WO2019078644A2 - 리튬 공기 전지용 양극, 이를 포함하는 리튬 공기 전지, 및 리튬 공기 전지용 양극의 제조방법 - Google Patents

리튬 공기 전지용 양극, 이를 포함하는 리튬 공기 전지, 및 리튬 공기 전지용 양극의 제조방법 Download PDF

Info

Publication number
WO2019078644A2
WO2019078644A2 PCT/KR2018/012348 KR2018012348W WO2019078644A2 WO 2019078644 A2 WO2019078644 A2 WO 2019078644A2 KR 2018012348 W KR2018012348 W KR 2018012348W WO 2019078644 A2 WO2019078644 A2 WO 2019078644A2
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
positive electrode
hemoglobin
air battery
carbon dioxide
Prior art date
Application number
PCT/KR2018/012348
Other languages
English (en)
French (fr)
Other versions
WO2019078644A3 (ko
Inventor
류원희
이재윤
이준서
김현수
이나원
Original Assignee
숙명여자대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 숙명여자대학교산학협력단 filed Critical 숙명여자대학교산학협력단
Publication of WO2019078644A2 publication Critical patent/WO2019078644A2/ko
Publication of WO2019078644A3 publication Critical patent/WO2019078644A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8668Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte

Definitions

  • the present invention relates to a positive electrode for a lithium air battery, a lithium air battery including the positive electrode, and a method for manufacturing a positive electrode for a lithium air battery.
  • Lithium air cells are advantageous in terms of raw material supply and demand because they use oxygen in the atmosphere as an active material (active material: a substance that chemically reacts when a battery discharges and generates electrical energy) on an anode, unlike a lithium ion battery.
  • This type of lithium air battery uses an anode made of porous carbon for smooth oxygen transfer and an oxygen reduction reaction (2Li + +) in which lithium ions move from the cathode to the cathode during discharging, O 2 + 2e - ⁇ Li 2 O 2, produces electricity through the Oxygen reduction reaction, ORR), a standard voltage at this time is represented by the reaction take place in a thermodynamically 2.96V by the Nernst equation (Fig. 1 (a)) .
  • lithium oxide (Li 2 O 2 ) as a reaction product is not reversibly decomposed and accumulates on the surface of the electrode to prevent micropores, thereby reducing the reaction specific surface area, And the voltage required for charging and discharging the electrode is increased (Overpotential). That is, in order to charge the lithium air battery, an overvoltage which is much higher than the standard voltage must be applied, resulting in energy loss.
  • a noble metal catalyst such as Au, Ag, Pt, Pd, Ru or Ir or MnO 2 , Mn 2 O 3 , Mn 3 O 4 , Co 3 O 4 , CuO, Fe 2 O 3 , NiO, CeO 2 , LaMnO 3 , MnCo 2 O 4, or Ba 0.5 Sr 0.5 Co 0.2 Fe 0.8 O 3 are introduced into the air electrode in combination with the carbon material to increase the efficiency of the cell .
  • carbon dioxide which is the main cause of greenhouse gas, can be stored in the form of a battery, it can be widely used not only as an energy field but also as an environmental technology. Therefore, a lithium- In fact.
  • the reaction of the lithium-carbon dioxide cell is similar to the lithium-oxygen cell (lithium-air cell) reaction described above.
  • reaction products such as lithium carbonate or lithium oxalate are formed on the surface of the cathode, A reaction in which the reaction product is reversibly decomposed can proceed.
  • the lithium-carbon dioxide battery also has a problem of efficiency deterioration due to an overvoltage problem or the like.
  • Another object of the present invention is to provide a lithium air battery including the positive electrode for the lithium air battery.
  • Still another object of the present invention is to provide a method of manufacturing the positive electrode for the lithium air battery.
  • a positive electrode for a lithium air battery comprising a catalyst comprising carbon material carrying iron (Fe) or its alloy derived from hemoglobin or hemoglobin is provided.
  • a negative electrode comprising a lithium metal
  • a separator interposed between the anode and the cathode
  • An electrolyte for transferring lithium ions generated in the cathode to the anode And a lithium ion battery.
  • the present invention also provides a method of manufacturing a positive electrode for a lithium air battery.
  • the present invention also provides a method of manufacturing a positive electrode for a lithium air battery.
  • the positive electrode for a lithium air battery according to an embodiment of the present invention contains an environmentally friendly hemoglobin material in a battery, and the hemoglobin material acts as a catalyst, thereby greatly increasing the performance and efficiency of the battery.
  • the hemoglobin material is a protein material that actively bonds or discharges oxygen and carbon dioxide, and comprises Fe (a porphyrin structure and a protein complex structure in which a polypeptide molecule has a helical structure) It can be used as a carrier of oxygen or carbon dioxide in the anode for a lithium air battery.
  • 1 is a conceptual view of a lithium air battery.
  • FIG. 2 is a diagram showing the structure of hemoglobin molecules.
  • FIG. 3 is a schematic view showing the operation principle of the heme molecule as a catalyst for a lithium air cell.
  • FIG. 5 is a graph showing initial charging / discharging curves of a lithium-carbon dioxide battery using Hb / CNT of Example 1 as a catalyst.
  • FIG. 6 is a graph showing cyclic voltammetry (CV) measurement results of a lithium-carbon dioxide cell according to Example 1 of the present invention ((a) Hb / CNT_CO 2 _ 1 st , (b) Hb / CNT_CO 2 _ 2 nd ).
  • Example 7 is a graph showing the CV measurement result of the lithium-carbon dioxide battery of Comparative Example 2 of the lithium-carbon dioxide battery according to Example 1 of the present invention.
  • FIG. 8 is a graph showing charge / discharge curves of a lithium-carbon dioxide battery using the catalyst of Example 1, Comparative Example 1 and Comparative Example 2.
  • FIG. 8 is a graph showing charge / discharge curves of a lithium-carbon dioxide battery using the catalyst of Example 1, Comparative Example 1 and Comparative Example 2.
  • Example 3 is a graph showing a result of CV measurement of a lithium-air battery using the catalyst of Example 3 and Comparative Example 3 of the present invention ((a) Comparative Example 3 (CO 2 purging), (b) Comparative Example 3 Ar purging, (c) Example 3 (CO 2 purging) and (d) Example 3 (Ar purging).
  • Example 10 is a graph showing the results of cyclic voltammetry measurement of a lithium-carbon dioxide cell using the catalysts of Example 3 and Comparative Example 3 ((a) 5 mV s -1 _1 st , (b) 5 mV s -1 _2 nd, (c) 10 mV s -1).
  • FIG. 11 is a graph showing a cyclic voltammetry measurement result of a lithium-carbon dioxide battery using the catalyst of Example 3 when carbon dioxide or argon was poured into the electrolyte ((a) 5 mV s -1 _1 st , (b ) 5 mV s -1 _ 2 nd , (c) 10 mV s -1 .
  • FIG. 13 is a graph showing charge / discharge curves of the lithium-carbon dioxide battery of Example 3. Fig. Specifically, when argon and carbon dioxide are respectively purged, the primary, secondary, and tertiary charge / discharge curves of a lithium-carbon dioxide cell are shown.
  • FIG. 14 is a graph showing X-ray diffraction spectroscopy (XRD) of the electrodes of the lithium-carbon dioxide battery produced in Example 3 and Comparative Examples 3 and 4.
  • XRD X-ray diffraction spectroscopy
  • TGA 15 is a thermogravimetric analysis (TGA) graph of Example 3 of the present invention.
  • FIG. 19 is a graph showing initial charging / discharging curves of Example 1 and Example 2 ((a) Example 1, (b) Example 2).
  • Example 20 is a graph showing the results of CV (cyclic voltammetry) measurement of a lithium-carbon dioxide battery according to Example 2 and Comparative Example 2 of the present invention.
  • FIGS. 21 and 22 are graphs showing results of FTIR analysis of the Hb / CNT electrode according to Example 1 of the present invention ((a) initial state, (b) discharge, and (c) charge).
  • Example 23 is a photograph of the surface of the Hb / CNT electrode according to Example 1 by scanning electron microscope ((a) initial state, (b) discharge, and (c) charging).
  • Example 24 is a graph showing Rietveld refinement of the X-ray diffraction pattern of the Hb / CNT electrode of Example 1 ((a) is an initial state, (b) is charging, and (c) is discharge).
  • Example 25 is a graph showing the pH of the electrolyte during the operation of the lithium-carbon dioxide battery including the Hb / CNT of Example 1 ((a) is an initial state, (b) is discharge, and (c) is charging).
  • air is not meant to be limited to atmospheric air, but may include a combination of gases containing oxygen, or pure oxygen gas. In another aspect, a combination of gases comprising carbon dioxide, or pure carbon dioxide gas, may be included. This broad definition of the term " air " can be applied to all applications, such as air cells, air bubbles, and the like.
  • lithium air cell can refer to a lithium oxygen cell or a lithium carbon dioxide cell.
  • the lithium air battery can be used for both a lithium primary battery and a lithium secondary battery.
  • the shape thereof is not particularly limited, and examples thereof include a coin type, a button type, a sheet type, a laminate type, a cylindrical type, a flat type, a horn type and the like. It can also be applied to large-sized batteries used in electric vehicles and the like.
  • hemoglobin (Hb) is a respiratory molecule found in the red blood cells of vertebrate animals. It carries oxygen from the lungs to somatic cells and carries carbon dioxide from somatic cells to lungs. In the present invention, such hemoglobin is contained in the anode for a lithium air cell and can be used as a carrier for oxygen or carbon dioxide.
  • FIG. 2 is a diagram showing the structure of hemoglobin molecules.
  • the hemoglobin molecule is composed of four polypeptide chains, and each polypeptide chain contains one heme group composed of tetrapy rings chelated with Fe +2 ions.
  • the iron atoms of the hemoglobin molecule are reversibly bound to the oxygen molecule and then transported to somatic cells as the blood circulates.
  • the oxygen is released from the hemoglobin molecule in the tissue, then the oxygen-free hemoglobin molecule absorbs carbon dioxide, which is returned to the lungs and then released from the lungs.
  • hemoglobin carries oxygen or carbon dioxide in vivo.
  • the present invention utilizes the transporting property of oxygen or carbon dioxide of hemoglobin as described above. More specifically, the present invention relates to a method for producing a hematocyte, By including, the catalyst can easily transport oxygen or carbon dioxide.
  • the present invention relates to a positive electrode for a lithium air battery, a lithium air battery including the positive electrode, and a method for manufacturing a positive electrode for a lithium air battery.
  • a lithium air battery is a lithium ion secondary battery in which lithium oxide (Li 2 O 2 ) as a reaction product is not reversibly decomposed and accumulated on the electrode surface to prevent micropores, thereby reducing the reaction specific surface area, And the voltage required for charging and discharging the electrode is increased (Overpotential). That is, in order to charge the lithium air battery, an overvoltage which is much higher than the standard voltage must be applied, resulting in energy loss.
  • lithium oxide Li 2 O 2
  • a noble metal catalyst such as Au, Ag, Pt, Pd, Ru or Ir or MnO 2 , Mn 2 O 3 , Mn 3 O 4 , Co 3 O 4 , CuO, Fe 2 O 3 , NiO, CeO 2 , LaMnO 3 , MnCo 2 O 4, or Ba 0.5 Sr 0.5 Co 0.2 Fe 0.8 O 3 are introduced into the air electrode in combination with the carbon material to increase the efficiency of the cell .
  • the present invention provides a positive electrode for a lithium air battery, which contains an environmentally friendly hemoglobin material in a battery and can significantly increase the performance and efficiency of the battery by the hemoglobin material acting as a catalyst, And a method for manufacturing a positive electrode for a lithium air battery.
  • the anode for a lithium air battery includes a catalyst containing carbon material on which iron (Fe) derived from hemoglobin or an alloy thereof is supported, and the catalyst can be used as a carrier of oxygen or carbon dioxide at an anode for a lithium air battery. Accordingly, the present invention has an advantage that the efficiency of the battery can be increased.
  • a positive electrode for a lithium air battery comprising a catalyst comprising carbon material carrying iron (Fe) or its alloy derived from hemoglobin or hemoglobin is provided.
  • lithium air electrode may mean a lithium oxygen battery in which the positive electrode active material is oxygen, or lithium carbon dioxide battery in which the positive electrode active material is carbon dioxide.
