WO2019088206A1 - H形鋼およびその製造方法 - Google Patents

H形鋼およびその製造方法 Download PDF

Info

Publication number
WO2019088206A1
WO2019088206A1 PCT/JP2018/040599 JP2018040599W WO2019088206A1 WO 2019088206 A1 WO2019088206 A1 WO 2019088206A1 JP 2018040599 W JP2018040599 W JP 2018040599W WO 2019088206 A1 WO2019088206 A1 WO 2019088206A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
amount
toughness
shaped steel
rolling
Prior art date
Application number
PCT/JP2018/040599
Other languages
English (en)
French (fr)
Inventor
浩文 大坪
木村 達己
克行 一宮
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020227014533A priority Critical patent/KR102419241B1/ko
Priority to JP2019515548A priority patent/JP6856119B2/ja
Priority to CN201880070422.2A priority patent/CN111356779A/zh
Priority to SG11202003218UA priority patent/SG11202003218UA/en
Priority to KR1020207012264A priority patent/KR102419239B1/ko
Publication of WO2019088206A1 publication Critical patent/WO2019088206A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention relates to the low temperature toughness at -40 ° C., which is used in H-shaped steel widely used as a material of welded steel structures such as offshore structures, construction / public works and bridges, especially in cold areas.
  • the present invention relates to an excellent high strength H-shaped steel and a method of manufacturing the same.
  • TMCP which is a combination of controlled rolling and accelerated cooling
  • this technique is also effective for H-shaped steel.
  • high temperature heating of the material and rolling at a high temperature with small deformation resistance are necessary, and the structure is likely to be coarse.
  • controlled rolling in the austenite low temperature region is important for refining the structure, rolling at low temperature has problems in terms of increase in rolling load and shape stability.
  • Patent Document 1 in addition to the addition of no precipitation embrittlement element, the amount of solid solution N is reduced, and accelerated cooling is applied after rolling, There is disclosed a technique relating to a method of manufacturing a rolled H-section steel which secures -40 ° C. toughness without performing controlled rolling. Further, as an H-shaped steel excellent in low temperature toughness used for marine structures and the like, Patent Document 2 proposes a technology using a component in which Nb or B is added with extremely low carbon. Further, Patent Documents 3 and 4 disclose techniques for achieving excellent low temperature toughness at -40 ° C. while being air-cooled without adding Nb which inhibits productivity.
  • JP, 2006-180584 A International Publication 2013/089156 JP, 2016-84524, A JP, 2016-156032, A
  • Patent Document 1 requires the application of accelerated cooling as a manufacturing method, so there is a problem in achieving both material control and shape stabilization.
  • Patent Document 2 in order to achieve Charpy absorption energy at ⁇ 40 ° C. and CTOD characteristics at ⁇ 10 ° C., it is possible to use low temperature toughness using a component to which N content is combined with Nb and B at 0.040% or less.
  • a technique related to an excellent H-shaped steel is disclosed.
  • the refining time in the steel making stage becomes long, and in order to secure the strength, it is necessary to add a relatively large amount of alloying elements, which is expensive It becomes.
  • Patent documents 3 and 4 are the cause of increasing the deformation resistance in hot rolling and inhibiting productivity, by appropriately controlling the amounts of V and N without adding Nb. It is a technology that improves the low temperature toughness at 40 ° C and -60 ° C. However, since it is necessary to secure N content of 0.004% or more in order to control VN precipitates and secure toughness more stably, there is a concern that the toughness during the continuous casting may decrease or the toughness may decrease due to the remaining free N. Be done.
  • the present invention solves the above-mentioned problems, and in order to secure high strength of YP 355 MPa or more and low temperature toughness at -40 ° C. in the flange portion of H-shaped steel without particularly increasing the manufacturing cost.
  • the purpose is to propose a way.
  • the inventors have made intensive efforts to maximize the controlled rolling effect by adding a small amount of Nb, and to secure the strength at YP 355 MPa or more and the low temperature toughness at -40 ° C, particularly in the flange portion of H-section steel.
  • Nb was added to make full use of the controlled rolling effect by increasing the temperature in the austenite non-recrystallizing temperature range, to refine the ferrite grain size by controlled rolling at a relatively high temperature, and By reducing island martensite formation amount by optimization, it discovered that high strength and low temperature toughness could be compatible, and came to complete this invention. That is, the gist of the present invention is as follows.
  • the above-mentioned component composition is further in mass%, V: 0.050% or less, Cu: 1.0% or less, Ni: 1.0% or less,
  • TR at least the surface temperature of the flange equivalent portion is calculated by the following formula (2)
  • TR 174 log [Nb ⁇ (C + 12/14 N)] + 1344
  • Nb can be added in an appropriate amount to raise the temperature in the austenite non-recrystallization temperature range, and the controlled rolling effect can be maximized.
  • the strength of the flange is YP 355 MPa or more, and the toughness of the flange is -40 ° C. It is possible to provide a low temperature toughness H-shaped steel having a Charpy absorbed energy of 50 J or more.
  • C 0.08 to 0.16%
  • C is an element necessary to improve the strength of the steel, and in order to ensure strength without accelerated cooling after hot rolling, the lower limit of the C content is set to 0.08%.
  • the C content is preferably 0.10% or more.
  • the upper limit of the C amount is made 0.16%.
  • it is 0.08 to 0.14%.
  • Si 0.05 to 0.60%
  • Si is effective as a deoxidizing element or a solid solution strengthening element, and requires at least 0.05% to obtain its effect.
  • Si is made in the range of 0.05 to 0.60%.
  • it is 0.05 to 0.50%.
  • Mn 0.10 to 1.80% Mn is required to be 0.10% or more in order to secure the strength of the base material. On the other hand, when adding over 1.80%, the susceptibility to low temperature cracking increases, so the Mn is limited to the range of 0.10 to 1.80%. From the viewpoint of weld zone toughness, it is preferable to set the upper limit to 1.60%. More preferably, it is 0.30 to 1.60%.
  • P 0.030% or less P is suppressed to 0.030% or less because the toughness of the welded portion is reduced when the content exceeds 0.030%. Preferably, it is 0.020% or less. In addition, in order to suppress P to less than 0.005%, since the process requires a lot of cost, it is preferable to make 0.005% a minimum from a viewpoint of manufacturing cost.
