WO2019083280A2 - 염소화 폴리염화비닐 수지의 제조방법 - Google Patents

염소화 폴리염화비닐 수지의 제조방법

Info

Publication number
WO2019083280A2
WO2019083280A2 PCT/KR2018/012661 KR2018012661W WO2019083280A2 WO 2019083280 A2 WO2019083280 A2 WO 2019083280A2 KR 2018012661 W KR2018012661 W KR 2018012661W WO 2019083280 A2 WO2019083280 A2 WO 2019083280A2
Authority
WO
WIPO (PCT)
Prior art keywords
polyvinyl chloride
chloride resin
chlorinated polyvinyl
neutralization
cpvc
Prior art date
Application number
PCT/KR2018/012661
Other languages
English (en)
French (fr)
Other versions
WO2019083280A3 (ko
Inventor
김양중
홍기원
이우영
진선정
Original Assignee
한화케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화케미칼 주식회사 filed Critical 한화케미칼 주식회사
Priority to CN201880068839.5A priority Critical patent/CN111263776B/zh
Priority to US16/651,561 priority patent/US11629204B2/en
Publication of WO2019083280A2 publication Critical patent/WO2019083280A2/ko
Publication of WO2019083280A3 publication Critical patent/WO2019083280A3/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/02Monomers containing chlorine
    • C08F14/04Monomers containing two carbon atoms
    • C08F14/06Vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/18Introducing halogen atoms or halogen-containing groups
    • C08F8/20Halogenation
    • C08F8/22Halogenation by reaction with free halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/02Neutralisation of the polymerisation mass, e.g. killing the catalyst also removal of catalyst residues
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/22Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers modified by chemical after-treatment
    • C08L27/24Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers modified by chemical after-treatment halogenated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/18Introducing halogen atoms or halogen-containing groups
    • C08F8/20Halogenation