  • the lithium air electrode may be a lithium carbon dioxide battery in which the cathode active material is carbon dioxide.
  • the catalyst may be derived from hemoglobin.
  • it may be a hemoglobin-carbon composite material in which hemoglobin is mixed with a carbon material, or an Fe-carbon composite obtained by mixing hemoglobin and carbon materials and then carbonizing.
  • the iron derived from hemoglobin or hemoglobin may be in the form of being carried or dispersed in the inside of the carbonaceous material or dispersed in the form of particles to maximize the contact area with the carbonaceous material to provide a surface on which the reaction can take place.
  • the catalyst may be in the form of particles and the average particle diameter of the catalyst may range from 0.01 to 1 mu m for catalysts comprising hemoglobin-supported carbonaceous material and may range from 0.1 to 0.9 mu m, 0.2 to 0.8 mu m, or 0.3 to 0.7 mu m Lt; / RTI >
  • the average particle size of the catalyst may range from 0.1 to 50 nm. More specifically, the catalyst has an average particle diameter of 0.1 to 50 nm, 0.5 to 45 nm, 1.0 to 40 nm, 1.5 to 35 nm, 2.0 to 30 nm, 2.5 to 25 nm, 3.0 to 20 nm, 3.5 to 15 nm, 4.0 To 10 nm, from 4.5 to 8 nm, or from 5 to 7 nm.
  • the contact area of air (oxygen or carbon dioxide) in the average particle diameter range of the catalyst is increased, and the charge / discharge capacity of the lithium air battery is improved to provide a high capacity lithium air battery.
  • the weight ratio of carbon (C) to iron (Fe) in the carbon material may be in the range of 5: 1 to 500: 1.
  • the weight ratio of carbon (C) to iron (Fe) in the carbon material is in the range of 10: 1 to 450: 1, 30: 1 to 400: 1, 50: 1 to 300: 1, 200: 1, or 100: 1.
  • the carbon material may undergo a reduction reaction (O 2 + 2Li + + 2e - ⁇ Li 2 O 2 ) at the anode where a lithium peroxide or lithium carbonate It is possible to perform a function as a conductive material used for imparting conductivity to the electrode.
  • the carbon material serves as a carrier of iron (Fe) or its alloy derived from hemoglobin or hemoglobin, and may or may not have porosity.
  • the carbon material may have a large specific surface area as a space where oxygen (or carbon dioxide), lithium ions, and electrons flowing into the anode react. Accordingly, it is possible to use a carbon nano tube, graphite, carbon black, ketjen black, acetylene black and reduced grapheme oxide, or a combination thereof have.
  • the carbon material on which iron (Fe) derived from hemoglobin or hemoglobin or an alloy thereof is supported may be included in the current collector as a catalyst, and the current collector is not limited, but may be formed of a conductive material.
  • the current collector may be formed of copper, nickel, stainless steel, or the like.
  • the current collector may be coated with a coating layer for preventing oxidation. For example, a Ni mesh capable of permeating air.
  • the positive electrode for the lithium air battery may further include a binder.
  • the binder is a constitution for attaching the components of the anode well to each other. More specifically, it bonds the carbon materials to each other and fixes them to the current collector.
  • the kind thereof is not particularly limited, and any binder known in the art can be used.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • SBR styrene-butadiene rubber
  • PEO polyethylene oxide
  • PVDF polyvinylidene fluoride
  • 3 is a schematic view showing the operation principle of the heme molecule as a catalyst for a lithium air cell.
  • the hemoglobin heme molecule (Fe) in the anode for a lithium air cell can act as an oxygen transporter for promoting the reversible product decomposition reaction and actively binding oxygen as a rutox catalyst in a lithium air cell have.
  • the lithium air battery including the cathode for a lithium air battery using hemoglobin can achieve high battery performance and exhibit excellent charge / discharge characteristics.
  • a negative electrode comprising a lithium metal
  • a separator interposed between the anode and the cathode
  • An electrolyte for transferring lithium ions generated in the cathode to the anode And a lithium ion battery.
  • the positive electrode may be a positive electrode for a lithium air battery including a catalyst containing carbon material on which iron (Fe) derived from hemoglobin or hemoglobin or an alloy thereof is supported.
  • the negative electrode may include lithium (Li).
  • the negative electrode may be formed of lithium metal or an alloy of lithium and another metal.
  • the negative electrode may include an alloy of lithium and silicon such as silicon (Si), aluminum (Al), tin (Sn), magnesium (Mg), indium (In), vanadium (V)
  • the electrolytic solution may include lithium salts dissolved in TEGDME (Tetraethyleneglycol dimethylether), DMSO (Dimethyl sulfoxide), DME (Dimethoxyethane) and the like.
  • TEGDME Tetraethyleneglycol dimethylether
  • DMSO Dimethyl sulfoxide
  • DME Dimethoxyethane
  • the lithium salt LiN (CF 3 SO 2) 2, LiN (FSO 2) 2, LiN (C 2 F 5 SO 2) 2, LiC (CF 2 SO 2) 3, LiBF 4, LiPF 6 , LiClO 4 , LiCF 3 SO 3 , or LiAsF 6 .
  • the concentration of the lithium salt is preferably within the range of about 0.1M to about 2.0M.
  • the electrolytic solution has an appropriate conductivity and viscosity, so that it can exhibit excellent electrolyte performance, and lithium ions can effectively move.
  • the separation membrane may be disposed between the cathode and the anode.
  • the separation membrane may be a porous glass filter.
  • the separator may be an olefin resin, a fluorine resin (e.g., polyvinylidene fluoride, polytetrafluoroethylene), an ester resin (e.g., polyethylene terephthalate) , Or a cellulose-based nonwoven fabric.
  • the separator may be formed of various kinds of materials in addition to the examples described above.
  • the present invention also provides a method of manufacturing a positive electrode for a lithium air battery.
  • the slurry may be prepared by mixing 10 to 40 parts by weight of hemoglobin, 5 to 20 parts by weight of a binder and 50 to 90 parts by weight of a carbonaceous material, and dispersing the mixed mixture in a solvent.
  • the amount of hemoglobin when the amount of hemoglobin is less than 10 parts by weight, the hemoglobin has a small effect of being used as a catalyst, and when it exceeds 40 parts by weight, the content of the carbonaceous material is insufficient, . If the carbon material is contained in an amount of less than 50 parts by weight, the discharge capacity of the lithium air battery is deteriorated. If the carbon material is more than 90 parts by weight, the binder may not be sufficiently adhered to the current collector. have. If the amount of the binder is less than 5 parts by weight, the binding force of the electrode may deteriorate. If the amount of the binder is more than 20 parts by weight, the resistance within the electrode due to the binder may be excessively increased. have.
  • the mixed solution may be applied to a current collector and dried at a temperature of 50 to 300 ⁇ for 1 to 15 hours in an air atmosphere.
  • a doctor blade coating, a dip coating, a gravure coating, a slit die coating, Coating can be performed by spin coating, comma coating, bar coating, reverse roll coating, screen coating, or cap coating. have.
  • the current collector may be impregnated with the slurry, coated, and vacuum dried.
  • the temperature may be 50 to 300 ⁇ , 55 to 250 ⁇ , 60 to 200 ⁇ , 65 to 150 ⁇ , 70 to 100 ⁇ or 75 ⁇ .
  • the time may be vacuum dried for 1 to 15 hours, 5 to 14 hours, 9 to 13 hours, 10 to 12 hours or 12 hours.
  • the solvent contained in the slurry is evaporated so that the bonding force between the carbon-based conductive material and the current collector is improved and the carbon-based conductive material is evenly dispersed to the inner frame of the porous current collector.
  • the solvent is a solvent for forming a slurry, and water or an organic solvent can be used.
  • the organic solvent includes isopropyl alcohol, N-methyl-2-pyrrolidone (NMP), acetone, It is possible to apply at least one selected from the above.
  • the present invention also provides a method of manufacturing a positive electrode for a lithium air battery.
  • the step of forming the catalyst composite includes carbonizing the hemoglobin and the carbonaceous material at an average temperature of 450 to 700 DEG C in a nitrogen atmosphere. Accordingly, Fe contained in hemoglobin can form a complex of Fe x C y upon heat treatment.
  • the catalyst complex may mean a catalyst including a carbon material bearing iron (Fe) derived from hemoglobin.
  • the step of preparing the slurry may include mixing 10 to 100 parts by weight of the catalyst composite and 5 to 20 parts by weight of the binder and dispersing the mixed mixture in a solvent.
  • the catalyst composite when used in an amount of less than 10 parts by weight, hemoglobin has a small effect of being used as a catalyst, and when the amount exceeds 100 parts by weight, the carbonaceous material and iron (Fe) There is a possibility that a problem of degradation may occur. If the amount of the binder is less than 5 parts by weight, the binding force of the electrode may deteriorate. If the amount of the binder is more than 20 parts by weight, the resistance within the electrode due to the binder may be excessively increased. have.
  • a slurry containing the catalyst composite can be applied to the current collector.
  • the current collector may be impregnated with a mixed solution, coated, and vacuum dried.
  • the temperature may be 50 to 300 ⁇ , 55 to 250 ⁇ , 60 to 200 ⁇ , 65 to 150 ⁇ , 70 to 100 ⁇ or 75 ⁇ .
  • the time may be vacuum dried for 1 to 15 hours, 5 to 14 hours, 9 to 13 hours, 10 to 12 hours or 12 hours.
  • the solvent contained in the slurry is evaporated so that the bonding force between the carbon-based conductive material and the current collector is improved and the carbon-based conductive material is evenly dispersed to the inner frame of the porous current collector.
  • the solvent is a solvent for forming a slurry, and water or an organic solvent can be used.
  • the organic solvent includes isopropyl alcohol, N-methyl-2-pyrrolidone (NMP), acetone, It is possible to apply at least one selected from the above.
  • Multi-walled carbon nanotubes were purchased from South West Nanotechnologies.
  • hemoglobin ⁇ 90%
  • diethylene glycol dimethyl ether DEGDME, anhydrous, ⁇ 99.5%
  • tetraethylene glycol dimethyl ether TEGDME, anhydrous, ⁇ 80 ppm H 2 O
  • tetraethylammonium perchlorate TEAClO 4 ⁇ 99.99%
  • lithium bis polyimide LITFSI, lithium bis-trifluoromethanesulfonimide
  • PVDF poly vinyl hydrofluoric Laden
  • NMP N- methyl-2-pyrrolidone
  • CNT carbon nanotubes
  • Hb hemoglobin
  • PVDF PVDF
  • the slurry thus prepared was coated on a nickel mesh (diameter: 12.7 mm) and vacuum-dried at 75 ° C for 12 hours to prepare an air electrode.
  • the air electrode comprising Hb / CNT prepared according to Example 1-2 produced a lithium-air test cell for electrochemical analysis.
  • a Swagelok type cell was constructed, which consisted of an air electrode (anode), a lithium electrode (cathode), a glass filter separator, and a DEGDME electrolyte to which 1 M concentration of LITFSI was added.
  • the test cell was fabricated in a glove box in an argon (Ar) atmosphere and was measured with a constant voltage charge-discharge system. Further, this measurement experiment was performed after purge under a carbon dioxide atmosphere of 1 atm.
  • CNT catalyst composite (catalyst-supported carbon material) was prepared by heating the carbonization process at a temperature of 600 ° C for 2 hours.
  • Example 3-1 The composite according to Example 3-1 was mixed with polyvinylidene fluoride (PVDF) in a ratio of 9: 1 by weight and dispersed in N-methyl-2-pyrrolidone (NMP solvent) to prepare a slurry.
  • PVDF polyvinylidene fluoride
  • NMP solvent N-methyl-2-pyrrolidone
  • the dried air electrode was subjected to carbonization by heating at a temperature of 500 ° C in a nitrogen atmosphere.
  • a positive electrode for a lithium air battery was produced.
  • a swagelok type cell was prepared using a lithium metal foil as a negative electrode, a glass filter as a separator, and an electrolyte in which 1 M of LITFSI was dissolved in tetraethylene glycol dimethyl ether.
  • a lithium-carbon dioxide cell was prepared by adding Hb and CNT in the same manner as in Example 1, and the experiment was conducted without supplying air (carbon dioxide).
  • electrodes were prepared using 90 parts by weight of CNT and 10 parts by weight of PVDF without Hb. Except for this point, an air electrode and a lithium-carbon dioxide battery using the same were fabricated in the same manner as in Example 1.