  • S 0.030% or less S, like P, is suppressed to 0.030% or less because the toughness of the base material and the weld portion is reduced if the content is more than 0.030%. Preferably, it is 0.005% or less. In addition, in order to suppress S to less than 0.001%, since the process requires a lot of cost, it is preferable to make 0.001% a minimum from a viewpoint of manufacturing cost.
  • Nb 0.005 to 0.060%
  • Nb forms Nb carbonitrides and suppresses the coarsening of austenite grains during heating of the steel material, and is effective for refining the ferrite structure after rolling and cooling, and at the austenite non-recrystallization temperature. It is a very important element to carry out the controlled rolling effectively. Moreover, it is an element effective also for high strengthening by precipitation strengthening. In order to express the effect and secure the strength of YP 355 MPa or more, the content of 0.005% or more is necessary. Furthermore, when high strength of YP 420 MPa or more is required, it is preferable to contain 0.015% or more.
  • 0.060% when adding over 0.060%, since the toughness fall of the base material and a welding part by island-like martensite formation becomes remarkable, 0.060% was made an upper limit. In order to further suppress island martensite formation, it is preferable to make it 0.050% or less. More preferably, it is 0.040% or less, still more preferably 0.035% or less.
  • Ti forms TiN, suppresses austenite grain coarsening at the time of heating a steel material, and is an element effective for refining the ferrite structure after rolling and cooling. Therefore, it is contained at 0.0010% or more. On the other hand, it is also a precipitation strengthening element, and when it is added in excess of 0.0200%, it causes precipitation embrittlement, so the upper limit is made 0.0200%. Preferably, it is 0.0050% to 0.0200%.
  • Al 0.080% or less Al is added to steel as a deoxidizer, and its effect is saturated when it exceeds 0.080%, so the upper limit of Al was made 0.080%.
  • the lower limit is not particularly specified, but in order to sufficiently obtain the deoxidizing effect, it is desirable to be 0.003% or more. Preferably, it is 0.015 to 0.040%.
  • N 0.0010 to 0.0060%
  • N is an element that forms a nitride such as Nb or Ti, and is useful for refining the structure, so 0.0010% or more is necessary.
  • the toughness is reduced, so the upper limit is made 0.0060%.
  • it is 0.0020 to 0.0050%.
  • V 0.050% or less
  • Cu 1.0% or less
  • Cr 1.0% or less
  • Mo 1.0% or less
  • V is a precipitation strengthening element, and for that purpose, it is preferable to contain by 0.005% or more.
  • the upper limit is preferably made 0.050%. More preferably, it is 0.010 to 0.050%.
  • Cu, Ni, Cr and Mo are elements contributing to the improvement of the strength, and can be added as needed in the range not exceeding the upper limit of Ceq described later from the viewpoint of weldability.
  • each element exceeds 1.0% it leads to a decrease in toughness and weldability and an increase in cost, so it is preferable to set it to 1.0% or less.
  • Ceq 0.44% or less
  • the microstructure in the case where the material having the above composition is air-cooled after hot rolling has ferrite as a main phase, and the second phase is pearlite and / or bainite.
  • the yield strength YP desired in the present invention 355 MPa or more and the Charpy absorption energy of ⁇ 40 ° C .: 50 J or more
  • the portion other than ferrite in the microstructure, that is, the second phase is pearlite and / or bainite.
  • the bainite may partially contain island martensite, but since island martensite is a hard phase and becomes a starting point of fracture, if this island martensite is formed, the toughness decreases at -40 ° C. Therefore, the area ratio needs to be 3.0% or less. Preferably, it is 2.5% or less.
  • the area ratio of island martensite referred to here is the area ratio of island martensite to the area of the entire structure.
  • the ferrite serving as the main phase has an area ratio of 70% or more, preferably 80% or more.
  • the second phase perlite and / or bainite is preferably 25% or less in area ratio. This is because if the area ratio of hard pearlite and / or bainite exceeds 25%, the base material toughness decreases.
  • Heating temperature 1150 ° C. or more and less than 1300 ° C.
  • it is important to control the shape by hot rolling, and it is necessary to heat to 1150 ° C. or more in order to work in a high temperature range where deformation resistance is small .
  • Nb (C, N) in order to cause Nb (C, N) to form a solid solution sufficiently, heating at 1200 ° C. or higher is preferable.
  • the heating temperature is too high, TiN precipitates form a solid solution and the effect of suppressing the austenite grain coarsening becomes small. As a result, the structure becomes coarse and the toughness decreases, so the heating temperature is less than 1300 ° C. I assume. Preferably, it is 1290 ° C. or less.
  • Hot rolling Cumulative rolling reduction at or below TR ° C at least the surface temperature of the flange equivalent portion is calculated by the above equation (2) is 20% or more
  • the above equation (2) is Nb in the above component system It is the result of experimentally determining the non-recrystallization temperature range of austenite at the time of performing addition. That is, by performing rolling at a cumulative rolling reduction of 20% or more at a temperature equal to or lower than the temperature calculated by the above equation (2) according to the amounts of C, N and Nb, the controlled rolling effect can be fully utilized. It is possible. As a result, the strength of YP 355 MPa or more and the toughness at -40 ° C. can be stably secured.
  • the cumulative rolling reduction is preferably 30% or more.
  • the reason that the surface temperature of at least the portion equivalent to the flange is defined is to perform controlled rolling by measuring the surface temperature of the flange portion, which is a material evaluation position, with a radiation thermometer or the like.
  • a sample for microstructure observation is cut out from the flange width 1/6 position, and the surface parallel to the rolling direction and the flange thickness direction is used as the observation surface, and this observation surface is polished and etched with an optical microscope after magnification with 100 to 400 times magnification. Tissue observation was performed. Then, the microstructures of the main phase and the second phase were identified, and the ferrite fraction (area ratio) and the ferrite particle size (average particle size) were determined by image analysis. Further, the sample for microstructure observation was observed with a scanning electron microscope (SEM) at a magnification of 1000 times, and the area ratio (MA fraction) of island martensite was determined by image analysis. These results are also shown in Table 2.
  • SEM scanning electron microscope
  • the yield strength YP is 355 MPa or more, the tensile strength TS 460 to 690 MPa and the Charpy absorption energy 50 J or more at -40 ° C are satisfied, but when the composition or manufacturing conditions deviate, one of the characteristics is the target Not satisfied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

