transporting layer, a hole blocking layer, and the like can be provided.
- the blocking layer is disposed, at least one of the excitation singlet energy and the excitation triplet energy of the material used as the blocking layer is preferably higher than the excitation singlet energy and the excitation triplet energy of the light emitting material.
- the hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer can be provided as a single layer or a plurality of layers.
- the hole transport material is one having either hole injection or transport or electron barrier properties, and may be either organic or inorganic.
- Examples of known hole transport materials that can be used include triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, Amino substituted chalcone derivatives, oxazole derivatives, styryl anthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers, particularly thiophene oligomers, etc., but porphyrin compounds, aroma Group tertiary amine compounds and styrylamine compounds are preferred, and aromatic tertiary amine compounds are more preferred.
- the electron transporting layer is made of a material having a function of transporting electrons, and the electron transporting layer can be provided in a single layer or a plurality of layers.
- the electron transporting material (which may also be a hole blocking material) may have a function of transferring electrons injected from the cathode to the light emitting layer.
- Examples of the electron transport layer that can be used include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, carbodiimides, flareylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives and the like.
- a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted by a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as the electron transport material.
- the film containing the organic / inorganic perovskite of the present invention may be used in a layer other than the light emitting layer.
- a film containing an organic / inorganic perovskite can be used for the above-mentioned hole transport layer, electron transport layer, and the like.
- the organic inorganic perovskite of the film used for the light emitting layer and the organic inorganic perovskite of the film used for the layer other than the light emitting layer may be the same or different.
- each organic layer which comprises an electroluminescent element is formed into a film in order on a board
- the film forming method of these layers is not particularly limited, and may be produced by either a dry process or a wet process.
- the contents of the section of "Method of forming a film" described above can be referred to.
- preferable materials which can be used for the electroluminescent element are specifically exemplified.
- the materials that can be used in the present invention are not limitedly interpreted by the following exemplified compounds. Moreover, even if it is the compound illustrated as a material which has a specific function, it is also possible to divert it as a material which has another function.
- the electroluminescent device produced by the above-mentioned method emits light by applying an electric field between the anode and the cathode of the obtained device.
- light emission by excited singlet energy light of a wavelength corresponding to the energy level is confirmed as fluorescence emission and delayed fluorescence emission.
- a wavelength corresponding to the energy level is confirmed as phosphorescence. Since the ordinary fluorescence has a shorter fluorescence lifetime than the delayed fluorescence, the emission lifetime can be distinguished by the fluorescence and the delayed fluorescence.
- the excited triplet energy is unstable and converted to heat and the like, and can hardly be observed at room temperature.
- it is possible to measure the excited triplet energy of the organic / inorganic perovskite it is possible to measure by observing the light emission under conditions of extremely low temperature.
- the method for producing a light emitting device of the present invention is characterized in that the organic / inorganic perovskite is designed to satisfy the following conditions, and the light emitting device is produced using the organic / inorganic perovskite satisfying the following conditions (1) and (2): I assume.
- E S represents the emission excited singlet energy level of the inorganic component constituting the organic-inorganic perovskite
- E T is emission excited triplet inorganic components constituting the organic-inorganic perovskites
- E S1 represents the energy level
- E S1 represents the light emission excitation singlet energy level of the organic component constituting the organic inorganic perovskite
- E T1 represents the light emission excitation triplet energy level of the organic component constituting the organic inorganic perovskite Represent.
- E S , E T , E S1 , E T1 , measurement method and preferable range refer to the corresponding description in the section of ⁇ organic inorganic perovskite> above.
- steps other than the configuration of the light emitting element to be manufactured and the step of designing the organic / inorganic perovskite reference can be made to the corresponding description in the ⁇ Light Emitting Element> section.
- the design of the organic-inorganic perovskite can be achieved, for example, by selecting and combining the number of ions and n used for R, A, B and X in the general formula (10) so as to satisfy the conditions (1) and (2). It can be carried out.
- this manufacturing method makes it possible to manufacture an organic inorganic perovskite-based light emitting element having high luminous efficiency at low cost. .
- the electroluminescent device of the present invention can be applied to any of a single device, a device having a structure arranged in an array, and a structure in which an anode and a cathode are arranged in an XY matrix. According to the present invention, by forming the light emitting layer with the film containing the organic-inorganic perovskite of the present invention, it is possible to obtain a light emitting element whose light emission efficiency is greatly improved.
- the light emitting device such as the electroluminescent device of the present invention can be applied to various applications.
- electroluminescent display device using the electroluminescent device of the present invention, and for details, see “Organic EL Display” (Ohm Corporation) by Toshitoshi Shimizu, Chika Adachi, Hideyuki Murata You can refer to it.
- the electroluminescent device of the present invention can also be applied to electroluminescent lighting and backlights which are in great demand.
- the measurement of the light absorption spectrum is performed using an ultraviolet visible near infrared spectrophotometer (manufactured by PerkinElmer, Inc .: Lambda 950-PKA), and the measurement of the emission spectrum is performed using a measuring apparatus (Fluoramax-4, Horiba Jobin Yvon).
- Measurement of the transient decay curve of light emission is performed using a streak camera (C4334, Hamamatsu Photonics), and X-ray diffraction analysis is performed using an X-ray diffractometer (manufactured by Rigaku Corporation: RINT-2500).
- Luminescent element characteristics are measured using an external quantum efficiency measuring device (manufactured by Hamamatsu Photonics: C9920-12), a source meter (manufactured by Keithley: 2400 series), and a multichannel analyzer (manufactured by Hamamatsu Photonics: PMA-12)
- the film thickness was measured using a profilometer (Dektak XT, manufactured by Bruker).
- PEA represents phenylethylammonium and FA represents formamidium.
- NMA represents 1-naphthylmethylammonium and FA represents formamidium.
- Light emission excitation singlet energy level E S and light emission excitation triplet energy level E T of the inorganic component constituting each perovskite, light emission excitation singlet energy level E S1 of the organic component and light emission excitation triplet energy level E T1 Is shown in Table 1.
- PEA-FA perovskite film A film (hereinafter, referred to as "PEA-FA perovskite film") was formed. First, phenylethyl ammonium bromide (C 6 H) was added to a solution of N, N-dimethylformamide in which formamidium bromide (HC (NH 2 ) 2 Br) and lead bromide (PbBr 2 ) were dissolved at a molar ratio of 1: 1.
- a precursor solution in which the concentration of PEA-FA perovskite is 0.4 M was prepared by adding 5 CH 2 CH 2 NH 3 Br) at 25 mol%. 50 ⁇ L of this PEA-FA perovskite precursor solution was dropped on a quartz glass substrate, and spin coated at 4500 rpm for 30 seconds to form a PEA-FA perovskite precursor film. During the spin coating, 0.3 mL of toluene was dropped on the film. Subsequently, the PEA-FA perovskite precursor film is baked at 70 ° C. for 15 minutes and further baked at 100 ° C. for 5 minutes to form a PEA-FA perovskite film having a thickness of 150 nm. , Photoluminescent element.
- NMA-FA perovskite film a film consisting of NMA 2 FA n-1 Pb n Br 3n + 1 (hereinafter referred to as "NMA-FA perovskite film") was formed.
- the X-ray diffraction spectra of the perovskites formed in Example 1 and Comparative Example 1 were measured, and it was confirmed that they had a pseudo two-dimensional perovskite-type crystal structure.
- the light absorption spectrum measured at 300 K and the emission spectrum by 450 nm excitation light of each perovskite film formed in Example 1 and Comparative Example 1 are shown in FIG. 3, and the excitation light intensity dependency of photoluminescence quantum yield (PLQY) Is shown in FIG. 4, and a transient decay curve of emission by 337 nm excitation light measured at 30 K and 300 K is shown in FIG.
- PLQY photoluminescence quantum yield
- a transient decay curve of light emission by 337 nm excitation light measured at 100 K, 200 K and 300 K of the PEA-FA perovskite film formed in Example 1 is shown in FIG. 6.
- 100 K and 200 K of the NMA-FA perovskite film formed in Comparative Example 1 The transient decay curve of the light emission by 337 nm excitation light measured at 300 K and 300 K is shown in FIG. From FIG. 3, the PEA-FA perovskite film formed in Example 1 and the NMA-FA perovskite film formed in Comparative Example 1 have similar absorption characteristics, and both have absorption peaks derived from low-dimensional perovskite particles.
