WO2019088001A1 - 熱電素子、発電装置、及び熱電素子の製造方法 - Google Patents
熱電素子、発電装置、及び熱電素子の製造方法 Download PDFInfo
- Publication number
- WO2019088001A1 WO2019088001A1 PCT/JP2018/040032 JP2018040032W WO2019088001A1 WO 2019088001 A1 WO2019088001 A1 WO 2019088001A1 JP 2018040032 W JP2018040032 W JP 2018040032W WO 2019088001 A1 WO2019088001 A1 WO 2019088001A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode layer
- stacked
- wiring
- thermoelectric element
- laminated
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 38
- 238000010248 power generation Methods 0.000 title claims abstract description 20
- 239000000463 material Substances 0.000 claims abstract description 54
- 239000002105 nanoparticle Substances 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims description 20
- 239000000758 substrate Substances 0.000 claims description 15
- 238000010030 laminating Methods 0.000 claims description 12
- 238000012545 processing Methods 0.000 claims description 6
- 230000000149 penetrating effect Effects 0.000 claims description 3
- 238000003475 lamination Methods 0.000 abstract description 18
- 230000006866 deterioration Effects 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 238000000605 extraction Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000002102 nanobead Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- -1 polyethylene terephthalate Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 239000003870 refractory metal Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- BGHCVCJVXZWKCC-UHFFFAOYSA-N tetradecane Chemical compound CCCCCCCCCCCCCC BGHCVCJVXZWKCC-UHFFFAOYSA-N 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J45/00—Discharge tubes functioning as thermionic generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N11/00—Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N3/00—Generators in which thermal or kinetic energy is converted into electrical energy by ionisation of a fluid and removal of the charge therefrom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N15/00—Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
Definitions
- the present invention relates to a thermoelectric element that converts thermal energy into electrical energy, a power generation device, and a method of manufacturing the thermoelectric element.
- thermoelectric elements that generate electrical energy using thermal energy (absolute temperature) has been actively conducted.
- a thermoelectric element disclosed in Patent Document 1 has been proposed.
- Such a thermoelectric element is expected to be used in various applications as compared with a configuration in which electrical energy is generated using a temperature difference given to an electrode.
- thermoelectric device comprising: insulating spherical nanobeads, wherein a work function of the emitter electrode layer is smaller than a work function of the collector electrode layer, and a particle diameter of the spherical nanobeads is 100 nm or less.
- Patent No. 6147901 gazette
- thermoelectric element is used as a power generation device
- a configuration (laminated body) in which electrode portions are stacked is required in order to increase the obtained current and voltage.
- thermoelectric element disclosed in Patent Document 1 discloses a configuration in which terminal electrodes connecting the respective electrode layers are provided on the side surfaces of the laminate. For this reason, in the manufacturing process of the electric power generating apparatus using a laminated body, it is mentioned as a concern that a terminal electrode tends to deteriorate and a characteristic is not stabilized. From the above-mentioned circumstances, it is desirable to realize a thermoelectric element that can obtain stable characteristics.
- the present invention has been made in view of the above-mentioned problems, and an object thereof is to provide a thermoelectric element, a power generator, and a method of manufacturing the thermoelectric element that can obtain stable characteristics. .
- thermoelectric element for converting thermal energy into electrical energy, comprising: a first laminated portion; and a second laminated portion laminated on the first laminated portion.
- the first stacked portion and the second stacked portion are formed along the stacking direction, a base having a main surface intersecting with the stacking direction of the stacked body, a wire provided in the base, A work function which is provided between the first electrode layer and the wiring, which is in contact with the wiring in the base material and the first electrode layer provided apart from the wiring, and which is different from the first electrode layer And an intermediate portion provided in the base material and provided in contact with the first electrode layer and the second electrode layer, and including nanoparticles.
- the first electrode layer of the first stacked portion is in contact with the wiring of the second stacked portion. And wherein the door.
- thermoelectric element according to a second aspect of the present invention is characterized in that in the first aspect, the first electrode layer of the first laminated portion is in contact with the base of the second laminated portion.
- thermoelectric element in the first invention or the second invention, the wiring, the first electrode layer, the second electrode layer, and the intermediate portion are respectively separated in a first direction intersecting the stacking direction. , And extend in a second direction intersecting the stacking direction and the first direction.
- the laminated body has a lead-out portion stacked in the uppermost layer, and the lead-out portion has a main surface intersecting with the laminating direction. And a lead-out wiring provided in the lead-out base and electrically connected to the wiring of the first laminated portion.
- a power generation device is a power generation device for converting thermal energy into electric energy, comprising: a first stacked portion; and a second stacked portion stacked on the first stacked portion. And a first wiring and a second wiring connected to the stacked body, wherein the first stacked portion and the second stacked portion have a main surface having a main surface intersecting the stacking direction of the stacked body, A wire provided in the base, a first electrode layer spaced apart from the wire along the stacking direction, and a contact with the wire in the base, the first electrode layer and the first electrode layer A second electrode layer provided between the wiring and having a work function different from that of the first electrode layer, provided in the substrate, and in contact with the first electrode layer and the second electrode layer And an intermediate portion including nanoparticles, and each of the first laminated portions includes Electrode layer is characterized by contacting the wire with the second laminate.
- a method of manufacturing a thermoelectric element is a method of manufacturing a thermoelectric element that converts thermal energy into electrical energy, and the first step of processing a base material to form a first laminated portion and a second laminated portion And a second step of forming a laminate by laminating the second laminate portion on the first laminate portion, and the first step includes a laminating direction of the laminate of the base.
- the second step includes the step of forming an intermediate portion including nanoparticles in the recess, and the first product Intermediate portion formed in the recess parts is characterized in that contact with the first electrode layer formed on the second major surface of the second laminate.
- thermoelectric element according to the seventh invention is characterized in that, in the sixth invention, after the second laminated portion is laminated on the first laminated portion, the intermediate portion is formed. I assume.
- thermoelectric element according to the eighth invention is characterized in that, in the sixth invention, after the formation of the intermediate portion, the second laminated portion is laminated on the first laminated portion. I assume.
- the second step may be performed before the second stacked portion is stacked on the first stacked portion.
- the base material may be divided between the first laminated portion and the second laminated portion.
- the second step includes laminating the second laminated portion on the first laminated portion,
- the base material may be divided between the first laminated portion and the second laminated portion.
- the wiring and the intermediate portion are provided in the base material. For this reason, the wiring which electrically connects each laminated part is provided in the inside of a laminated body. As a result, deterioration of the wiring can be suppressed in the manufacturing process of the power generation apparatus, and stable characteristics can be obtained.
- the first electrode layer of the first stacked portion is in contact with the wiring of the second stacked portion. That is, there is no need to separately provide a configuration in order to electrically connect each stacked portion. For this reason, the contact resistance accompanying the electrical connection of each structure can be minimized. This makes it possible to increase the amount of electrical energy generated by the thermoelectric element.
- the first electrode layer of the first laminate portion is in contact with the base of the second laminate portion. For this reason, the thickness of a layered product can be restrained only to the thickness of a substrate. This makes it possible to miniaturize the thermoelectric element.
- a plurality of intermediate portions and the like are provided separately in the first direction. For this reason, a plurality of independent intermediate portions and the like can be formed in a single base material. This makes it possible to achieve further miniaturization of the thermoelectric element.
- the laminate has the lead-out portion laminated on the uppermost layer. Therefore, it is possible to easily electrically connect each electrode layer of the stacked portion stacked below the lead portion and the external wiring. Thereby, the external wiring can be easily connected to the laminate, and the workability can be improved.
- the wiring and the intermediate portion are formed in the base material. For this reason, the wiring which connects each electrode layer is formed in the inside of a laminated body. As a result, deterioration of the wiring can be suppressed in the manufacturing process of the power generation apparatus, and stable characteristics can be obtained.
- the intermediate portion formed in the concave portion of the first stacked portion is in contact with the first electrode layer formed on the second main surface of the second stacked portion. That is, there is no need to separately provide a configuration in order to electrically connect each stacked portion. For this reason, the contact resistance accompanying the electrical connection of each structure can be minimized. This makes it possible to increase the amount of electrical energy generated by the thermoelectric element.
- the intermediate portion is formed. For this reason, an intermediate part can be formed in the state which fixed each lamination part. As a result, it is possible to suppress the deterioration of the intermediate portion accompanying the lamination of the laminated portions.
- the second laminated portion is laminated on the first laminated portion. For this reason, the time which forms an intermediate part can be shortened. This makes it possible to shorten the time in the manufacturing process.
- the base material between the first laminated portion and the second laminated portion is divided. For this reason, the lamination position which laminates each lamination part can be set up with sufficient accuracy. This makes it possible to obtain more stable characteristics.
- the base material between the first laminated portion and the second laminated portion is divided. For this reason, each base material can be divided
- FIG.1 (a) is a schematic cross section which shows an example of a structure of the electric power generating apparatus in embodiment, and a thermoelectric element
- FIG.1 (b) is a schematic plan view which shows an example of a lamination
- FIG. 2 is a schematic cross section which shows the 1st modification of the 1st electrode layer in an example of a structure of the electric power generating apparatus in this embodiment, and a thermoelectric element.
- FIG. 3 is a flowchart showing an example of a method of manufacturing the thermoelectric element in the embodiment.
- Fig. 4 (a) is a schematic cross-sectional view showing a recess formed in the base
- Fig. 4 (b) is a schematic cross-sectional view showing a wiring formed in the base.
- Fig. 4 is a schematic cross-sectional view showing a first electrode layer formed on the second main surface
- Fig. 4 (d) is a schematic cross-sectional view showing a second electrode layer formed in the recess.
- Fig.5 (a) is a schematic cross section which shows the divided
- FIG.5 (b) is a schematic cross section which shows each laminated part laminated
- FIGS. 6A to 6D are flowcharts showing first to fourth modified examples of the method of manufacturing a thermoelectric element in the present embodiment.
- thermoelectric element and a power generation device according to an embodiment of the present invention will be described with reference to the drawings.
- the stacking direction of the stacked portions 20 is referred to as a stacking direction Z
- directions intersecting with the stacking direction Z are referred to as a first direction X and a second direction Y, respectively.
- FIG.1 (a) is a schematic cross section which shows the electric power generating apparatus 100 and the thermoelectric element 1 in this embodiment
- FIG.1 (b) is a schematic plan view which shows an example of the laminated part 20. As shown in FIG.
- the power generation device 100 includes the thermoelectric element 1, a first wire 101, and a second wire 102.
- the power generation device 100 supplies the current generated in the thermoelectric element 1 to the load R connected to the first wiring 101 and the second wiring 102.