製造コストを増大することなしに、H形鋼のフランジ部においてYP355MPa以上の高強度、並びに-40℃での低温靱性を確保するための方途について提案する。 C:0.08~0.16%、Si:0.05~0.60%、Mn:0.10~1.80%、Nb:0.005~0.060%、Ti:0.001~0.020%、Al:0.080%以下、N:0.0010~0.0060%、P:0.030%以下およびS:0.030%以下を、Ceqが0.44%以下となる範囲で含有し、残部はFeおよび不可避的不純物の成分組成と、粒径が15μm以下のフェライトを主相とするミクロ組織とを有し、該ミクロ組織は、第2相がパーライトおよび/またはベイナイトであり、かつ島状マルテンサイトが3%以下であるものとする。

Description

H形鋼およびその製造方法
 本発明は、海洋構造物、建築・土木および橋梁などの溶接鋼構造物の素材として広く用いられているH形鋼、特に寒冷地の海洋構造物で用いられる、-40℃での低温靱性に優れた高強度H形鋼とその製造方法に関するものである。
 原油や天然ガス等の採掘を行う海洋構造物では、寒冷地で操業される場合も多く、使用されるH形鋼には母材および溶接継手部ともに優れた低温靱性が求められる。高強度と低温靱性を両立させるためには、厚鋼板では制御圧延と加速冷却を組み合わせたTMCPが広く用いられており、H形鋼においても有効な技術である。しかしながら、H形鋼の製造においては、造形性を考慮して、素材の高温加熱および変形抵抗が小さい高温での圧延が必要であり、組織が粗大になりやすい。さらに、組織微細化のためにはオーステナイト低温域での制御圧延が重要であるが、低温での圧延は圧延荷重の増大や形状安定性の観点で課題がある。
 これまでに、靱性に優れたH形鋼として、特許文献1では、析出脆化元素を無添加とすることに加えて、固溶N量を低減し、圧延後に加速冷却を適用することにより、制御圧延を行うこと無く-40℃靱性を確保する圧延H形鋼の製造方法に関する技術が開示されている。
 また、海洋構造物等に用いられる低温靱性に優れたH形鋼として、特許文献2では極低炭素でNbやBを添加した成分を用いた技術が提案されている。さらに、特許文献3および4では、生産性を阻害するNbを添加せずに空冷ままで-40℃において優れた低温靱性を達成する技術が開示されている。
特開2006-180584号公報 国際公開2013/089156号公報 特開2016-84524号公報 特開2016-156032号公報
 特許文献1に記載の技術は、製造方法として加速冷却の適用が必要であるため、材質制御と形状安定化との両立に課題がある。
 また、特許文献2には、-40℃でのシャルピー吸収エネルギーと-10℃のCTOD特性を達成するために、C量が0.040%以下でNbおよびBを複合添加した成分を用いた低温靱性に優れたH形鋼に関する技術が開示されている。しかしながら、実質的に0.020%程度までCを低減させるためには、製鋼段階での精錬時間が長くなる上に、強度を確保するためには合金元素を比較的多量に添加する必要もあり高コストとなる。
 一方、特許文献3および4は、熱間圧延での変形抵抗を増大して生産性を阻害する原因となる、Nbを添加せずに、VやNの量を適正に制御することによって、-40℃や-60℃での低温靱性を向上させた技術である。しかしながら、VN析出物を制御してより安定的に靱性を確保するには、N含有量0.004%以上を確保する必要があるため、連続鋳造時の割れやフリーNの残存による靱性低下などが懸念される。
 本発明は、上記の課題を解決するものであり、特に製造コストを増大することなしに、H形鋼のフランジ部においてYP355MPa以上の高強度、並びに-40℃での低温靱性を確保するための方途について、提案することを目的とする。
 さて、高強度で低温靱性に優れた圧延H形鋼を製造するには、熱間圧延に制御圧延を適用することが重要である。特に、オーステナイト未再結晶温度域での制御圧延を効果的に実施するには、Nb添加による未再結晶温度域の高温化が有効である。このNbを添加しない場合に制御圧延効果を発揮させるには、オーステナイト低温度域での圧延が必要であり、圧延荷重の増大と温度調整のための圧延時間増大、H形鋼の寸法精度の悪化が問題となる。従って、Nbは変形抵抗を増加させる原因になるものの、制御圧延効果を高温域で発揮させる元素であるため、材質制御の観点からは非常に有用な元素である。一方で、Nbを添加した場合、熱間圧延後の冷却過程で焼入性が向上し、未変態オーステナイトの一部が島状マルテンサイトとなるため、低温靱性の劣化が問題となる。