- the emission maximum wavelength is 527 nm for the PEA-FA perovskite film and 530 nm for the NMA-FA perovskite film
- the PL quantum yield is 64% for the PEA-FA perovskite film and 60% for the NMA-FA perovskite film
- the full width at half maximum of the emission peak was 9 nm for the PEA-FA perovskite film and 8 nm for the NMA-FA perovskite film, and sharp emission peaks were observed in all .
- each perovskite film has very few crystal defects and has high crystallinity.
- the transient decay curves of the light emission at 30 K shown in FIG. 5 were the same for the PEA-FA perovskite film and the NMA-FA perovskite film, and their light emission lifetimes were all 120 ns.
- the transient decay curve of the light emission at 300 K is the same as that of 30 K for the NMA-FA perovskite film, while the PEA-FA perovskite film has a short life component of 155 ns and a light emission lifetime of 155 ns. A long life component with a lifetime of 853 ns was observed. Further, from FIG.
- FIG. 6 shows that in the PEA-FA perovskite film, the long-life component tends to gradually increase as the temperature is raised from 100 K to 300 K.
- the short-lived emission observed in the NMA-FA perovskite film is an excitation singlet of the inorganic component. It is considered that light emission is based on the term energy level E s .
- triplet energy level E T1 of the organic component (NMA) from lower than excited triplet energy level E T of inorganic components organic components from an excited triplet energy level E T of the inorganic component (NMA In order to transfer energy to the excited triplet energy level E T1 of ), delayed fluorescence which is a long-lived component is not observed. Also in PEA-FA perovskite film, emission of short-lived, it is considered based emission excited singlet energy level E s of the inorganic component. Excited triplet energy level E T1 of the organic component (PEA) from higher than the excited triplet energy level E T of the inorganic component, is not energy transfer occurs from E T to E T1.
- the excitation singlet energy is transferred to the excitation singlet energy level of the organic / inorganic perovskite by the inverse intersystem crossing from the excitation triplet state to the excitation singlet state and the radiation is deactivated. It was speculated to be a thermoactive delayed fluorescence due to the reaction. Since this process is a thermal activation process, the proportion of long-lived components increases as the sample temperature is increased. That is, from the transient decay curves of the light emission of FIGS. 5 and 6, the difference between the light emission excitation singlet energy level E S of the inorganic component and the light emission excitation triplet energy level E T is reduced to excite the organic component (PEA).
- PDA organic component
- the excited triplet energy can be used as delayed fluorescence.
- Example 2 Preparation of Electroluminescent Device Using PEA-FA Perovskite Film
- Anode sheet resistance: 12 ⁇ / sq
- ITO indium tin oxide
- PVK was dropped on the ITO film, spin-coated at 1000 rpm for 45 seconds, and baked at 120 ° C. for 30 minutes to form a 40-nm-thick PVK film.
- a PEA-FA perovskite precursor solution having a concentration of 0.4 M was prepared, and this was used to form a 150 nm-thick PEA-FA perovskite film.
- each thin film was laminated on the PEA-FA perovskite film at a vacuum degree of 10 -4 Pa by a vacuum evaporation method.
- TPBi was formed to a thickness of 40 nm on the PEA-FA perovskite film.
- lithium fluoride (LiF) is formed to a thickness of 0.8 nm, and then aluminum (Al) is deposited to a thickness of 100 nm to form a cathode, and a glass substrate is further placed thereon to make an ultraviolet curable resin. was sealed to produce an electroluminescent device.
- Comparative Example 2 Preparation of Electroluminescent Device Using NMA-FA Perovskite Film
- a PVK film was formed on an ITO film formed on a glass substrate in the same manner as in Example 1.
- a 150 nm thick NMA-FA perovskite film was formed.
- TPBi, lithium fluoride and aluminum are sequentially deposited on the NMA-FA perovskite film in the same manner as in Example 2.
- a glass substrate is placed on the aluminum cathode and sealed with an ultraviolet curing resin. Thus, an electroluminescent device was produced.
- the emission spectra of the electroluminescent devices produced in Example 2 and Comparative Example 2 are shown in FIG. 8, current density-voltage-luminance characteristics are shown in FIG. 9, and current density-voltage-external quantum efficiency (EQE) characteristics are shown. Shown in 10.
- the light emission characteristics of each electroluminescent element are shown in Table 2. 9 and 10, "PEA-FA perovskite film” represents the electroluminescent element of Example 2 using the PEA-FA perovskite film, and "NMA-FA perovskite film” is the comparison using the NMA-FA perovskite film 1 represents an electroluminescent device of Example 2.
- the electroluminescent device of Example 2 using the PEA-FA perovskite film is nearly four times as large as the electroluminescent device of Comparative Example 2 using the NMA-FA perovskite film It had an external quantum efficiency, and the luminance and current efficiency were also excellent.
- the exciton formation factor ⁇ estimated from the external quantum efficiency was 97% for the electroluminescent device of Example 2 and 27% for the electroluminescent device of Comparative Example 2.
- electroluminescent devices using PEA-FA perovskite film convert both singlet excitons and triplet excitons to photons
- electroluminescent devices using NMA-FA perovskite film are singlet It is suggested that only term excitons are converted to photons.
- Example 3 Preparation of Electroluminescent Device Using PEA-MA Perovskite Film Equimolar methyl ammonium bromide (CH) instead of phenylethyl ammonium bromide (C 6 H 5 CH 2 CH 2 NH 3 Br) of Example 1
- CH phenylethyl ammonium bromide
- C 6 H 5 CH 2 CH 2 NH 3 Br phenylethyl ammonium bromide
- Comparative Example 3 Preparation of Electroluminescent Device Using NMA-MA Perovskite Film Equivalent molar methyl ammonium bromide (CH) instead of phenylethyl ammonium bromide (C 6 H 5 CH 2 CH 2 NH 3 Br) of Comparative Example 1
- An NMA-MA perovskite precursor solution was prepared in the same manner as in Comparative Example 1 except that the point using 3 NH 3 Br) was changed.
- An electroluminescent device using an NMA-MA perovskite film in the same manner as in Comparative Example 2 except that the NMA-MA perovskite precursor solution was used instead of the NMA-FA perovskite precursor solution of Comparative Example 2 was produced.
- Example 3 When each of the electroluminescent devices produced in Example 3 and Comparative Example 3 was driven, green emission was observed in all cases, and emission of delayed fluorescence could be confirmed.
- the current density-voltage-lamp efficiency, luminance and external quantum efficiency (EQE) characteristics of the electroluminescent device produced in Example 3 are shown in FIG. 11, and the current density-voltage-lamp efficiency of the electroluminescent device produced in Comparative Example 3 , Luminance and external quantum efficiency (EQE) characteristics are shown in FIG.
- the light emission characteristics of each electroluminescent element are shown in Table 3.
- the electroluminescent device of Example 3 using the PEA-MA perovskite film has an external quantum efficiency close to 9 times that of the electroluminescent device of Comparative Example 3 using the NMA-MA perovskite film, and the luminance And the current efficiency was also excellent.