- the power generation device 100 is provided, for example, in a mobile device such as an IoT (Internet of Things) device, a wearable device, or a self-supporting sensor terminal in addition to application to solar power generation, and can be used as a substitute or supplement for a battery. .
- IoT Internet of Things
- the thermoelectric element 1 can convert thermal energy generated using, for example, a central processing unit (CPU) of an electronic device, an engine of an automobile, a production facility of a factory, or the like as a heat source into electrical energy to generate current.
- the thermoelectric element 1 includes a laminate 2.
- the stacked body 2 has a plurality of stacked portions 20 stacked one on another.
- the second stacked unit 20-2 is stacked on the first stacked unit 20-1
- the third stacked unit 20-3 is stacked on the second stacked unit 20-2.
- the number of the laminated parts 20 which the laminated body 2 has is arbitrary.
- the first stacked unit 20-1, the second stacked unit 20-2, and the third stacked unit 20-3 are stacked in this order, and the leader 20-n (nth stacked unit) is stacked on the uppermost layer. .
- Each stacked unit 20 excluding the lead-out unit 20-n includes a base 21, a wire 22, a first electrode layer 23, a second electrode layer 24, and an intermediate portion 25.
- the wire 22, the first electrode layer 23, the second electrode layer 24, and the intermediate portion 25 are disposed one in one base 21 and, for example, are separated in one of the first direction X or the second direction Y, respectively. It may be arranged in plurality and extend to the other.
- the base 21 has a major surface 21 a intersecting with the stacking direction Z.
- the thickness of the base 21 is, for example, 10 ⁇ m or more and 2 mm or less.
- the thickness of the substrate 21 is smaller than the width of the substrate 21 in the first direction X and smaller than the length of the substrate 21 in the second direction Y.
- the base 21 preferably has an insulating property and also has excellent properties such as smoothness, heat resistance, or low thermal expansion.
- the substrate 21 is, for example, a film using a thin plate-like material such as silicon, glass, or resin, and PET (polyethylene terephthalate), PC (polycarbonate), or polyimide is used as the material, for example, single crystal silicon Or glass may be used.
- the wiring 22 is provided in the base 21.
- the wiring 22 is exposed from the second main surface, and the exposed surface of the wiring 22 is the second main surface. It is formed on the same plane.
- the thickness of the wiring 22 is substantially equal to, for example, the thickness of the base 21.
- the wiring 22 preferably has conductivity, and also has excellent characteristics such as embedding, heat resistance, or low thermal expansion.
- nickel, copper, silver, gold, tungsten, or titanium can be used as the wiring 22.
- the first electrode layer 23 is provided to be separated from the wiring 22 provided in the same base material 21 along the stacking direction Z.
- the first electrode layer 23 is in contact with the wiring 22 provided in the base 21 stacked on the top. That is, the first electrode layer 23 of the first stacked unit 20-1 is in contact with the wiring 22 of the second stacked unit 20-2.
- the first electrode layer 23 of the first stacked unit 20-1 may be in contact with the base 21 of the second stacked unit 20-2.
- the second electrode layer 24 is in contact with the wiring 22 in the base 21 and is provided between the first electrode layer 23 and the wiring 22. The second electrode layer 24 is separated from the first electrode layer 23.
- the thicknesses of the first electrode layer 23 and the second electrode layer 24 are, for example, 1 nm or more and 50 nm or less.
- the distance (interelectrode gap) between the first electrode layer 23 and the second electrode layer 24 is, for example, 10 ⁇ m or less, preferably 10 nm or more and 100 nm or less.
- the first electrode layer 23 has a work function different from that of the second electrode layer 24.
- the work function of the first electrode layer 23 is smaller than the work function of the second electrode layer 24.
- the first electrode layer 23 is described as a cathode (cathode) and the second electrode layer 24 is described as an anode (anode) in the present embodiment, the first electrode layer 23 is an anode and the second electrode layer 24 is a cathode. It is also good. In this case, the work function of the first electrode layer 23 is larger than the work function of the second electrode layer 24.
- first electrode layer 23 when tungsten (work function: 4.55 eV) is used as the first electrode layer 23, platinum (work function: 5.65 eV) is used as the second electrode layer 24.
- first electrode layer 23 and the second electrode layer 24 in addition to aluminum and titanium, a multilayer film may be used, and a material to be used may be arbitrarily selected according to the work function.
- formation of the 1st electrode layer 23 and the 2nd electrode layer 24 is realizable by performing vapor deposition of metal material, sputtering, or the inked metal material by methods, such as screen printing and inkjet application.
- the intermediate portion 25 is provided in the base 21 and is provided in contact with the first electrode layer 23 and the second electrode layer 24.
- the middle portion 25 contains, for example, nanoparticles and a solvent.
- the middle part 25 shows, for example, a state in which the solvent in which the nanoparticles are dispersed is filled.
- the middle part 25 may not contain, for example, a solvent, and may indicate a state in which only the nanoparticles are loaded.
- the nanoparticle has a work function between the work function of the first electrode layer 23 and the work function of the second electrode layer 24, and has a work function of, for example, 3.0 eV or more and 5.5 eV or less.
- the nanoparticles for example, at least one of gold and silver is used, and for example, a material satisfying the above-described work function range may be used.
- a particle diameter which is 1/10 or less of the gap between electrodes is used, specifically, a particle diameter of 2 nm or more and 10 nm or less is used, for example, particles having an average particle diameter (D50) of 3 nm or more and 8 nm or less Diameters may be used.
- the average particle diameter can be measured by a particle size distribution measuring instrument (for example, Nanotrac Wave II-EX 150 manufactured by Microtrac BEL, etc.) using a laser diffraction scattering method.
- the nanoparticles have, for example, an insulating film provided on the surface.
- an insulating film for example, a metal oxide such as silicon oxide or alumina is used.
- an organic compound such as alkanethiol or a semiconductor such as silicon may be used.
- the thickness of the insulating film is, for example, 5 nm or more and 100 nm or less.
- a liquid having a boiling point of 60 ° or more is used, and for example, at least one of an organic solvent and water is used.
- an organic solvent for example, methanol, ethanol, toluene, xylene, alkanethiol, tetradecane and the like are used.
- thermoelectric element 1 when thermal energy is applied to the thermoelectric element 1, thermal electrons are emitted from the first electrode layer 23 and the second electrode layer 24 of each stacked unit 20 toward the intermediate unit 25. The emitted thermal electrons are propagated to the first electrode layer 23 or the second electrode layer 24 via the nanoparticles dispersed in the intermediate portion 25.
- the amount of thermions emitted depends on the work function of each of the electrode layers 23 and 24, and the material having a smaller work function tends to be emitted more. That is, more thermal electrons are emitted from the first electrode layer 23 whose work function is smaller than that of the second electrode layer 24. For this reason, compared to the amount of thermoelectrons moving from the second electrode layer 24 to the first electrode layer 23 among all thermions emitted to the intermediate portion 25, from the first electrode layer 23 to the second electrode layer 24. The amount of moving thermions tends to be large. As a result, thermal energy is converted into electrical energy, and a current from the second electrode layer 24 to the first electrode layer 23 is generated.
- the degree of thermions emitted from the first electrode layer 23 mainly depends on the heat energy and also depends on the work function of the first electrode layer 23 and the work function of the second electrode layer 24 and the interelectrode gap . Therefore, by shortening the distance between the first electrode layer 23 and the second electrode layer 24, it is possible to increase the amount of generation of electrical energy.
- the first electrode layer 23 be formed of one layer other than refractory metal.
- refractory metals refer to niobium, molybdenum, tantalum, tungsten and rhenium.
- any of carbon-based materials such as aluminum, silicon, lanthanum hexaboride (LaB 6 ), or graphene is used, for example.
- aluminum is excellent in processability
- silicon is excellent in productivity
- lanthanum hexaboride has a low work function, so that materials can be selected according to the application.
- any of the materials described above can be used under high temperature. This makes it possible to further increase the amount of electrical energy generated.
- the lead portion 20-n has a lead base 21n and a lead wire 22n, and may have, for example, the upper lead electrode layer 26.
- the lead portion 20-n does not have the middle portion 25.
- the lead-out base 21 n has a main surface intersecting with the stacking direction Z.
- the thickness of the lead-out substrate 21n, the configuration of the material, and the like are the same as those of the substrate 21.
- the lead-out wiring 22n is provided in the lead-out base material 21n, and is electrically connected to the wiring 22 of each stacked unit 20 (for example, the first stacked unit 20-1).
- the lead-out wiring 22n penetrates the lead-out base 21n, for example, along the stacking direction Z.
- the thickness, material, and the like of the lead-out wiring 22 n are the same as the wiring 22.
- the lead interconnection 22 n may be provided thicker than the interconnection 22.
- the upper layer lead-out electrode layer 26 is in contact with the lead-out wiring 22 n and, for example, in contact with the first wiring 101.
- the upper layer lead-out electrode layer 26 may be provided on the main surface of the lead-out base 21n or in the lead-out base 21n.
- the thickness, the material, and the like of the upper layer extraction electrode layer 26 are the same as those of the electrode layers 23 and 24.
- the upper extraction electrode layer 26 may be provided thicker than each electrode layer 23 and 24.
- the stacked body 2 has, for example, a lower layer lead-out electrode layer 27 provided on the surface of the lowermost layer (the second main surface of the first stacked portion 20-1).
- the lower layer lead-out electrode layer 27 is in contact with the wiring 22 of the first stacked unit 20-1 and, for example, in contact with the second wiring 102.
- the thickness and the material configuration of the lower layer extraction electrode layer 27 are the same as those of the electrode layers 23 and 24.
- the wiring 22 and the intermediate portion 25 are provided in the base 21.
- the wiring 22 which electrically connects each stacked unit 20 is provided inside the stacked body 2.
- deterioration of the wiring 22 can be suppressed in the manufacturing process of the power generation apparatus 100 and the like, and stable characteristics can be obtained.
- the first electrode layer 23 of the first stacked unit 20-1 is in contact with the wiring 22 of the second stacked unit 20-2. That is, in order to electrically connect each stacked unit 20, there is no need to separately provide a configuration. For this reason, the contact resistance accompanying the electrical connection of each structure can be minimized. As a result, the amount of electrical energy generated by the thermoelectric element 1 can be increased.
- the electrode layers 23 and 24 are provided in each stacked portion. Therefore, power generation units using the respective electrode layers 23 and 24 can be connected in series. Thereby, it is possible to arbitrarily set the voltage to which the thermoelectric element 1 can be applied.