 そこで、発明者らは、微量のNb添加で制御圧延効果を最大活用し、H形鋼の特にフランジ部においてYP355MPa以上の強度、並びに-40℃での低温靱性を確保するための方途について、鋭意検討を行ったところ、Nbを添加してオーステナイト未再結晶温度域の高温化による制御圧延効果を最大限活用し、比較的高温での制御圧延によりフェライト粒径を微細化するとともに、圧延条件の適正化により島状マルテンサイト生成量を低減することによって、高強度と低温靱性を両立し得ることを見出し、本発明を完成するに到った。すなわち、本発明の要旨は次のとおりである。
[1]質量%で、
 C:0.08~0.16%、
 Si:0.05~0.60%、
 Mn:0.10~1.80%、
 Nb:0.005~0.060%、
 Ti:0.0010~0.0200%、
 Al:0.080%以下、
 N:0.0010~0.0060%、
 P:0.030%以下および
 S:0.030%以下
を、下記式(1)に従うCeqが0.44%以下となる範囲で含有し、残部はFeおよび不可避的不純物の成分組成と、平均粒径が15μm以下のフェライトを主相とするミクロ組織とを有し、該ミクロ組織は、第2相がパーライトおよび/またはベイナイトであり、かつ島状マルテンサイトが3.0%以下であるH形鋼。
           記
 Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5 ・・・(1)
  但し、式中の元素表示は該元素の含有量を示し、含まれない元素はゼロとする。
[2]前記成分組成は、さらに質量%で、
 V:0.050%以下、
 Cu:1.0%以下、
 Ni:1.0%以下、
 Cr:1.0%以下および
 Mo:1.0%以下
のうちの1種または2種以上を含有する前記[1]に記載のH形鋼。
[3]前記[1]または[2]に記載の成分組成を有する鋼素材を、1150℃以上1300℃未満で加熱後、少なくともフランジ相当部分の表面温度が下記式(2)で算出されるTR℃以下での累積圧下率が20%以上の熱間圧延を行うH形鋼の製造方法。
           記
 TR=174 log[Nb×(C+12/14N)]+1344 ・・・(2)
 本発明によれば、Nbを適量で添加してオーステナイト未再結晶温度域を高温化し、制御圧延効果を最大限活用することができる。その結果、熱間圧延後に加速冷却を必要とすることなしに、換言すると、熱間圧延後は空冷であっても、フランジ部の強度がYP355MPa以上で、かつフランジ部の靱性として-40℃でのシャルピー吸収エネルギーが50J以上を有する低温靱性に優れたH形鋼を提供することができる。
 以下、本発明のH形鋼について、詳しく説明する。まず、本発明のH形鋼の成分組成の限定理由を述べる。なお、成分に関する「%」表示は特に断らない限り、「質量%」を意味するものとする。
C:0.08~0.16%
 Cは、鋼の強度向上に必要な元素であり、熱間圧延後に加速冷却することなしに強度を確保するためには、C含有量の下限を0.08%とする。C含有量は、0.10%以上であることが好ましい。一方で、C含有量が過度に多い場合は、パーライトやベイナイトなどの第二相の生成量が増加し、母材靱性および溶接部靱性が低下するため、C量の上限を0.16%とする。好ましくは、0.08~0.14%である。
Si:0.05~0.60%
 Siは、脱酸元素や固溶強化元素として有効であり、その効果を得るためには、少なくとも0.05%を必要とする。一方、0.60%を超えると母材の靱性および溶接部靱性を劣化させるので、Si は0.05~0.60%の範囲とする。好ましくは、0.05~0.50%である。
Mn:0.10~1.80%
 Mnは、母材の強度を確保するために0.10%以上は必要である。一方、1.80%を超えて添加すると、低温割れ感受性が増大するため、Mnは0.10~1.80%の範囲に限定した。なお、溶接部靱性の観点からは、上限を1.60%とすることが望ましい。より好ましくは、0.30~1.60%である。
P:0.030%以下
 Pは、含有量が0.030%を超えると溶接部の靱性が低下するため、0.030%以下に抑制する。好ましくは、0.020%以下である。なお、Pを0.005%未満に抑制するには、その処理に多大なコストを要するため、製造コストの観点からは0.005%を下限とすることが好ましい。
S:0.030%以下
 Sは、Pと同様に、0.030%を超えて含有されると母材および溶接部の靱性が低下するため、0.030%以下に抑制する。好ましくは、0.005%以下である。なお、Sを0.001%未満に抑制するには、その処理に多大なコストを要するため、製造コストの観点からは0.001%を下限とすることが好ましい。
Nb:0.005~0.060%