  • Example 3 the catalyst material was omitted to prepare carbon nanotubes according to Comparative Examples in which there were no catalyst particles. Thereafter, in the same manner as in Example 3, a cathode was manufactured using the carbon nanotubes according to the comparative example, and a lithium air battery (lithium oxygen battery) containing the same was produced.
  • a lithium air battery lithium oxygen battery
  • a lithium-carbon dioxide cell was produced in the same manner as in Example 3, except that the carbonization process was not performed.
  • the electrode having no Hb bond showed a charge capacity of about 34 mAh / g and a discharge capacity of about 13 mAh / g.
  • Example 5 is a graph showing the initial charging / discharging curve of the lithium-carbon dioxide battery using the hemoglobin of the current density of Example 1 as a catalyst.
  • the charging capacity was about 456 mAh / g, and the discharge capacity was about 786 mAh / g.
  • Example 1 exhibited a greatly improved initial charging / discharging capacity, and the Hb / CNT bonded to the electrode surface of Example 1 was significantly improved in charging / discharging efficiency compared to the electrode without Hb binding , Decomposition reaction (OER) also occurs smoothly.
  • OER Decomposition reaction
  • Hb acts as a catalyst in the lithium carbon dioxide battery.
  • Cyclic voltammetry was measured at a scanning rate of 5 mV / s in order to confirm the stability of the electrode in the lithium-carbon dioxide cell manufactured in Example 1.
  • FIG. 6 is a graph showing cyclic voltammetry (CV) measurement results of a lithium-carbon dioxide cell according to Example 1 of the present invention ((a) Hb / CNT_CO 2 _ 1 st , (b) Hb / CNT_CO 2 _ 2 nd ).
  • the electrode according to Example 1 showed a substantially rectangular shape CV graph, showing a very stable electrochemical behavior. That is, it was confirmed that Hb / CNT is suitable for use as a catalyst material of an electrode.
  • Example 7 is a graph showing the CV measurement results of the lithium-carbon dioxide battery (Hb / CNT) according to Example 1 of the present invention and the lithium-carbon dioxide battery of Comparative Example 2 (CNT).
  • Comparative Example 2 in FIG. 7 it was confirmed that the peak voltage moved higher during discharge. This shows that the discharge overvoltage is greatly reduced when CNT is used as the cathode catalyst on the anode side.
  • CO 2 acts as a cathode material (cathode active material) in a lithium-carbon dioxide battery
  • Hb attached to CNT can act as a catalyst of a Li-CO 2 battery at room temperature and lead to a high capacity.
  • the lithium-carbon dioxide cells utilizing the catalysts of Example 3 and Comparative Example 3 were subjected to cyclic voltammetry (CV) to measure changes in the current that occurred when the potential was arbitrarily changed.
  • CV cyclic voltammetry
  • cyclic voltammetry was performed from 0 to 5 V at a scan rate of 5 mV / s, 10 mV / s, 20 mV / s, 50 mV / s and 100 mV / s. These were measured under argon (Ar) or carbon dioxide (CO 2 ) atmosphere, respectively.
  • Example 3 is a graph showing the results of cyclic voltammetry measurement of a lithium-carbon dioxide cell utilizing the catalyst of Example 3 and Comparative Example 3 of the present invention ((a) Comparative Example 3 (CO 2 purging), (b) Example 3 (Ar purging), (c) Example 3 (CO 2 purging) and (d) Example 3 (Ar purging).
  • both of the comparative example 3 and the example 3 show a change in the current value as the scan rate increases.
  • the results of Example 3 and Comparative Example 3 are compared with each other, it can be seen that the variation width of the current vs. voltage is greater in Example 3 than in Comparative Example 3 at the same scanning rate. It was confirmed that Example 3 exhibited better electrochemical characteristics than Comparative Example 3.
  • the cyclic voltammetry method of the lithium-carbon dioxide battery using the catalysts of Example 3 and Comparative Example 3 was measured. Specifically, the cyclic voltammetry method was measured by changing the cycle number and the scan speed. The results are shown in Fig.
  • Example 10 is a graph showing the results of cyclic voltammetry measurement of a lithium-carbon dioxide cell using the catalysts of Example 3 and Comparative Example 3 ((a) 5 mV s -1 _1 st , (b) 5 mV s -1 _2 nd, (c) 10 mV s -1).
  • Example 3 the reversibility of Example 3 is very good, and thus it can be utilized as a secondary battery.
  • FIG. 11 is a graph showing a cyclic voltammetry measurement result of a lithium-carbon dioxide battery using the catalyst of Example 3 when carbon dioxide or argon was poured into the electrolyte ((a) 5 mV s -1 _1 st , (b ) 5 mV s -1 _ 2 nd , (c) 10 mV s -1 .
  • the current increases when carbon dioxide is purged, unlike the case where argon, which is an inert gas, is purged. That is, it was confirmed that an electrochemical reaction occurred between lithium and carbon dioxide, and the same reversible reaction was found in the second cycle as well as the first cycle, and the same reaction was observed even when the scanning speed was increased.
  • the electrochemical experiment of the lithium-carbon dioxide battery prepared in Example 3 was performed.
  • the electrochemical characteristics were evaluated by charging and discharging. This was measured under a carbon dioxide (CO 2 ) atmosphere. At this time, the scanning speed was maintained at 50 mA / g.
  • the initial charging / discharging curve for confirming the capacity limited the driving voltage to a value of 2.35 to 4.35 V.
  • FIG. 12 is a graph showing charge / discharge curves of the lithium-carbon dioxide battery of Example 3.
  • Fig. 12 (a) a discharge capacity of about 1750 mAh / g at the time of the first discharge, a discharge capacity of about 4500 mAh / g at the time of the second discharge, and a discharge capacity of 3750 mAh / g at the time of the third discharge It looked.
  • FIG. 12 (b) a discharge capacity of about 6100 mAh / g at the time of the first discharge and a discharge capacity of about 3950 mAh / g at the time of the second discharge were shown.
  • the lithium-carbon dioxide battery of the present invention was reproducibly realized, and its discharging capacity was as high as about 4,000 mAh / g to 6,000 mAh / g, and the charging capacity was almost equal to the discharging capacity, Can know.
  • FIG. 13 is a graph showing charge / discharge curves of the lithium-carbon dioxide battery of Example 3. Fig. Specifically, when argon and carbon dioxide are respectively purged, the primary, secondary, and tertiary charge / discharge curves of a lithium-carbon dioxide cell are shown.
  • X-ray diffraction spectroscopy (XRD) of the electrodes of the lithium-carbon dioxide cells prepared in Example 3 and Comparative Examples 3 and 4 was observed, and the results are shown in Fig.
  • Example 3 Comparative Example 3 and Comparative Example 4 as shown in Fig. 14 (a).
  • Fe 3 C or Fe and C are bonded.
  • An XRD peak at about 25 degrees C is the XRD peak, and a peak at about 42 degrees is a peak related to Fe.
  • TGA 15 is a thermogravimetric analysis (TGA) graph of Example 3 of the present invention.
  • thermogravimetric analysis graph of Example 3 is disclosed.
  • deterioration occurs at 400 to 600 ° C, and weight reduction of 86 wt% can be confirmed.
  • the Fe-C composite content of about 11 wt% was confirmed. It was confirmed that a small amount of water of about 3 wt% was also contained.
  • the surface of the electrode prepared in Example 3 was analyzed using a transmission electron microscope (TEM), and the results are shown in FIGS. 16 and 17.
  • TEM transmission electron microscope
  • FIG. 9 is a photograph showing the result of dissolving hemoglobin in the electrolyte ((a) TEGDME + LiTFSI + Hb, (b) DEGDME + LiTFSI + Hb). Referring to FIG. 9, it was confirmed that hemoglobin was not dissolved in the electrolyte.
  • hemoglobin is stable in the ether solution. That is, when the Hb / CNT of the present invention is used as a catalyst in the electrode, Hb is stable in the electrolyte.
  • the electrochemical experiment of the lithium-carbon dioxide cell including the electrodes manufactured in Example 1 and Example 2 was performed, and electrochemical characteristics were evaluated through charging and discharging processes.
  • the scanning rate was maintained at 50 mA / g, and the initial charging / discharging curve for confirming the capacity was compared by limiting the driving voltage to a value of 2.35 to 4.35 V.
  • Fig. 19 is a graph showing the initial charging / discharging curves of Example 1 and Example 2.
  • FIG. 19 (b) shows that the unstable behaviors generated during the discharge are greatly reduced, and in particular, the overpotential ) Are similar to each other and a plateau is formed at about 2.9 V. It can be seen that the catalytic effect is apparent during discharging.
  • Cyclic voltammetry was measured at a scanning rate of 5 mV / s in order to confirm the stability of the electrode in the lithium-carbon dioxide battery manufactured in Example 2.
  • Example 20 is a graph showing the results of cyclic voltammetry (CV) measurement of lithium-carbon dioxide batteries according to Example 2 and Comparative Example 2 of the present invention.
  • the weight ratio of Hb to CNT was 1: 9, 2 has a weight ratio of Hb to CNT of 3: 6.
  • Example 20 it can be seen that the peak voltage was shifted higher during discharging in Example 2, and when using a Hb / CNT electrode having a weight ratio of Hb to CNT of 3: 6, discharge overpotential Respectively.
  • the discharge peak current of the Hb / CNT electrode having a high ratio of Hb was larger than that of Example 1, which indicates that the catalytic reaction is greatly activated when Hb is present in an excess amount.
  • Lithium metal reacts with CO 2 to form lithium oxalate at room temperature (see reaction scheme below).
  • electron reduction from 2CO 2 to C 2 O 4 2- can occur at the surface of the carbon material, where the open circuit voltage can be calculated as 3V.
  • FIGS. 21 and 22 are graphs showing results of FTIR analysis of Hb / CNT electrodes according to Example 1 of the present invention, wherein (a) is an initial state, (b) is discharge, (Fourier Transform Infrared Spectrometry) analysis graph.
  • X-ray Diffraction Spectroscopy was observed on the Hb / CNT electrode prepared in Example 1, and the results are shown in FIG. 24 ((a) , (c) charging).
  • the same peak was found in the initial state, the discharge state, and the charged state, and it was determined that the peak was about nickel (Ni) in the mesh network constituting the electrode.
  • the pH of the electrolyte at the initial state charging and discharging was measured to detect the product of the carbonate such as C 2 O 4 2- or CO 3 2- .
  • Example 25 is a graph showing the pH of the electrolyte during the operation of the lithium-carbon dioxide battery including the Hb / CNT of Example 1 ((a) is an initial state, (b) is discharge, and (c) is charging).
  • the pH is high during charge / discharge compared to the initial state of the electrode. This is because the product C 2 O 4 2- or CO 3 2- at the charge and discharge of the cell is an amphoteric substance acting as a basic substance in the neutral water (see the reaction below).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)

Abstract

본 발명은 리튬 공기 전지용 양극, 이를 포함하는 리튬 공기 전지 및 리튬 공기 전지용 양극의 제조방법에 관한 것이다. 특히, 본 발명에서 리륨 공기 전지용 양극은 헤모글로빈으로부터 유래된 철(Fe) 또는 이의 합금으로 이루어진 촉매가 담지된 탄소재를 포함하고, 상기 촉매가 리튬 공기 전지용 양극에서 산소 또는 이산화탄소의 운반체로 사용될 수 있어, 본 발명은 전지의 효율을 높일 수 있는 이점이 있다.

Description

리튬 공기 전지용 양극, 이를 포함하는 리튬 공기 전지, 및 리튬 공기 전지용 양극의 제조방법
본 발명은 리튬 공기 전지용 양극, 이를 포함하는 리튬 공기 전지 및 리튬 공기 전지용 양극의 제조방법에 관한 것이다.
산업기술이 발전됨에 따라 화석연료의 소비가 빠르게 증가하였고, 이에 따른 이산화탄소의 배출 저감을 위하여 전기자동차(Electrical Vehicles) 및 하이브리드 자동차(Hybrid Vehicles)의 보급 역시 확대되고 있다. 현재의 리튬-이온전지(Lithium-ion battery)는 전지 용량의 제약에 의해 전기자동차의 장거리 주행을 가능하지 않게 하고, 용량을 충당하기 위해 다수의 전지의 패킹하여 사용할 경우 자동차의 무게 증가뿐만 아니라 판매가격의 상승을 초래하기 때문에 전기자동차의 상용화용으로 활용하기에는 적합하지 않다. 전기자동차의 가솔린 기반 자동차에 준하는 장거리 운행을 위해서는 대용량의 전지가 전기자동차에 탑재되어야 하며, 기존의 전지에 비해 5배 이상의 큰 에너지 밀도를 갖는 이차전지가 요구된다.