- the first electrode layer 23 of the first stacked unit 20-1 is in contact with the base 21 of the second stacked unit 20-2. Therefore, the thickness of the laminate 2 can be limited to the thickness of the base 21 only. Thereby, the thermoelectric element 1 can be miniaturized.
- a plurality of intermediate portions 25 and the like are provided separately in the first direction X, respectively. Therefore, a plurality of independent intermediate portions 25 and the like can be formed in a single base material 21. This makes it possible to achieve further miniaturization of the thermoelectric element 1. Also, the electrode layers 23 and 24 sandwiching the plurality of independent intermediate portions 25 can be connected in parallel. As a result, the current can be increased, that is, the output can be increased.
- the stacked body 2 includes the lead portion 20-n stacked in the uppermost layer. Therefore, it is possible to easily electrically connect the wirings 22 of the stacked unit 20 stacked below the lead unit 20-n and the external wirings such as the first wiring 101 and the like. As a result, it is possible to easily connect the first wiring 101 and the like to the laminate 2 and to improve the workability.
- the side surface of the first electrode layer 23 may be separated from the base material 21 and in contact with the intermediate portion 25. Even in such a configuration, stable characteristics can be obtained.
- FIG. 3 is a flowchart showing an example of a method of manufacturing the thermoelectric element 1 in the present embodiment.
- FIG.4 and FIG.5 is a schematic cross section which shows an example of the manufacturing method of the thermo-element 1 in this embodiment.
- the method of manufacturing the thermoelectric element 1 in the present embodiment includes a first step S110 and a second step S120.
- the base material 21 is processed to form a plurality of stacked units 20 (for example, a first stacked unit 20-1, a second stacked unit 20-2,..., A lead-out unit 20-n).
- a first stacked unit 20-1 for example, a first stacked unit 20-1, a second stacked unit 20-2,..., A lead-out unit 20-n.
- the first step S110 includes, for example, steps S111 to S114.
- the stacked units 20 are stacked to form the stacked body 2.
- the second stacked unit 20-2 is stacked on the first stacked unit 20-1 and stacked in order up to the lead-out unit 20-n.
- the second process S120 includes, for example, steps S121 to S123.
- Step S111 In 1st process S110, as shown to Fig.4 (a), the recessed part 21c is formed in the main surface 21a (1st main surface) of the base material 21 (step S111). A plurality of recesses 21 c are formed spaced apart in the first direction X and extend in the second direction Y. At this time, for example, the recess 21c is not formed in a portion (not shown) in which the lead interconnection 22n is formed.
- the recess 21 c is formed by, for example, a thermal transfer process using a metal mold.
- the depth of the recess 21c is, for example, 50 nm to 500 nm
- the width in the first direction X is preferably 10 times to 1000 times the depth.
- the width is preferably 1 ⁇ m to 100 ⁇ m.
- the wiring 22 penetrating from the bottom surface of the recess 21c to the main surface 21b (second main surface) is formed (step S112).
- the wiring 22 is formed on the bottom of each recess 21 c and extends in the second direction Y.
- a plurality of the wirings 22 may be formed spaced apart in the second direction Y.
- the lead wire 22n may be formed simultaneously with the wire 22.
- the lead interconnection 22 n is formed at a position separated from the interconnection 22 along the first direction X.
- the lead wiring 22 n is formed to penetrate the base 21.
- the wiring 22 is formed, for example, by forming a through hole by laser processing on the bottom surface of the recess 21 c and embedding a metal by a plating method. At this time, metal is embedded to such an extent that the recess 21 c is not filled.
- the first electrode layer 23 in contact with the wiring 22 is formed on the second major surface 21b (step S113).
- the first electrode layers 23 are formed in contact with the respective wirings 22 in a state of being separated from one another.
- the first electrode layer 23 may be formed in contact with the lead interconnection 22n.
- the first electrode layer 23 is formed by, for example, a vapor deposition method or an inkjet method in addition to the spray printing method.
- the width of the first electrode layer 23 in the first direction X is wider than the width of the wiring 22 and equal to the width of the recess 21 c.
- Step S114 Next, as shown in FIG. 4D, the second electrode layer 24 in contact with the wiring 22 is formed in the recess 21c (step S114).
- the second electrode layer 24 is formed apart from each of the main surfaces 21a and 21b. Note that the second electrode layer 24 may be formed before the first electrode layer 23 is formed. Further, the upper extraction electrode layer 26 may be formed simultaneously with the second electrode layer 24. In this case, the upper layer lead-out electrode layer 26 is in contact with the lead-out wiring 22 n.
- the first electrode layer 23 is formed by, for example, a vapor deposition method or an inkjet method in addition to the spray printing method.
- the width of the second electrode layer 24 in the first direction X is equal to the width of the first electrode layer 23.
- the base material 21 may be divided (step S121).
- the base 21 is divided in the first direction X, whereby the plurality of stacked portions 20 are separated (in FIG. 5A, the first stacked portion 20-1 and the second stacked portion 20-2).
- the base 21 is divided at positions separated from the wiring 22, the first electrode layer 23, and the second electrode layer 24.
- the portion where the lead interconnection 22n and the like are formed may be divided to form the lead portion 20-n.
- Step S122> the stacked units 20 are stacked (step S122).
- the second stacked portion 20-2 is stacked on the first stacked portion 20-1
- the third stacked portion 20-3 is stacked on the second stacked portion 20-2. It laminates, and laminates each lamination part 20 in order.
- the first electrode layer 23 formed in the stacked unit 20 stacked on the upper side is disposed in the recess 21 c of each stacked unit 20.
- the first electrode layer 23 is disposed apart from the second electrode layer 24 and an unfilled portion is left in the recess 21 c.
- the lead-out portion 20-n may be stacked on the stacked top layer of the stacked portions 20.
- the first electrode layer 23 formed on the second major surface 21 b of the first stacked unit 20-1 is used as the lower layer lead electrode layer 27.
- each stacked unit 20 includes the first main surface 21a of the lower base material 21 and the upper base material 21. It is laminated
- Step S123> the intermediate portion 25 including the nanoparticles and the solvent is formed in the recess 21 c (step S123).
- the intermediate portion 25 is formed between the first electrode layer 23 and the second electrode layer 24 and is filled in the unfilled portion of the recess 21 c.
- the intermediate portion 25 can be filled in the recess 21c by capillary action.
- the intermediate portion 25 is filled from the side surface of the laminate 2 in the second direction Y into the recess 21 c formed in each laminate portion 20. Thereafter, for example, by covering the side surface of the laminate 2 with an insulating material or the like, the filling failure and the like of the intermediate portion 25 can be suppressed.
- thermoelectric element 1 in the present embodiment is formed through the steps described above.
- the 1st wiring 101 and the 2nd wiring 102 connected to the formed laminated body 2 are formed, and the load R is connected to the 1st wiring 101 and the 2nd wiring 102, and the electric power generating apparatus 100 in this embodiment is made. It can be formed.
- the wiring 22 and the intermediate portion 25 are formed in the base 21. For this reason, the wiring 22 which electrically connects each stacked unit 20 is formed inside the stacked body 2. As a result, deterioration of the wiring 22 can be suppressed in the manufacturing process of the power generation apparatus 100 and the like, and stable characteristics can be obtained.
- the intermediate portion 25 formed in the recess 21c of the first stacked portion 20-1 is the first electrode layer 23 formed on the second major surface 21b of the second stacked portion 20-2.
- the intermediate portion 25 is formed after the second stacked portion 20-2 is stacked on the first stacked portion 20-1. That is, after laminating each stacked portion 20 (step S122), the intermediate portion 25 is formed (step S123). For this reason, the intermediate part 25 can be formed in the state which fixed each lamination
- the base material 21 is divided (step S121) before laminating each stacked unit 20 (step S122). For this reason, the lamination position which laminates each lamination part 20 can be set up with sufficient accuracy. This makes it possible to obtain more stable characteristics.
- thermoelectric element 1 it is not necessary to use an etching method, for example, as a method of forming the recess 21 c. For this reason, it is possible to realize the reduction of equipment investment, the reduction of the manufacturing cost, and the improvement of the task associated with the manufacture of the thermoelectric element 1.
- the recess 21 c can be formed by a fine transfer method using a mold. Therefore, the processing area can be easily expanded without the need to use a vacuum process. In addition, it becomes possible to cope with continuous production processes such as roll-to-roll.
- thermoelectric element 1 by using a resin film as the base material 21, base materials 21 comrades can be bonded easily and the space which fills the intermediate part 25 can be controlled easily. Therefore, in addition to the improvement of the productivity of the thermoelectric element 1 and the reduction of the manufacturing cost, it becomes possible to suppress the characteristic variation of the thermoelectric element 1.
- FIG. 6 is a flowchart showing first to fourth modified examples of the method of manufacturing the thermoelectric element 1 in the present embodiment.
- the stacked portions 20 may be stacked (step S122).
- the intermediate portion 25 can be formed using, for example, a continuous coating method such as roll-to-roll. For this reason, the time which forms intermediate part 25 can be shortened. This makes it possible to shorten the time in the manufacturing process.
- the intermediate portion 25 is formed before laminating the laminated portions 20, the intermediate portion 25 can be formed only by filling the nanoparticles without using a solvent. Thereby, it becomes possible to suppress deterioration of layered product 2 accompanying vaporization of a solvent, etc.