 Nbは、Nb炭窒化物を形成し、鋼素材加熱時のオーステナイト粒の粗大化を抑制することによる、圧延-冷却後のフェライト組織の微細化に有効であるとともに、オーステナイト未再結晶温度での制御圧延を効果的に実施するためには非常に重要な元素である。また、析出強化による高強度化にも有効な元素である。その効果を発現し、YP355MPa以上の強度を確保するためには、0.005%以上の含有が必要である。さらに、YP420MPa以上の高強度が要請される場合は、0.015%以上で含有させることが好ましい。一方で、0.060%を超えて添加する場合には、島状マルテンサイト生成による母材および溶接部の靱性低下が顕著となるため、0.060%を上限とした。島状マルテンサイト生成をさらに抑制するには、0.050%以下とすることが好ましい。より好ましくは0.040%以下、さらに好ましくは0.035%以下である。
Ti:0.0010~0.0200%
 Tiは、TiNを形成し、鋼素材加熱時のオーステナイト粒粗大化を抑制し、圧延-冷却後のフェライト組織の微細化に有効な元素である。そのため、0.0010%以上で含有させる。一方で、析出強化元素でもあり、0.0200%を超えて添加すると析出脆化を引き起こすため、上限を0.0200%とする。好ましくは、0.0050~0.0200%である。
Al:0.080%以下
 Alは、脱酸剤として鋼に添加され、その効果は、0.080%を超えると飽和することから、Alの上限を0.080%とした。下限については特に特定しないが、脱酸効果を十分に得るためには0.003%以上とすることが望ましい。好ましくは、0.015~0.040%である。
N:0.0010~0.0060%
 Nは、NbやTiなどの窒化物を形成する元素であり、組織微細化に有用であるため、0.0010%以上は必要である。一方で、過剰に添加したNが窒化物を形成せずに固溶Nとして残ると、靱性低下を招くため、上限を0.0060%とする。好ましくは、0.0020~0.0050%である。
 以上の各成分を含有し、残部はFeおよび不可避不純物である。この基本成分に加えて、さらに必要に応じて、V:0.050%以下、Cu:1.0%以下、Ni:1.0%以下、Cr:1.0%以下およびMo:1.0%以下の1種または2種以上を含有することができる。
 すなわち、Vは、析出強化元素であり、そのためには0.005%以上で含有することが好ましい。しかし、0.050%以上含まれると、析出脆化を引き起こすため、上限を0.050%とすることが好ましい。より好ましくは、0.010~0.050%である。
 また、Cu、Ni、CrおよびMoは、強度向上に寄与する元素であり、溶接性の観点から後述のCeqの上限を超えない範囲で必要に応じて添加することができる。そのためには、各元素とも、0.01%以上で添加することが好ましい。一方、各元素とも、1.0%を超えると、靭性および溶接性の低下やコストの上昇に繋がるため、それぞれ1.0%以下とすることが好ましい。
Ceq:0.44%以下
 下記した式(1)に従うCeqを高くすることにより、母材強度を高めることが可能であるが、Ceqが高すぎると母材靱性や溶接部靱性の低下を招くため、上限を0.44%とする。より好ましくは、0.43%以下である。尚、式(1)中の元素表示は、該元素の含有量を示し、含まれない元素はゼロとする。
             記
Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5 ・・・(1)
 ここで、化学成分組成を(0.10~0.13)%C-0.3%Si-1.5%MnにNb量を変化させた鋼素材を用いて、フランジ厚12mm~40mmのH形鋼の製造に相当する熱間圧延を行い、種々の強度および靱性を評価するとともに、ミクロ組織の解析を行った。その結果を踏まえて、本発明におけるミクロ組織および製造条件を限定した。以下に、ミクロ組織および製造条件に関する限定理由を述べる。
[ミクロ組織]
フェライト平均粒径:15μm以下
 上記組成の素材を熱間圧延後に空冷した場合のミクロ組織は、フェライトを主相として、第2相がパーライトおよび/またはベイナイトである。本発明で所期する降伏強度YP:355MPa以上かつ-40℃のシャルピー吸収エネルギー:50J以上を達成するためには、フェライト粒を微細化することが重要である。すなわち、フェライト平均粒径が15μmを超えると-40℃での靱性が低下するため、フェライト平均粒径は15μm以下にする必要がある。
島状マルテンサイトの分率:3.0%以下
 ミクロ組織におけるフェライト以外の部分、すなわち第二相は、パーライトおよび/またはベイナイトである。該ベイナイトには、一部島状マルテンサイトが含まれることがあるが、島状マルテンサイトは硬質相であり破壊の起点となるため、この島状マルテンサイトが生成すると-40℃の靱性が低下するため、その面積率は3.0%以下にする必要がある。好ましくは、2.5%以下である。