- the organic-inorganic perovskite of the present invention has high luminous efficiency and is inexpensive. Therefore, by using the organic-inorganic perovskite of the present invention for a light-emitting film of a light-emitting element, an inexpensive light-emitting element with high emission efficiency can be provided. For this reason, the present invention has high industrial applicability.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Electroluminescent Light Sources (AREA)
- Luminescent Compositions (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
Abstract
Description
例えば、非特許文献1には、(C6H5C2H4NH3)2(CH3NH3)n-1PbnI3n+1(PEA-MAペロブスカイト)からなる膜を用いた発光素子において、近赤外線発光が観測されたことが報告されている。また、非特許文献2においては、PEA-MAペロブスカイトからなる膜を用いた発光素子から緑色発光が観測されたことが報告されている。ここで、これらの文献で使用しているPEA-MAペロブスカイトの膜は、(CH3NH3)n-1PbnI3n+1で表される組成の結晶格子からなり、単位格子の2次元配列構造を2層以上有する無機層の両側に、C6H5C2H4NH3で表される有機カチオンがカチオン性基を無機層側に向けて配列している有機層が形成された、いわゆる疑2次元ペロブスカイトに相当するものである。これらの文献では、上記の二次元配列構造の積層数であるnを様々に変えて発光効率を測定しており、その中で、nが5である場合に比較的高い発光効率が得られたことが確認されている。
そこで、本発明者らは、従来とは違う斬新な観点から有機無機ペロブスカイトの物性を制御して、その発光効率を改善することを目的として研究を進めた。
(1) ET < ET1
(2) ES-ET ≦0.1eV
[条件(1)および(2)において、ESは、前記有機無機ペロブスカイトを構成する無機成分の発光励起一重項エネルギー準位を表し、ETは、前記有機無機ペロブスカイトを構成する無機成分の発光励起三重項エネルギー準位を表し、ET1は、前記有機無機ペロブスカイトを構成する有機成分の発光励起三重項エネルギー準位を表す。]
[2] 遅延蛍光を放射する、[1]に記載の有機無機ペロブスカイト。
[3] 疑2次元ペロブスカイトである、[1]または[2]に記載の有機無機ペロブスカイト。
[4] 下記一般式(10)で表され、
R2An-1BnX3n+1 (10)
[一般式(10)において、Rは1価の有機カチオンを表し、Aは1価のカチオンを表し、Bは2価の金属イオンを表し、Xはハロゲンイオンを表す。nは2以上の整数である。]
前記一般式(10)のBX4nで表される組成の無機層が前記無機成分を構成し、前記一般式(10)のRで表される有機カチオンが前記有機成分を構成する、[1]~[3]のいずれか1項に記載の有機無機ペロブスカイト。
[5] 前記一般式(10)のRが下記一般式(11)で表されるアンモニウムである、[4]に記載の有機無機ペロブスカイト。
Ar(CH2)n1NH3 + (11)
[一般式(11)において、Arは芳香環を表す。n1は1~20の整数である。]
[6] 前記一般式(10)のAがホルムアミジウムまたはメチルアンモニウムである、[4]または[5]に記載の有機無機ペロブスカイト。
[7] 前記一般式(10)のBがPb2+である、[4]~[6]のいずれか1項に記載の有機無機ペロブスカイト。
[8] 前記一般式(10)のXがBr-である、[4]~[7]のいずれか1項に記載の有機無機ペロブスカイト。
[9] 下記式(A)または下記式(B)で表される、有機無機ペロブスカイト。
PEA2FAn-1PbnBr3n+1 式(A)
PEA2MAn-1PbnBr3n+1 式(B)
[式(A)および式(B)において、PEAはフェニルエチルアンモニウムを表し、FAはホルムアミジウムを表し、MAはメチルアンモニウムを表す。nは2以上の整数である。]
[10] [1]~[9]のいずれか1項に記載の有機無機ペロブスカイトを含む膜。
[11] [1]~[9]のいずれか1項に記載の有機無機ペロブスカイトを含む発光膜。
[12] [1]~[9]のいずれか1項に記載の有機無機ペロブスカイトを含む遅延蛍光放射膜。
[13] [10]~[12]のいずれか1項に記載の膜を有する発光素子。
[14] 300Kで遅延蛍光を放射する、[13]に記載の発光素子。
[15] 以下の条件を満たすように有機無機ペロブスカイトを設計し、以下の条件(1)および(2)を満たす有機無機ペロブスカイトを用いて発光素子を製造することを特徴とする発光素子の製造方法。
(1) ET < ET1
(2) ES-ET ≦0.1eV
[条件(1)および(2)において、ESは、前記有機無機ペロブスカイトを構成する無機成分の発光励起一重項エネルギー準位を表し、ETは、前記有機無機ペロブスカイトを構成する無機成分の発光励起三重項エネルギー準位を表し、ET1は、前記有機無機ペロブスカイトを構成する有機成分の発光励起三重項エネルギー準位を表す。]
本発明の有機無機ペロブスカイトは以下の条件(1)および(2)を満たすものである。
(1) ET< ET1
(2) ES-ET ≦0.1eV
条件(1)、(2)において、ESは、有機無機ペロブスカイトを構成する無機成分の発光励起一重項エネルギー準位を表し、ETは、有機無機ペロブスカイトを構成する無機成分の発光励起三重項エネルギー準位を表し、ET1は、有機無機ペロブスカイトを構成する有機成分の発光励起三重項エネルギー準位を表す。
本発明における「有機無機ペロブスカイトを構成する無機成分の発光励起一重項エネルギー準位」とは、そのエネルギー準位を経由して無機成分に蛍光発光を引き起こすことができるエネルギー準位のことをいい、「有機無機ペロブスカイトを構成する無機成分の発光励起三重項エネルギー準位」とは、そのエネルギー準位を経由して無機成分に燐光発光を引き起こすことができるエネルギー準位のことをいう。ここで、「無機成分」とは、有機無機ペロブスカイトを構成する無機層のことをいい、詳細には、ハロゲンイオンXを頂点とする八面体の中心に二価の金属イオンBが配置してなる単位格子BX6が頂点共有して二次元配列してなる無機層BX4のことをいう。
本発明における「有機無機ペロブスカイトを構成する有機成分の発光励起三重項エネルギー準位」とは、そのエネルギー準位を経由して有機成分に燐光発光を引き起こすことができるエネルギー準位のことをいう。ここで、「有機成分」とは、有機無機ペロブスカイトの有機カチオンのことをいう。
本明細書中では、「有機無機ペロブスカイトを構成する有機成分の発光励起一重項エネルギー準位」をES1で表す。ここで、「有機無機ペロブスカイトを構成する有機成分の発光励起一重項エネルギー準位」とは、そのエネルギー準位を経由して有機成分に蛍光発光を引き起こすことができるエネルギー準位のことをいう。
本発明の有機無機ペロブスカイトは、上記の条件(1)および(2)を満たすことにより、高い発光効率が得られる。これは、上記の条件を満たす有機無機ペロブスカイトでは、無機成分で生じた励起三重項エネルギーが有機成分に移動せずに有機無機ペロブスカイトの発光に効率よく利用されるためであると推測される。以下において、そのメカニズムについて、図1を参照しながら説明する。図1には、有機無機ペロブスカイト、無機成分および有機成分のエネルギー準位図を示している。無機成分におけるΓ1、Γ2は、それぞれ振動準位が異なる発光励起三重項エネルギー準位ETを表し、Γ5は、発光励起一重項エネルギー準位ESを表す。なお、本発明の有機無機ペロブスカイトを構成する無機成分の発光励起三重項エネルギー準位ETおよび発光励起一重項エネルギー準位ES、有機成分の発光励起一重項エネルギー準位ES1および発光励起三重項エネルギー準位ET1の振動準位の数は、図1に示す数に限るものではない。本発明において、条件(1)および(2)を満たすのは、各エネルギー準位ES、ET、ET1のそれぞれのうちで、少なくとも、最も振動準位が低いエネルギー準位同士であることとする。
まず、励起光照射や電流注入等により、有機無機ペロブスカイトを構成する無機成分で一重項励起子と三重項励起子が生じると、図1(a)に示すように、その一重項励起子のエネルギーは、有機無機ペロブスカイトの励起一重項エネルギー準位EPへ、デクスター移動機構またはフェルスター移動機構により移動し、より低い励起一重項エネルギー準位へのエネルギー移動を経て、基底一重項エネルギー準位S0へ蛍光を放射しつつ失活する。ここで、本発明で規定する条件(2)のES-ET ≦0.1eVを満たす場合には、無機成分の発光励起一重項エネルギー準位ESと発光励起三重項エネルギー準位ETの間のエネルギー準位差が小さいため、励起三重項状態から励起一重項状態への逆項間交差が起こり易く、これにより生じた一重項励起子のエネルギーも、有機無機ペロブスカイトの励起一重項エネルギー準位EPへ移動し、より低い励起一重項エネルギー準位へのエネルギー移動を経て、基底一重項エネルギー準位S0へ蛍光を放射しつつ失活する。このとき放射される蛍光は、電流注入等により無機成分で直接生じた一重項励起子に由来する蛍光よりも発光寿命が長い遅延蛍光として観測される。このように、条件(2)を満たす系では、電流注入等により無機成分で直接生じた一重項励起子と励起三重項状態から励起一重項状態への逆項間交差を介して生じた一重項励起子の両方から、有機無機ペロブスカイトの励起一重項エネルギー準位EPへエネルギーが供給されるため、条件(2)を満たさない系に比べて効率よく発光する。