이에 따라 리튬 이온 전지보다 큰 에너지 밀도를 갖는 리튬 공기 전지가 주목받고 있다. 리튬 공기 전지는 리튬 이온 전지와 달리 양극에 대기 중의 산소를 활물질(활물질: 전지가 방전할 때 화학적으로 반응하여 전기에너지를 생산하는 물질)로 사용하므로 원료 수급 측면에서도 유리한 이점이 있다.
이러한 리튬 공기 전지는 원활한 산소의 이동을 위하여 다공질 탄소(Porous carbon)로 구성된 양극을 주로 사용하며, 방전 시 리튬이온이 음극에서 공기극으로 이동하여 산소와 전자가 함께 반응하는 산소환원반응(2Li+ + O2 +2e- → Li2O2, Oxygen reduction reaction, ORR) 을 통하여 전기를 생산하고, 이 때의 표준전압은 Nernst 공식에 의해 열역학적으로 2.96V 에서 반응이 일어나게 된다(도 1(a)).
반대로 외부에서 이러한 표준전압보다 높은 전압을 걸어주면 역반응인 산소발생반응(Li2O2 → 2Li+ + O2 +2e-, Oxygen Evolution Reaction, OER)이 음극에서 일어나게 되어 충전이 이루어진다(도 1(b)).
그러나, 리튬 공기 전지는 반응생성물인 고상의 리튬산화물(Li2O2)이 가역적으로 분해되지 않고 전극 표면에 축적되어 미세 기공(pores)을 막음으로써 반응 비표면적이 줄어들게 되거나 전해질 및 산소의 유입이 막혀, 전극의 충방전에 필요한 전압이 증가(Overpotential)되는 것과 같은 근본적인 문제점을 가지고 있다. 즉, 리튬 공기 전지를 충전하기 위해서 표준 전압보다 훨씬 높은 과전압이 걸려야 하며, 이는 결국 에너지 손실을 초래하게 된다.
현재까지 다양한 전기화학적 촉매가 연구되어왔으며, Au, Ag, Pt, Pd, Ru 또는 Ir과 같은 귀금속 촉매나, MnO2, Mn2O3, Mn3O4, Co3O4, CuO, Fe2O3, NiO, CeO2, LaMnO3, MnCo2O4 또는 Ba0.5Sr0.5Co0.2Fe0.8O3와 같은 전이금속산화물 기반 촉매 등이 탄소재와 결합하여 공기극에 도입됨으로써 전지의 효율을 높이는 연구가 많이 진행되어왔다.
그러나, 리튬산화물 혹은 리튬카보네이트기반의 표면생성물에 의한 촉매 표면 비활성화 문제와 전이금속산화물의 가격상승문제 등이 발생하였다.
한편 안에는 산소 외에도 이산화탄소 등이 존재하며 온실가스의 주원인인 이산화탄소를 전지형태로 저장이 가능하다면 에너지분야뿐 아니라 환경분야의 기술로도 널리 활용될 수 있으므로, 이산화탄소를 이용한 리튬-이산화탄소 전지 등이 개발되고 있는 실정이다.
참고로, 리튬-이산화탄소 전지의 반응은 상술한 리튬-산소 전지(리튬-공기 전지) 반응과 유사하며, 리튬이온과 이산화탄소가 만나 공기극 표면에 리튬카보네이트 또는 리튬옥살레이트와 같은 반응 생성물이 형성되고 충전시 반응생성물이 가역적으로 분해되는 반응이 진행될 수 있다.
그러나, 리튬-이산화탄소 전지도 상기의 리튬-산소 전지와 마찬가지로 과전압문제 등에 따른 효율저하 문제가 있다.
따라서, 리튬-이산화탄소 전지 또는 리튬-산소 전지(리튬-공기 전지)에 적용가능한 고효율 촉매의 개발이 필요한 실정이다.
본 발명의 목적은 상술한 문제를 해결하기 위하여, 전지의 성능 및 효율을 증가시킬 수 있는 리튬 공기 전지용 양극을 제공하고자 한다.
본 발명의 다른 목적은 상기 리튬 공기 전지용 양극을 포함하는 리튬 공기 전지를 제공하는데 있다.
본 발명의 또 다른 목적은 상기 리튬 공기 전지용 양극의 제조방법을 제공하는데 있다.
상기 본 발명의 목적을 해결하기 위하여,
본 발명은 일 실시예에서,
헤모글로빈, 헤모글로빈으로부터 유래된 철(Fe) 또는 이의 합금이 담지된 탄소재를 포함하는 촉매를 포함하는 리튬 공기 전지용 양극을 제공한다.
또한, 본 발명은 다른 실시예에서,
리튬 공기 전지용 양극;
리튬금속을 포함하는 음극;
양극 및 음극 사이에 개재되는 분리막; 및
음극에서 발생된 리튬 이온을 상기 양극으로 전달하는 전해액; 을 포함하는 리튬 공기 전지를 제공한다.
또한, 본 발명의 또 다른 실시예에서,
헤모글로빈(Hemoglobin), 바인더 및 탄소재를 혼합하여 슬러리를 제조하는 단계; 및
슬러리를 전류 집전체에 도포하는 단계; 를 포함하는 리튬 공기 전지용 양극의 제조방법을 제공한다.
또한, 본 발명의 또 다른 실시예에서,
헤모글로빈 및 탄소재를 혼합하여 촉매 복합체를 형성하는 단계;
촉매 복합체 및 바인더를 혼합하여 슬러리를 제조하는 단계; 및
슬러리를 전류 집전체에 도포하는 단계; 를 포함하는 리튬 공기 전지용 양극의 제조방법을 제공한다.
본 발명의 일 실시예에 따른 리튬 공기 전지용 양극은 친환경적인 헤모글로빈 물질을 전지 내에 함유시켜, 상기 헤모글로빈 물질이 촉매역할을 함으로써 전지의 성능 및 효율을 크게 증가시킬 수 있는 효과가 있다.
보다 구체적으로, 상기 헤모글로빈 물질은 산소와 이산화탄소를 능동적으로 결합 또는 배출하는 단백질 물질로서 Fe를 포함하는 구조(포피린구조와 폴리펩타이드 분자가 나선구조를 이루어져 있는 단백질 복합구조)를 이루고 있어, 상기 Fe는 리튬 공기 전지용 양극에서 산소 또는 이산화탄소의 운반체로 사용할 수 있는 효과가 있다.
도 1은 리튬 공기 전지의 개념도이다.
도 2는 헤모글로빈 분자의 구조를 나타내는 그림이다.
도 3은 리튬 공기 전지용 촉매로써 헴분자의 작동원리를 나타내는 모식도이다.
도 4는 비교예 1의 리튬-이산화탄소 전지의 초기 충방전 곡선을 나타내는 그래프이다((a) 전류밀도 100mA/g, (b) 전류밀도 50mA/g).
도 5는 실시예 1의 Hb/CNT를 촉매로 활용한 리튬-이산화탄소 전지의 초기 충방전 곡선을 나타내는 그래프이다.
도 6은 본 발명의 실시예 1에 따른 리튬-이산화탄소 전지의 CV(cyclic voltammetry) 측정결과를 나타낸 그래프이다((a) Hb/CNT_CO2_1st, (b) Hb/CNT_CO2_2nd).
도 7은 본 발명의 실시예 1에 따른 리튬-이산화탄소 전지의 비교예 2의 리튬-이산화탄소 전지의 CV 측정결과를 나타낸 그래프이다.
도 8은 실시예 1, 비교예 1 및 비교에 2의 촉매를 활용한 리튬-이산화탄소 전지의 충방전 곡선을 나타내는 그래프이다.
도 9는 본 발명의 실시예 3과 비교예 3의 촉매를 활용한 리튬-공기 전지의 CV 측정결과를 나타내는 그래프이다((a) 비교예 3(CO2 purging), (b) 비교예 3(Ar purging), (c) 실시예 3(CO2 purging) 및 (d) 실시예 3(Ar purging)).
도 10은 실시예 3과 비교예 3의 촉매를 활용한 리튬-이산화탄소 전지의 순환전압전류법 측정결과를 나타낸 그래프이다((a) 5 mV s-1_1st, (b) 5 mV s-1_2nd, (c) 10 mV s-1).
도 11은 전해액에 이산화탄소 또는 아르곤을 퍼징하였을 때, 실시예 3 의 촉매를 활용한 리튬-이산화탄소 전지의 순환전압전류법 측정결과를 나타낸 그래프이다((a) 5 mV s-1_1st, (b) 5 mV s-1_2nd, (c) 10 mV s-1).
도 12는 실시예 3의 리튬-이산화탄소 전지의 충방전 곡선을 나타내는 그래프이다.
도 13은 실시예 3의 리튬-이산화탄소 전지의 충방전 곡선을 나타내는 그래프이다. 구체적으로, 아르곤과 이산화탄소를 각각 퍼징 하였을 때, 리튬-이산화탄소 전지의 1차, 2차, 3차 충방전 곡선을 나타낸다.
도 14는 실시예 3, 비교예 3, 4에서 제조한 리튬-이산화탄소 전지의 전극에 대해 X선 회절 패턴(X-ray Diffraction Spectroscopy, XRD)을 나타낸 그래프이다.
도 15는 본 발명의 실시예 3의 열중량분석(TGA) 그래프이다.
도 16과 도 17은 실시예 3에서 제조된 전극의 표면을 분석하기 위하여, 투과형전자현미경(TEM) 을 이용하여 촬영한 사진이다.
도 18은 전해질에 헤모글로빈을 용해한 결과를 나타내는 사진이다((a) TEGDME+LiTFSI+Hb, (b) DEGDME+LiTFSI+Hb).
도 19는 실시예 1 및 실시예 2의 초기 충방전 곡선을 나타내는 그래프이다((a) 실시예 1, (b) 실시예 2).
도 20은 본 발명의 실시예 2 및 비교예 2에 따른 리튬-이산화탄소 전지의 CV(cyclic voltammetry) 측정결과를 나타낸 그래프이다.
도 21 및 도 22은 본 발명의 실시예 1에 따른 Hb/CNT 전극의 FTIR 분석을 실시한 결과를 나타낸 그래프이다((a) 초기상태, (b) 방전, (c) 충전).
도 23은 실시예 1에 따른 Hb/CNT 전극의 표면을 주사전자 현미경으로 관찰한 사진이다(((a) 초기상태, (b) 방전, (c) 충전).
도 24는 실시예 1의 Hb/CNT 전극에 대해 X선 회절 패턴의 Rietveld refinement를 나타낸 그래프이다((a)는 초기상태, (b)는 충전, (c)는 방전).
도 25는 실시예 1의 Hb/CNT 를 포함하는 리튬-이산화탄소 전지의 구동 중 전해질의 pH를 나타내는 그래프이다((a)는 초기상태, (b)는 방전, (c)는 충전).
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 구체적인 내용에 상세하게 설명하고자 한다.
그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 발명에서, "포함한다", "가지다" 또는 "구성하다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한, 본 발명에서 첨부된 도면은 설명의 편의를 위하여 확대 또는 축소하여 도시된 것으로 이해되어야 한다.
이하, 본 발명에 대하여 도면을 참고하여 상세하게 설명하고, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
본 명세서에서 사용되는 용어인 "공기(air)"는 대기 공기로 제한되는 것은 아니며, 산소를 포함하는 기체의 조합, 또는 순수 산소 기체를 포함할 수 있다. 다른 양태로, 이산화탄소를 포함하는 기체의 조합, 또는 순수 이산화탄소 기체를 포함할 수 있다. 이러한 용어 "공기"에 대한 넓은 정의가 모든 용도, 예를 들어 공기 전지, 공기 양극 등에 적용될 수 있다.
본 발명세서에서 사용되는 용어인 "리튬 공기 전지" 는 리튬 산소 전지를 의미할 수 있으며, 또는 리튬 이산화탄소 전지를 의미할 수 있다.