 なお、ここで言う島状マルテンサイトの面積率は、全組織の面積に対する島状マルテンサイトの面積率である。また、主相となるフェライトは、面積率で70%以上、好ましくは80%以上である。一方、第二相であるパーライトおよび/またはベイナイトは、面積率で25%以下であることが好ましい。なぜなら、硬質なパーライトおよび/またはベイナイトの面積率が25%を超えると母材靱性が低下するためである。
[製造条件]
 上記した成分組成を有する鋼素材を、1150℃以上1300℃未満で加熱後、少なくともフランジ相当部分の表面温度が下記式(2)で算出されるTR℃以下での累積圧下率が20%以上の熱間圧延を行うことが肝要である。
           記
 TR=174 log[Nb× (C+12/14N)]+1344 ・・・(2)
加熱温度:1150℃以上1300℃未満
 H形鋼の製造では、熱間圧延にて形状制御することが重要であり、変形抵抗が小さい高温域で加工するために1150℃以上に加熱する必要がある。さらに、Nb(C,N)を十分に固溶させるためには、1200℃以上で加熱することが好ましい。一方で、加熱温度が高すぎると、TiN析出物が固溶し、オーステナイト粒の粗大化を抑制する効果が小さくなる結果、組織が粗大になって靱性低下を招くため、加熱温度は1300℃未満とする。好ましくは、1290℃以下である。
熱間圧延:少なくともフランジ相当部分の表面温度が上記式(2)で算出されるTR℃以下での累積圧下率が20%以上
 ここで、上記式(2)は、上記した成分系において、Nb添加を行った場合のオーステナイトの未再結晶温度域を実験的に求めた結果である。すなわち、C、NおよびNbの量に応じて上記式(2)で計算される温度以下にて、累積圧下率20%以上の圧延を行うことにより、制御圧延効果を最大限に活用することが可能である。その結果、YP355MPa以上の強度と-40℃での靱性を安定的に確保できる。なお、累積圧下率は高いほどフェライト粒径が微細化し、強度並びに靱性の向上に寄与するため、さらにYP420MPa以上の高強度が要請される場合は、累積圧下率を30%以上とすることが好ましい。一方、過度に累積圧下を加えると、圧延時の荷重増大や形状確保が困難となることから、50%を上限とすることが好ましい。なお、上記式(2)で算出されるTR℃超での圧下率は、特に規定する必要はなく、TR℃以下での累積圧下率の規定により所望の強度および靱性を確保できる。
 ここで、少なくともフランジ相当部分の表面温度で規定するのは、材質評価位置であるフランジ部の表面温度を放射温度計等で測温管理して制御圧延を行うためである。
 以上の製造条件に従うことによって、熱間圧延後は(加速冷却することなく単なる)空冷を経て所望の強度および靱性を確保出来る上に、形状安定化も図られる。また、空冷程度の冷却速度で冷却することにより、靭性低下の要因である島状マルテンサイトの分解を促進し、低温靭性を向上することが可能となる。
 表1に示す種々の成分組成に調整した鋼素材を、表2に示す条件に従って熱間圧延し、フランジ厚が種々に異なる圧延H形鋼を製造した。得られたH形鋼の表面からフランジ幅1/6位置から圧延方向に平行にJIS 1A号引張試験片を採取し、引張試験を行って降伏強さ(YP)および引張強さ(TS)を求めた。また、前記フランジ幅1/6位置の表面下1/4t(t:フランジ厚さ)部から圧延方向に平行にシャルピー衝撃試験片を採取し、0℃での吸収エネルギー、-40℃での吸収エネルギーおよび-60℃での吸収エネルギーをそれぞれ評価した。その評価結果を表2に併記する。
 さらに、フランジ幅1/6位置よりミクロ組織観察用試料を切り出し、圧延方向およびフランジ厚方向に平行な面を観察面として、この観察面を研磨、エッチング後に光学顕微鏡により倍率100~400倍でミクロ組織観察を行った。そして、主相および第2相のミクロ組織の同定を行うとともに、画像解析によりフェライト分率(面積率)とフェライト粒径(平均粒径)とを求めた。また、前記ミクロ組織観察用試料を走査型電子顕微鏡(SEM)により、倍率1000倍で観察し、画像解析により島状マルテンサイトの面積率(MA分率)を求めた。これらの結果についても、表2に併記する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 発明例では、降伏強度YP355MPa以上、引張強さTS460~690MPaおよび-40℃でのシャルピー吸収エネルギー50J以上を満足しているが、成分や製造条件が外れた場合には、いずれかの特性が目標を満足していない。