ただし、図1(b)に示すように、本発明で規定する条件(1)のET< ET1を満たさない場合、すなわちET ≧ ET1である場合には、有機成分の発光励起三重項エネルギー準位ET1が無機成分の発光励起三重項エネルギー準位ETより小さいため、無機成分で生じた三重項励起子のエネルギーが有機成分の発光励起三重項エネルギー準位ET1へ移動してしまい、逆項間交差による三重項励起子から一重項励起子への変換が十分に起こらない。そのため、無機成分で生じた三重項励起子のエネルギーを有機無機ペロブスカイトの蛍光発光に有効利用することができない。
これに対して、本発明の有機無機ペロブスカイトは、上記の条件(1)とともに、条件(2)のET< ET1を満たすため、無機成分で生じた三重項励起子のエネルギーが有機成分の発光励起三重項エネルギー準位ET1へは移動せず、逆項間交差による三重項励起子から一重項励起子への変換が高い確率で起こる。そのため、無機成分で生じた一重項励起子と三重項励起子の両方が有機無機ペロブスカイトの蛍光発光、遅延蛍光発光に効率よく利用され、高い発光効率が得られることになる。例えば、電流励起により生じる一重項励起子と三重項励起子の生成確率は25%:75%であるが、このメカニズムによれば、原理的に全ての励起子を一重項励起子として、100%の内部量子収率を達成することが可能である。
(1)無機成分の発光励起一重項エネルギー準位(ES)および有機成分の発光励起一重項エネルギー準位(ES1)
測定対象化合物である有機無機ペロブスカイトを含む溶液をSi基板上に塗布し、乾燥することで厚さ160nmの有機無機ペロブスカイト膜の試料を作製する。30Kでこの試料の337nm励起光による蛍光スペクトルを測定する。ここで、励起光入射直後から入射後100ナノ秒までの発光を積算することで、縦軸を発光強度、横軸を波長とする蛍光スペクトルを得る。この蛍光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]を求める。この波長値を次に示す換算式でエネルギー値に換算した値を発光励起一重項エネルギー準位ESまたはES1とする。
換算式:発光励起一重項エネルギー準位[eV]=1239.85/λedge
蛍光スペクトルの測定は、例えば励起光源に窒素レーザー(Lasertechnik Berlin社製、MNL200)を用い、検出器にストリークカメラ(浜松ホトニクス社製、C4334)を用いて行うことができる。
(2)無機成分の発光励起三重項エネルギー準位(ET)および無機成分の発光励起三重項エネルギー準位(ET1)
発光励起一重項エネルギー準位の測定に用いたものと同様の試料を30Kに冷却し、この試料に337nm励起光を照射し、ストリークカメラを用いて燐光強度を測定する。励起光入射後1ミリ秒から入射後20ミリ秒の発光を積算することで、縦軸を発光強度、横軸を波長とする燐光スペクトルを得る。この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]を求める。この波長値を次に示す換算式でエネルギー値に換算した値を発光励起三重項エネルギー準位ETまたはET1とする。
換算式:発光励起三重項エネルギー準位[eV]=1239.85/λedge
燐光スペクトルの短波長側の立ち上がりに対する接線は以下のように引く。燐光スペクトルの短波長側から、スペクトルの極大値のうち、最も短波長側の極大値までスペクトル曲線上を移動する際に、長波長側に向けて曲線上の各点における接線を考える。この接線は、曲線が立ち上がるにつれ(つまり縦軸が増加するにつれ)、傾きが増加する。この傾きの値が極大値をとる点において引いた接線を、当該燐光スペクトルの短波長側の立ち上がりに対する接線とする。
なお、スペクトルの最大ピーク強度の10%以下のピーク強度をもつ極大点は、上述の最も短波長側の極大値には含めず、最も短波長側の極大値に最も近い、傾きの値が極大値をとる点において引いた接線を当該燐光スペクトルの短波長側の立ち上がりに対する接線とする。
(3)無機成分の発光励起一重項エネルギー準位(ES)と発光励起三重項エネルギー準位(ET)の差(ES-ET)
(ES-ET)は、(1)の方法による発光励起一重項エネルギー準位(ES)の測定値から、(2)の方法による発光励起三重項エネルギー準位(ET)の測定値を引くことで求める。
以下において、有機無機ペロブスカイトの好ましい例として、疑2次元ペロブスカイトについて説明する。
本発明の有機無機ペロブスカイトとしての疑2次元ペロブスカイトは、下記一般式(10)で表される化合物であることが好ましい。
R2An-1BnX3n+1 (10)
一般式(10)において、Rは1価の有機カチオンを表し、Aは1価のカチオンを表し、Bは2価の金属イオンを表し、Xはハロゲンイオンを表す。nは2以上の整数である。2つのR同士、複数のB同士、複数のX同士は、それぞれ互いに同じであっても異なっていてもよい。Aが複数存在するとき、A同士は互いに同じであっても異なっていてもよい。
一般式(10)で表される化合物では、An-1BnX3n+1で表される組成の結晶格子が無機半導体層を構成し、Rで表される1価の有機カチオンが有機成分を構成する。nは無機半導体層における2次元配列構造の積層数に対応し、2~100の整数であることが好ましい。
Ar(CH2)n1NH3 + (11)
一般式(11)において、Arは芳香環を表す。n1は1~20の整数である。
有機カチオンが有する芳香環は、芳香族炭化水素であってもよいし、芳香族ヘテロ環であってもよいが、芳香族炭化水素であることが好ましい。芳香族ヘテロ環のヘテロ原子としては、窒素原子、酸素原子、硫黄原子等を挙げることができる。芳香族炭化水素としては、ベンゼン環および複数のベンゼン環が縮合した構造を有する縮合多環系炭化水素であることが好ましく、ベンゼン環、ナフタレン環、フェナントレン環、アントラセン環、クリセン環、テトラセン環、ペリレン環であることが好ましく、ベンゼン環、ナフタレン環であることが好ましく、ベンゼン環であることがさらに好ましい。芳香族ヘテロ環としては、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、ピロール環、チオフェン環、フラン環、カルバゾール環、トリアジン環であることが好ましく、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環であることがより好ましく、ピリジン環であることがさらに好ましい。有機カチオンが有する芳香環は、例えばアルキル基、アリール基、ハロゲン原子(好ましくはフッ素原子)等の置換基を有していてもよく、また、芳香環または芳香環に結合する置換基に存在する水素原子は重水素原子であってもよい。
Xで表されるハロゲンイオンとしては、フッ素、塩素、臭素、ヨウ素の各イオンを挙げることができる。複数のXが表すハロゲンイオンは、全て同じであってもよいし、2または3種類のハロゲンイオンの組み合わせであってもよい。好ましいのは、複数のXが全て同じハロゲンイオンの場合であり、複数のXが全て臭素イオンであることがより好ましい。
PEA2FAn-1PbnBr3n+1 式(A)
PEA2MAn-1PbnBr3n+1 式(B)
式(A)および(B)において、PEAはフェニルエチルアンモニウムを表し、FAはホルムアミジウムを表し、MAはメチルアンモニウムを表す。nは2以上の整数である。
式(A)および(B)で表される化合物は新規化合物である。その合成方法については、後述の[膜の形成方法]および(実施例1)の項の記載を参照することができる。
次に、本発明の膜について説明する。
本発明の膜は、本発明の有機無機ペロブスカイトを含むことを特徴とする。有機無機ペロブスカイトについての説明と好ましい範囲、具体例については、<有機無機ペロブスカイト>の項の対応する記載を参照することができる。上記のように、本発明の有機無機ペロブスカイトは、条件(1)および(2)を満たすことにより、高い発光効率が得られる。そのため、本発明の膜は、発光膜として効果的に用いることができる。また、特に、条件(2)のES-ET ≦0.1eVを満たすことにより、本発明の有機無機ペロブスカイトは、無機成分において、励起三重項状態から励起一重項状態への逆項間交差が起こり易い。そのため、この有機無機ペロブスカイトは、励起光照射や電流注入により無機成分で直接生じた一重項励起子に由来する励起一重項状態からの輻射失活と、逆項間交差を介して生じた一重項励起子に由来する励起一重項状態からの輻射失活の両方により発光する。このとき、逆項間交差を介して生じた一重項励起子に由来する励起一重項状態からの輻射失活は、電流注入等により直接生じた一重項励起子に由来する励起一重項状態からの輻射失活よりも遅れるため、発光寿命が長い遅延蛍光放射として観測される。よって、本発明の膜は、遅延蛍光放射膜としても効果的に用いることができる。遅延蛍光放射膜であることは、300Kで発光の過渡減衰曲線を測定したとき、発光寿命が短い蛍光成分と発光寿命が長い蛍光成分(遅延蛍光成分)の両方が確認されたことをもって判定することができる。
本発明の膜の形成方法は特に限定されず、真空蒸着法等のドライプロセスであっても、溶液塗布法等のウェットプロセスであってもよい。ここで、溶液塗布法を用いれば、簡単な装置で短時間に成膜が行えることから、コストを抑えて大量生産しやすいという利点がある。また、真空蒸着法を用いれば、表面状態がより良好な膜を形成できるという利点がある。
塗工液におけるペロブスカイト型化合物の含有量は、塗工液全量に対して1~50質量%であることが好ましく、2~30質量%であることがより好ましく、5~20質量%であることがさらに好ましい。塗工液における有機発光材料の含有量は、ペロブスカイト化合物と有機発光材料の合計量に対して、0.001質量%以上、50質量%未満であることが好ましい。