- each base material 21 can be divided
- Thermoelectric element 2 Laminated body 20: Laminated part 20-1: First laminated part 20-2: Second laminated part 20-3: Third laminated part 20-n: Leaded part 21: Substrate 21a: First Principal surface 21b: Second principal surface 21c: Recess 21n: Lead base 22: Wiring 22n: Lead wiring 23: First electrode layer 24: Second electrode layer 25: Middle portion 26: Upper layer lead electrode layer 27: Lower layer lead electrode Layer 100: power generation device 101: first wiring 102: second wiring R: load S110: first step S120: second step X: first direction Y: second direction Z: stacking direction
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
【課題】安定した特性を得られる熱電素子、発電装置、及び熱電素子の製造方法を提供する。 【解決手段】第1積層部20-1と、第1積層部20-1の上に積層された第2積層部20-2と、を有する積層体2を備え、第1積層部20-1及び第2積層部20-2は、積層体2の積層方向Zと交わる主面21aを有する基材21と、基材21内に設けられた配線22と、積層方向Zに沿って、配線22と離間して設けられた第1電極層23と、基材21内において配線22と接し、第1電極層23と配線22との間に設けられ、第1電極層23とは異なる仕事関数を有する第2電極層24と、基材21内に設けられ、第1電極層23と第2電極層24との間に接して設けられ、ナノ粒子を含む中間部25と、をそれぞれ有し、第1積層部20-1の有する第1電極層23は、第2積層部20-2の有する配線22に接することを特徴とする。
Description
本発明は、熱エネルギーを電気エネルギーに変換する熱電素子、発電装置、及び熱電素子の製造方法に関する。
近年、熱エネルギー(絶対温度)を利用して電気エネルギーを生成する熱電素子の開発が盛んに行われている。特に、電極の有する仕事関数の差分を利用した電気エネルギーの生成に関し、例えば特許文献1に開示された熱電素子等が提案されている。このような熱電素子は、電極に与える温度差を利用して電気エネルギーを生成する構成に比べて、様々な用途への利用が期待されている。
特許文献1では、エミッタ電極層と、コレクタ電極層と、前記エミッタ電極層及び前記コレクタ電極層の表面に分散して配置され、前記エミッタ電極層及び前記コレクタ電極層をサブミクロン間隔で離間する電気絶縁性の球状ナノビーズとを備え、前記エミッタ電極層の仕事関数は前記コレクタ電極層の仕事関数よりも小さく、前記球状ナノビーズの粒子径は100nm以下である、熱電素子が開示されている。
ここで、熱電素子を発電装置として用いる場合、得られる電流や電圧を高くするために、電極部分を積層した構成(積層体)が要求される。
この点、特許文献1に開示された熱電素子では、積層体の側面に各電極層をつなぐ端子電極が設けられる構成が開示されている。このため、積層体を用いた発電装置の製造工程において、端子電極が劣化し易く、特性が安定しないことが懸念として挙げられる。上述した事情により、安定した特性を得られる熱電素子の実現が望まれている。
そこで本発明は、上述した問題に鑑みて案出されたものであり、その目的とするところは、安定した特性を得られる熱電素子、発電装置、及び熱電素子の製造方法を提供することにある。
第1発明に係る熱電素子は、熱エネルギーを電気エネルギーに変換する熱電素子であって、第1積層部と、前記第1積層部の上に積層された第2積層部と、を有する積層体を備え、前記第1積層部及び前記第2積層部は、前記積層体の積層方向と交わる主面を有する基材と、前記基材内に設けられた配線と、前記積層方向に沿って、前記配線と離間して設けられた第1電極層と、前記基材内において前記配線と接し、前記第1電極層と前記配線との間に設けられ、前記第1電極層とは異なる仕事関数を有する第2電極層と、前記基材内に設けられ、前記第1電極層と前記第2電極層との間に接して設けられ、ナノ粒子を含む中間部と、をそれぞれ有し、前記第1積層部の有する前記第1電極層は、前記第2積層部の有する前記配線に接することを特徴とする。
第2発明に係る熱電素子は、第1発明において、前記第1積層部の有する前記第1電極層は、前記第2積層部の有する前記基材に接することを特徴とする。
第3発明に係る熱電素子は、第1発明又は第2発明において、前記配線、前記第1電極層、前記第2電極層、及び前記中間部は、前記積層方向と交わる第1方向にそれぞれ離間して複数配置され、前記積層方向及び前記第1方向と交わる第2方向に延在すること を特徴とする。
第4発明に係る熱電素子は、第1発明~第3発明の何れかにおいて、前記積層体は、最上層に積層された引出部を有し、前記引出部は、前記積層方向と交わる主面を有する引出基材と、前記引出基材内に設けられ、前記第1積層部の有する前記配線と電気的に接続された引出配線と、を有することを特徴とする。
第5発明に係る発電装置は、熱エネルギーを電気エネルギーに変換する発電装置であって、第1積層部と、前記第1積層部の上に積層された第2積層部と、を有する積層体と、前記積層体と接続された第1配線及び第2配線と、を備え、前記第1積層部及び前記第2積層部は、前記積層体の積層方向と交わる主面を有する基材と、前記基材内に設けられた配線と、前記積層方向に沿って、前記配線と離間して設けられた第1電極層と、前記基材内において前記配線と接し、前記第1電極層と前記配線との間に設けられ、前記第1電極層とは異なる仕事関数を有する第2電極層と、前記基材内に設けられ、前記第1電極層と前記第2電極層との間に接して設けられ、ナノ粒子を含む中間部と、をそれぞれ有し、前記第1積層部の有する前記第1電極層は、前記第2積層部の有する前記配線に接することを特徴とする。
第6発明に係る熱電素子の製造方法は、熱エネルギーを電気エネルギーに変換する熱電素子の製造方法であって、基材を加工して第1積層部及び第2積層部を形成する第1工程と、前記第1積層部の上に前記第2積層部を積層して積層体を形成する第2工程と、を備え、前記第1工程は、前記基材の有する前記積層体の積層方向と交わる第1主面に凹部を形成する工程と、前記凹部の底面から前記第1主面に対向する第2主面まで貫通する配線を形成する工程と、前記第2主面上に、前記配線と接する第1電極層を形成する工程と、前記凹部内に、前記配線と接し、前記第1電極層とは異なる仕事関数を有する第2電極層を形成する工程と、を有し、前記第2工程は、前記凹部に、ナノ粒子を含む中間部を形成する工程を有し、前記第1積層部の前記凹部に形成された中間部は、前記第2積層部の前記第2主面に形成された前記第1電極層に接することを特徴とする。
第7発明に係る熱電素子の製造方法は、第6発明において、前記第2工程は、前記第1積層部の上に前記第2積層部を積層したあと、前記中間部を形成することを特徴とする。
第8発明に係る熱電素子の製造方法は、第6発明において、前記第2工程は、前記中間部を形成したあと、前記第1積層部の上に前記第2積層部を積層することを特徴とする。
第9発明に係る熱電素子の製造方法は、第6発明~第8発明の何れかにおいて、前記第2工程は、前記第1積層部の上に前記第2積層部を積層するまえに、前記第1積層部と前記第2積層部との間における前記基材を分割することを特徴とする。
第10発明に係る熱電素子の製造方法は、第6発明~第8発明の何れかにおいて、前記第2工程は、前記第1積層部の上に前記第2積層部を積層したあと、前記第1積層部と前記第2積層部との間における前記基材を分割することを特徴とする。
第1発明~第5発明によれば、基材内に配線及び中間部が設けられる。このため、各積層部を電気的に接続する配線が、積層体の内部に設けられる。これにより、発電装置の製造工程等において、配線が劣化することを抑制でき、安定した特性を得ることが可能となる。
また、第1発明~第5発明によれば、第1積層部の有する第1電極層は、第2積層部の有する配線に接する。すなわち、各積層部を電気的に接続するために、構成を別途設ける必要が無い。このため、各構成の電気的接続に伴う接触抵抗を最小限に抑えることができる。これにより、熱電素子の電気エネルギーの発生量を増加させることが可能となる。
特に、第2発明によれば、第1積層部の有する第1電極層は、第2積層部の有する基材に接する。このため、積層体の厚さを、基材の厚さのみに抑えることができる。これにより、熱電素子の小型化を図ることが可能となる。
特に、第3発明によれば、中間部等は、第1方向に離間して複数設けられる。このため、単一の基材内に複数の独立した中間部等を形成することができる。これにより、熱電素子のさらなる小型化を図ることが可能となる。
特に、第4発明によれば、積層体は、最上層に積層された引出部を有する。このため、引出部以下に積層された積層部の各電極層と、外部配線とを電気的に接続することを容易に実現できる。これにより、積層体に外部配線を容易に接続させることができ、作業性の向上を図ることが可能となる。
第6発明~第10発明によれば、基材内に配線及び中間部が形成される。このため、各電極層をつなぐ配線が、積層体の内部に形成される。これにより、発電装置の製造工程等において、配線が劣化することを抑制でき、安定した特性を得ることが可能となる。
また、第6発明~第10発明によれば、第1積層部の凹部に形成された中間部は、第2積層部の第2主面に形成された第1電極層に接する。すなわち、各積層部を電気的に接続するために、構成を別途設ける必要が無い。このため、各構成の電気的接続に伴う接触抵抗を最小限に抑えることができる。これにより、熱電素子の電気エネルギーの発生量を増加させることが可能となる。
特に、第7発明によれば、第1積層部の上に第2積層部を積層したあと、中間部を形成する。このため、各積層部を固定した状態で、中間部を形成することができる。これにより、各積層部の積層に伴う中間部の劣化を抑制することが可能となる。
特に、第8発明によれば、中間部を形成したあと、第1積層部の上に第2積層部を積層する。このため、中間部を形成する時間を短縮することができる。これにより、製造工程における時間の短縮を図ることが可能となる。
特に、第9発明によれば、第1積層部の上に第2積層部を積層するまえに、第1積層部と第2積層部との間における基材を分割する。このため、各積層部を積層する積層位置を精度良く設定することができる。これにより、さらに安定した特性を得ることが可能となる。
特に、第10発明によれば、第1積層部の上に第2積層部を積層したあと、第1積層部と第2積層部との間における基材を分割する。このため、積層体を形成した状態で、一度に各基材を分割することができる。これにより、製造工程における時間の短縮を図ることが可能となる。
以下、本発明の実施形態における熱電素子及び発電装置の一例について、図面を参照しながら説明する。なお、各図において各積層部20の積層される方向を積層方向Zとし、積層方向Zと交わる方向をそれぞれ第1方向X及び第2方向Yとする。
(発電装置100、熱電素子1の構成)
図1を参照して、本実施形態における発電装置100及び熱電素子1の構成の一例について説明する。図1(a)は、本実施形態における発電装置100及び熱電素子1を示す模式断面図であり、図1(b)は、積層部20の一例を示す模式平面図である。
図1を参照して、本実施形態における発電装置100及び熱電素子1の構成の一例について説明する。図1(a)は、本実施形態における発電装置100及び熱電素子1を示す模式断面図であり、図1(b)は、積層部20の一例を示す模式平面図である。