Claims (3)

  1.  質量%で、
     C:0.08~0.16%、
     Si:0.05~0.60%、
     Mn:0.10~1.80%、
     Nb:0.005~0.060%、
     Ti:0.0010~0.0200%、
     Al:0.080%以下、
     N:0.0010~0.0060%、
     P:0.030%以下および
     S:0.030%以下
    を、下記式(1)に従うCeqが0.44%以下となる範囲で含有し、残部はFeおよび不可避的不純物の成分組成と、平均粒径が15μm以下のフェライトを主相とするミクロ組織とを有し、該ミクロ組織は、第2相がパーライトおよび/またはベイナイトであり、かつ島状マルテンサイトが3.0%以下であるH形鋼。
               記
     Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5 ・・・(1)
      但し、式中の元素表示は該元素の含有量を示し、含まれない元素はゼロとする。
  2.  前記成分組成は、さらに質量%で、
     V:0.050%以下、
     Cu:1.0%以下、
     Ni:1.0%以下、
     Cr:1.0%以下および
     Mo:1.0%以下
    のうちの1種または2種以上を含有する請求項1に記載のH形鋼。
  3.  請求項1または2に記載の成分組成を有する鋼素材を、1150℃以上1300℃未満で加熱後、少なくともフランジ相当部分の表面温度が下記式(2)で算出されるTR℃以下での累積圧下率が20%以上の熱間圧延を行うH形鋼の製造方法。
               記
     TR=174 log[Nb× (C+12/14N)]+1344 ・・・(2)
PCT/JP2018/040599 2017-10-31 2018-10-31 H形鋼およびその製造方法 WO2019088206A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227014533A KR102419241B1 (ko) 2017-10-31 2018-10-31 H 형강 및 그 제조 방법
JP2019515548A JP6856119B2 (ja) 2017-10-31 2018-10-31 H形鋼およびその製造方法
CN201880070422.2A CN111356779A (zh) 2017-10-31 2018-10-31 H型钢及其制造方法
SG11202003218UA SG11202003218UA (en) 2017-10-31 2018-10-31 H-shaped steel and method for producing same
KR1020207012264A KR102419239B1 (ko) 2017-10-31 2018-10-31 H 형강 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-210217 2017-10-31
JP2017210217 2017-10-31

Publications (1)

Publication Number Publication Date
WO2019088206A1 true WO2019088206A1 (ja) 2019-05-09

Family

ID=66332678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040599 WO2019088206A1 (ja) 2017-10-31 2018-10-31 H形鋼およびその製造方法

Country Status (5)

Country Link
JP (2) JP6856119B2 (ja)
KR (2) KR102419239B1 (ja)
CN (1) CN111356779A (ja)
SG (1) SG11202003218UA (ja)
WO (1) WO2019088206A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7563433B2 (ja) 2021-11-26 2024-10-08 Jfeスチール株式会社 H形鋼の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022074057A (ja) * 2020-10-29 2022-05-17 Jfeスチール株式会社 突起付きh形鋼およびその製造方法
CN112410665B (zh) * 2020-11-10 2021-10-29 马鞍山钢铁股份有限公司 一种抑制晶粒长大的厚重热轧h型钢及其生产方法
CN115821154B (zh) * 2022-09-07 2023-12-01 马鞍山钢铁股份有限公司 一种具有良好z向性能的超厚热轧h型钢及其生产方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11158543A (ja) * 1997-12-01 1999-06-15 Sumitomo Metal Ind Ltd 溶接部靱性に優れた圧延形鋼の製造方法
JP2001003136A (ja) * 1999-06-22 2001-01-09 Nippon Steel Corp 高強度高靱性圧延形鋼とその製造方法
JP2016084524A (ja) * 2014-10-27 2016-05-19 新日鐵住金株式会社 低温用h形鋼及びその製造方法
JP2016156032A (ja) * 2015-02-23 2016-09-01 新日鐵住金株式会社 低温用h形鋼及びその製造方法
CN107227430A (zh) * 2017-06-24 2017-10-03 马鞍山钢铁股份有限公司 一种具有‑60℃良好低温韧性的热轧h型钢及其生产方法
JP2018090845A (ja) * 2016-11-30 2018-06-14 Jfeスチール株式会社 鋼矢板およびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1194113C (zh) * 2003-04-30 2005-03-23 清华大学 锰-硅-硌系空冷粒状贝氏体与铁素体复相钢
JP2006180584A (ja) 2004-12-21 2006-07-06 Japan Servo Co Ltd 回転駆動機構
BR112012019769B1 (pt) * 2010-02-08 2018-05-02 Nippon Steel & Sumitomo Metal Corporation Método de produção de placa de aço.
JP5574059B2 (ja) 2011-12-15 2014-08-20 新日鐵住金株式会社 低温靭性に優れた高強度h形鋼及びその製造方法
KR20140056765A (ko) * 2012-10-31 2014-05-12 현대제철 주식회사 형강 및 그 제조 방법
JP6146358B2 (ja) * 2014-03-28 2017-06-14 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
JP6763141B2 (ja) * 2015-02-10 2020-09-30 日本製鉄株式会社 Lpgタンク用鋼板の製造方法
JP6390813B2 (ja) * 2016-03-02 2018-09-19 新日鐵住金株式会社 低温用h形鋼及びその製造方法
CN107012392B (zh) * 2017-05-15 2019-03-12 河钢股份有限公司邯郸分公司 一种600MPa级高强度低合金冷轧带钢及其生产方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11158543A (ja) * 1997-12-01 1999-06-15 Sumitomo Metal Ind Ltd 溶接部靱性に優れた圧延形鋼の製造方法
JP2001003136A (ja) * 1999-06-22 2001-01-09 Nippon Steel Corp 高強度高靱性圧延形鋼とその製造方法
JP2016084524A (ja) * 2014-10-27 2016-05-19 新日鐵住金株式会社 低温用h形鋼及びその製造方法
JP2016156032A (ja) * 2015-02-23 2016-09-01 新日鐵住金株式会社 低温用h形鋼及びその製造方法
JP2018090845A (ja) * 2016-11-30 2018-06-14 Jfeスチール株式会社 鋼矢板およびその製造方法
CN107227430A (zh) * 2017-06-24 2017-10-03 马鞍山钢铁股份有限公司 一种具有‑60℃良好低温韧性的热轧h型钢及其生产方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7563433B2 (ja) 2021-11-26 2024-10-08 Jfeスチール株式会社 H形鋼の製造方法