また、支持体表面に塗布された塗工液の乾燥は、窒素等の不活性ガスで置換された雰囲気中で、自然乾燥または加熱乾燥により行うことが好ましい。
次に、本発明の発光素子について説明する。
本発明の発光素子は、本発明の有機無機ペロブスカイトを含む膜を有する。本発明の有機無機ペロブスカイトを含む膜の説明と好ましい範囲、具体例については、<膜>の項の記載を参照することができる。発光素子が含む本発明の膜は、いかなる機能を担っていてもよく、例えば発光層であっても遅延蛍光放射層であってもよく、発光層と遅延蛍光放射層の両方として用いられていてもよい。また、発光素子は、本発明の有機無機ペロブスカイトを含む膜を1層のみ有していてもよいし、2層以上有していてもよい。発光素子が、本発明の有機無機ペロブスカイトを含む膜を2層以上有する場合、それらの膜が含む有機無機ペロブスカイトは、同一であっても異なっていてもよい。
上記のように、本発明の膜が含む有機無機ペロブスカイトは発光効率が高いため、その膜を発光素子が有することにより、高い発光効率を実現することができる。特に、300Kで遅延蛍光を放射する発光素子は、室温下で顕著に高い発光効率を得ることができる。また、有機無機ペロブスカイトは安価であるため、これを含む膜を用いることにより、発光素子の材料コストの削減を図ることが可能である。
本発明を適用する発光素子は、フォトルミネッセンス素子(PL素子と表記されることもある)であってもよく、エレクトロルミネッセンス素子(EL素子と表記されることもあり、本発明ではペロブスカイトエレクトロルミネッセンス素子である)であってもよい。フォトルミネッセンス素子は、基板上に少なくとも発光層を形成した構造を有する。また、エレクトロルミネッセンス素子は、少なくとも陽極、陰極、および陽極と陰極の間に発光層を含むものである。本発明の有機無機ペロブスカイトを含む膜は、これら発光素子の発光層として好適に用いることができる。また、本発明の有機無機ペロブスカイトを含む膜は、これらの発光素子のうち、特に、エレクトロルミネッセンス素子に適用した場合に、高い発光効率を実現するという効果が得られる。
エレクトロルミネッセンス素子は、少なくとも有機無機ペロブスカイトを含む発光層を含むものであり、発光層のみからなるものであってもよいし、発光層の他に1層以上の有機層を有するものであってもよい。そのような他の有機層は、有機エレクトロルミネッセンス素子を構成する有機層の中から必要に応じて選択することが可能であり、例えば正孔輸送層、正孔注入層、電子阻止層、正孔阻止層、電子注入層、電子輸送層、励起子阻止層などを挙げることができる。正孔輸送層は正孔注入機能を有した正孔注入輸送層でもよく、電子輸送層は電子注入機能を有した電子注入輸送層でもよい。具体的なエレクトロルミネッセンス素子の構造例を図1に示す。図1において、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は電子輸送層、7は陰極を表わす。
以下において、エレクトロルミネッセンス素子の各部材および各層について説明する。なお、基板と発光層の説明はフォトルミネッセンス素子の基板と発光層にも該当する。
本発明のエレクトロルミネッセンス素子は、基板に支持されていることが好ましい。この基板については、特に制限はなく、従来から有機エレクトロルミネッセンス素子に慣用されているものであればよく、例えば、ガラス、透明プラスチック、石英、シリコンなどからなるものを用いることができる。
エレクトロルミネッセンス素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物およびこれらの混合物を電極材料とするものが好ましく用いられる。このような電極材料の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In2O3-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極材料を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極材料の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な材料を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。
一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物およびこれらの混合物を電極材料とするものが用いられる。このような電極材料の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性および酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。なお、発光した光を透過させるため、エレクトロルミネッセンス素子の陽極または陰極のいずれか一方が、透明または半透明であれば発光輝度が向上し好都合である。
また、陽極の説明で挙げた導電性透明材料を陰極に用いることで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
発光層は、陽極および陰極のそれぞれから注入された正孔および電子が再結合することにより励起子が生成した後、発光する層であり、本発明の有機無機ペロブスカイトを含む膜(発光膜)により構成されている。
エレクトロルミネッセンス素子の発光層に用いる発光膜は、厚さが20~500nmであることが好ましく、50~300nmであることがより好ましい。
注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、正孔注入層と電子注入層があり、陽極と発光層または正孔輸送層の間、および陰極と発光層または電子輸送層との間に存在させてもよい。注入層は必要に応じて設けることができる。
阻止層は、発光層中に存在する電荷(電子もしくは正孔)および/または励起子の発光層外への拡散を阻止することができる層である。電子阻止層は、発光層および正孔輸送層の間に配置されることができ、電子が正孔輸送層の方に向かって発光層を通過することを阻止する。同様に、正孔阻止層は発光層および電子輸送層の間に配置されることができ、正孔が電子輸送層の方に向かって発光層を通過することを阻止する。阻止層はまた、励起子が発光層の外側に拡散することを阻止するために用いることができる。すなわち電子阻止層、正孔阻止層はそれぞれ励起子阻止層としての機能も兼ね備えることができる。本明細書でいう電子阻止層または励起子阻止層は、一つの層で電子阻止層および励起子阻止層の機能を有する層を含む意味で使用される。
正孔阻止層とは広い意味では電子輸送層の機能を有する。正孔阻止層は電子を輸送しつつ、正孔が電子輸送層へ到達することを阻止する役割があり、これにより発光層中での電子と正孔の再結合確率を向上させることができる。正孔阻止層の材料としては、後述する電子輸送層の材料を必要に応じて用いることができる。
電子阻止層とは、広い意味では正孔を輸送する機能を有する。電子阻止層は正孔を輸送しつつ、電子が正孔輸送層へ到達することを阻止する役割があり、これにより発光層中での電子と正孔が再結合する確率を向上させることができる。
励起子阻止層とは、発光層内で正孔と電子が再結合することにより生じた励起子が電荷輸送層に拡散することを阻止するための層であり、本層の挿入により励起子を効率的に発光層内に閉じ込めることが可能となり、素子の発光効率を向上させることができる。励起子阻止層は発光層に隣接して陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。すなわち、励起子阻止層を陽極側に有する場合、正孔輸送層と発光層の間に、発光層に隣接して該層を挿入することができ、陰極側に挿入する場合、発光層と陰極との間に、発光層に隣接して該層を挿入することができる。また、陽極と、発光層の陽極側に隣接する励起子阻止層との間には、正孔注入層や電子阻止層などを有することができ、陰極と、発光層の陰極側に隣接する励起子阻止層との間には、電子注入層、電子輸送層、正孔阻止層などを有することができる。阻止層を配置する場合、阻止層として用いる材料の励起一重項エネルギーおよび励起三重項エネルギーの少なくともいずれか一方は、発光材料の励起一重項エネルギーおよび励起三重項エネルギーよりも高いことが好ましい。
正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、正孔輸送層は単層または複数層設けることができる。
正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。使用できる公知の正孔輸送材料としては例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体およびピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられるが、ポルフィリン化合物、芳香族第3級アミン化合物およびスチリルアミン化合物を用いることが好ましく、芳香族第3級アミン化合物を用いることがより好ましい。
電子輸送層とは電子を輸送する機能を有する材料からなり、電子輸送層は単層または複数層設けることができる。
電子輸送材料(正孔阻止材料を兼ねる場合もある)としては、陰極より注入された電子を発光層に伝達する機能を有していればよい。使用できる電子輸送層としては例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタンおよびアントロン誘導体、オキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
エレクトロルミネッセンス素子を作製するには、エレクトロルミネッセンス素子を構成する各有機層を基板上に順に製膜する。これらの層の製膜方法は特に限定されず、ドライプロセス、ウェットプロセスのどちらで作製してもよい。発光層の形成方法については、上記の[膜の形成方法]の項の内容を参照することができる。