図1に示すように、発電装置100は、熱電素子1と、第1配線101と、第2配線102とを備える。発電装置100は、熱電素子1において生成された電流を、第1配線101及び第2配線102に接続された負荷Rへ供給する。発電装置100は、例えば太陽光発電への応用のほか、例えばIoT(Internet of Things)デバイス、ウェアラブル機器等のモバイル機器又は自立型センサ端末内に設けられ、電池の代替又は補助として用いることができる。
熱電素子1は、例えば電子デバイスのCPU(Central Processing Unit)、自動車のエンジン、工場の生産設備等を熱源として発生した熱エネルギーを、電気エネルギーに変換し、電流を生成することができる。熱電素子1は、積層体2を備える。
<積層体2>
積層体2は、各々積層された複数の積層部20を有する。例えば、第2積層部20-2は、第1積層部20-1の上に積層され、第3積層部20-3は、第2積層部20-2の上に積層される。積層体2の有する積層部20の数は、任意である。図1では、第1積層部20-1、第2積層部20-2、第3積層部20-3の順に積層され、最上層に引出部20-n(第n積層部)が積層される。
積層体2は、各々積層された複数の積層部20を有する。例えば、第2積層部20-2は、第1積層部20-1の上に積層され、第3積層部20-3は、第2積層部20-2の上に積層される。積層体2の有する積層部20の数は、任意である。図1では、第1積層部20-1、第2積層部20-2、第3積層部20-3の順に積層され、最上層に引出部20-n(第n積層部)が積層される。
引出部20-nを除く各積層部20は、基材21と、配線22と、第1電極層23と、第2電極層24と、中間部25とを有する。配線22、第1電極層23、第2電極層24、及び中間部25は、1つの基材21内に1つ配置されるほか、例えば第1方向X又は第2方向Yの一方にそれぞれ離間して複数配置され、他方に延在してもよい。
<基材21>
基材21は、積層方向Zと交わる主面21aを有する。積層方向Zにおいて、基材21の厚さは、例えば10μm以上2mm以下である。基材21の厚さは、第1方向Xにおける基材21の幅よりも小さく、第2方向Yにおける基材21の長さよりも小さい。
基材21は、積層方向Zと交わる主面21aを有する。積層方向Zにおいて、基材21の厚さは、例えば10μm以上2mm以下である。基材21の厚さは、第1方向Xにおける基材21の幅よりも小さく、第2方向Yにおける基材21の長さよりも小さい。
基材21は、絶縁性を有するほか、例えば平滑性、耐熱性、又は低熱膨張性等に優れた特性を有することが好ましい。基材21は、例えば薄板状のシリコンやガラス、又は樹脂等の材料を用いたフィルム状であり、材料としてPET(polyethylene terephthalate)、PC(polycarbonate)、又はポリイミドが用いられるほか、例えば単結晶シリコンやガラスが用いられてもよい。
<配線22>
配線22は、基材21内に設けられる。例えば基材21における主面21a(第1主面)に対向する主面(第2主面)において、配線22は第2主面から露出し、配線22の露出面は、第2主面と同一平面上に形成される。積層方向Zにおいて、配線22の厚さは、例えば基材21の厚さとほぼ同等である。
配線22は、基材21内に設けられる。例えば基材21における主面21a(第1主面)に対向する主面(第2主面)において、配線22は第2主面から露出し、配線22の露出面は、第2主面と同一平面上に形成される。積層方向Zにおいて、配線22の厚さは、例えば基材21の厚さとほぼ同等である。
配線22は、導電性を有するほか、例えば埋め込み性、耐熱性、又は低熱膨張性等に優れた特性を有することが好ましい。配線22として、例えばニッケル、銅、銀、金、タングステン、又はチタンを用いることができる。
<第1電極層23、第2電極層24>
第1電極層23は、積層方向Zに沿って、同一の基材21内に設けられた配線22と離間して設けられる。第1電極層23は、上部に積層された基材21内に設けられた配線22と接する。すなわち、第1積層部20-1の有する第1電極層23は、第2積層部20-2の有する配線22に接する。例えば、第1積層部20-1の有する第1電極層23は、第2積層部20-2の有する基材21に接してもよい。
第1電極層23は、積層方向Zに沿って、同一の基材21内に設けられた配線22と離間して設けられる。第1電極層23は、上部に積層された基材21内に設けられた配線22と接する。すなわち、第1積層部20-1の有する第1電極層23は、第2積層部20-2の有する配線22に接する。例えば、第1積層部20-1の有する第1電極層23は、第2積層部20-2の有する基材21に接してもよい。
第2電極層24は、基材21内において配線22と接し、第1電極層23と配線22との間に設けられる。第2電極層24は、第1電極層23と離間する。
積層方向Zにおいて、第1電極層23及び第2電極層24の厚さは、例えば1nm以上50nm以下である。第1電極層23と、第2電極層24との間の距離(電極間ギャップ)は、例えば10μm以下であり、好ましくは10nm以上100nm以下である。
第1電極層23は、第2電極層24の仕事関数とは異なる仕事関数を有する。本実施形態では、第1電極層23の仕事関数は、第2電極層24の仕事関数よりも小さい。なお、本実施形態において第1電極層23を陰極(カソード)、及び第2電極層24を陽極(アノード)として説明するが、第1電極層23を陽極、及び第2電極層24を陰極としてもよい。この場合、第1電極層23の仕事関数は、第2電極層24の仕事関数よりも大きい。
例えば、第1電極層23としてタングステン(仕事関数:4.55eV)が用いられるとき、第2電極層24として白金(仕事関数:5.65eV)が用いられる。例えば、第1電極層23及び第2電極層24として、アルミニウム、チタンのほか、多層膜が用いられてもよく、仕事関数に応じて用いる材料を任意に選択してもよい。なお、第1電極層23及び第2電極層24の形成は、金属材料の蒸着、スパッタリング、又はインク化した金属材料をスクリーン印刷やインクジェット塗布等の方法で行うことで実現できる。
<中間部25>
中間部25は、基材21内に設けられ、第1電極層23と第2電極層24との間に接して設けられる。中間部25は、例えばナノ粒子と、溶媒とを含む。中間部25は、例えばナノ粒子を分散した溶媒が充填された状態を示す。中間部25は、例えば溶媒を含まなくてもよく、ナノ粒子のみが充填された状態を示してもよい。
中間部25は、基材21内に設けられ、第1電極層23と第2電極層24との間に接して設けられる。中間部25は、例えばナノ粒子と、溶媒とを含む。中間部25は、例えばナノ粒子を分散した溶媒が充填された状態を示す。中間部25は、例えば溶媒を含まなくてもよく、ナノ粒子のみが充填された状態を示してもよい。
<ナノ粒子>
ナノ粒子は、第1電極層23の仕事関数と、第2電極層24の仕事関数との間の仕事関数を有し、例えば3.0eV以上5.5eV以下の仕事関数を有する。ナノ粒子として、例えば金及び銀の少なくとも何れかが用いられるほか、例えば上記の仕事関数の範囲を満たす材料が用いられてもよい。
ナノ粒子は、第1電極層23の仕事関数と、第2電極層24の仕事関数との間の仕事関数を有し、例えば3.0eV以上5.5eV以下の仕事関数を有する。ナノ粒子として、例えば金及び銀の少なくとも何れかが用いられるほか、例えば上記の仕事関数の範囲を満たす材料が用いられてもよい。
ナノ粒子として、例えば電極間ギャップの1/10以下である粒子径が用いられ、具体的には2nm以上10nm以下の粒子径が用いられるほか、例えば平均粒径(D50)3nm以上8nm以下の粒子径が用いられてもよい。なお、平均粒径は、レーザー回折散乱法を用いた粒度分布計測器(例えばMicrotracBEL製Nanotrac WaveII-EX150等)により測定することができる。
ナノ粒子は、例えば表面に設けられた絶縁膜を有する。絶縁膜として、例えばシリコン酸化物又はアルミナ等の金属酸化物が用いられるほか、例えばアルカンチオール等の有機化合物や、シリコン等の半導体が用いられてもよい。絶縁膜の厚さは、例えば5nm以上100nm以下である。
溶媒として、沸点が60°以上の液体が用いられ、例えば有機溶媒及び水の少なくとも何れかが用いられる。有機溶媒として、例えばメタノール、エタノール、トルエン、キシレン、アルカンチオール、テトラデカン等が用いられる。
本実施形態によれば、熱電素子1に熱エネルギーが与えられると、各積層部20の有する第1電極層23及び第2電極層24から、中間部25に向けて熱電子が放出される。放出された熱電子は、中間部25内に分散されたナノ粒子を介して、第1電極層23又は第2電極層24に伝搬される。
ここで、放出される熱電子の量は、各電極層23、24の仕事関数に依存し、仕事関数が小さい材料ほど多く放出される傾向を示す。すなわち、第2電極層24よりも仕事関数の小さい第1電極層23から、熱電子が多く放出される。このため、中間部25に放出された全熱電子のうち、第2電極層24から第1電極層23へ移動する熱電子の量に比べて、第1電極層23から第2電極層24へ移動する熱電子の量が多い傾向を示す。これにより、熱エネルギーを電気エネルギーに変換し、第2電極層24から第1電極層23に向かう電流が生成される。
第1電極層23から放出される熱電子の度合いは、主に、熱エネルギーに依存するほか、第1電極層23の仕事関数及び第2電極層24の仕事関数、並びに電極間ギャップに依存する。このため、第1電極層23と第2電極層24との間の距離を短くすることにより、電気エネルギーの発生量を増加させることが可能となる。
特に、第1電極層23として、高融点金属(refractory metal)以外の1層から構成されていることが望ましい。ここで、高融点金属とは、ニオブ、モリブデン、タンタル、タングステン、レニウムを示す。第1電極層23として、例えばアルミニウム、ケイ素、六ほう化ランタン(LaB6)、又はグラフェン等のカーボン系材料の何れかが用いられる。特に、アルミニウムは加工性に優れ、ケイ素は生産性に優れ、六ほう化ランタンは仕事関数が低いため、用途に応じて材料を選択することができる。また、上述した材料は、何れも高温下にて用いることができる。これにより、電気エネルギーの発生量をさらに増加させることが可能となる。
<引出部20-n>
引出部20-nは、引出基材21nと、引出配線22nとを有し、例えば上層引出電極層26を有してもよい。引出部20-nは、中間部25を有しない。
引出部20-nは、引出基材21nと、引出配線22nとを有し、例えば上層引出電極層26を有してもよい。引出部20-nは、中間部25を有しない。
<引出基材21n>
引出基材21nは、積層方向Zと交わる主面を有する。引出基材21nの厚さや材料等の構成は、基材21と同等である。
引出基材21nは、積層方向Zと交わる主面を有する。引出基材21nの厚さや材料等の構成は、基材21と同等である。
<引出配線22n>
引出配線22nは、引出基材21n内に設けられ、各積層部20(例えば第1積層部20-1)の有する配線22と電気的に接続される。引出配線22nは、例えば積層方向Zに沿って引出基材21nを貫通する。引出配線22nの厚さや材料等の構成は、配線22と同等である。例えば、引出配線22nは、配線22よりも厚く設けられてもよい。
引出配線22nは、引出基材21n内に設けられ、各積層部20(例えば第1積層部20-1)の有する配線22と電気的に接続される。引出配線22nは、例えば積層方向Zに沿って引出基材21nを貫通する。引出配線22nの厚さや材料等の構成は、配線22と同等である。例えば、引出配線22nは、配線22よりも厚く設けられてもよい。
<上層引出電極層26>
上層引出電極層26は、引出配線22nと接し、例えば第1配線101と接する。上層引出電極層26は、引出基材21nの主面に設けられるほか、引出基材21n内に設けられてもよい。上層引出電極層26の厚さや材料等の構成は、各電極層23、24と同等である。例えば上層引出電極層26は、各電極層23、24よりも厚く設けられてもよい。
上層引出電極層26は、引出配線22nと接し、例えば第1配線101と接する。上層引出電極層26は、引出基材21nの主面に設けられるほか、引出基材21n内に設けられてもよい。上層引出電極層26の厚さや材料等の構成は、各電極層23、24と同等である。例えば上層引出電極層26は、各電極層23、24よりも厚く設けられてもよい。