Definitions

  • the invention chlorinated poly relates to a method of manufacturing vinyl chloride, resins, and more particularly to poly efficiently remove the vinyl chloride or vinyl chloride-based chlorinated poly residual hydrochloric porosity of the vinyl chloride resin obtained by the chlorination of the notary copolymer
  • a process for producing a chlorinated polyvinyl chloride resin capable of preventing the generation of additional carbon dioxide during neutralization, exhibiting excellent thermal stability, and improving the appearance characteristics of a workpiece during processing BACKGROUND ART [0002]
  • Chlorinated polyvinyl chloride is produced by chlorinating polyvinyl chloride (PVC).
  • PVC chlorinating polyvinyl chloride
  • CPVC has excellent mechanical properties, heat resistance and chemical resistance due to its high chlorine content compared to conventional PVC. It is used for various applications such as water pipes, industrial piping, piping for sprinklers, and adhesives.
  • HC1 is additionally generated during the process of counteracting PVC with chlorine. If the generated HCl remains in the CPVC resin, not only the subsequent equipment is corroded but also HC1 acts as a catalyst to accelerate the decomposition of CPVC, thereby lowering the processing stability. Therefore, in order to produce CPVC with improved stability, HC1 should be efficiently removed, so a neutralization process is generally used.
  • Korean Patent Publication No. 2012-0087480 sodium bicarbonate was used in a neutralization process for producing a chlorinated polyvinyl chloride resin.
  • US Patent No. 5359011 uses soluble citrate in a neutralization process for producing chlorinated polyvinyl chloride resin.
  • the object of the present invention is to efficiently remove the residual hydrochloric acid in the pores of the chlorinated polyvinyl chloride resin by neutralizing the generated hydrochloric acid in the two steps using the optimized neutralizing agent during the production of CPVC through the chlorination reaction to PVC , A method of manufacturing CPVC capable of preventing the generation of additional carbon dioxide during neutralization, exhibiting excellent thermal stability, and improving the appearance characteristics of a workpiece during processing.
  • the present invention relates to a process for chlorinating a polyvinyl chloride (PVC) or a vinyl chloride-based copolymer (hereinafter referred to as "PVC-containing copolymer") to produce a chlorinated polyvinyl chloride resin;
  • PVC polyvinyl chloride
  • PVC-containing copolymer vinyl chloride-based copolymer
  • the neutralization step comprises the steps of: a) neutralizing the chlorinated polyvinyl chloride resin so that the pH of the chlorinated polyvinyl chloride resin is 2 to 5 using a metal hydroxide as the first neutralizing agent, and neutralizing the pH of the chlorinated polyvinyl chloride resin to be 2 to 5 Chlorination And b) neutralizing the polyvinyl chloride resin by using a carbonate compound as the second neutralizing agent, the method comprising the step of: dewatering the polyvinyl chloride resin.
  • the metal hydroxide of a) may be at least one selected from the group consisting of sodium hydroxide potassium hydroxide and lithium hydroxide.
  • the carbonate compound of b) may be at least one selected from the group consisting of sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate and calcium carbonate.
  • the pH of the chlorinated polyvinyl chloride resin can be increased to 2 to 5 by the addition of the metal hydroxide of a), and thereafter the pH of the chlorinated polyvinyl chloride resin can be increased by using the carbonate-
  • the neutralization can be completed by adjusting the pH to 6-8.
  • the chlorinated polyvinyl chloride resin before the neutralization agent is introduced in the neutralization step may be prepared by: i) a slurry after the chlorination reaction, ii) a dehydrated slurry after removal of impurities after chlorination reaction, or iii) a suspension prepared by mixing the dehydrated slurry and a solvent .
  • the commercial-grade chlorinated polyvinyl chloride resin may comprise a suspension prepared by mixing a dehydrated slurry with impurities removed after chlorination reaction and a solvent.
  • the neutralization may be carried out at a temperature of 25 ° C to 80 ° C.
  • the method may further include a step of processing the chlorinated polyvinyl chloride resin after the neutralization step.
  • the produced CPVC resin is excellent in thermal stability, and the work produced using the CPVC resin can remarkably reduce the protrusion of the extruded appearance.
  • the polyvinyl chloride or vinyl chloride system It is possible to efficiently remove the residual hydrochloric acid in the pores of the chlorinated polyvinyl chloride resin obtained through chlorination of the copolymer and to prevent the generation of additional carbon dioxide in the neutralization process.
  • the CPVC produced by the above method exhibits excellent thermal stability and can significantly improve the extruded appearance characteristics of the workpiece during processing.
  • a method for producing a chlorinated polyvinyl chloride resin according to an embodiment of the present invention includes a step of CPVC production (CPVC and a manufacturing process) by chlorinating a PVC or a PVC-containing copolymer to produce a CPVC;
  • CPVC neutralization step of neutralizing the CPVC by injecting a neutralizing agent into the CPVC
  • the neutralization step comprises: a) a first neutralization step of neutralizing the pH of the CPVC to 2 to 5 using metal hydroxide as a first neutralizing agent, and b) a second neutralization step of neutralizing the result of the first neutralization step And a second neutralization step of completing neutralization using a carbonate-based compound as a topic.
  • CPVC chlorinated polyvinyl chloride resin
  • HCl hydrochloric acid
  • the neutralization step is multi-stepped as described above, and neutralization of the CPVC using the optimized neutralizing agent for each step can effectively remove all the hydrochloric acid remaining in the pores of the CPVC, It is possible to prevent the generation of additional carbon dioxide during the process.
  • the CPVC neutralized by the above-described production method can improve the extruded appearance characteristics of the processed surface during processing, while exhibiting excellent basic properties required for the chlorinated polyvinyl chloride resin, particularly excellent thermal stability.
  • the process for synthesizing CPVC can be generally performed according to well-known methods and its composition is not particularly limited, but it may be preferable to proceed by the following method.
  • the PVC or PVC-containing copolymer used in the chlorination reaction may be used in the form of a solvent-containing slurry.
  • the solvent is not particularly limited, and for example, water such as deionized water may be used.
  • the slurry may also contain a solvent, specifically water, used in the polymerization of the PVC or PVC-containing copolymer.
  • the content of the PVC or PVC-containing copolymer in the slurry may be, for example, 10 to 35 parts by weight based on 100 parts by weight of water when the solvent is water.
  • the PVC or PVC-containing copolymer may also be a vinyl chloride-vinyl chloride copolymer according to methods well known in the art . May be prepared by copolymerization with monomers alone or in combination with some of the various monomers. Accordingly, the PVC-containing copolymer according to the present invention is a copolymer obtained by copolymerizing a vinyl chloride monomer with other monomers Vinyl chloride-based copolymer. The copolymerization may be carried out by suspension polymerization, emulsion polymerization or mass polymerization (Mass Polymerization).
  • the PVC or PVC-containing copolymer may be solid porous macrogranules. That is, the primary particles of 50 / m to 250 may be secondary granules in the form of a macroparticle granulated.
  • such PVC or PVC containing copolymers may have a Mercury Porosity of from 0.1 to 0.4 (Cubic centeters per gram, citf / g).
  • oxygen is removed by a conventional method before chlorination of the PVC or the PVC-containing copolymer.
  • chlorine gas is introduced into the oxygen-depleted PVC or PVC-containing copolymer, and the chlorination reaction is performed by performing UV irradiation at the same time as the temperature rise.
  • the conditions for irradiating UV can be appropriately adjusted according to the reactor size, and can be carried out by a method well known in the art.
  • the pressure of the chlorine may be maintained between 0.5 and 4 bar, and the chlorine concentration may be preferably between 50 ° C and 95 ° C.
  • an initiator may be added in place of UV irradiation so that chlorine can form radicals.
  • the initiator may be any material well known as a photoinitiator.
  • at least one initiator selected from the group consisting of peroxyester, hydroperoxide and dialkyl peroxide may be used. Can be used.
  • the pH In order to increase the stability of the CPVC, the pH must be increased to minimize the amount of CPVC residual HC1. Accordingly, in the present invention, when the chlorination reaction is completed, the neutralization process of the CPVC is performed by adding a specific neutralizing agent to the CPVC slurry through two stages of neutralization process in each step in order to remove the hydrochloric acid produced by the chlorination reaction. Through this neutralization process, in the CPVC of the present invention, Especially in pores . The amount of hydrochloric acid present can be minimized, and the generation of additional neutralization by-products such as CO 2 can be minimized, thereby improving the appearance of the workpiece.
  • the neutralization step comprises: a) using a metal hydroxide as a first neutralizing agent so that the pH of the CPVC is 2 to 5 A first neutralization step, and a second neutralization step for completing the neutralization using the result of the above de-neutralization step, that is, for the CPVC neutralized to pH 2 to 5 and b) the carbonate compound as the second neutralizing agent.