一方、燐光については、本発明の有機無機ペロブスカイトでは、励起三重項エネルギーは不安定で熱等に変換され、室温では殆ど観測できない。有機無機ペロブスカイトの励起三重項エネルギーを測定するためには、極低温の条件での発光を観測することにより測定可能である。
本発明の発光素子の製造方法は、以下の条件を満たすように有機無機ペロブスカイトを設計し、以下の条件(1)および(2)を満たす有機無機ペロブスカイトを用いて発光素子を製造することを特徴とする。
(1) ET < ET1
(2) ES-ET ≦0.1eV
条件(1)および(2)において、ESは、有機無機ペロブスカイトを構成する無機成分の発光励起一重項エネルギー準位を表し、ETは、有機無機ペロブスカイトを構成する無機成分の発光励起三重項エネルギー準位を表し、ES1は、有機無機ペロブスカイトを構成する有機成分の発光励起一重項エネルギー準位を表し、ET1は、有機無機ペロブスカイトを構成する有機成分の発光励起三重項エネルギー準位を表す。
条件(1)および(2)についての説明、ES、ET、ES1、ET1の定義、測定方法および好ましい範囲については、上記の<有機無機ペロブスカイト>の項の対応する記載を参照することができ、製造する発光素子の構成および有機無機ペロブスカイトの設計工程以外の工程については、<発光素子>の項の対応する記載を参照することができる。
有機無機ペロブスカイトの設計は、例えば、条件(1)および(2)を満たすように、一般式(10)のR、A、B、Xに用いるイオンやnの数をそれぞれ選択して組み合わせることにより行うことができる。上記のように、条件(1)および(2)を満たす有機無機ペロブスカイトは発光効率が高いため、この製造方法により、発光効率が高い有機無機ペロブスカイト系の発光素子を低コストで製造することができる。
以下の実施例1、2で使用した有機無機ペロブスカイトは、PEA2FAn-1PbnBr3n+1(n=8)である。ここで、PEAはフェニルエチルアンモニウムを表し、FAはホルムアミジウムを表す。また、比較例1、2で使用した有機無機ペロブスカイトは、NMA2FAn-1PbnBr3n+1(n=8)である。ここで、NMAは1-ナフチルメチルアンモニウムを表し、FAはホルムアミジウムを表す。各ペロブスカイトを構成する無機成分の発光励起一重項エネルギー準位ESおよび発光励起三重項エネルギー準位ET、有機成分の発光励起一重項エネルギー準位ES1および発光励起三重項エネルギー準位ET1を表1に示す。
窒素雰囲気のグローブボックス中で、以下のようにしてPEA2FAn-1PbnBr3n+1(ここでn=8)からなる膜(以下、「PEA-FAペロブスカイト膜」という)を形成した。まず、ホルムアミジウムブロマイド(HC(NH2)2Br)と臭化鉛(PbBr2)が1:1のモル比で溶解したN,N-ジメチルホルムアミド溶液に、フェニルエチルアンモニウムブロマイド(C6H5CH2CH2NH3Br)を25mol%で添加することにより、PEA-FAペロブスカイトの濃度が0.4Mである前駆体溶液を調製した。このPEA-FAペロブスカイトの前駆体溶液50μLを石英ガラス基板の上に滴下し、4500rpmで30秒間スピンコートすることでPEA-FAペロブスカイト前駆体膜を形成した。なお、このスピンコートを行っている間に、0.3mLのトルエンを膜の上に滴下した。続いて、PEA-FAペロブスカイト前駆体膜に、70℃で15分間ベーキング処理を行い、さらに、100℃で5分間ベーキング処理を行うことにより、厚さが150nmであるPEA-FAペロブスカイト膜を形成し、フォトルミネッセンス素子とした。
ペロブスカイト膜を形成する際、フェニルエチルアンモニウムブロマイドの代わりに1-ナフチルメチルアンモニウムブロマイド(C10H7CH2NH3Br)を用いてNMA2FAn-1PbnBr3n+1からなる膜(以下、「NMA-FAペロブスカイト膜」という)を形成したこと以外は、実施例1と同様にしてフォトルミネッセンス素子を作製した。
また、実施例1および比較例1で形成した各ペロブスカイト膜の300Kで測定した光吸収スペクトルおよび450nm励起光による発光スペクトルを図3に示し、フォトルミネッセンス量子収率(PLQY)の励起光強度依存性を図4に示し、30Kおよび300Kで測定した337nm励起光による発光の過渡減衰曲線を図5に示す。実施例1で形成したPEA-FAペロブスカイト膜の100K、200Kおよび300Kで測定した337nm励起光による発光の過渡減衰曲線を図6に示し、比較例1で形成したNMA-FAペロブスカイト膜の100K、200Kおよび300Kで測定した337nm励起光による発光の過渡減衰曲線を図7に示す。
図3から、実施例1で形成したPEA-FAペロブスカイト膜および比較例1で形成したNMA-FAペロブスカイト膜は、同様の吸収特性を有しており、いずれも低次元ペロブスカイト粒子由来の吸収ピークが観察されなかったことから、擬二次元ペロブスカイト型構造を主体とするものであることがわかった。また、発光極大波長は、PEA-FAペロブスカイト膜で527nm、NMA-FAペロブスカイト膜で530nmであり、PL量子収率は、PEA-FAペロブスカイト膜で64%、NMA-FAペロブスカイト膜で60%であった。また、これとは別に30Kで発光スペクトルを観測したところ、その発光ピークの半値全幅は、PEA-FAペロブスカイト膜で9nm、NMA-FAペロブスカイト膜で8nmであり、いずれも鋭い発光ピークが観測された。このことから、各ペロブスカイト膜は結晶欠陥が極めて少なく、高い結晶性を有していることが示された。
また、図5に示した30Kでの発光の過渡減衰曲線は、PEA-FAペロブスカイト膜およびNMA-FAペロブスカイト膜で差がなく、それらの発光寿命は、いずれも120nsであった。一方、300Kでの発光の過渡減衰曲線については、NMA-FAペロブスカイト膜では30Kと変わらない減衰パターンであるのに対して、PEA-FAペロブスカイト膜では、発光寿命が155nsの短寿命成分と、発光寿命が853nsの長寿命成分が観測された。また、図7から、NMA-FAペロブスカイト膜では、温度を100Kから300Kに上昇させても、その発光の過渡減衰曲線に変化は認められなかった。これに対して、図6から、PEA-FAペロブスカイト膜では、温度を100Kから300Kに上昇させていくにしたがって、長寿命成分が徐々に増加する傾向が認められた。ここで、これらの発光の過渡減衰曲線に基づいて無機成分で生じた励起三重項エネルギーの挙動を解析すると、まず、NMA-FAペロブスカイト膜で観測された短寿命の発光は、無機成分の励起一重項エネルギー準位Esに基づく発光と考えられる。しかし、有機成分(NMA)の励起三重項エネルギー準位ET1が無機成分の励起三重項エネルギー準位ETよりも低いことから、無機成分の励起三重項エネルギー準位ETから有機成分(NMA)の励起三重項エネルギー準位ET1へエネルギー移動するために、長寿命成分である遅延蛍光は観測されない。PEA-FAペロブスカイト膜においても、短寿命の発光は、無機成分の励起一重項エネルギー準位Esに基づく発光と考えられる。有機成分(PEA)の励起三重項エネルギー準位ET1が無機成分の励起三重項エネルギー準位ETよりも高いことから、ETからET1へのエネルギー移動は生じることがない。つまり、観測された発光の長寿命成分は、励起三重項状態から励起一重項状態への逆項間交差による励起一重項エネルギーが有機無機ペロブスカイトの励起一重項エネルギー準位へ移動して輻射失活したことによる熱活性型の遅延蛍光であると推測された。この過程は熱活性化プロセスであるために、サンプル温度を増加させるほど長寿命成分の割合が大きくなる。すなわち、図5、6の発光の過渡減衰曲線から、無機成分の発光励起一重項エネルギー準位ESと発光励起三重項エネルギー準位ETの差を小さくして、有機成分(PEA)の励起三重項エネルギー準位ET1を無機成分の励起三重項エネルギー準位ETよりも高くすることにより、無機成分において、励起三重項状態から励起一重項状態への逆項間交差が起き易くなり、その励起三重項エネルギーを遅延蛍光として利用できるようになることがわかった。
膜厚100nmのインジウム・スズ酸化物(ITO)からなる陽極(シート抵抗:12Ω/sq)が形成されたガラス基板を用意した。このITO膜の上に、PVKを滴下し、1000rpmで45秒間スピンコートした後、120℃で30分間ベーキング処理を行うことにより、厚さ40nmのPVK膜を形成した。
次に、実施例1と同様にして、濃度が0.4MであるPEA-FAペロブスカイト前駆体溶液を調製し、これを用いて、厚さが150nmのPEA-FAペロブスカイト膜を形成した。
続いて、PEA-FAペロブスカイト膜の上に、真空蒸着法にて、真空度10-4Paで各薄膜を積層した。まず、PEA-FAペロブスカイト膜の上に、TPBiを40nmの厚さに形成した。次に、フッ化リチウム(LiF)を0.8nmの厚さに形成し、次いで、アルミニウム(Al)を100nmの厚さに蒸着することにより陰極を形成し、さらにガラス基板を載せて紫外線硬化樹脂で封止してエレクトロルミネッセンス素子を作製した。
実施例1と同様にして、ガラス基板上に形成されたITO膜の上にPVK膜を形成した。このPVK膜の上に、比較例1と同様にして、厚さが150nmのNMA-FAペロブスカイト膜を形成した。続いて、NMA-FAペロブスカイト膜の上に、実施例2と同様にして、TPBi、フッ化リチウム、アルミニウムを順に蒸着し、そのアルミニウム陰極の上に、ガラス基板を載せて紫外線硬化樹脂で封止することによりエレクトロルミネッセンス素子を作製した。
実施例1のフェニルエチルアンモニウムブロマイド(C6H5CH2CH2NH3Br)の代わりに等モルのメチルアンモニウムブロマイド(CH3NH3Br)を用いた点を変更し、それ以外は実施例1と同様にしてPEA-MAペロブスカイト前駆体溶液を調製した。実施例2のPEA-FAペロブスカイト前駆体溶液の代わりにPEA-MAペロブスカイト前駆体溶液を用いた点を除いて、それ以外は実施例2と同様にしてPEA-MAペロブスカイト膜を用いたエレクトロルミネッセンス素子を作製した。