<下層引出電極層27>
積層体2は、例えば最下層の表面(第1積層部20-1の第2主面)に設けられた下層引出電極層27を有する。下層引出電極層27は、第1積層部20-1の配線22と接し、例えば第2配線102と接する。下層引出電極層27の厚さや材料の構成は、各電極層23、24と同様である。
積層体2は、例えば最下層の表面(第1積層部20-1の第2主面)に設けられた下層引出電極層27を有する。下層引出電極層27は、第1積層部20-1の配線22と接し、例えば第2配線102と接する。下層引出電極層27の厚さや材料の構成は、各電極層23、24と同様である。
本実施形態によれば、基材21内に配線22及び中間部25が設けられる。このため、各積層部20を電気的に接続する配線22が、積層体2の内部に設けられる。これにより、発電装置100の製造工程等において、配線22が劣化することを抑制でき、安定した特性を得ることが可能となる。
また、本実施形態によれば、第1積層部20-1の有する第1電極層23は、第2積層部20-2の有する配線22に接する。すなわち、各積層部20を電気的に接続するために、構成を別途設ける必要が無い。このため、各構成の電気的接続に伴う接触抵抗を最小限に抑えることができる。これにより、熱電素子1の電気エネルギーの発生量を増加させることが可能となる。
また、本実施形態によれば、各積層部には、各電極層23、24が設けられる。このため、各電極層23、24を用いる発電部を直列に接続することができる。これにより、熱電素子1が印加できる電圧を任意に設定することが可能となる。
また、本実施形態によれば、第1積層部20-1の有する第1電極層23は、第2積層部20-2の有する基材21に接する。このため、積層体2の厚さを、基材21の厚さのみに抑えることができる。これにより、熱電素子1の小型化を図ることが可能となる。
また、本実施形態によれば、中間部25等は、第1方向Xにそれぞれ離間して複数設けられる。このため、単一の基材21内に複数の独立した中間部25等を形成することができる。これにより、熱電素子1のさらなる小型化を図ることが可能となる。また、複数の独立した中間部25を挟む各電極層23、24を並列接続することができる。これにより、電流増大、つまり高出力化が可能となる。
また、本実施形態によれば、積層体2は、最上層に積層された引出部20-nを有する。このため、引出部20-n以下に積層された積層部20の各配線22と、第1配線101等の外部配線とを電気的に接続することを容易に実現できる。これにより、積層体2に第1配線101等を容易に接続させることができ、作業性の向上を図ることが可能となる。
なお、例えば図2に示すように、第1電極層23の側面は、基材21と離間して中間部25と接してもよい。このような構成においても、安定した特性を得ることが可能となる。
(熱電素子1の製造方法)
次に、図3~図5を参照して、本実施形態における熱電素子1の製造方法の一例について説明する。図3は、本実施形態における熱電素子1の製造方法の一例を示すフローチャートである。図4及び図5は、本実施形態における熱電素子1の製造方法の一例を示す模式断面図である。
次に、図3~図5を参照して、本実施形態における熱電素子1の製造方法の一例について説明する。図3は、本実施形態における熱電素子1の製造方法の一例を示すフローチャートである。図4及び図5は、本実施形態における熱電素子1の製造方法の一例を示す模式断面図である。
本実施形態における熱電素子1の製造方法は、第1工程S110と、第2工程S120とを備える。第1工程S110は、基材21を加工して、複数の積層部20(例えば第1積層部20-1、第2積層部20-2、・・・、引出部20-n)を形成する。例えば加工前の基材21がフィルム状の場合、それぞれつながった状態で各積層部20を形成してもよい。第1工程S110は、例えばステップS111~ステップS114を有する。
第2工程S120は、各積層部20を積層して積層体2を形成する。第2工程S120は、例えば第1積層部20-1に第2積層部20-2を積層し、引出部20-nまで順番に積層する。第2工程S120は、例えばステップS121~ステップS123を有する。
<凹部21cを形成:ステップS111>
第1工程S110では、図4(a)に示すように、基材21の主面21a(第1主面)に、凹部21cを形成する(ステップS111)。凹部21cは、第1方向Xに離間して複数形成され、第2方向Yに延在する。このとき、例えば引出配線22nを形成する部分(図示せず)には、凹部21cを形成しない。
第1工程S110では、図4(a)に示すように、基材21の主面21a(第1主面)に、凹部21cを形成する(ステップS111)。凹部21cは、第1方向Xに離間して複数形成され、第2方向Yに延在する。このとき、例えば引出配線22nを形成する部分(図示せず)には、凹部21cを形成しない。
凹部21cは、例えば金属金型を用いた熱転写プロセスにより形成される。積層方向Zにおいて、凹部21cの深さは、例えば50nm以上500nm以下で形成され、第1方向Xにおける幅は、深さの10倍以上1000倍以下であることが望ましい。例えば、凹部21cの深さが100nm程度の場合、幅が1μm以上100μm以下であることが望ましい。
<配線22を形成:ステップS112>
次に、図4(b)に示すように、凹部21cの底面から主面21b(第2主面)まで貫通する配線22を形成する(ステップS112)。配線22は、各凹部21cの底面に形成され、第2方向Yに延在する。配線22は、例えば第2方向Yに離間して複数形成されてもよい。なお、配線22と同時に引出配線22nを形成してもよい。この場合、例えば第1方向Xに沿って、配線22と離間した位置に引出配線22nが形成される。引出配線22nは、基材21を貫通して形成される。
次に、図4(b)に示すように、凹部21cの底面から主面21b(第2主面)まで貫通する配線22を形成する(ステップS112)。配線22は、各凹部21cの底面に形成され、第2方向Yに延在する。配線22は、例えば第2方向Yに離間して複数形成されてもよい。なお、配線22と同時に引出配線22nを形成してもよい。この場合、例えば第1方向Xに沿って、配線22と離間した位置に引出配線22nが形成される。引出配線22nは、基材21を貫通して形成される。
配線22は、例えば凹部21cの底面をレーザー加工により貫通孔を形成したあと、メッキ法により金属を埋め込むことにより形成される。このとき、凹部21cが埋まらない程度に金属を埋め込む。
<第1電極層23を形成;ステップS113>
次に、図4(c)に示すように、第2主面21b上に、配線22と接する第1電極層23を形成する(ステップS113)。第1電極層23は、それぞれ離間した状態で各配線22に接して形成される。なお、第1電極層23は、引出配線22nに接して形成されてもよい。
次に、図4(c)に示すように、第2主面21b上に、配線22と接する第1電極層23を形成する(ステップS113)。第1電極層23は、それぞれ離間した状態で各配線22に接して形成される。なお、第1電極層23は、引出配線22nに接して形成されてもよい。
第1電極層23は、例えばスプレイ印刷法の他、蒸着法又はインクジェット法により形成される。第1方向Xにおける第1電極層23の幅は、配線22の幅よりも広く、凹部21cの幅と等しい。
<第2電極層24を形成:ステップS114>
次に、図4(d)に示すように、凹部21c内に、配線22と接する第2電極層24を形成する(ステップS114)。第2電極層24は、各主面21a、21bとは離間して形成される。なお、第1電極層23を形成するまえに、第2電極層24を形成してもよい。また、第2電極層24と同時に上層引出電極層26を形成してもよい。この場合、上層引出電極層26は、引出配線22nと接する。
次に、図4(d)に示すように、凹部21c内に、配線22と接する第2電極層24を形成する(ステップS114)。第2電極層24は、各主面21a、21bとは離間して形成される。なお、第1電極層23を形成するまえに、第2電極層24を形成してもよい。また、第2電極層24と同時に上層引出電極層26を形成してもよい。この場合、上層引出電極層26は、引出配線22nと接する。
第1電極層23は、例えばスプレイ印刷法の他、蒸着法又はインクジェット法により形成される。第1方向Xにおける第2電極層24の幅は、第1電極層23の幅と等しい。
<基材21を分割:ステップS121>
次に、第2工程S120では、例えば図5(a)に示すように、基材21を分割してもよい(ステップS121)。基材21は、第1方向Xにおいて分割され、これにより複数の積層部20が離間する(図5(a)では第1積層部20-1及び第2積層部20-2)。基材21は、配線22、第1電極層23、及び第2電極層24と離間した位置で分割される。なお、引出配線22n等を形成した部分を分割し、引出部20-nとしてもよい。
次に、第2工程S120では、例えば図5(a)に示すように、基材21を分割してもよい(ステップS121)。基材21は、第1方向Xにおいて分割され、これにより複数の積層部20が離間する(図5(a)では第1積層部20-1及び第2積層部20-2)。基材21は、配線22、第1電極層23、及び第2電極層24と離間した位置で分割される。なお、引出配線22n等を形成した部分を分割し、引出部20-nとしてもよい。
<各積層部20を積層:ステップS122>
次に、各積層部20を積層する(ステップS122)。例えば図5(b)に示すように、第1積層部20-1の上に第2積層部20-2を積層し、第2積層部20-2の上に第3積層部20-3を積層し、各積層部20を順番に積層する。このとき、各積層部20の凹部21c内には、上に積層された積層部20に形成された第1電極層23が配置される。第1電極層23は、第2電極層24と離間して配置され、凹部21cには未充填部が残される。なお、各積層部20の積層された最上層には、引出部20-nが積層されてもよい。また、第1積層部20-1の第2主面21bに形成された第1電極層23は、下層引出電極層27として用いられる。
次に、各積層部20を積層する(ステップS122)。例えば図5(b)に示すように、第1積層部20-1の上に第2積層部20-2を積層し、第2積層部20-2の上に第3積層部20-3を積層し、各積層部20を順番に積層する。このとき、各積層部20の凹部21c内には、上に積層された積層部20に形成された第1電極層23が配置される。第1電極層23は、第2電極層24と離間して配置され、凹部21cには未充填部が残される。なお、各積層部20の積層された最上層には、引出部20-nが積層されてもよい。また、第1積層部20-1の第2主面21bに形成された第1電極層23は、下層引出電極層27として用いられる。
各積層部20は、例えば基材21の各主面21a、21bをプラズマ洗浄やUV洗浄により活性化処理した後、下側の基材21の第1主面21aと、上側の基材21の第2主面21bとを貼合することで、積層される。これにより、積層体2が形成される。
<中間部25を形成:ステップS123>
次に、凹部21cに、ナノ粒子及び溶媒を含む中間部25を形成する(ステップS123)。中間部25は、第1電極層23と、第2電極層24との間に形成され、凹部21cの未充填部に充填される。
次に、凹部21cに、ナノ粒子及び溶媒を含む中間部25を形成する(ステップS123)。中間部25は、第1電極層23と、第2電極層24との間に形成され、凹部21cの未充填部に充填される。
例えば積層体2を中間部25に浸すことで、毛細管現象によって凹部21cに中間部25を充填することができる。中間部25は、積層体2の第2方向Yにおける側面から、各積層部20に形成された凹部21cに充填される。その後、例えば積層体2の側面を絶縁材料等で覆うことで、中間部25の充填不良等を抑制することができる。
上述した工程を経て、本実施形態における熱電素子1が形成される。なお、形成された積層体2に接続する第1配線101及び第2配線102を形成し、第1配線101及び第2配線102に負荷Rを接続することで、本実施形態における発電装置100を形成することができる。
本実施形態によれば、基材21内に配線22及び中間部25が形成される。このため、各積層部20を電気的に接続する配線22が、積層体2の内部に形成される。これにより、発電装置100の製造工程等において、配線22が劣化することを抑制でき、安定した特性を得ることが可能となる。