  • the metal hydroxide mono-neutralizing agent used in the first neutralization step is any metal hydroxide mono-neutralizing agent used in the first neutralization step.
  • second neutralizing agent is a carbonate-based compound when it works in the first neutralization step, it is difficult to obtain a C0 2 generation suppressing effect, and C0 2 and the hypochlorite generated in the neutralization process (Hypochlor i te) due to removal of the remaining HC1 Is difficult. Also, when the metal hydroxide as the first neutralizing agent is used in the second neutralization step, the pH is not easily controlled because the metal hydroxide is strongly basic, and high neutralization heat is generated and attack the CPVC chain, have.
  • the above-mentioned cationic and cationic neutralizers are classified into strong bases and weak bases, respectively, when classified by the difference in basicity (ionization degree) of the neutralizing agent. Since the pH indicates the proton concentration of the log scale (Log Scale), the pH of the neutralization counterpart of the acid and the base is adjusted depending on the amount of the neutralizer added near the equivalence point It changes suddenly. Neutralization of strong acid and strong base indicates pH 7 as an equivalent point, and neutralization of strong acid and weak base indicates lower pH as an equivalence point.
  • residual HC1 and the minimum point of the residual neutralizing agent are set at pH 7, and in order to approach the final neutralization pH near the equivalent point, the strong base, rather than the monodisperse, is used as a weak base It is more preferable to use a second neutralizing agent.
  • a strong base when the pH rises sharply, the hydroxide group becomes the main chain of the CPVC . It is not preferable to use the first neutralizing agent in the crab quenching process because the possibility of attack is high.
  • the method according to one embodiment of the present invention can maximize the pH of the CPVC until the pH of the CPVC is 2 to 5 by using the first neutralizing agent of the strong base in the pH range of the CPVC neutralization, The neutralization is completed using a second neutralizing agent of weak base which is easy to access stability and final neutralizing pH.
  • a metal hydroxide may be used as the first enhancer in a), and the metal hydroxide may specifically include sodium hydroxide, potassium hydroxide, or lithium hydroxide , And any one or two or more of them may be used.
  • the metal hydroxide may be added in an amount such that the pH of the CPVC is 2 to 5.
  • the first neutralizing agent may be added in an amount of 1 to 3 parts by weight based on 100 parts by weight of CPVC have.
  • the crab 1 and the second neutralizing agent have a trade-off relationship in terms of prevention of formation of projections on the extruded surface of the workpiece and improvement in thermal stability.
  • the C 1 2 -generating agent does not generate (: 0 2 in the neutralization reaction
  • the workpiece caused by CO 2 generated in the conventional vaporization reaction can prevent the deterioration of the appearance characteristics due to the formation of the projections on the extrusion surface.
  • the metal hydroxide used as the first neutralizing agent is a strong base, it is not easy to control the pH and there is a fear of generation of neutralized heat.
  • the pH adjusting agent is easy to control the pH and the thermal stability Can increase However, the neutralization banung there is a possibility to generate a C0 2.
  • the amount of the first and second neutralizers to be used must be optimized in order to simultaneously achieve the improvement of thermal stability and the effect of decreasing the extruded appearance protrusion through the control of CO 2 generation in the present invention.
  • the first neutralizing agent of the metal hydroxide during neutralization may be added until the pH of the CPVC is 2 to 5. If the first neutralizing agent is used in excess and the pH exceeds 5, the thermal stability is significantly lowered (see Comparative Example 1), as is supported by the experimental examples described later.
  • a carbonate compound may be used as the second neutralizing agent in b.
  • the carbonate compound sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, calcium Carbonate, and the like, and any one or two or more of them may be used.
  • the carbonate compound may be added in such an amount that the pH of the first neutralized CPVC in the first neutralization solution is 6 to 8.
  • the second neutralizing agent may be added in an amount of 1 to 5 parts by weight based on 100 parts by weight of CPVC before the neutralization step.
  • the above-mentioned first and second dyestuffs are each put into a powder form or a solution form and adjusted to a desired pH. At this time, the neutralization temperature proceeds within the range of the boiling point of the solvent. When the neutralizing agent is added, the neutralization efficiency can be increased by stirring.
  • the CPVC which has been neutralized, is dehydrated and dried to remove solvent and impurities to obtain CPVC.
  • the chlorinated polyvinyl chloride resin before the neutralizing agent is introduced may be in the form of a slurry or a suspension.
  • the chlorinated polyvinyl chloride resin before the neutralization agent is introduced in the neutralization step is a mixture of i) a slurry after the chlorination reaction, ii) A dehydrated slurry or iii) a suspension state prepared by mixing the dehydrated slurry with a solvent. More specifically, the chlorinated polyvinyl chloride resin can be used in the form of a suspension prepared by mixing a dehydrated slurry and a solvent. The dehydrated slurry may be in the form of a cake.
  • the reaction product may be in a slurry state, and the neutralization agent may be directly introduced into the CPVC slurry state without a separate purification process in the neutralization process.
  • the dehydrated CPVC slurry after dehydration of the CPVC slurry can be supplied with the neutralizing agent.
  • the dehydrated CPVC slurry can be supplied with a neutralizing agent in a suspension (suspension) state in which the solvent is put into the slurry by re-slurring the solvent.
  • a neutralizing agent in the form of a suspension.
  • the solvent added to the dehydrated CPVC slurry may be distilled water, alcohol, or the like. Further, when the slurry or suspension is used, the solid content may be 20 to 50% by weight.
  • the neutralization process can be performed at a temperature of 25 ° C to 80 ° C.
  • CPVC can be obtained by removing solvent and impurities through dehydration and drying process. .
  • the manufacturing method of the CPVC according to an embodiment of the present invention may further include a step of advancing a processing factory to the CPVC having completed the neutralization process.
  • CPVC resin when the CPVC resin is processed, 10 to 30 parts by weight of the additive is added to 100 parts by weight (phr) of the CPVC to form a CPVC compound composition.
  • CPVC tin-based heat stabilizer such as dimethyl tin mercaptide complex
  • MVS methyl methacrylate-butadiene-styrene copolymer
  • lubricant dipentaerythritol Paraffin, or a mixture thereof, or a filler (such as titanium dioxide), and the like, and any one or two or more of them may be used in combination.
  • CPVC tin-based heat stabilizer such as dimethyl tin mercaptide complex
  • MBS methyl methacrylate-butadiene-styrene copolymer
  • lubricant dipentaerythritol Paraffin, or a mixture thereof, or a filler (such as titanium dioxide), and the like, and any one or two or more of them may be used in combination.
  • filler such as titanium dioxide
  • the CPVC compound composition can then be subjected to T-die extrusion to obtain a 3 mm thick processed sheet.
  • CPVC was synthesized by chlorination of PVC (polymerization degree 1,000).
  • the PVC was put in a slurry state (with a solid content of 20 weight 3 ⁇ 4 and a vacuum was applied to remove the oxygen in the semi-woonghyeong) in deionized water together with deionized water.
  • the chlorine was added to the vacuum-
  • the pressure of chlorine was maintained between 0.5-4.0 bar in Banwang City and the reaction temperature was between 50 ° C and 95 ° C.
  • the reaction was terminated.
  • the neutralization process was carried out by adding the neutralizer shown in Table 1 to the CPVC slurry in which the chlorination reaction was completed.
  • the neutralization temperature proceeded within the range of the boiling point of the solvent (50 ° C).
  • the stirring was performed, and the neutralized CPVC was dehydrated and dried to remove the solvent and impurities, and CPVC .
  • a Tin-based thermal stabilizer (Mono, Dimethyltin mercaptide complex)
  • the formed compound composition was subjected to T-die extrusion to obtain a workpiece having a thickness of 3 mm.
  • HC1 stability The CPVC resin was dispersed in water at a concentration of 10%, heated to 180 ° C, and the time from the point of time when a conductivity change of 50 // S was generated by HCl generated was measured. HC1 stability is used as an index to measure CPVC and thermal stability.
  • Process extruded surface protrusion The number of protruded protrusions on the surface of the CPVC T-die extruded sheet was measured.
  • Example 1 when only one of the above neutralizing agents was used, that is, when only the carbonate compound was used (Comparative Examples 2 and 3), there were many defects on the extruded surface of the workpiece, Example 1) has a problem of low thermal stability.
  • Example 1 to 4 in the case of neutralization with metal hydroxide at the initial stage of neutralization and neutralization of the remaining portion with a carbonate compound, thermal stability is excellent, It was found that both problems can be solved because of its excellent appearance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 염소화 폴리염화비닐 수지의 제조방법에 관한 것으로서, 보다 구체적으로는 a) 제 1 중화제로서 금속 하이드록사이드를 사용하여 pH가 2 내지 5가 되도록 하고, b) 제 2 중화제로서 카보네이트계 화합물을 사용하여 중화를 완료하는 증화 공정을 포함함으로써, 폴리염화비닐 또는 염화비닐계 공증합체의 염소화 과정에서 얻어진 염소화 폴리염화비닐 수지의 기공 내 잔류 염산을 효율적으로 제거할 수 있고, 열안정성과 함께 가공물의 압출 외관을 향상시킬 수 있는 염소화 폴리염화비닐 수지의 제조방법이 제공된다.