상기 리튬 공기 전지는 리튬 1차 전지, 리튬 2차 전지에 모두 사용 가능하다. 또한 그 형상은 특별히 한정되는 것은 아니며, 예를 들어 코인형, 버튼형, 시트형, 적층형, 원통형, 편평형, 뿔형 등을 예시할 수 있다. 또한 전기 자동차 등에 이용하는 대형 전지에도 적용할 수 있다.
아울러, "헤모글로빈(Hb)"은 척추동물의 적혈구에서 발견되는 호흡 분자로서, 폐로부터 체세포로 산소를 운반하고, 체세포로부터 폐로 이산화탄소를 운반하는 기능을 한다. 본 발명에서는, 이러한 헤모글로빈이 리튬 공기 전지용 양극에포함되어 산소 또는 이산화탄소의 운반체로 사용할 수 있다.
이하, 도 2를 참조하여, 헤모글로빈의 산소 또는 이산화탄소의 운반 성질을 상세히 설명하도록 한다. 도 2는 헤모글로빈 분자의 구조를 나타내는 도면이다. 도 2를 참조하면, 헤모글로빈 한 분자는 4개의 폴리펩티드 사슬로 되어 있고, 각각의 폴리펩티드 사슬에는 Fe+2 이온에 킬레이팅된 테트라피를 환으로 이루어진 1개씩의 헴(heme)그룹이 함유되어 있다. 폐에서, 헤모글로빈 분자의 철 원자는 산소 분자에 가역적으로 결합한 다음, 혈액이 순환됨에 따라 체세포로 운반된다. 그리고 당해 산소는 조직에서 헤모글로빈 분자로부터 방출된 다음, 산소 비함유 헤모글로빈 분자가 이산화탄소를 흡수하고, 이는 다시 폐로 회귀한 다음 폐에서 방출된다. 즉, 헤모글로빈은 생체 내에서 산소 또는 이산화탄소를 운반하는 역할을 한다.
본 발명은 상술한 헤모글로빈의 산소 또는 이산화탄소의 운반 성질을 이용하였으며, 보다 상세하게는 헤모글로빈, 헤모글로빈으로부터 유래된 철(Fe) 또는 이의 합금이 담지된 탄소재를 포함하는 촉매 형태로 리튬 공기 전지용 양극에 포함됨으로써, 상기 촉매는 산소 또는 이산화탄소를 용이하게 운반시킬 수 있다.
본 발명은 리튬 공기 전지용 양극, 이를 포함하는 리튬 공기 전지 및 리튬 공기 전지용 양극의 제조방법에 관한 것이다.
종래, 리튬 공기 전지는 반응생성물인 고상의 리튬산화물(Li2O2)이 가역적으로 분해되지 않고 전극 표면에 축적되어 미세 기공(pores)을 막음으로써 반응 비표면적이 줄어들게 되거나 전해질 및 산소의 유입이 막혀, 전극의 충방전에 필요한 전압이 증가(Overpotential)되는 것과 같은 근본적인 문제점을 가지고 있다. 즉, 리튬 공기 전지를 충전하기 위해서 표준 전압보다 훨씬 높은 과전압이 걸려야 하며, 이는 결국 에너지 손실을 초래하게 된다.
현재까지 다양한 전기화학적 촉매가 연구되어왔으며, Au, Ag, Pt, Pd, Ru 또는 Ir과 같은 귀금속 촉매나, MnO2, Mn2O3, Mn3O4, Co3O4, CuO, Fe2O3, NiO, CeO2, LaMnO3, MnCo2O4 또는 Ba0.5Sr0.5Co0.2Fe0.8O3와 같은 전이금속산화물 기반 촉매 등이 탄소재와 결합하여 공기극에 도입됨으로써 전지의 효율을 높이는 연구가 많이 진행되어왔다.
그러나, 리튬산화물 혹은 리튬카보네이트기반의 표면생성물에 의한 촉매 표면 비활성화 문제와 전이금속산화물의 가격상승문제 등이 발생하였다.
이러한 문제점을 극복하기 위하여, 본 발명은 친환경적인 헤모글로빈 물질을 전지 내에 함유시켜, 상기 헤모글로빈 물질이 촉매역할을 함으로써 전지의 성능 및 효율을 크게 증가시킬 수 있는 리튬 공기 전지용 양극, 이를 포함하는 리튬 공기 전지 및 리튬 공기 전지용 양극의 제조방법을 제공한다.
본 발명에서 리튬 공기 전지용 양극은 헤모글로빈으로부터 유래된 철(Fe) 또는 이의 합금이 담지된 탄소재를 포함하는 촉매를 포함하고, 상기 촉매가 리튬 공기 전지용 양극에서 산소 또는 이산화탄소의 운반체로 사용될 수 있다. 이에 따라, 본 발명은 전지의 효율을 높일 수 있는 이점이 있다.
리튬 공기 전지용 양극
본 발명은 일실시예에서,
헤모글로빈, 헤모글로빈으로부터 유래된 철(Fe) 또는 이의 합금이 담지된 탄소재를 포함하는 촉매를 포함하는 리튬 공기 전지용 양극을 제공한다.
본 명세서에서 용어 "리튬 공기 전극"은 양극활물질이 산소인 리튬 산소 전지를 의미할 수 있으며, 또는 양극활물질이 이산화탄소인 리튬 이산화탄소 전지를 의미할 수 있다. 일 예로, 상기 리튬 공기 전극은 양극활물질이 이산화탄소인 리튬 이산화탄소 전지일 수 있다.
상기 촉매는 헤모글로빈으로 유래된 것일 수 있다. 예를 들면, 헤모글로빈을 탄소재와 혼합한 헤모글로빈-탄소재 복합체일 수 있으며, 헤모글로빈과 탄소재를 혼합한 후, 탄화과정을 거쳐서 얻은 Fe-탄소복합체일 수 있다.
상기 헤모글로빈 또는 헤모글로빈으로부터 유래된 철은 탄소재 내부 또는 표면에 담지 또는 분산된 형태일 수 있으며, 입자형태로 분산되어 탄소재와의 접촉 면적을 극대화 시켜 반응이 일어날 수 있는 표면을 제공한다.
상기 촉매는 입자형태일 수 있으며, 촉매의 평균입경은 헤모글로빈이 담지된 탄소재를 포함하는 촉매의 경우 0.01 내지 1 ㎛ 범위일 수 있으며, 0.1 내지 0.9 ㎛, 0.2 내지 0.8 ㎛ 또는 0.3 내지 0.7 ㎛ 범위일 수 있다.
다른 양태로서, 촉매의 평균입경은 0.1 내지 50 nm 범위일 수 있다. 보다 구체적으로, 촉매의 평균입경은 0.1 내지 50 nm, 0.5 내지 45 nm, 1.0 내지 40 nm, 1.5 내지 35 nm, 2.0 내지 30 nm, 2.5 내지 25 nm, 3.0 내지 20 nm, 3.5 내지 15 nm, 4.0 내지 10 nm, 4.5 내지 8 nm, 또는 5 내지 7 nm 일 수 있다. 예를 들면, 촉매의 평균입경 범위에서 공기(산소 또는 이산화탄소)의 접촉 면적이 커지고, 리튬 공기 전지의 충방전 용량을 향상시켜 고용량의 리튬 공기 전지를 제공할 수 있다.
아울러, 리튬 공기 전지용 양극에서, 탄소재의 탄소(C)와 철(Fe) 의 중량비율은 5:1 내지 500:1 범위일 수 있다. 구체적으로, 탄소재의 탄소(C)와 철(Fe) 의 중량비율은 10:1 내지 450:1 범위, 30:1 내지 400:1 범위, 50:1 내지 300:1 범위, 70:1 내지 200:1 범위, 또는 100:1 범위일 수 있다.
한편, 양극활물질이 산소인 경우, 상기 탄소재는 양극에서 환원반응(O2 + 2Li+ +2e- → Li2O2)이 일어날 수 있으며, 이때, 과산화리튬 또는 이산화탄소리튬 등이 생성될 수 있는 공간을 제공하는 구성으로, 전극에 도전성을 부여하기 위해 사용되는 도전재로서의 기능도 수행할 수 있다.
상기 탄소재는 헤모글로빈, 헤모글로빈으로부터 유래된 철(Fe) 또는 이의 합금의 담체로서 역할을 하며, 다공성을 갖거나 가지지 않을 수 있다. 아울러, 상기 탄소재는 양극 내로 유입되는 산소(또는 이산화탄소), 리튬이온 및 전자가 반응하는 공간으로 큰 비표면적을 가지는 것이 바람직할 수 있다. 따라서 탄소나노튜브(carbon nano tube), 흑연, 카본블랙(carbon black), 케첸블랙(ketjen black), 아세틸렌블랙(acetylene black) 및 환원 그래핀 옥사이드(reduced grapheme oxide) 또는 이들의 조합 등을 사용할 수 있다.
상기 헤모글로빈, 헤모글로빈으로부터 유래된 철(Fe) 또는 이의 합금이 담지된 탄소재는 촉매로서 전류 집전체에 포함될 수 있으며, 전류 집전체는 제한되지 않으나, 도전성 물질로 형성될 수 있다. 구체적으로, 전류 집전체는 구리, 니켈, 스테인리스강 등으로 형성될 수 있다. 또한, 전류 집전체는 산화 방지를 위한 피복층이 코팅될 수 있다. 예를 들면 공기의 투과가 가능한 Ni Mesh 일 수 있다.
아울러, 상기 리튬 공기 전지용 양극은 바인더를 더 포함할 수 있다. 상기, 바인더는 양극의 구성요소들을 서로 잘 부착시키기 위한 구성이다. 보다, 구체적으로, 탄소재 간의 결합을 도모하고, 집전체에 이들을 고정시키는 역할을 한다. 본 발명에서 그 종류를 특별히 한정하지 않고, 당 업계에서 공지된 바인더라면 어느 것이든 사용 가능하다. 예컨대, 폴리비닐리덴플루오로라이드(PVDF), 폴리테트라플루오로에틸렌(PTFE), 스티렌-부타디엔 러버(SBR), 폴리에틸렌옥사이드 (PEO, Polyethylene oxide)를 포함하는 폴리머 중 어느 하나일 수 있다. 바람직하게는 폴리비닐리덴플루오로라이드(PVDF) 일 수 있다.
이하, 도 3을 참조하여, 리튬 공기 전지에서 헴분자의 작동원리을 상세히 설명하도록 한다. 도 3은 리튬 공기 전지용 촉매로써 헴분자의 작동원리를 나타내는 모식도이다.
본 발명의 일 실시예에 따른 리튬 공기 전지용 양극에서 헤모글로빈의 헴 분자(Fe)는 리튬 공기 전지 내에서 레톡스 촉매로써 가역적 생성물 분해반응을 촉진시키고 산소와 능동적으로 결합하는 산소전달자로서의 기능을 할 수 있다.
이에 따라 본 발명의 일 실시예에 따른 헤모글로빈을 이용한 리튬 공기 전지용 양극을 포함하는 리튬 공기 전지는 높은 전지성능을 달성할 수 있으며, 우수한 충방전 특성을 보일 수 있는 특징이 있다.
리튬 공기 전지
본 발명은 다른 실시예에서,
리튬 공기 전지용 양극;
리튬금속을 포함하는 음극;
양극 및 음극 사이에 개재되는 분리막; 및
음극에서 발생된 리튬 이온을 상기 양극으로 전달하는 전해액; 을 포함하는 리튬 공기 전지를 제공한다.
상기 양극은 상술한 바와 같이, 헤모글로빈, 헤모글로빈으로부터 유래된 철(Fe) 또는 이의 합금이 담지된 탄소재를 포함하는 촉매를 포함하는 리튬 공기 전지용 양극일 수 있다.
상기 음극은, 리튬(Li)을 포함할 수 있다. 상기 음극은 리튬 금속, 또는 리튬과 다른 금속의 합금으로 형성될 수 있다. 예를 들어, 상기 음극은, 실리콘(Si), 알루미늄(Al), 주석(Sn), 마그네슘(Mg), 인듐(In), 바나듐(V) 등과 리튬의 합금을 포함할 수 있다.
상기 양극과 음극 사이에는 전해액이 배치될 수 있다. 전해액은 TEGDME(Tetraethyleneglycol dimethylether), DMSO(Dimethyl sulfoxide), DME(Dimethoxyethane) 등에 리튬 염 이 용해된 것을 포함할 수 있다. 예를 들어, 상기 리튬 염은, LiN(CF3SO2)2, LiN(FSO2)2, LiN(C2F5SO2)2, LiC(CF2SO2)3, LiBF4, LiPF6, LiClO4, LiCF3SO3, 또는 LiAsF6 중에서 적어도 어느 하나를 포함할 수 있다.