また、本実施形態によれば、第1積層部20-1の凹部21cに形成された中間部25は、第2積層部20-2の第2主面21bに形成された第1電極層23に接する。すなわち、各積層部20を電気的に接続するために、構成を別途設ける必要が無い。このため、各構成の電気的接続に伴う接触抵抗を最小限に抑えることができる。これにより、熱電素子1の電気エネルギーの発生量を増加させることが可能となる。
また、本実施形態によれば、第1積層部20-1の上に第2積層部20-2を積層したあと、中間部25を形成する。すなわち、各積層部20を積層(ステップS122)したあと、中間部25を形成(ステップS123)する。このため、各積層部20を固定した状態で、中間部25を形成することができる。これにより、各積層部20の積層に伴う中間部25の劣化を抑制することが可能となる。
また、本実施形態によれば、各積層部20を積層(ステップS122)するまえに、基材21を分割(ステップS121)する。このため、各積層部20を積層する積層位置を精度良く設定することができる。これにより、さらに安定した特性を得ることが可能となる。
また、本実施形態によれば、例えば凹部21cを形成する方法として、エッチング法を用いる必要がない。このため、熱電素子1の製造に伴う設備投資の抑制、製造コストの削減、及びタスクの向上を実現することが可能となる。
特に、基材21として樹脂フィルムを用いた場合、金型を用いた微細転写法により凹部21cを形成することができる。このため、真空プロセスを用いる必要なく、加工面積を容易に拡大することができる。また、ロール・トゥ・ロール等の連続生産プロセスへの対応も可能となる。
また、基材21として樹脂フィルムを用いることで、基材21同士を容易に貼合することができ、中間部25を充填するスペースを容易に制御することができる。このため、熱電素子1の生産性向上、製造コスト低減に加え、熱電素子1の特性バラつきを抑制することが可能となる。
(熱電素子1の製造方法の変形例)
次に、図6を参照して、本実施形態における熱電素子1の製造方法の変形例について説明する。図6は、本実施形態における熱電素子1の製造方法の第1~第4変形例を示すフローチャートである。
次に、図6を参照して、本実施形態における熱電素子1の製造方法の変形例について説明する。図6は、本実施形態における熱電素子1の製造方法の第1~第4変形例を示すフローチャートである。
例えば図6(a)及び図6(b)に示すように、第2工程S120は、中間部25を形成(ステップS123)したあと、各積層部20を積層(ステップS122)してもよい。この場合、例えばロール・トゥ・ロール等の連続塗布方法を用いて中間部25を形成することができる。このため、中間部25を形成する時間を短縮することができる。これにより、製造工程における時間の短縮を図ることが可能となる。
また、各積層部20を積層する前に、中間部25を形成するため、溶媒を用いずにナノ粒子を充填するだけで中間部25を形成することができる。これにより、溶媒の気化等に伴う積層体2の劣化を抑制することが可能となる。
例えば図6(c)及び図6(d)に示すように、第2工程S120は、各積層部20を積層(ステップS122)したあと、基材21を分割(ステップS121)してもよい。このため、積層体2を形成した状態で、一度に各基材21を分割することができる。これにより、製造工程における時間の短縮を図ることが可能となる。
本発明の実施形態を説明したが、実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1 :熱電素子
2 :積層体
20 :積層部
20-1 :第1積層部
20-2 :第2積層部
20-3 :第3積層部
20-n :引出部
21 :基材
21a :第1主面
21b :第2主面
21c :凹部
21n :引出基材
22 :配線
22n :引出配線
23 :第1電極層
24 :第2電極層
25 :中間部
26 :上層引出電極層
27 :下層引出電極層
100 :発電装置
101 :第1配線
102 :第2配線
R :負荷
S110 :第1工程
S120 :第2工程
X :第1方向
Y :第2方向
Z :積層方向
2 :積層体
20 :積層部
20-1 :第1積層部
20-2 :第2積層部
20-3 :第3積層部
20-n :引出部
21 :基材
21a :第1主面
21b :第2主面
21c :凹部
21n :引出基材
22 :配線
22n :引出配線
23 :第1電極層
24 :第2電極層
25 :中間部
26 :上層引出電極層
27 :下層引出電極層
100 :発電装置
101 :第1配線
102 :第2配線
R :負荷
S110 :第1工程
S120 :第2工程
X :第1方向
Y :第2方向
Z :積層方向
Claims (10)
- 熱エネルギーを電気エネルギーに変換する熱電素子であって、
第1積層部と、前記第1積層部の上に積層された第2積層部と、を有する積層体を備え、
前記第1積層部及び前記第2積層部は、
前記積層体の積層方向と交わる主面を有する基材と、
前記基材内に設けられた配線と、
前記積層方向に沿って、前記配線と離間して設けられた第1電極層と、
前記基材内において前記配線と接し、前記第1電極層と前記配線との間に設けられ、前記第1電極層とは異なる仕事関数を有する第2電極層と、
前記基材内に設けられ、前記第1電極層と前記第2電極層との間に接して設けられ、ナノ粒子を含む中間部と、
をそれぞれ有し、
前記第1積層部の有する前記第1電極層は、前記第2積層部の有する前記配線に接すること
を特徴とする熱電素子。 - 前記第1積層部の有する前記第1電極層は、前記第2積層部の有する前記基材に接すること
を特徴とする請求項1記載の熱電素子。 - 前記配線、前記第1電極層、前記第2電極層、及び前記中間部は、前記積層方向と交わる第1方向にそれぞれ離間して複数配置され、前記積層方向及び前記第1方向と交わる第2方向に延在すること
を特徴とする請求項1又は2記載の熱電素子。 - 前記積層体は、最上層に積層された引出部を有し、
前記引出部は、
前記積層方向と交わる主面を有する引出基材と、
前記引出基材内に設けられ、前記第1積層部の有する前記配線と電気的に接続された引出配線と、
を有すること
を特徴とする請求項1~3の何れか1項記載の熱電素子。 - 熱エネルギーを電気エネルギーに変換する発電装置であって、
第1積層部と、前記第1積層部の上に積層された第2積層部と、を有する積層体と、
前記積層体と接続された第1配線及び第2配線と、
を備え、
前記第1積層部及び前記第2積層部は、
前記積層体の積層方向と交わる主面を有する基材と、
前記基材内に設けられた配線と、
前記積層方向に沿って、前記配線と離間して設けられた第1電極層と、
前記基材内において前記配線と接し、前記第1電極層と前記配線との間に設けられ、前記第1電極層とは異なる仕事関数を有する第2電極層と、
前記基材内に設けられ、前記第1電極層と前記第2電極層との間に接して設けられ、ナノ粒子を含む中間部と、
をそれぞれ有し、
前記第1積層部の有する前記第1電極層は、前記第2積層部の有する前記配線に接すること
を特徴とする発電装置。 - 熱エネルギーを電気エネルギーに変換する熱電素子の製造方法であって、
基材を加工して第1積層部及び第2積層部を形成する第1工程と、前記第1積層部の上に前記第2積層部を積層して積層体を形成する第2工程と、を備え、
前記第1工程は、
前記基材の有する前記積層体の積層方向と交わる第1主面に凹部を形成する工程と、
前記凹部の底面から前記第1主面に対向する第2主面まで貫通する配線を形成する工程と、
前記第2主面上に、前記配線と接する第1電極層を形成する工程と、
前記凹部内に、前記配線と接し、前記第1電極層とは異なる仕事関数を有する第2電極層を形成する工程と、
を有し、
前記第2工程は、前記凹部に、ナノ粒子を含む中間部を形成する工程を有し、
前記第1積層部の前記凹部に形成された中間部は、前記第2積層部の前記第2主面に形成された前記第1電極層に接すること
を特徴とする熱電素子の製造方法。 - 前記第2工程は、前記第1積層部の上に前記第2積層部を積層したあと、前記中間部を形成すること
を特徴とする請求項6記載の熱電素子の製造方法。 - 前記第2工程は、前記中間部を形成したあと、前記第1積層部の上に前記第2積層部を積層すること
を特徴とする請求項6記載の熱電素子の製造方法。 - 前記第2工程は、前記第1積層部の上に前記第2積層部を積層するまえに、前記第1積層部と前記第2積層部との間における前記基材を分割すること
を特徴とする請求項6~8の何れか1項記載の熱電素子の製造方法。 - 前記第2工程は、前記第1積層部の上に前記第2積層部を積層したあと、前記第1積層部と前記第2積層部との間における前記基材を分割すること
を特徴とする請求項6~8の何れか1項記載の熱電素子の製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017211228A JP6411612B1 (ja) | 2017-10-31 | 2017-10-31 | 熱電素子、発電装置、及び熱電素子の製造方法 |
JP2017-211228 | 2017-10-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019088001A1 true WO2019088001A1 (ja) | 2019-05-09 |
Family
ID=63920515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/040032 WO2019088001A1 (ja) | 2017-10-31 | 2018-10-29 | 熱電素子、発電装置、及び熱電素子の製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6411612B1 (ja) |
WO (1) | WO2019088001A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020235254A1 (ja) * | 2019-05-21 | 2020-11-26 | 株式会社Gceインスティチュート | 発電素子、発電装置、電子機器、及び発電素子の製造方法 |
WO2021030489A3 (en) * | 2019-08-12 | 2021-03-25 | Sierra Nevada Corporation | Compact energy conversion system |
WO2023038104A1 (ja) * | 2021-09-10 | 2023-03-16 | 株式会社Gceインスティチュート | 発電素子の製造方法、発電素子、発電装置、及び電子機器 |
WO2023038106A1 (ja) * | 2021-09-10 | 2023-03-16 | 株式会社Gceインスティチュート | 発電素子の製造方法、発電素子、発電装置、及び電子機器 |
WO2023038105A1 (ja) * | 2021-09-10 | 2023-03-16 | 株式会社Gceインスティチュート | 発電素子の製造方法、発電素子、発電装置、及び電子機器 |
US11715852B2 (en) | 2014-02-13 | 2023-08-01 | Birmingham Technologies, Inc. | Nanofluid contact potential difference battery |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11244816B2 (en) | 2019-02-25 | 2022-02-08 | Birmingham Technologies, Inc. | Method of manufacturing and operating nano-scale energy conversion device |
US11101421B2 (en) | 2019-02-25 | 2021-08-24 | Birmingham Technologies, Inc. | Nano-scale energy conversion device |