Description

【명세서】
【발명의 명칭】
염소화 폴리염화비닐 수지의 제조방법
【기술분야】
관련출원 (들)과의 상호 인용
본 출원은 2017년 10월 25일자 한국 특허 출원 제 10-20Γ7- 0139440호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 염소화 폴리염화비닐 '수지의 제조방법에 관한 것으로, 보다 상세하게는 폴리염화비닐 또는 염화비닐계 공증합체에 대한 염소화를 통해 얻어진 염소화 폴리염화비닐 수지의 기공 내 잔류 염산을 효율적으로 제거하고, 중화과정에서 부가적으로 생성되는 이산화탄소의 발생을 방지할 수 있으며, 또 우수한 열안정성을 나타내며, 가공시 가공물의 외관 특성을 개선시킬 수 있는 염소화폴리염화비닐 수지의 제조방법에 관한 것이다. 【배경기술]
염소화 폴리염화비닐 (CPVC)는 폴리염화비닐 (PVC)을 염소화 하여 생산된다. CPVC는 기존 PVC 대비 높은 염소함량으로 인해 기계적 물성, 내열성 및 내화학성이 우수하며, 넁은수관, 산업용 배관, 스프링쿨러용 배관, 접착제 등 다양한 용도로 사용된다.
이런 CPVC를 얻기 위하여 PVC를 염소와 반웅시키는 과정에서 부가적으로 HC1이 생성된다. 생성된 HC1이 CPVC 수지의 내부에 잔류하게 되면, 후속 설비의 부식을 야기할 뿐만 아니라 HC1이 촉매 역할을 하여 CPVC의 분해를 촉진하여 가공 안정성을 저하시키게 된다. 따라서 안정성이 향상된 CPVC를 생산하기 위해 HC1을 효율적으로 제거하여야 하므로, 일반적으로 중화 공정이 사용된다.
그런데, 상기 중화 공정에서는, 강한 산성의 염산을 중화하기 때문에 강한 염기성 물질을 사용하게 되면 pH 조절이 어렵고 높은 중화열이 발생한다. 더욱이 강한 염기성 물잘은 CPVC 체인을 직접 공격하기도 하여 물성 저하를 야기한다. 그러므로, 알칼리성 버퍼 (Buf fer)류를 이용하여 중화하게 되며 일반적으로 NaHC03( Sodium Bi carbonate) , Na2C03( Sodium Carbonate) , 소디움 시트레이트 (Sodium Ci trate) 등의 중화제가사용되고 있다.
예를 들어, 한국 공개특허 제 2012-0087480호에서는, 염소화 폴리염화비닐 수지를 제조하는 중화 공정에서 탄산수소나트륨이 사용되었다. 또한, 미국특허 제 5359011호에서는 염소화 폴리염화비닐 수지를 제조하는 중화 공정에서 용해성 시트레이트 (Soluble Ci trate)를 사용하고 있다.
하지만, 상기한 종래 염기성 물질들은 중화과정에서 부가적으로 생성되는 C02 발생 및 Hypochlor ite로 인해 잔존 HC1 제거가 효율적이지 못하며 CPVC의 수지 색차 및 가공색차가 저하될 뿐 아니라, 발생하는 (:02에 의해 가공 압출면에 돌기가 발생하여 가공물의 외관이 매끄럽지 않게 된다. 【발명의 상세한 설명】
【기술적 과제]
본 발명의 목적은 PVC에 대한 염소화 반응을 통해 CPVC 제조시, 발생되는 염산을 각 단계별로 최적화된 중화제를 사용하여 2단계로 중화함으로써, 염소화 폴리염화비닐 수지의 기공 내 잔류 염산을 효율적으로 제거하고, 중화과정에서 부가적으로 생성되는 이산화탄소의 발생을 방지할 수 있으며, 또 우수한 열안정성을 나타내며 , 가공시 가공물의 외관 특성을 개선시킬 수 있는 CPVC의 제조방법을 제공하고자 한다.
【기술적 해결방법】
본 발명은 폴리염화비닐 (PVC) 또는 염화비닐계 공중합체 (이하 'PVC 함유 공중합체' 라고 함)를 염소화 반웅시켜 염소화 폴리염화비닐 수지를 제조하는 공정 ; 및
상기 염소화 폴리염화비닐 수지에 중화제를 투입하여 염소화 폴리염화비닐 수지를 중화하는 중화 공정;을 포함하며,
상기 중화 공정은, a) 제 1 중화제로서 금속 하이드록사이드를 사용하여 상기 염소화 폴리염화비닐 수지의 pH가 2 내지 5가 되도록 중화하는 게 1중화 공정, 및 상기 pH가 2 내지 5가 되도록 중화된 염소화 폴리염화비닐 수지에 대해 b) 제 2 중화제로서 카보네이트계 화합물을 사용하여 중화를 완료하는 게 2중화 공정을 포함하는, 염소화 폴리염화비날 수지의 제조방법을 제공한다.
상기 a)의 금속 하이드록사이드는 소디움 하이드록사이드 포타슘 하이드록사이드 및 리튬 하이드록사이드로 이루어진 군에서 선택된 1종 이상일 수 있다.
또한, 본 발명에서 상기 b)의 카보네이트계 화합물은 소디움 카보네이트, 소디움 바이카보네이트, 포타슴 카보네이트, 포타슘 바이카보네이트 및 칼슘 카보네이트로 이루어진 군에서 선택된 1종 이상일 수 있다.
상기 중화 공정에서 a)의 금속 하이드록사이드의 투입으로 상기 염소화 폴리염화비닐 수지의 pH를 2 내지 5까지 증가시킬 수 있으며, 이후, b)의 카보네이트계 화합물을 이용하여 상기 염소화 폴리염화비닐 수지의 pH를 6 내지 8로 맞춤으로써 중화를 완료할수 있다.
또한, 상기 중화 공정에서 중화제가 투입되기 전의 염소화 폴리염화비닐 수지는 i ) 상기 염소화 반웅 후의 슬러리, Π ) 염소화 반웅 후 불순물이 제거된 탈수 슬러리 또는 i i i ) 상기 탈수 슬러리와 용매를 흔합하여 제조된 현탁액을 포함할수 있다. - 구체적으로, 상가 염소화 폴리염화비닐 수지는 염소화 반웅 후 불순물이 제거된 탈수 슬러리와 용매를 흔합하여 제조된 현탁액을 포함할 수 있다.
상기 중화 공정은 온도 25°C 내지 80 °C인 조건에서 수행할 수 있다. 또한, 상기 중화 공정 후에 염소화 폴리염화비닐 수지를 가공하는 공정을 더 포함할 수 있다.
본 발명의 제조방법에 따라, 제조된 CPVC 수지는 열안정성이 우수하고, 이를 이용하여 제조된 가공물은 압출 외관의 돌기가 현저하게 감소하는 효과를 볼 수 있다.
【발명와효과]
본 발명의 CPVC 제조방법에 따르면, 폴리염화비닐 또는 염화비닐계 공중합체에 대한 염소화를 통해 얻어진 염소화 폴리염화비닐 수지의 기공 내 잔류 염산을 효율적으로 제거하고, 중화과정에서 부가적으로 생성되는 이산화탄소의 발생을 방지할수 있다.
또 상기 방법에 따라 제조된 CPVC는 우수한 열안정성을 나타내며, 가공시 가공물의 압출 외관 특성을 크게 개선시킬 수 있다.
【발명의 실시를 위한 최선의 형태】
이하에서, 본 발명을 더욱 구체적으로 설명한다. 또한, 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
또한 본 발명의 명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및 /또는 성분을 구체화하며, 다른 특성, 영역, 정수, 단계, 동작, 요소 및 /또는 성분의 존재나 부가를 제외시키는 것은 아니다.
이하, 본 발명의 염소화된 폴리염화비닐 수지의 제조방법을 보다 상세하게 설명한다 .
발명의 일 구현예에 따른 염소화된 폴리염화비닐 수지의 제조방법은 PVC 또는 PVC 함유 공중합체를 염소화 반웅시켜 CPVC를 제조하는 공정 (CPVC와제조 공정) ; 및
상기 CPVC에 중화제를 투입하여 CPVC를 중화하는 중화 공정 (CPVC의 중화 공정);을 포함하며,
상기 중화 공정은, a) 제 1 중화제로서 금속 하이드록사이드를 사용하여 상기 CPVC의 pH가 2 내지 5가 되도록 중화 하는 제 1중화 공정, 및 상기 제 1중화 공정의 결과물에 대해 b) 제 2 증화제로서 카보네이트계 화합물을 사용하여 중화를 완료하는 제 2중화 공정을 포함한다. 종래 염소화 반응을 통한 염소화 폴리염화비닐 수지 (CPVC)의 제조 과정에서 생성된 염산 (HC1 )의 중화시, 기존에 사용되는 중화제로는 상기 염산이 효과적으로 제거되지 못하거나, 또는 부산물을 발생시키는 문제가 있었다.
이에 대해, 본 발명에서는 상기와 같이 중화 공정을 다단계화 하고, 각 단계별로 최적화된 중화제를 사용하여 CPVC를 중화함으로써, CPVC의 기공 내에 잔존할 수 있는 염산을 효과적으로 모두 제거할 수 있을 뿐 아니라, 중화과정에서 부가적으로 생성되는 이산화탄소의 발생을 방지할 수 있다. 또, 상기 제조방법에 의해 중화된 CPVC는 염소화 폴리염화비닐 수지에 대해 요구되는 우수한 기본 물성, 특히 우수한 열안정성을 나타내면서도, 가공시 가공면의 압출 외관 특성을 개선시킬 수 있다.
이러한본 발명의 방법에 대하여, 각 단계별로 설명한다.
CPVC의 제조 공정
CPVC를 합성하는 공정은 일반적으로 잘 알려진 방법에 따라 진행될 수 ¾고 그 구성이 특별히 제한되지는 않으나, 다음의 방법으로 진행되는 것이 바람직할 수 있다.