比較例1のフェニルエチルアンモニウムブロマイド(C6H5CH2CH2NH3Br)の代わりに等モルのメチルアンモニウムブロマイド(CH3NH3Br)を用いた点を変更し、それ以外は比較例1と同様にしてNMA-MAペロブスカイト前駆体溶液を調製した。比較例2のNMA-FAペロブスカイト前駆体溶液の代わりにNMA-MAペロブスカイト前駆体溶液を用いた点を除いて、それ以外は比較例2と同様にしてNMA-MAペロブスカイト膜を用いたエレクトロルミネッセンス素子を作製した。
2 陽極
3 正孔注入層
4 正孔輸送層
5 発光層
6 電子輸送層
7 陰極
Claims (15)
- 以下の条件(1)および(2)を満たす有機無機ペロブスカイト。
(1) ET < ET1
(2) ES-ET ≦0.1eV
[条件(1)および(2)において、ESは、前記有機無機ペロブスカイトを構成する無機成分の発光励起一重項エネルギー準位を表し、ETは、前記有機無機ペロブスカイトを構成する無機成分の発光励起三重項エネルギー準位を表し、ET1は、前記有機無機ペロブスカイトを構成する有機成分の発光励起三重項エネルギー準位を表す。] - 遅延蛍光を放射する、請求項1に記載の有機無機ペロブスカイト。
- 疑2次元ペロブスカイトである、請求項1または2に記載の有機無機ペロブスカイト。
- 下記一般式(10)で表され、
R2An-1BnX3n+1 (10)
[一般式(10)において、Rは1価の有機カチオンを表し、Aは1価のカチオンを表し、Bは2価の金属イオンを表し、Xはハロゲンイオンを表す。nは2以上の整数である。]
前記一般式(10)のBX4nで表される組成の無機層が前記無機成分を構成し、前記一般式(10)のRで表される有機カチオンが前記有機成分を構成する、請求項1~3のいずれか1項に記載の有機無機ペロブスカイト。 - 前記一般式(10)のRが下記一般式(11)で表されるアンモニウムである、請求項4に記載の有機無機ペロブスカイト。
Ar(CH2)n1NH3 + (11)
[一般式(11)において、Arは芳香環を表す。n1は1~20の整数である。] - 前記一般式(10)のAがホルムアミジウムまたはメチルアンモニウムである、請求項4または5に記載の有機無機ペロブスカイト。
- 前記一般式(10)のBがPb2+である、請求項4~6のいずれか1項に記載の有機無機ペロブスカイト。
- 前記一般式(10)のXがBr-である、請求項4~7のいずれか1項に記載の有機無機ペロブスカイト。
- 下記式(A)または下記式(B)で表される、有機無機ペロブスカイト。
PEA2FAn-1PbnBr3n+1 式(A)
PEA2MAn-1PbnBr3n+1 式(B)
[式(A)および式(B)において、PEAはフェニルエチルアンモニウムを表し、FAはホルムアミジウムを表し、MAはメチルアンモニウムを表す。nは2以上の整数である。] - 請求項1~9のいずれか1項に記載の有機無機ペロブスカイトを含む膜。
- 請求項1~9のいずれか1項に記載の有機無機ペロブスカイトを含む発光膜。
- 請求項1~9のいずれか1項に記載の有機無機ペロブスカイトを含む遅延蛍光放射膜。
- 請求項10~12のいずれか1項に記載の膜を有する発光素子。
- 300Kで遅延蛍光を放射する、請求項13に記載の発光素子。
- 以下の条件(1)および(2)を満たすように有機無機ペロブスカイトを設計し、以下の条件を満たす有機無機ペロブスカイトを用いて発光素子を製造することを特徴とする発光素子の製造方法。
(1) ET < ET1
(2) ES-ET ≦0.1eV
[条件(1)および(2)において、ESは、前記有機無機ペロブスカイトを構成する無機成分の発光励起一重項エネルギー準位を表し、ETは、前記有機無機ペロブスカイトを構成する無機成分の発光励起三重項エネルギー準位を表し、ET1は、前記有機無機ペロブスカイトを構成する有機成分の発光励起三重項エネルギー準位を表す。]
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/761,667 US20210184138A1 (en) | 2017-11-06 | 2018-11-01 | Organic-inorganic perovskite, film, light-emitting film, delayed fluorescence-emitting film, light-emitting element, and method for producing light-emitting element |
KR1020207014518A KR102629104B1 (ko) | 2017-11-06 | 2018-11-01 | 유기 무기 페로브스카이트, 막, 발광막, 지연 형광 방사막, 발광 소자 및 발광 소자의 제조 방법 |
CN201880071621.5A CN111417643B (zh) | 2017-11-06 | 2018-11-01 | 有机无机钙钛矿、膜、发光膜、延迟荧光放射膜、发光元件及发光元件的制造方法 |
JP2019550490A JP7165412B2 (ja) | 2017-11-06 | 2018-11-01 | 有機無機ペロブスカイト、膜、発光膜、遅延蛍光放射膜、発光素子および発光素子の製造方法 |
EP18873546.8A EP3708570A4 (en) | 2017-11-06 | 2018-11-01 | ORGANIC-INORGANIC PEROWSKITE, FILM, LIGHT-EMITTING FILM, DELAYED FLUORESCENT-EMITTING FILM, LIGHT-EMITTING ELEMENT, AND METHOD FOR MANUFACTURING A LIGHT-EMITTING ELEMENT |
US18/150,476 US11991920B2 (en) | 2017-11-06 | 2023-01-05 | Organic-inorganic perovskite, film, light-emitting film, delayed fluorescence-emitting film, light-emitting element, and method for producing light-emitting element |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017213911 | 2017-11-06 | ||
JP2017-213911 | 2017-11-06 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/761,667 A-371-Of-International US20210184138A1 (en) | 2017-11-06 | 2018-11-01 | Organic-inorganic perovskite, film, light-emitting film, delayed fluorescence-emitting film, light-emitting element, and method for producing light-emitting element |
US18/150,476 Division US11991920B2 (en) | 2017-11-06 | 2023-01-05 | Organic-inorganic perovskite, film, light-emitting film, delayed fluorescence-emitting film, light-emitting element, and method for producing light-emitting element |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019088235A1 true WO2019088235A1 (ja) | 2019-05-09 |
Family
ID=66331920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/040758 WO2019088235A1 (ja) | 2017-11-06 | 2018-11-01 | 有機無機ペロブスカイト、膜、発光膜、遅延蛍光放射膜、発光素子および発光素子の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (2) | US20210184138A1 (ja) |
EP (1) | EP3708570A4 (ja) |
JP (1) | JP7165412B2 (ja) |
KR (1) | KR102629104B1 (ja) |
CN (1) | CN111417643B (ja) |
WO (1) | WO2019088235A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114958368B (zh) * | 2022-06-10 | 2023-08-01 | 闽都创新实验室 | 一种二维手性有机-无机杂化钙钛矿晶体及其制备方法和用途 |
CN115032209B (zh) * | 2022-08-11 | 2022-11-15 | 中国华能集团清洁能源技术研究院有限公司 | 一种透明导电薄膜质量检测方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014078392A (ja) * | 2012-10-10 | 2014-05-01 | Peccell Technologies Inc | ペロブスカイト化合物を用いた電界発光素子 |