한편, 상기 리튬염의 농도는 약 0.1M 내지 약 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해액이 적절한 전도도 및 점도를 가지므로 우수한 전해액 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 분리막은 상기 음극 및 상기 양극 사이에 배치될 수 있다. 예를 들어, 상기 분리막은 다공성 유리 필터일 수 있다. 또는, 다른 예를 들어, 상기 분리막은, 올레핀계 수지, 불소계 수지(예를 들어, 폴리비닐리덴플루오라이드, 폴리테트라플루오루에틸렌 등), 에스터계 수지(예를 들어, 폴레에틸렌테레프탈 레이트 등), 또는 셀룰로오스계 부직포 중에서 적어도 어느 하나를 포함할 수 있다. 상기 분리막은 상술된 예들 외에 다양한 종류의 물질들로 형성될 수 있다.
리튬 공기 전지용 양극의 제조방법
또한, 본 발명의 또 다른 실시예에서,
헤모글로빈(Hemoglobin), 바인더 및 탄소재를 혼합하여 슬러리를 제조하는 단계; 및
슬러리를 전류 집전체에 도포하는 단계; 를 포함하는 리튬 공기 전지용 양극의 제조방법을 제공한다.
상기 슬러리를 제조하는 단계는, 헤모글로빈 10 내지 40 중량부, 바인더 5 내지 20 중량부 및 탄소재 50 내지 90 중량부를 혼합하고, 혼합된 혼합물을 용매에 분산시킬 수 있다.
한편, 상기 헤모글로빈은 10 중량부 미만인 경우 상기 헤모글로빈이 촉매로써 사용되는 투입효과가 미미하고, 40 중량부를 초과하게 되면 상기 탄소재의 함량이 부족해서 리튬 공기 전지의 방전용량이 저하되는 문제점이 발생될 수 있다. 아울러, 탄소재는 50 중량부 미만으로 포함하면 리튬 공기 전지의 방전용량이 저하되고, 90 중량부를 초과하면 바인더에 의해 집전체에 충분히 접착되지 못하는 문제가 있기 때문에 상기 범위 내에서 사용하는 것이 바람직할 수 있다. 아울러, 바인더는 5 중량부 미만으로 포함되면 전극의 결착력이 저하되는 문제가 있고, 20 중량부를 초과하면 바인더에 의한 전극내 저항이 과도하게 높아지는 문제가 있기 때문에 상기 범위 내에서 사용하는 것이 바람직할 수 있다.
상기 슬러리를 전류 집전체에 도포하는 단계는, 상기 혼합용액을 전류 집전체에 도포하고, 공기분위기에서 50 내지 300 ℃의 온도로, 1 내지 15 시간 동안 건조할 수 있다.
한편, 상기 혼합용액을 집전체에 도포하는 방법에는 제한이 없으나, 예컨대, 닥터 블레이드 코팅(Doctor blade coating), 딥 코팅(Dip coating), 그라비어 코팅(Gravure coating), 슬릿 다이 코팅(Slit die coating), 스핀 코팅(Spin coating), 콤마 코팅(Comma coating), 바 코팅(Bar coating), 리버스 롤 코팅(Reverse roll coating), 스크린 코팅(Screen coating), 캡 코팅(Cap coating) 방법 등으로 코팅할 수 있다.
일 예로, 상기 전류 집전체는 슬러리에 함침하여 코팅하고, 진공 건조하는 과정을 거칠 수 있다. 온도는 50 내지 300 ℃, 55 내지 250 ℃, 60 내지 200 ℃, 65 내지 150 ℃, 70 내지 100 ℃ 또는 75℃ 일 수 있다. 시간은 1 내지 15 시간, 5 내지 14 시간, 9 내지 13 시간, 10 내지 12 시간 또는 12시간동안 진공 건조할 수 있다. 상기 건조하는 단계를 통해, 슬러리 중에 포함된 용매를 증발시킴으로 인해서, 탄소계 도전재와 집전체의 결착력을 도모함과 동시에 다공성 집전체의 내부 프레임까지 탄소계 도전재를 고르게 분산시켜 결합시키게 된다.
상기 용매는 슬러리 형성을 위한 용매이며, 물 또는 유기 용매가 가능하며, 유기 용매는 이소프로필 알코올, N-메틸피롤 리돈(N-Methyl-2-pyrrolidone: NMP), 아세톤 및 이들의 조합으로 이루어진 군에서 선택된 1종 이상을 적용하는 것이 가능하다.
리튬 공기 전지용 양극의 제조방법
다른 양태로서, 본 발명의 또 다른 실시예에서,
헤모글로빈 및 탄소재를 혼합하여 촉매 복합체를 형성하는 단계;
촉매 복합체 및 바인더를 혼합하여 슬러리를 제조하는 단계; 및
슬러리를 전류 집전체에 도포하는 단계; 를 포함하는 리튬 공기 전지용 양극의 제조방법을 제공한다.
먼저, 촉매 복합체를 형성하는 단계는 상기 헤모글로빈 및 탄소재를 혼합한 후, 질소 분위기에서 평균 450 내지 700℃ 의 온도로 탄화시키는 단계를 포함한다. 이에 따라, 헤모글로빈에 포함되어 있는 Fe 는 열처리시 FexCy 의 복합체를 이룰 수 있다. 한편, 상기 촉매 복합체는 촉매를 의미할 수 있으며, 헤모글로빈으로부터 유래된 철(Fe)이 담지된 탄소재를 포함하는 촉매를 의미할 수 있다.
상기 슬러리를 제조하는 단계는, 촉매 복합체 10 내지 100 중량부 및 바인더 5 내지 20 중량부를 혼합하고, 혼합된 혼합물을 용매에 분산시킬 수 있다.
한편, 상기 촉매 복합체는 10 중량부 미만인 경우 상기 헤모글로빈이 촉매로써 사용되는 투입효과가 미미하고, 100 중량부를 초과하게 되면 상기 탄소재 및 철(Fe)의 함량이 부족해서 리튬 공기 전지의 방전용량이 저하되는 문제점이 발생될 수 있다. 아울러, 바인더는 5 중량부 미만으로 포함되면 전극의 결착력이 저하되는 문제가 있고, 20 중량부를 초과하면 바인더에 의한 전극내 저항이 과도하게 높아지는 문제가 있기 때문에 상기 범위 내에서 사용하는 것이 바람직할 수 있다.
다음으로, 촉매 복합체를 포함하는 슬러리를 전류 집전체에 도포할 수 있다.
일 예로, 상기 전류 집전체는 혼합용액에 함침하여 코팅하고, 진공 건조하는 과정을 거칠 수 있다. 온도는 50 내지 300 ℃, 55 내지 250 ℃, 60 내지 200 ℃, 65 내지 150 ℃, 70 내지 100 ℃ 또는 75℃ 일 수 있다. 시간은 1 내지 15 시간, 5 내지 14 시간, 9 내지 13 시간, 10 내지 12 시간 또는 12시간동안 진공건조할 수 있다. 상기 건조하는 단계를 통해, 슬러리 중에 포함된 용매를 증발시킴으로 인해서, 탄소계 도전재와 집전체의 결착력을 도모함과 동시에 다공성 집전체의 내부 프레임까지 탄소계 도전재를 고르게 분산시켜 결합시키게 된다.
상기 용매는 슬러리 형성을 위한 용매이며, 물 또는 유기 용매가 가능하며, 유기 용매는 이소프로필 알코올, N-메틸피롤 리돈(N-Methyl-2-pyrrolidone: NMP), 아세톤 및 이들의 조합으로 이루어진 군에서 선택된 1종 이상을 적용하는 것이 가능하다.
이하, 본 발명을 실시예 및 실험예에 의해 보다 상세히 설명한다.
단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예 및 실험예에 한정되는 것은 아니다.
재료준비
다중벽 탄소나노튜브(MWCNT; multi-walled carbon nanotubes)는 South West Nanotechnologies에서 구입하였다.
아울러, 헤모글로빈(from bovine, ≥ 90%), 다이에틸렌글리콜디메틸에테르(DEGDME, anhydrous, ≥99.5%), 테트라에틸렌글리콜디메틸에테르(TEGDME, anhydrous, ≤ 80 p.p.m. H2O), 테트라에틸암모늄퍼클로레이트(TEAClO4, ≥ 99.99%), 리튬비스마이드(LITFSI, lithium bis-trifluoromethanesulfonimide), 폴리플루오린화비닐라덴(PVDF, Mw ~ 180,000) 및 N-메틸-2-피롤리돈(NMP, anhydrous, 99.5%)를 Sigma-Aldirich에서 구입하였다.
<실시예>
실시예 1. 리튬-이산화탄소 전지 제조(Hb:CNT =10:90)
1-1. Hb/CNT 전극 제조
탄소재로 탄소나노튜브(MWCNT, 이하 CNT)를 90 중량부, 헤모글로빈(이하 Hb) 10 중량부 및 바인더로 PVDF 10 중량부를 NMP 용매에 주입하여 슬러리 형태로 혼합하였다.
그리고, 이렇게 제조된 슬러리(slurry)는 니켈 메쉬(직경: 12.7mm)에 코팅하여 75℃로 12시간 동안 진공건조하여 공기 전극을 제조하였다.
1-2. 리튬-이산화탄소 전지 제조
실시예 1-2에 따라 제조된 Hb/CNT 를 포함하는 공기전극은 전기화학적 분석을 위하여 리튬-공기 테스트 전지를 제작하였다. 이를 위해 공기 전극(양극), 리튬전극(음극), 글래스필터 분리막, 1M 농도의 LITFSI가 첨가된 DEGDME 전해질로 구성된 스웨즈락(Swagelok) 타입의 전지를 제작하였다. 상기 테스트 전지는 아르곤(Ar) 분위기의 글러브 박스 안에서 제작되었으며, 정전압 충전-방전 시스템으로 측정되었다. 또한, 이 측정 실험은 1기압의 이산화탄소 분위기 하에 퍼징 후 수행되었다.
실시예 2. 리튬-이산화탄소 전지 제조(Hb:CNT =30:60)
CNT를 60 중량부 및 Hb를 30 중량부를 사용하였다는 점을 제외하고는 상기 실시예 1과 동일한 과정으로 공기전극을 제조하였다. 구체적으로, 탄소재로 CNT를 60 중량부, Hb를 30 중량부 및 바인더로 PVDF 10 중량부를 NMP 용매에 주입하여 슬러리 형태로 혼합하여, 상기 실시예 1과 동일한 방법으로 공기전극을 제조하였다.
그리고, 공기전극을 포함하는 리튬-이산화탄소 전지를 제조하였다.
실시예 3. 리튬-이산화탄소 전지 제조
3-1. 촉매가 담지된 탄소재 제조
탄소나노튜브(CNT) 90 중량부와 헤모글로빈(Hb) 10 중량부를 복합화 한 후 수소/아르곤 혼합가스 분위기에서 탄화시켜 Fe-CNT 촉매를 제조하였다. 탄화과정시 600 ℃ 의 온도로 2시간 가열하여 Fe-CNT 촉매 복합체(촉매가 담지된 탄소재)를 제조하였다.
3-2. 전극 제조
실시예 3-1에 따른 복합체를 폴리비닐리덴플루오라이드(PVDF)와 9:1 중량부로 혼합하고, N-메틸-2-피롤리돈(NMP 용매)에 분산시켜 슬러리 형태로 제조하였다.
그리고, 이를 니켈 메쉬(직경: 12.7mm)에 코팅하여 75℃로 12시간 동안 진공건조하여 공기 전극을 제조하였다.
다음으로, 건조된 공기전극을 질소 분위기에서 500 ℃ 의 온도로 열을 가하여 탄화과정을 거쳤다. 이에 따라 리튬 공기 전지용 양극을 제조하였다.
3-3. 리튬-이산화탄소 전지의 제조
리튬 금속 호일을 음극으로 사용하고, 글래스필터를 분리막으로 사용하고, 테트라에틸렌글리콜디메틸에테르에 1 M 의 LITFSI 이 용해된 전해질을 이용하여 스웨즈락(swagelok) 타입의 전지를 제조하였다.