예를 들어, PVC 또는 PVC 함유 공중합체를 반웅기에 투입한 후 진공 상태에서 산소를 제거하고, 염소 가스를 투입 후 승온과 동시에 UV 조사하는 광반웅을 통해, 염소화 반웅을 진행할 수 있다.
상기 염소화 반응시 사용되는 PVC 또는 PVC 함유 공중합체는, 용매 함유 슬러리 상태로 사용할 수 있다. 이때 상기 용매는 특별히 제한되지 않으며, 일례로, 탈이온수 등과 같은 물을 사용할 수 있다. 또 상기 슬러리는 PVC 또는 PVC 함유 공중합체의 중합에 사용된 용매, 구체적으로 물을 포함할 수도 있다. 또 슬러리 중 PVC 또는 PVC 함유 공중합체의 함량은, 일례로 상기 용매가 물인 경우, 물 100중량부에 대해 PVC의 함량은 10 내지 35중량부일 수 있다.
또한 상기 PVC 또는 PVC 함유 공중합체는 이 분야에 잘 알려진 방법에 따라 염화비닐 . 단량체 단독 또는 일부 다양한 단량체들과의 공중합을 통해 제조될 수 있다. 이에 따라 본 발명에 았어서 PVC 함유 공중합체란, 염화 비닐 단량체와 기타 단량체와의 공중합에 의해 제조된 염화비닐계 공중합체를 의미한다. 또한 상기 공중합 방법은 현탁 중합, 유화 중합또는 괴상 중합 (Mass Polymer i zat ion)이 사용될 수 있다.
상기 PVC 또는 PVC 함유 공중합체는 고체상의 다공성 마크로그래뉼 (Sol id Porous Macrogranules)일 수 있다. 즉, 50/ m 내지 250 의 1차 입자들이 웅집된 거대 과립 형태의 2차 입자일 수 있다. 또한, 이러한 PVC 또는 PVC 함유 공중합체는 0. 1 내지 0.4 (Cubi c cent imeters per gram, citf/g)의 Mercury Porosi ty를 가질 수 있다.
그리고, 상기 PVC 또는 PVC 함유 공중합체에 대한 염소화 반웅 전에 통상적인 방법으로 산소를 제거한다.
이어서, 산소가 제거된 상기 PVC 또는 PVC 함유 공중합체에 대해, 염소 가스를 투입하고, 승온과 동시에 UV 조사를 수행함으로써 염소화 반응을 수행한다. 이때, UV를 조사하는 조건은 반응기 사이즈에 따라 적절히 조절할 수 있으며, 이 분야에 잘 알려진 방법으로 진행될 수 있다. 그리고, 상기 염소 투입 시, 염소의 압력은 0.5 내지 4bar 사이를 유지하고, 반웅 은도는 50°C 내지 95°C인 것아바람직할 수 있다.
또한 상기 염소화 반응시, UV 조사 대신 개시제를 투입하여 염소가 라디칼을 형성할 수 있도록 할 수도 있다. 이러한 경우 개시제는 광개시제로 잘 알려진 물질이면 모두 사용 가능하고, 예를 들어 퍼옥시에스터 (Peroxyester) , 하이드로퍼옥사이드 (Hydroperoxide) 및 디알킬퍼옥사이드 (Dialkyl peroxide)로 이루어진 군에서 선택돤 1종 이상을 사용할 수 있다.
염소화 반웅 중 염소가 타겟 (Target )양에 도달하면 반웅을 종료하고 후속의 중화공정을 진행한다.
CPVC의 중화 공정
CPVC의 안정성을 증가시키기 위하여 pH를 증가시켜 CPVC 잔류 HC1 양을 최소화하여야 한다. 따라서, 본 발명에서는 상기 염소화 반웅이 종료되면, 염소화 반웅으로 생성된 염산을 제거하기 위해 CPVC 슬러리에 2단계의 중화 공정을 통해 각 단계에서 특정 중화제를 첨가하여 CPVC의 중화 공정을 진행한다. 이러한 중화 공정을 통해, 본 발명에사는 CPVC 내, 특히 기공 내에. 존재하는 염산의 양을 최소화시킬 수 있고, C02 등 추가적으로 발생하는 중화 부산물의 생성을 최소화할 수 있어 가공물의 외관을 개선할 수 있다.
구체적으로 본 발명의 일 구현예에 따른 염소화된 폴리염화비닐 수지의 제조방법에 있어서, 상기 중화 공정은, a) 제 1 중화제로서 금속 하이드록사이드를 사용하여 CPVC의 pH가 2 내지 5가 되도록 하는 제 1중화 공정, 및 상기 게 1중화 공정의 결과물, 즉 pH2 내지 5로 중화된 CPVC에 대해 b) 제 2 중화제로서 카보네이트계 화합물을 사용하여 중화를 완료하는 제 2중화 공정을 포함한다.
상기 제 1중화 공정에서 사용되는 금속 하이드록사이드의 계 1중화제는
CPVC내 염산을 중화시키면서도, C02를 발생시키지 않기 때문에, 전체적으로 C02 발생을 최소화함으로써 C02에 의한 가공물의 압출 외관 돌기 발생 등의 문제를 해결하여 가공물의 압출 외관 특성을 개선시킬 수 있다. 다만, 상기 금속 하이드록사이드는 강염기이기 때문에 pH 조절이 용이하지 않고, 또 중화열 발생의 우려가 있는데, 이에 대해 제 1중화제의 사용량을 최적화하고, 또 게 2중화 공정에서 제 2중화제로서 약염기인 카보네이트계 화합물을 사용함으로써 상기한 문제를 해결하여 열안정성을 개선시킬 수 있다.
만약, 게 2중화제인 카보네이트계 화합물을 제 1중화 공정에서 먼저 사용할 경우, C02 발생 억제 효과를 얻기 어렵고, 또 중화 과정에서 발생되는 C02 및 차아염소산염 (Hypochlor i te)으로 인해 잔존 HC1의 제거가 어렵다. 또 제 1중화제인 금속 하이드록사이드를 제 2중화 공정에서 사용할 경우, 상기 금속 하이드록사이드가 강염기성이기 때문에 pH 조절이 용이하지 않고, 또 높은 중화열이 발생하여 CPVC 체인을 공격함으로써 물성 저하를 초래할 수 있다.
본 발명에 있어서 상기 게 1중화제와 게 2중화제는 중화제의 염기도 (이온화도)의 차이로 분류시, 각각 강염기와 약염기로 구분된다. pH는 로그 스케일 (Log Scal e)의 프로톤 (Proton) 농도를 나타내기 때문에, 산과 염기의 중화반웅은 당량점 근처에서는 중화제 투입량에 따라 pH가 급격하게 변화하게 된다. 강산과 강염기의 중화는 pH 7을 당량점으로 나타내고, 강산과 약염기의 중화는 그보다 낮은 pH를 당량점으로 나타낸다. 이에 따라, 통상 CPVC 중화 이후, 잔여 HC1 및 잔류 중화제꾀 최소 지점을 pH 7로 하고 있으며, 당량점 근처인 최종 중화 pH에 접근하기 위해서는, 강염기인 게 1중화제를 제 2중화 공정에 사용하기 보다는 약염기인 제 2중화제를 사용하는 것이 보다 바람직하다. 또, 강염기는 pH가 급격히 상승하게 되면 하이드록사이드기가 CPVC의 주쇄 (Main chain)를. 공격할 가능성이 높기 때문에, 게 2중화 공정에서 제 1중화제를 사용하는 것은 바람직하지 않다.
이에 따라 본 발명의 일 구현예에 따른 제조방법은, CPVC 중화시, pH 조절이 용이한 범위에서 강염기의 제 1중화제를 사용하여 CPVC의 pH가 2 내지 5가 될 때까지 최대한 중화한 후, 열 안정성 및 최종 중화 pH에 접근이 용이한 약염기의 제 2중화제를 사용하여 중화를 완료한다.
상기 제 1중화 공정에 있어서, a)의 제 1 증화제로는 금속 하이드록사이드를 사용할 수 있으며, 상기 금속 하이드록사이드로는 구체적으로 소디움 하이드록사이드, 포타슘 하이드록사이드, 또는 리튬 하이드록사이드 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 흔합물을사용할 수 있다.
또한, 상기 금속 하이드록사이드는 상기 CPVC의 pH가 2 내지 5를 만족하도록 하는 양으로 투입될 수 있으며, 구체적으로는, 상기 제 1 중화제는 CPVC 100 중량부에 대해 1 내지 3 중량부로 투입될 수 있다.
본 발명에 있어서, 게 1 및 제 2 중화제는 가공물의 압출면에서의 돌기 형성 방지와 열 안정성 개선의 효과 면에서 트레이드 오프 (Trade-of f ) 관계를 형성하고 있다. 앞서 설명한 바와 같이 게 1중화제는 중화반웅에서 (:02를 발생시키지 않기 때문에 종래 증화 반웅시 발생되는 C02에 의한 가공물이 압출면에서의 돌기 형성에 따른 외관 특성 저하를 방지할 수 있다. 그러나 제 1중화제로서 사용되는 금속 하이드록사이드는 강염기이기 때문에 pH 조절이 용이하지 않고, 또 중화열 발생의 우려가 있다. 또, 계 2중화제는 pH 조절이 용이하고, 중화열 제어를 통해 수지의 열 안정성을 높일 수 있으나, 중화 반웅시 C02를 발생시킬 우려가 있다.
이쎄 따라 본 발명에서의 열안정성 개선 및 C02 발생 제어를 통한 압출 외관 돌기 감소 효과를 동시에 구현하기 위해서는, 제 1 및 제 2 중화제의 사용량을 최적화하여야 한다. 본 발명의 일 구현예에 따른 CPVC 제조방법에 있어서, 중화시 금속하이드록사이드의 제 1중화제는 CPVC의 pH가 2 내지 5가 될 때까지 투입될 수 있다. 만약 제 1중화제가 과량으로 사용되어 pH가 5를 초과할 경우 후술하는 실험예에서 뒷받침되는 바와 같이, 열 안정성이 크게 저하되게 된다 (비교예 1 참조) . 또 제 1중화쩨가 소량 사용되어 pH가 2 미만일 경우, CPVC의 중화를 위해 과량의 게 2중화제가 사용되어야 하고, 제 1중화제에 의한 C02 발생 제어 효과가 미미하기 때문에 가공물 압출면의 돌기 개수가 크게 증가하게 된다 (비교예 2 및 3 참조) . 한편, 상기 게 2화공정에 있어서, b)의 제 2중화제로는 카보네이트계 화합물을 사용할 수 있으며, 상기 카보네이트계 화합물로는 구체적으로 소디움 카보네이트, 소디움 바이카보네이트, 포타슘 카보네이트, 포타슘 바이카보네이트, 또는 칼슘 카보네이트 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 흔합물을 사용할 수 있다.