WO2017057313A1 (ja) * | 2015-09-30 | 2017-04-06 | 国立大学法人九州大学 | 混合物、機能層、光電変換素子およびペロブスカイト安定化剤 |
WO2017086337A1 (ja) * | 2015-11-17 | 2017-05-26 | 国立大学法人九州大学 | 2次元ペロブスカイト形成用材料、積層体、素子およびトランジスタ |
US20170152608A1 (en) * | 2015-11-30 | 2017-06-01 | Wisconsin Alumni Research Foundation | Solution growth of single-crystal perovskite structures |
JP2017193576A (ja) * | 2012-05-18 | 2017-10-26 | オックスフォード ユニヴァーシティ イノヴェーション リミテッド | 混合アニオンを有する有機金属ペロブスカイトを有する光電子デバイス |
-
2018
- 2018-11-01 KR KR1020207014518A patent/KR102629104B1/ko active IP Right Grant
- 2018-11-01 US US16/761,667 patent/US20210184138A1/en not_active Abandoned
- 2018-11-01 CN CN201880071621.5A patent/CN111417643B/zh active Active
- 2018-11-01 WO PCT/JP2018/040758 patent/WO2019088235A1/ja unknown
- 2018-11-01 EP EP18873546.8A patent/EP3708570A4/en active Pending
- 2018-11-01 JP JP2019550490A patent/JP7165412B2/ja active Active
-
2023
- 2023-01-05 US US18/150,476 patent/US11991920B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017193576A (ja) * | 2012-05-18 | 2017-10-26 | オックスフォード ユニヴァーシティ イノヴェーション リミテッド | 混合アニオンを有する有機金属ペロブスカイトを有する光電子デバイス |
JP2014078392A (ja) * | 2012-10-10 | 2014-05-01 | Peccell Technologies Inc | ペロブスカイト化合物を用いた電界発光素子 |
WO2017057313A1 (ja) * | 2015-09-30 | 2017-04-06 | 国立大学法人九州大学 | 混合物、機能層、光電変換素子およびペロブスカイト安定化剤 |
WO2017086337A1 (ja) * | 2015-11-17 | 2017-05-26 | 国立大学法人九州大学 | 2次元ペロブスカイト形成用材料、積層体、素子およびトランジスタ |
US20170152608A1 (en) * | 2015-11-30 | 2017-06-01 | Wisconsin Alumni Research Foundation | Solution growth of single-crystal perovskite structures |
Non-Patent Citations (4)
Title |
---|
MATSUSHIMA, TOSHINORI ET AL.: "N-channel field-effect transistors with an organic-inorganic layered perovskite semiconductor", APPLIED PHYSICS LETTERS, vol. 109, 2016, XP012214563, DOI: 10.1063/1.4972404 * |
NANO LETT., 2017 |
NATURE NANOTECH, vol. 11, 2016, pages 872 |
QIN, CHUANJIANG ET AL.: "Centrifugal-Coated Quasi-Two-Dimensional Perovskite CsPb2Br5 Films for Efficient and Stable Light-Emitting Diodes", THE JOURNAL OF PHYSICAL CHEMISTRY LETTERS, vol. 8, 20 October 2017 (2017-10-20), pages 5415 - 5421, XP055705203 * |
Also Published As
Publication number | Publication date |
---|---|
US20210184138A1 (en) | 2021-06-17 |
KR20200083505A (ko) | 2020-07-08 |
EP3708570A4 (en) | 2020-11-25 |
JPWO2019088235A1 (ja) | 2020-11-26 |
CN111417643B (zh) | 2023-09-05 |
US11991920B2 (en) | 2024-05-21 |
JP7165412B2 (ja) | 2022-11-04 |
EP3708570A1 (en) | 2020-09-16 |
KR102629104B1 (ko) | 2024-01-24 |
US20230157149A1 (en) | 2023-05-18 |
CN111417643A (zh) | 2020-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107735880B (zh) | 具有极短衰减时间的高效oled装置 | |
CN110383520B (zh) | 有机发光元件、用于其的发光材料及延迟荧光体 | |
KR20160120784A (ko) | 발광 재료, 유기 발광 소자 및 화합물 | |
JP2015179817A (ja) | 有機エレクトロルミネッセンス素子 | |
JP4786917B2 (ja) | 有機金属錯体、発光性固体、有機el素子及び有機elディスプレイ | |
KR20170036706A (ko) | 유기 발광 소자 | |
KR20190065277A (ko) | 유기 발광 소자와, 그에 이용하는 발광 재료 및 화합물 | |
US11991920B2 (en) | Organic-inorganic perovskite, film, light-emitting film, delayed fluorescence-emitting film, light-emitting element, and method for producing light-emitting element | |
US11476435B2 (en) | Film and organic light-emitting device containing perovskite-type compound and organic light-emitting material | |
CN110431681B (zh) | 有机电场发光元件 | |
WO2015118936A1 (ja) | 発光層の製造方法、発光層および有機発光素子 | |
WO2011033978A1 (ja) | 有機エレクトロルミネッセンス素子 | |
EP3760690B1 (en) | Luminescent compound, method of preparing the same, and light emitting device including the same | |
KR102697505B1 (ko) | 유기 발광 소자 | |
JP2006069936A (ja) | 金属錯体、発光性固体、有機el素子及び有機elディスプレイ | |
Wang et al. | Heat revolution on photophysical properties and electroluminescent performance of Ir (ppy) 3-doped bipolar host of oxadiazole derivatives attaching with inert group of tert-butyl moiety | |
KR101618279B1 (ko) | 유기전기발광소자용 유기금속 화합물, 그의 제조방법 및 그를 이용한 유기전기발광소자 | |
CN117956824A (zh) | 有机电致发光材料和装置 | |
CN117956823A (zh) | 有机电致发光材料和装置 | |
KR20180127904A (ko) | 신규 열활성 지연형광 재료 및 이를 포함하는 유기발광 다이오드 소자 | |
CN118488726A (zh) | 有机电致发光材料和装置 | |
CN117956822A (zh) | 有机电致发光材料和装置 | |
CN117956819A (zh) | 有机电致发光材料和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18873546 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019550490 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20207014518 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018873546 Country of ref document: EP Effective date: 20200608 |