<비교예>
비교예 1. 리튬-이산화탄소 전지 제조(Hb/CNT_No pourging)
상기 실시예 1과 동일하게 Hb와 CNT 를 첨가하여 리튬-이산화탄소 전지를 제조하였으며, 대신 공기(이산화탄소)의 공급 없이 실험을 진행하였다.
비교예 2. 리튬-이산화탄소 전지 제조(CNT)
비교대상인 순수한 탄소나노튜브로 제작된 전극은 Hb 없이 90 중량부의 CNT 와 10중량부의 PVDF를 이용하여 전극을 제조하였다. 이러한 점을 제외하고는 상기 실시예 1과 동일한 과정으로 공기전극과 이를 이용한 리튬-이산화탄소 전지를 제조하였다.
비교예 3. 리튬-이산화탄소 전지 제조(CNT)
상술된 실시예 3에서, 촉매 물질을 생략하여, 촉매 입자가 없는 비교예에 따른 탄소나노튜브를 제조하였다. 이후, 상술된 실시예 3과 동일한 방법으로, 비교예에 따른 탄소나노튜브을 이용하여 양극을 제조하고, 이를 포함하는 리튬 공기 전지(리튬 산소 전지)를 제조하였다.
비교예 4. 리튬-이산화탄소 전지 제조(CNT)
탄화과정을 수행하지 않은 것을 제외하곤, 실시예 3과 동일한 과정으로 리튬-이산화탄소 전지를 제조하였다.
<실험예>
실험예 1. 리튬-이산화탄소 전지의 전기화학실험(electrochemical experiments)
1-1. 리튬-이산화탄소 전지의 초기 충방전 용량 측정
비교예 1과 실시예 1에서 제작된 리튬-이산화탄소 전지의 전기화학실험을 하였으며, 충전과 방전과정을 거치며 전기화학적 특성을 평가하였다. 한편, 비교예 1은 주사속도를 100mA/g와 50mA/g를 유지하였으며, 실시예 1은 주사속도를 50mA/g를 유지하였다. 그리고, 용량을 확인하기 위한 초기 충방전 곡선은 구동전압을 2.35 내지 4.35 V의 값으로 제한하여 비교하였다.
도 4는 비교예 1의 리튬-이산화탄소 전지의 초기 충방전 곡선을 나타내는 그래프((a) 100mA/g, (b) 50mA/g)이다.
도 4를 참조하면, Hb가 결착되지 않은 전극은 주사속도가 100mA/g일 때, 약 34mAh/g의 충전용량, 약 13mAh/g의 방전용량을 보였으며, 주사속도가 50mA/g일 때, 약 90mAh/g의 충전용량과 약 110mAh/g의 방전용량을 보였다.
도 5는 전류밀도 실시예 1의 헤모글로빈을 촉매로 활용한 리튬-이산화탄소 전지의 초기 충방전 곡선을 나타내는 그래프이다.
도 5를 참조하면, Hb를 포함한 전극의 경우, 충전용량이 약 456mAh/g이였으며, 방전용량은 약 786mAh/g을 보였다.
이는 비교예 1에서 주사속도 50mA/g일 때와 비교하면, 실시예 1에서 Hb를 포함하였을 때 충방전 용량이 5 내지 6배 증가한 것을 알 수 있다.
즉, 실시예 1의 전극이 매우 향상된 초기 충방전 용량을 보였으며, 이는 실시예 1의 전극 표면에 결착된 Hb/CNT 가 Hb를 결착하지 않은 전극에 비하여 충방전 효율이 크게 개선된 것으로 보았을 때, 분해반응(OER) 또한 원활하게 일어난다는 것을 나타낸다.
결론적으로, 리튬 이산화탄소 전지에서 Hb가 촉매역할을 하는 것으로 판단하였다.
1-2. 리튬-이산화탄소 전지의 CV(cyclic voltammetry) 측정
상기 실시예 1에서 제조된 리튬-이산화탄소 전지에 있어서 전극의 안정성을 확인하기 위하여 5mV/s의 주사속도로 Cyclic voltammetry를 측정하였다.
도 6은 본 발명의 실시예 1에 따른 리튬-이산화탄소 전지의 CV(cyclic voltammetry) 측정결과를 나타낸 그래프이다((a) Hb/CNT_CO2_1st, (b) Hb/CNT_CO2_2nd).
도 6를 참조하면, CV를 반복하여 측정한 결과 실시예 1에 따른 전극은 거의 사각형 형태(nearly rectangular shape)의 CV 그래프를 보임으로서 매우 안정적인 전기화학 거동을 보였다. 즉, Hb/CNT 은 전극의 촉매물질로 사용하기에 적합함을 확인할 수 있었다.
1-3. 리튬-이산화탄소 전지의 CV(cyclic voltammetry) 측정
도 7은 본 발명의 실시예 1에 따른 리튬-이산화탄소 전지(Hb/CNT) 및 비교예 2(CNT)의 리튬-이산화탄소 전지의 CV 측정결과를 나타낸 그래프이다.
도 7을 참조하면, 비교예 2 대비 실시예 1의 측정결과에서 추가의 피크가 발생한 것을 관찰할 수 있으며, 이는 Hb/CNT에서 헤모글로빈이 촉매로써 사용가능하다는 것을 나타낸다.
한편, 도 7에서 비교예 2는 방전시, 피크 전압이 더 높게 이동한 것을 확인할 수 있었다. 이는 CNT를 양극쪽 공기극 촉매로 사용하였을 때, 방전과전압이 크게 줄어든 것을 보여준다.
1-4. 리튬-이산화탄소 전지에서 Hb/CNT 전극의 촉매 효과 검증
실시예 1, 비교예 1 및 비교예 2에서 제작된 전극을 포함하는 리튬-이산화탄소 전지의 전기화학실험을 하였으며, 충전과 방전과정을 거치며 전기화학적 특성을 평가하였다.
아울러, 주사속도를 50mA/g를 유지하였으며, 용량을 확인하기 위한 초기 충방전 곡선은 구동전압을 2.35 내지 4.35 V의 값으로 제한하여 비교하였다. 그리고 이에 대한 결과를 도 8에 나타내었다.
참고로, Hb/CNT 전극에는 HbO2 형태의 O2가 존재할 수 있으므로 용량 증가 효과는 명확하지 않기 때문에, 이 부분을 확실히 하기 위하여 촉매가 없을 때(비교예 1)의 충방전 실험을 실시하였다.
그 결과, CO2는 리튬-이산화탄소 전지에서 음극물질(양극활물질)로 작용하였으며, CNT에 부착 된 Hb는 실온에서 Li-CO2 배터리의 촉매제로 작용하여 고용량으로 이어질 수 있음을 확인하였다.
또한, 충전 / 방전 프로파일은 Hb의 잔류 O2가 아니라 CO2로 표시 한 것이 명확하다는 것을 확인하였다.
실험예 2. 리튬-이산화탄소 전지의 전기화학실험(electrochemical experiments)
2-1. 리튬-공기 전지의 CV(cyclic voltammetry) 측정
실시예 3과 비교예 3의 촉매를 활용한 리튬-이산화탄소 전지를 순환전압전류법(cyclic voltammetry, CV) 를 이용하여, 전위가 임의로 변경되는 경우에 발생하는 전류의 변화값을 측정하였다. 구체적으로, 5 mV/s, 10 mV/s, 20 mV/s, 50 mV/s, 및 100 mV/s 의 주사 속도(scan rate)로 0에서 5 V까지 순환전압전류법을 실시하였다. 이는 각각 아르곤(Ar) 또는 이산화탄소(CO2) 분위기 하에서 측정하였다.
그리고, 그 결과를 도 9에 나타내었다.
도 9는 본 발명의 실시예 3과 비교예 3의 촉매를 활용한 리튬-이산화탄소 전지의 순환전압전류법 측정결과를 나타내는 그래프이다 ((a) 비교예 3(CO2 purging), (b) 비교예 3(Ar purging), (c) 실시예 3(CO2 purging) 및 (d) 실시예 3(Ar purging)).
먼저, 도 9를 참조하면, 비교예 3과 실시예 3 모두 주사 속도(scan rate) 가 증가할수록 전류의 변화값이 증가하였다. 한편, 실시예 3과 비교예 3 의 결과값을 비교하였을 때, 동일한 주사 속도에서 실시예 3이 비교예 3 보다 전류대 전압의 변화 폭이 더 큼을 확인할 수 있다. 이는 실시예 3이 비교예 3 보다 우수한 전기화학적 특성을 나타냄을 확인할 수 있었다.
다음으로, 실시예 3과 비교예 3의 촉매를 활용한 리튬-이산화탄소 전지의 순환전압전류법을 측정하였으며, 구체적으로 사이클 횟수 및 스캔 속도를 다르게 하여 순환전압전류법을 측정하였다. 그리고, 그 결과를 도 10에 나타내었다.
도 10은 실시예 3과 비교예 3의 촉매를 활용한 리튬-이산화탄소 전지의 순환전압전류법 측정결과를 나타낸 그래프이다((a) 5 mV s-1_1st, (b) 5 mV s-1_2nd, (c) 10 mV s-1).
도 10을 참조하면, 실시예 3은 가역성 매우 우수한 것을 알 수 있으며, 이에 따라 이차전지로서 활용이 가능할 것으로 판단된다.
도 11은 전해액에 이산화탄소 또는 아르곤을 퍼징하였을 때, 실시예 3 의 촉매를 활용한 리튬-이산화탄소 전지의 순환전압전류법 측정결과를 나타낸 그래프이다((a) 5 mV s-1_1st, (b) 5 mV s-1_2nd, (c) 10 mV s-1). 도 11을 통해서 불활성 기체인 아르곤을 퍼징한 경우와 달리 이산화탄소를 퍼징한 경우 전류가 증가한 것을 알 수 있었다. 즉 리튬과 이산화 탄소 사이에 전기화학적 반응이 일어난 것으로 확인되며 첫번째 사이클뿐만 아니라 두번째 사이클에서 동일한 가역반응이 발견되었고 주사속도를 높여도 동일한 반응이 관찰되었다.
2-2. 리튬-이산화탄소 전지의 초기 충방전 용량 측정
실시예 3에서 제조한 리튬-이산화탄소 전지의 전기화학실험을 수행하였다. 충전과 방전과정을 거치며 전기화학적 특성을 평가하였다. 이는 이산화탄소(CO2) 분위기 하에서 측정하였다. 이때 주사 속도는 50 mA/g 를 유지하였다. 그리고, 용량을 확인하기 위한 초기 충방전 곡선은 구동전압을 2.35 내지 4.35 V의 값으로 제한하였다.
도 12는 실시예 3의 리튬-이산화탄소 전지의 충방전 곡선을 나타내는 그래프이다. 먼저, 도 12(a) 를 참조하면, 1차 방전시 약 1750 mAh/g 의 방전용량, 2차 방전시, 약 4500 mAh/g 의 방전용량, 3차 방전시 3750 mAh/g 의 방전용량을 보였다. 도 12(b) 를 참조하면, 1차 방전시 약 6100 mAh/g 의 방전용량, 2차 방전시 약 3950 mAh/g 의 방전용량을 보였다.
도 12를 통해서, 본 발명의 리튬-이산화탄소 전지가 재현성있게 구현되었으며 방전용량이 약 4000 mAh/g에서 6000 mAh/g으로 높고 충전용량도 거의 방전용량과 동일하여 쿨롱효율이 높다는 점에서 우수하다는 것을 알 수 있었다.
도 13은 실시예 3의 리튬-이산화탄소 전지의 충방전 곡선을 나타내는 그래프이다. 구체적으로, 아르곤과 이산화탄소를 각각 퍼징 하였을 때, 리튬-이산화탄소 전지의 1차, 2차, 3차 충방전 곡선을 나타낸다.
도 13을 참조하면, 아르곤 퍼징 대비 이산화탄소를 퍼징하였을 때, 매우 향상된 충방전 용량을 보였으며, 이는 실시예 3의 전극 표면에 포함되는 복합체에 의해서 크게 개선된 것으로 보이며, 분해반응(OER) 또한 원활하게 일어난다는 것을 나타낸다.
실험예 3. Hb/CNT 전극의 표면 분석(XRD)
실시예 3, 비교예 3, 4에서 제조한 리튬-이산화탄소 전지의 전극에 대해 X선 회절 패턴(X-ray Diffraction Spectroscopy, XRD)을 관찰하고, 그 결과를 도 14 에 나타내었다.