Also Published As

Publication number Publication date
JP2020172707A (ja) 2020-10-22
KR20220060560A (ko) 2022-05-11
SG11202003218UA (en) 2020-05-28
JPWO2019088206A1 (ja) 2019-11-21
KR102419239B1 (ko) 2022-07-08
JP7010339B2 (ja) 2022-02-10
JP6856119B2 (ja) 2021-04-07
CN111356779A (zh) 2020-06-30
KR20200058524A (ko) 2020-05-27
KR102419241B1 (ko) 2022-07-11

Similar Documents

Publication Publication Date Title
JP4969915B2 (ja) 耐歪時効性に優れた高強度ラインパイプ用鋼管及び高強度ラインパイプ用鋼板並びにそれらの製造方法
US10023946B2 (en) Thick steel sheet having excellent CTOD properties in multilayer welded joints, and manufacturing method for thick steel sheet
CN108368594B (zh) 具有优异的低温应变时效冲击特性和焊接热影响区冲击特性的高强度钢材及其制造方法
JP5130796B2 (ja) 大入熱溶接熱影響部靭性に優れた低降伏比高強度厚鋼板およびその製造方法
JP7010339B2 (ja) H形鋼およびその製造方法
WO2013089156A1 (ja) 低温靭性に優れた高強度h形鋼及びその製造方法
JP2008163446A (ja) 大入熱溶接用鋼材
JP2017115200A (ja) 低温用h形鋼及びその製造方法
JP2012207237A (ja) 多層盛溶接部の靭性に優れた降伏強さ500MPa級厚鋼板およびその製造方法
JP2017071827A (ja) H形鋼及びその製造方法
JP2005232513A (ja) 高強度鋼板とその製造方法
JPH07252592A (ja) 成形性、低温靭性及び疲労特性に優れた熱延高強度鋼板
JP4279231B2 (ja) 溶接熱影響部の靭性に優れた高強度鋼材
JP4506985B2 (ja) 極厚鋼材及びその製造方法
JP2004124113A (ja) 非水冷型薄手低降伏比高張力鋼およびその製造方法
JP2018168411A (ja) 高強度・高靭性厚鋼板の製造方法
JP5176847B2 (ja) 低降伏比低温用鋼、およびその製造方法
JP2007131925A (ja) 低温靱性に優れた引張強さ900MPa級以上の高強度ラインパイプ用鋼板およびそれを用いたラインパイプならびにそれらの製造方法
JP5008879B2 (ja) 強度および低温靭性の優れた高張力鋼板および高張力鋼板の製造方法
JP3737300B2 (ja) 溶接性の優れた非調質型低降伏比高張力鋼板
JP2004124114A (ja) 靭性に優れた非水冷型薄手低降伏比高張力鋼およびその製造方法
WO2011043287A1 (ja) 強度、延性の良好なラインパイプ用鋼およびその製造方法
JP2017186594A (ja) 低温用h形鋼及びその製造方法
CN115003842B (zh) 母材韧性和接头韧性优异的高张力钢板及其制造方法
JP5020691B2 (ja) 低温靱性に優れた高強度ラインパイプ用鋼板および高強度ラインパイプならびにこれらの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019515548

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873170

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207012264

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18873170

Country of ref document: EP

Kind code of ref document: A1