또한, 상기 카보네이트계 화합물은 제 1중화 Ϋ정에서 1차로 중화된 CPVC의 pH가 6 내지 8이 되도록 하는 양으로 투입될 수 있다. 구체적으로는, 상기 제 2 중화제는 중화 공정 전 CPVC 100 중량부에 대해 1 내지 5 중량부로 투입될 수 있다.
상기한 제 1 및 계 2중화제는 각각 분말 형태 또는 용액 형태로 투입하여 원하는 pH로 조절한다. 이 때 중화 시 온도는 용매의 끓는 점 범위 내에서 진행한다. 중화제 투입 시에는 교반을 통하여 중화효율을 높일 수 있다. 중화가 완료된 CPVC는 탈수 및 건조 과정을 통하여 용매 및 불순물을 제거하여 CPVC를 얻는다.
한편, 상기 중화 공정에서, 중화제가 투입되기 전의 염소화 폴리염화비닐 수지는 슬러리 또는 현탁액 상태일 수 있다.
구체적으로는, 상기 중화 공정에서 중화제가 투입되기 전의 염소화 폴리염화비닐 수지는 i ) 염소화 반웅 후의 슬러리, i i ) 불순물이 제거된 탈수 슬러리 또는 i i i ) 탈수 슬러리와 용매를 흔합하여 제조된 현탁액 상태를 포함할 수 있다. 보다 구체적으로는, 상기 염소화 폴리염화비닐 수지는 탈수 슬러리와 용매를 흔합하여 제조된 현탁액 상태로 사용할 수 있다. 상기 탈수 슬러리는 케이크 형태일 수 있다.
염소화 반웅이 완료된 이후, 반웅물은 슬러리 상태일 수 있는데, 중화 공정에서 별도의 정제 공정 없이 CPVC 슬러리 상태로 바로 중화제가 투입될 수 있다. 또한, 불순물을 제거하기 위하여 CPVC 술러리를 탈수하는 공정을 거친 탈수된 CPVC 슬러리에 중화제가 투입될 수 있다. 그리고, 상기 탈수된 CPVC 슬러리에 용매를 투입하여 재슬러리화한 현탁액 (Suspens i on) 상태에 중화제를 투입할 수 있다, 상기 방법 중에서, 불순물의 제거 및 중화제 사용량의 감소를 위해 탈수 후 재슬러리화한 현탁액 상태로 중화제를 투입하는 것이 가장 효율적이다. 상기 탈수된 CPVC 슬러리에 첨가되는 용매는 증류수, 알코올 등이 사용될 수 있다. 또한, 상기 슬러리 또는 현탁액이 사용되는 경우 고형분 함량이 20 내지 50 중량 %일 수 있다.
한편, 상기 중화 공정 전후의 온도는 25 내지 80°C이므로, 상기 중화 공정은 온도 25°C 내지 80 °C인 조건에서 수행할 수 있다.
그리고, 중화제 투입 시에는 교반을 통하여 중화효율을 높일 수 있다. 중화가 완료된 CPVC는 탈수 및 건조 과정을 통하여 용매 및 불순물을 제거하여 CPVC를 얻을 수 있다. .
CPVC의 가공 공정
본 발명의 일 구현예에 따른 CPVC의 제조방법은, 상기 중화 공정이 완료된 CPVC에 대해 가공공장을 진행하는 공정을 더 포함할 수 있다.
상기 가공공정을' 수행함에 따라, CPVC의 가공물의 압출 외관 등을 파악할 수 있다.
바람직한 일 구현예에 따르면, CPVC 수지의 가공 공정을 진행하는 경우, 상기 CPVC 100 중량부 (phr )에 대하여 첨가제 10 내지 30 중량부를 흔합하여 CPVC 컴파운드 조성물을 형성한다.
상기 첨가제는 통상의 CPVC의 가공공정에 사용되는 것이 모두 사용 가능하고, 예를 들어 열안정제 (Mono , Dimethyl t in mercapt ide complex와 같은 주석계 열안정제 등), 층격보강제 (메틸메타크릴레이트-부타디엔- 스티렌 공중합체 (MBS) 등), 활제 (디펜타에리쓰리를 핵사스테아레이트 (Dipentaerythr itol hexastearate)와 같은 폴리에스터계 화합물, 파라핀, 또는 이들의 흔합물 등), 또는 필러 (이산화타이타늄 등) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 흔합물이 사용될 수 있다.
이후, 상기 CPVC 컴파운드 조성물을 T-다이 압출을 사용하여 두께 3mm의 가공 시트를 얻을 수 있다.
이러한 본 발명의 방법에 따라, 열안정성이 뛰어나고 가공물의 압출 외관의 돌기가 적은 염소화 폴리염화비닐 수지를 제공할 수 있다.
이하에서, 본 발명에 따른 실시예를 참조하여 본 발명을 더욱 상세히 설명하기로 한다. 다만, 이러한 실시예는 발명의 예시로 제시된 것에 불과하며, 이에 의해 발명의 권리범위가 정해지는 것은 아니다.
<비교예 1 내지 3, 및 실시예 1 내지 4>
CPVC의 합성
PVC (중합도 1,000)를 염소화하여 CPVC를 합성하였다.
구체적으로 PVC를 탈이온수와 함께 슬러리 상태 (고형분 함량 20 중량 ¾ 로 반웅기에 투입하고 진공을 걸어 반웅기 내 산소를 제거하였다. 진공이 된 반웅기에 염소를 투입하고, 승온과 동시에 UV를 조사하였다. 반웅 시 염소의 압력은 0.5-4.0 bar 사이를 유지하며, 반웅 온도는 50°C ~95°C에서 반웅을 진행하였다. 염소화 반웅 중 염소가 Target 양에 도달하면 반웅을 종료하였다.
CPVC의 중화
상기에서 염소화 반웅이 종료된 CPVC 슬러리에 하기 표 1의 중화제를 투입하여 중화 공정을 진행하였다.
이때, 중화 시 온도는 용매의 끓는 점 범위 내 (50°C )에서 진행하였다. 그리고, 중화제 투입 시에는 교반을 진행하였으며, 중화가 완료된 CPVC는 탈수 및 건조 과정을 통하여 용매 및 불순물을 제거하여 CPVC를 얻었다.
CPVC의 가공
CPVC의 가공 물성을 파악하기 위하여 가공을 실시했다.
상세하게는, CPVC 수지 lOOphr에 Tin계 열안정제 (Mono, Dimethyltin mercaptide complex) 2 중량부, 충격보강제로서 메틸메타크릴레이트- 부타디엔-스티렌 공중합체 (MBS) 8 중량부, 활제로서 파라핀 (Paraffin) 및 Polyester계 활제 (Loxiol G2899™, Emery사제)의 흔합물 5 중량부 (Paraffin 및 Polyester의 흔합 중량비 =1:1) 및 필러로서 이산화타이타늄 3 중량부를 흔합하여 CPVC 컴파운드 조성물을 형성하였다.
형성된 컴파운드 조성물을 T-다이 압출을 사용하여 두께 3mm의 가공물을 얻었다.
<실험예 >
비교예 및 실시예의 CPVC에 대해 다음의 방법으로 물성을 평가하고, 그 결과를 하기 표 1에 나타내었다.
물성 분석 방법
* HC1 안정성 (stability): CPVC수지를 10%의 농도로 수분산 시킨 후 180°C로 가온하고 발생하는 HC1에 의해 전도도에 50//S 변화가 생기는 시점까지의 시간을 측정하였다. HC1 안정성은 CPVC와 열안정성을 측정하는 지표로 사용된다.
* 가공 압출면 돌기: CPVC T-다이 압출 시트면에 발포된 형태의 돌기가 발생한 개수를 측정하였다.
【표 1]
Figure imgf000013_0001
제 2 중화제 종류 - SC SB SC SC SB SB 제 2 중화제 7.0 7.0 7.0 7.0 7.0 ' 7.0 투입량 (CPVC의
H)
HC1 안정성 (h) 0.43 0.53 0.52 0.51 0.49 0.50 0.49 가공물의 압출면 27 151 152 32 37 36 42 돌기 개수
(개 /200cin2) 상기 표 1에서, SC는 탄산나트륨 (Sodium Carbonate)이고, SB는 중탄산나트륨 (Sodium Bicarbonate)의 약어이다.
표 1를 참조하면, 비교예 1과 비교예 2, 3을 비교해 보면 HC1 안정성 (열안정성 )은 카보네이트계 화합물로 중화했을 때가 우수하고, 가공물의 압출면 돌기 개수는 금속 하이드록사이드인 소디움 하이드록사이드로 중화했을 때가우수한 것을 볼 수 있다.
반면, 상기 중화제를 하나만 사용했을 때, 즉, 카보네이트계 화합물만 사용했을 때 (비교예 2 및 3)는, 가공물의 압출 표면에 돌기가 많아 매우 불량하고, 금속 하이드록사이드를 사용했을 때 (비교예 1)는 열안정이 낮은 문제가 있는 반면, 실시예 1 내지 4와 같이, 중화 초기에는 금속 하이드록사이드로 중화하고 나머지 부분을 카보네이트계 화합물로 중화한 경우에는 열안정성이 우수하면서도 가공불의 압출 외관도 우수하여 두 문제를 모두 해결할수 있음을 알수 았다.