US11124864B2 (en) | 2019-05-20 | 2021-09-21 | Birmingham Technologies, Inc. | Method of fabricating nano-structures with engineered nano-scale electrospray depositions |
CN115244719A (zh) | 2020-03-09 | 2022-10-25 | Gce研究开发有限公司 | 发电元件、发电装置、电子设备以及发电元件的制造方法 |
US11649525B2 (en) | 2020-05-01 | 2023-05-16 | Birmingham Technologies, Inc. | Single electron transistor (SET), circuit containing set and energy harvesting device, and fabrication method |
US11417506B1 (en) | 2020-10-15 | 2022-08-16 | Birmingham Technologies, Inc. | Apparatus including thermal energy harvesting thermionic device integrated with electronics, and related systems and methods |
US11616186B1 (en) | 2021-06-28 | 2023-03-28 | Birmingham Technologies, Inc. | Thermal-transfer apparatus including thermionic devices, and related methods |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002540636A (ja) * | 1999-03-11 | 2002-11-26 | エネコ インコーポレイテッド | ハイブリッド熱電子エネルギー変換器およびその方法 |
WO2005036662A1 (ja) * | 2003-10-07 | 2005-04-21 | Matsushita Electric Industrial Co., Ltd. | 熱電変換素子、その製造方法、それを用いた冷却装置、及びその冷却装置の制御方法 |
JP2005539401A (ja) * | 2002-09-13 | 2005-12-22 | エネコ インコーポレイテッド | トンネリング効果エネルギー変換器 |
JP2008147323A (ja) * | 2006-12-08 | 2008-06-26 | Murata Mfg Co Ltd | 熱電変換モジュールおよびその製造方法 |
JP2011124412A (ja) * | 2009-12-11 | 2011-06-23 | Denso Corp | 熱電子発電素子 |
JP2011222654A (ja) * | 2010-04-07 | 2011-11-04 | Kondo Yoshitomi | 多数連結ゼーベック係数増幅熱電変換素子の構造、多数連結ゼーベック係数増幅熱電変換ユニットの構造、多数連結ゼーベック係数増幅熱電変換集合ユニットの構造及びその製造方法、多数連結ゼーベック係数増幅熱電変換モジュールの構造及びその製造方法、多数連結ゼーベック係数増幅熱電変換パネルの構造及びその製造方法、多数連結ゼーベック係数増幅熱電変換シートの構造及びその製造方法、並びに多数連結ゼーベック係数増幅熱電変換システムの構造 |
JP2013225550A (ja) * | 2012-04-20 | 2013-10-31 | Fujitsu Ltd | 熱電変換デバイス及びその製造方法 |
US20150229013A1 (en) * | 2014-02-13 | 2015-08-13 | Joseph G. Birmingham | Nanofluid contact potential difference battery |
-
2017
- 2017-10-31 JP JP2017211228A patent/JP6411612B1/ja active Active
-
2018
- 2018-10-29 WO PCT/JP2018/040032 patent/WO2019088001A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002540636A (ja) * | 1999-03-11 | 2002-11-26 | エネコ インコーポレイテッド | ハイブリッド熱電子エネルギー変換器およびその方法 |
JP2005539401A (ja) * | 2002-09-13 | 2005-12-22 | エネコ インコーポレイテッド | トンネリング効果エネルギー変換器 |
WO2005036662A1 (ja) * | 2003-10-07 | 2005-04-21 | Matsushita Electric Industrial Co., Ltd. | 熱電変換素子、その製造方法、それを用いた冷却装置、及びその冷却装置の制御方法 |
JP2008147323A (ja) * | 2006-12-08 | 2008-06-26 | Murata Mfg Co Ltd | 熱電変換モジュールおよびその製造方法 |
JP2011124412A (ja) * | 2009-12-11 | 2011-06-23 | Denso Corp | 熱電子発電素子 |
JP2011222654A (ja) * | 2010-04-07 | 2011-11-04 | Kondo Yoshitomi | 多数連結ゼーベック係数増幅熱電変換素子の構造、多数連結ゼーベック係数増幅熱電変換ユニットの構造、多数連結ゼーベック係数増幅熱電変換集合ユニットの構造及びその製造方法、多数連結ゼーベック係数増幅熱電変換モジュールの構造及びその製造方法、多数連結ゼーベック係数増幅熱電変換パネルの構造及びその製造方法、多数連結ゼーベック係数増幅熱電変換シートの構造及びその製造方法、並びに多数連結ゼーベック係数増幅熱電変換システムの構造 |
JP2013225550A (ja) * | 2012-04-20 | 2013-10-31 | Fujitsu Ltd | 熱電変換デバイス及びその製造方法 |
US20150229013A1 (en) * | 2014-02-13 | 2015-08-13 | Joseph G. Birmingham | Nanofluid contact potential difference battery |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11715852B2 (en) | 2014-02-13 | 2023-08-01 | Birmingham Technologies, Inc. | Nanofluid contact potential difference battery |
WO2020235254A1 (ja) * | 2019-05-21 | 2020-11-26 | 株式会社Gceインスティチュート | 発電素子、発電装置、電子機器、及び発電素子の製造方法 |
JPWO2020235254A1 (ja) * | 2019-05-21 | 2020-11-26 | ||
CN113853738A (zh) * | 2019-05-21 | 2021-12-28 | Gce研究开发有限公司 | 发电元件、发电装置、电子设备以及发电元件的制造方法 |
JP7473222B2 (ja) | 2019-05-21 | 2024-04-23 | 株式会社illuminus | 発電素子、発電装置、電子機器、及び発電素子の製造方法 |
WO2021030489A3 (en) * | 2019-08-12 | 2021-03-25 | Sierra Nevada Corporation | Compact energy conversion system |
WO2023038104A1 (ja) * | 2021-09-10 | 2023-03-16 | 株式会社Gceインスティチュート | 発電素子の製造方法、発電素子、発電装置、及び電子機器 |
WO2023038106A1 (ja) * | 2021-09-10 | 2023-03-16 | 株式会社Gceインスティチュート | 発電素子の製造方法、発電素子、発電装置、及び電子機器 |
WO2023038105A1 (ja) * | 2021-09-10 | 2023-03-16 | 株式会社Gceインスティチュート | 発電素子の製造方法、発電素子、発電装置、及び電子機器 |
Also Published As
Publication number | Publication date |
---|---|
JP2019083287A (ja) | 2019-05-30 |
JP6411612B1 (ja) | 2018-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019088001A1 (ja) | 熱電素子、発電装置、及び熱電素子の製造方法 | |
JP6521400B1 (ja) | 熱電素子の製造方法 | |
JP6411613B1 (ja) | 熱電素子、発電装置、及び熱電素子の製造方法 | |
JP6521401B1 (ja) | 熱電素子、発電装置、及び熱電素子の製造方法 | |
JP6524567B1 (ja) | 熱電素子、熱電装置、及び熱電素子の形成方法 | |
US10679794B2 (en) | Thin film capacitor and electronic apparatus | |
JP7552671B2 (ja) | 貫通電極基板 | |
JP7197857B2 (ja) | 熱電素子、発電装置、電子機器、及び熱電素子の製造方法 | |
JP2013046036A (ja) | 基材 | |
JP7197855B2 (ja) | 熱電素子の製造方法 | |
WO2021182028A1 (ja) | 発電素子、発電装置、電子機器、及び発電素子の製造方法 | |
JP7197856B2 (ja) | 熱電素子の製造方法 | |
JP2020145303A (ja) | 熱電素子、発電機能付半導体集積回路装置、電子機器、及び熱電素子の製造方法 | |
JP7105438B2 (ja) | 熱電素子の製造方法 | |
JP2020064947A (ja) | 熱電素子、発電装置、電子機器、及び熱電素子の製造方法 | |
WO2023038104A1 (ja) | 発電素子の製造方法、発電素子、発電装置、及び電子機器 | |
WO2023038106A1 (ja) | 発電素子の製造方法、発電素子、発電装置、及び電子機器 | |
JP7244819B2 (ja) | 熱電素子、発電装置、電子機器、及び熱電素子の製造方法 | |
JP7244042B2 (ja) | 熱電素子、発電装置、電子機器、及び熱電素子の製造方法 | |
JP7244043B2 (ja) | 熱電素子、発電装置、電子機器、及び熱電素子の製造方法 | |
WO2023286363A1 (ja) | 発電素子、発電装置、電子機器、及び発電素子の製造方法 | |
WO2023038105A1 (ja) | 発電素子の製造方法、発電素子、発電装置、及び電子機器 | |
JP2022052523A (ja) | 発電素子、発電装置、電子機器、及び発電素子の製造方法 | |
JP2022124833A (ja) | 発電素子、発電装置、電子機器、及び発電素子の製造方法 | |
JP2022060936A (ja) | 発電素子の製造方法、発電素子用部材、発電装置及び電子機器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18874810 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18874810 Country of ref document: EP Kind code of ref document: A1 |