Claims

【청구의 범위】
【청구항 1】
폴리염화비닐 또는 염화비닐계 공중합체를 염소화 반웅시켜 염소화 폴리염화비닐 수지를 제조하는 공정; 및
상기 염소화 폴리염화비닐 수지에 중화제를 투입하여 염소화 폴리염화비닐 수지를 중화하는 중화 공정 ;을 포함하며,
상기 중화 공정은, a) 제 1 중화제로서 금속 하이드록사이드를 사용하여 상기 염소화 폴리염화비닐 수지의 pH가 2 내지 5가 되도록 중화하는 게 1중화 공정, 및 상기 pH가 2 내지 5가 되도록 중화된 염소화 플리염화비닐 수지에 대해 b) 제 2 중화제로서 카보네이트계 화합물을 사용하여 중화를 완료하는 제 2중화 공정을 포함하는, 염소화 폴리염화비닐 수지의 제조방법 .
【청구항 2】
제 1항에 있어서, 상기 a)의 금속 하이드록사이드는 소디움 하이드록사이드, 포타슘 하이드록사이드 및 리튬 하이드록사이드로 이루어진 군에서 선택된 1종 이상인, 염소화 폴리염화비닐 수지의 제조방법.
【청구항 3】
제 1항에 있어서, 상기 b)의 카보네이트계 화합물은 소디움 카보네이트, 소디움 바이카보네이트, 포타슘 카보네이트, 포타슘 바이카보네이트 및 칼슴 카보네이트로 이루어진 군에서 선택된 1종 이상인, 염소화 폴리염화비닐 수지의 제조방법.
【청구항 4】
게 1항에 있어서, 상기 중화 공정에서 b)의 카보네이트계 화합물아 투입된 후 중화 완료 시점의 pH가 6 내지 8인, 염소화 폴리염화비닐 수지의 제조방법.
【청구항 5]
게 1항에 있어서, 상기 중화 공정에서, 중화제가 투입되기 전의 염소화폴리염화비닐 수지는 i ) 상기 염소화 반응 후의 슬러리, Π ) 염소화 반웅 후 불순물이 제거된 탈수 슬러리 또는 i i i ) 상기 탈수 슬러리와 용매를 흔합하여 제조된 현탁액을 포함하는, 염소화 폴리염화비닐 수지의 제조방법.
【청구항 6】
. 게 1항에 있어서, 상기 염소화 폴리염화비닐 수지는, 상기 염소화 반웅 후 불순물이 제거된 탈수 슬러리와 용매를 흔합하여 제조된 현탁액을 포함하는, 염소화 폴리염화비닐 수지의 제조방법.
[청구항 7】
제 1항에 있어서, 상기 중화 공정은 온도 25 °C 내지 80°C인 조건에서 수행하는 염소화 폴리염화비닐 수지의 제조방법.
【청구항 8】
계 1항에 있어서, 상기 중화 공정 후에 염소화 폴리염화비닐 수지를 가공하는 공정을 더 포함하는 염소화 폴리염화비닐 수지의 제조방법.
PCT/KR2018/012661 2017-10-25 2018-10-24 염소화 폴리염화비닐 수지의 제조방법 WO2019083280A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880068839.5A CN111263776B (zh) 2017-10-25 2018-10-24 制备氯化聚氯乙烯树脂的方法
US16/651,561 US11629204B2 (en) 2017-10-25 2018-10-24 Method for preparing chlorinated polyvinyl chloride resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0139440 2017-10-25
KR1020170139440A KR101860149B1 (ko) 2017-10-25 2017-10-25 염소화 폴리염화비닐 수지의 제조방법

Publications (2)

Publication Number Publication Date
WO2019083280A2 true WO2019083280A2 (ko) 2019-05-02
WO2019083280A3 WO2019083280A3 (ko) 2019-06-13

Family

ID=62453165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/012661 WO2019083280A2 (ko) 2017-10-25 2018-10-24 염소화 폴리염화비닐 수지의 제조방법

Country Status (4)

Country Link
US (1) US11629204B2 (ko)
KR (1) KR101860149B1 (ko)
CN (1) CN111263776B (ko)
WO (1) WO2019083280A2 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101860149B1 (ko) 2017-10-25 2018-05-21 한화케미칼 주식회사 염소화 폴리염화비닐 수지의 제조방법
KR102684209B1 (ko) * 2018-12-19 2024-07-10 한화솔루션 주식회사 염소화 폴리염화비닐 수지의 제조 방법

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3334078A (en) * 1964-09-21 1967-08-01 Goodrich Co B F Process for the chlorination of polyvinyl chloride
NL7504616A (nl) 1975-04-18 1976-10-20 Stamicarbon Nagechloreerde vinylchloridepolymeren.
US4345040A (en) 1980-06-16 1982-08-17 The B. F. Goodrich Company Stabilization of post-chlorinated vinyl chloride polymers by phosphate salts
US4874823A (en) 1987-11-25 1989-10-17 The B. F. Goodrich Company Chlorinated polyvinyl chloride-vinyl acetate copolymers having good low and high temperature stability
DE4205583A1 (de) 1992-02-24 1993-08-26 Windmoeller & Hoelscher Schweissband
US5359011A (en) 1992-10-14 1994-10-25 The B.F. Goodrich Company Process for the complete neutralization of chlorinated polyvinyl chloride and product resulting therefrom
US5821304A (en) 1996-05-24 1998-10-13 The B. F. Goodrich Company Chlorinated polyvinyl chloride compound having excellent physical, chemical resistance and processing properties
JPH11158221A (ja) * 1997-09-26 1999-06-15 Sekisui Chem Co Ltd 塩化ビニル系樹脂及び塩素化塩化ビニル系樹脂
TWI227243B (en) * 1998-06-25 2005-02-01 Sekisui Chemical Co Ltd Chlorinated vinyl chloride-based resin and molded articles
EP1160264A4 (en) 1998-06-25 2002-08-21 Sekisui Chemical Co Ltd RESIN BASED ON CHLORINATED VINYL CHLORIDE AND MOLDED ARTICLES
JP2000239320A (ja) 1999-02-22 2000-09-05 Tokuyama Sekisui Ind Corp 塩素化塩化ビニル系樹脂
JP2003277436A (ja) 2002-03-26 2003-10-02 Kanegafuchi Chem Ind Co Ltd 塩素化塩化ビニル系樹脂の製造方法および装置
JP4197265B2 (ja) 2003-04-09 2008-12-17 株式会社カネカ 塩化ビニル系重合体粉末およびその製造方法
JP2006322013A (ja) * 2006-09-08 2006-11-30 Sekisui Chem Co Ltd 塩素化塩化ビニル系樹脂の製造方法
KR20120087480A (ko) 2011-01-28 2012-08-07 주식회사 스몰랩 염소화된 폴리염화비닐 수지의 제조를 위한 연속식 공정
IN2013MU02455A (ko) 2013-07-24 2015-06-26 Reliance Ind Ltd
CN105017449B (zh) * 2015-07-29 2016-03-30 杭州科利化工股份有限公司 一种氯化聚乙烯树脂的制备方法
KR101654147B1 (ko) * 2016-03-04 2016-09-05 한화케미칼 주식회사 염소화 폴리염화비닐 수지의 제조방법
KR101860149B1 (ko) * 2017-10-25 2018-05-21 한화케미칼 주식회사 염소화 폴리염화비닐 수지의 제조방법

Also Published As

Publication number Publication date
US20210380731A1 (en) 2021-12-09
CN111263776A (zh) 2020-06-09
KR101860149B1 (ko) 2018-05-21
US11629204B2 (en) 2023-04-18
CN111263776B (zh) 2022-12-30
WO2019083280A3 (ko) 2019-06-13

Similar Documents

Publication Publication Date Title
KR101654147B1 (ko) 염소화 폴리염화비닐 수지의 제조방법
EP1383811B1 (en) Emulsifier free aqueous emulsion polymerization process for making fluoropolymers
JP5345064B2 (ja) 六方晶小板形晶相を含むカルシウムカーボネートヒドロキソジアルミナート
WO2009128432A1 (ja) ポリテトラフルオロエチレンファインパウダーの製造方法
WO2019083280A2 (ko) 염소화 폴리염화비닐 수지의 제조방법
EP3426697B1 (en) Methods for providing polyvinyl chloride particles for preparing chlorinated polyvinyl chloride
JP2014224176A (ja) 熱塩素化塩化ビニル系樹脂組成物および成形体
CN113195549B (zh) 制备氯化聚氯乙烯树脂的方法
JP5891242B2 (ja) 塩素化塩化ビニル系樹脂の製造方法
JP4728701B2 (ja) 塩素化塩化ビニル系樹脂の製造方法
US5359011A (en) Process for the complete neutralization of chlorinated polyvinyl chloride and product resulting therefrom
EP3426699A1 (en) Methods for chlorinating polyvinyl chloride
WO2018043945A1 (ko) 염소화 염화비닐계 수지의 제조방법
JP3863279B2 (ja) 塩素化塩化ビニル系樹脂の製造方法
JP3176504B2 (ja) 塩素化塩化ビニル系樹脂の製造方法
KR20230141581A (ko) 염소화 폴리염화비닐 수지 조성물의 제조방법
JP2006104485A (ja) 塩素化塩化ビニル系樹脂の製造方法
KR102235035B1 (ko) 염화비닐계 중합체의 제조방법
KR20190011514A (ko) 염화비닐계 중합체의 제조방법
JP2005036196A (ja) 塩化ビニル系樹脂及び塩化ビニル系樹脂成形体
CN118647636A (zh) 氯化聚氯乙烯树脂组合物的制备方法
JP2004099669A (ja) 塩素化塩化ビニル系樹脂の製造方法
JPH07258336A (ja) 塩素化塩化ビニル系樹脂の製造方法
JP2000344830A (ja) 塩素化塩化ビニル系樹脂の製造方法
JPS5946962B2 (ja) 塩素化塩化ビニル樹脂の製造方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18869853

Country of ref document: EP

Kind code of ref document: A2