XRD 패턴을 분석한 결과, 도 14(a) 에 나타난 바와 같이, 실시예 3, 비교예 3 및 비교예 4 에서 동일한 피크가 발견되었다. 아울러 도 14(b) 를 참조하면, Fe3C 혹은 Fe와 C가 결합된 것을 알 수 있다. 약 25도 근방은 C에 대한 XRD피크이며 42도 가량의 피크는 Fe와 관련한 피크이다.
실험예 4. 열중량분석
도 15는 본 발명의 실시예 3의 열중량분석(TGA) 그래프이다.
도 15를 참조하면, 실시예 3의 열중량분석 그래프가 개시된다. 그래프를 보면, 400 내지 600 ℃에서 열화가 발생하여 86 wt% 의 중량 감소를 확인할 수 있다.
이에 따라, 11 wt%가량의 Fe-C복합체의 함량을 확인할 수 있었다. 약 3 wt%의 물도 소량 함유하는 것을 확인하였다.
실험예 5. 투과형전자현미경(TEM) 분석
실시예 3에서 제조된 전극의 표면을 분석하기 위하여, 투과형전자현미경(TEM) 을 이용하여 분석하였고, 그 결과를 도 16과 도 17에 나타내었다.
도 16 및 17에서, Fe-C 나노입자가 회절무늬 형태로 MWCNT 표면에 잘 분산된 것을 볼 수 있었다.
실험예 6. 헤모글로빈의 촉매 안정성 실험
헤모글로빈의 안정성을 테스트하기 위하여, 전해질 내에서 헤모글로빈의 용해성을 실험하였다.
보다 구체적으로, 1㎖의 헤모글로빈을 각각 10㎖의 전해질 TEGDME(Tetra ethylene dimethyle glycol ether)와 DEGDME(diethylene glycol dimethyl ether)에 주입하고, 전해질 염으로 LITFSI를 추가하여, 24시간 동안 교반하였다.
도 9는 전해질에 헤모글로빈을 용해한 결과를 나타내는 사진이다((a) TEGDME+LiTFSI+Hb, (b) DEGDME+LiTFSI+Hb). 도 9를 참조하면, 헤모글로빈이 상기 전해질에 용해되지 않은 것을 확인할 수 있었다.
이에 따라, 헤모글로빈이 에테르 용액에서 안정성이 있다는 것을 알 수 있다. 즉, 본 발명의 Hb/CNT를 전극에서 Hb가 촉매로 사용하였을 때, 전해질 내에서 안정성이 있다는 것을 알 수 있다.
실험예 7. 헤모글로빈(Hb)과 탄소나노튜브(CNT)의 중량비율에 따른 효과
7-1. 리튬-이산화탄소 전지의 초기 충방전 용량 측정
실시예 1 및 실시예 2에서 제작된 전극을 포함하는 리튬-이산화탄소 전지의 전기화학실험을 하였으며, 충전과 방전과정을 거치며 전기화학적 특성을 평가하였다.
아울러, 주사속도를 50mA/g를 유지하였으며, 용량을 확인하기 위한 초기 충방전 곡선은 구동전압을 2.35 내지 4.35 V의 값으로 제한하여 비교하였다.
도 19는 실시예 1 및 실시예 2의 초기 충방전 곡선을 나타내는 그래프로, 도 19(a)는 실시예 1(Hb:CNT=1:9)의 초기 충방전 곡선을 나타내는 그래프이며, 도 19(b)는 실시예 2(Hb:CNT=3:6)의 초기 충방전 곡선을 나타내는 그래프이다.
도 19(a)와 도 19(b)를 비교하여 보면, 도 19(b)는 방전시 발생하는 불안정한 거동이 많이 줄어든 것을 확인할 수 있으며, 특히, 도 19(a) 와 유사한 형태의 과전압(overpotential)은 비슷하며, 약 2.9V에서 안정기(plateau)가 형성되는 것으로, 방전시 촉매 효과가 뚜렷하게 나타나는 것을 확인할 수 있다.
7-2. 리튬-이산화탄소 전지의 CV(cyclic voltammetry) 측정
상기 실시예 2에서 제조된 리튬-이산화탄소 전지에 있어서 전극의 안정성을 확인하기 위하여 5mV/s의 주사속도로 Cyclic voltammetry를 측정하였다.
도 20은 본 발명의 실시예 2 및 비교예 2에 따른 리튬-이산화탄소 전지의 CV(cyclic voltammetry) 측정결과를 나타낸 그래프로, 실시예 1은 Hb와 CNT 의 중량비율이 1:9이며, 실시예 2는 Hb와 CNT 의 중량비율이 3:6이다.
도 20에서 실시예 2는 방전시, 피크 전압이 더 높게 이동한 것을 확인할 수 있었으며, 이는 Hb와 CNT 의 중량비율이 3:6인 Hb/CNT 전극을 사용하였을 때, 방전 과전압(discharge overpotential)이 줄어든 것을 나타낸다. 실시예 1과 비교하였을 때 Hb의 비율이 높은 Hb/CNT 전극의 방전 피크 전류가 더 크게 나타난 것으로 보아 Hb가 과량 존재할 때 촉매반응을 보다 크게 활성화 시켜 줌을 알 수 있다.
실험예 8. Hb/CNT 전극의 충방전 후의 생성물질 관찰
리튬 금속은 CO2와 반응하여 상온에서 리튬 옥살레이트(lithum oxalate)를 형성할 수 있다(아래의 반응식 참조).
[반응식]
2CO2 + 2e- → C2O4 2-
C2O4 2- → CO2 2- + CO2
CO2 2- + C2O4 2- → 2CO3 2- + C
2Li+ + CO3 2- → Li2CO3
참고로 2CO2 에서 C2O4 2-로 전자 환원은 탄소물질의 표면에서 발생할 수 있으며, 이때, 회로전압(Open circuit voltage)은 3V로 계산될 수 있다.
이와 관련하여, 전극의 충방전시 발생하는 생성물을 확인하기 위하여, 본 실험예에서는 실시예 1에 따른 Hb/CNT 전극 표면의 분석을 실시하였다.
8-1. Hb/CNT 전극의 FTIR 분석
도 21 및 도 22는 본 발명의 실시예 1에 따른 Hb/CNT 전극의 FTIR 분석을 실시한 결과를 나타낸 그래프로, (a)는 초기상태, (b)는 방전, (c)는 충전시의 FTIR(Fourier Transform Infrared Spectrometry) 분석 그래프이다.
도 21 및 도 22를 참조하면, 방전과정(도 21(b) 및 도 22(b))에서 파수(wavenumber) 1413cm-1에서 추가 피크가 발견되었으며, 이는 방전시 생성물이 발생된 것으로 판단되었으며, 상기 피크는 CO3 2-의 생성물에 대한 것으로 판단된다.
8-2. Hb/CNT 전극의 표면 분석(SEM)
실시예 1에서 제조한 Hb/CNT 전극을 주사전자 현미경(SEM)을 관찰하고, 그 결과를 도 14에 나타내었다.
도 23(a)는 초기상태의 전극 사진이고, (b)는 방전시 전극 사진이며, (c)는 충전시 전극 사진이다.
실험 결과, 초기상태인 도 23(a)를 기준으로 (b)와 (c)를 비교하여 본 결과, 초기상태(a) 대비 충전시(c)에는 생성물질에 대해서 관찰되지는 않았으나, 방전시(b)에는 전극에 형성된 입자의 형태가 변한 것으로 관찰된 바 새로운 생성물(CO3 2-)에 대한 패턴이 나타남을 확인할 수 있었다.
8-3. Hb/CNT 전극의 표면 분석(XRD)
실시예 1에서 제조한 Hb/CNT 전극에 대해 X선 회절 패턴(X-ray Diffraction Spectroscopy, XRD)을 관찰하고, 그 결과를 도 24에 나타내었다((a)는 초기상태, (b)는 방전, (c)는 충전).
XRD 패턴을 분석한 결과, 도 24에 나타난 바와 같이, 초기상태, 방전상태 및 충전상태에서 동일한 피크가 발견되었으며, 이는 전극을 이루고 있는 메쉬망의 니켈(Ni)에 대한 피크로 판단하였다.
특히, 상기 니켈에 대한 피크가 발견된 것은 상기 실험예 8-1과 8-2에서 언급한 생성물의 구조가 무정형 구조를 갖고 있기 때문인 것으로 판단된다.
8-4. pH 측정
리튬-이산화탄소 전지의 충방전시 C2O4 2- 또는 CO3 2-와 같은 탄산염의 생성물을 감지하기 위하여 초기상태, 충전 및 방전시의 전해질의 pH 를 측정하였다.
보다 구체적으로, 리튬-이산화탄소 전지의 초기상태, 충전상태 및 방전상태의 전극을 증류수에 담지한 후, pH 측정기를 이용하여 각 상태에서의 상기 전해질의 pH를 측정하였다.
도 25는 실시예 1의 Hb/CNT 를 포함하는 리튬-이산화탄소 전지의 구동 중 전해질의 pH를 나타내는 그래프이다((a)는 초기상태, (b)는 방전, (c)는 충전).
도 25를 참조하면, 전극의 초기상태 대비 충방전시 pH 가 높은 것을 나타낸다. 이는 전지의 충방전시 생성물인 C2O4 2- 또는 CO3 2- 가 중성수(neutral water)에서는 염기성 물질로 작용하는 양쪽성 물질이기 때문이다(아래 반응식 참조).
[반응식]
Li2CO3 ↔ 2Li+ + CO3 2-
CO3 2- + 2H2O ↔ HCO3 - + OH- +H2O ↔ H2CO3 + 2OH-
C2O4 2- + 2H2O ↔ HCOOCO2 - + OH- + H2O ↔ HCOOCOOH +2OH-

Claims (15)

  1. 헤모글로빈, 헤모글로빈으로부터 유래된 철(Fe) 또는 이의 합금이 담지된 탄소재를 포함하는 촉매를 포함하는 리튬 공기 전지용 양극.
  2. 제1항에 있어서,
    탄소재의 탄소(C)와 철(Fe) 의 중량 비율은 5:1 내지 500:1 인 리튬 공기 전지용 양극.
  3. 제1항에 있어서,
    탄소재는 탄소나노튜브(carbon nano tube), 흑연, 카본블랙(carbon black), 케첸블랙(ketjen black), 아세틸렌블랙(acetylene black) 및 환원 그래핀 옥사이드(reduced grapheme oxide) 로 이루어진 군으로부터 선택되는 1종 이상인 리튬 공기 전지용 양극.
  4. 제1항에 있어서,
    촉매는 입자 형태이며,
    촉매의 평균입경은 0.01 내지 1 ㎛ 범위 또는 0.1 내지 50 nm 범위 또는 인 리튬 공기 전지용 양극.
  5. 제1항에 있어서,
    리튬 공기 전지용 양극은
    산소 또는 이산화탄소를 양극활물질인 리튬 공기 전지용 양극.
  6. 제1항에 있어서,
    촉매가 담지된 탄소재는 전류 집전체에 포함되는 것을 특징으로 하는 리튬 공기 전지용 양극.
  7. 제1항에 있어서,
    리튬 공기 전지용 양극은 바인더를 더 포함하며,
    상기 바인더는 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 디아세틸셀룰로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 에틸렌 옥 사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론, 폴리(퍼플루오로술폰산)(polyperfluorosulfonic acid), 폴리(테트라플루오로에틸렌)(polytetrafluoro ethylene), 플로리네이티드 에틸렌-프로필렌(fluorinated ethylene-propylen), 소듐 카르복시메틸셀룰로우즈 (Sodium Carboxymethylcellulose) 및 스티렌 부타디엔 러버 (Styrene Butadiene Rubber) 로 이루어진 군으로부터 선택되는 1종 이상인 리튬 공기 전지용 양극.
  8. 제1항 내지 제7항 중 어느 한 항에 따른 리튬 공기 전지용 양극;
    리튬금속을 포함하는 음극;
    양극 및 음극 사이에 개재되는 분리막; 및
    음극에서 발생된 리튬 이온을 상기 양극으로 전달하는 전해액; 을 포함하는 리튬 공기 전지.
  9. 헤모글로빈(Hemoglobin), 바인더 및 탄소재를 혼합하여 슬러리를 제조하는 단계; 및
    슬러리를 전류 집전체에 도포하는 단계; 를 포함하는 리튬 공기 전지용 양극의 제조방법.
  10. 제9항에 있어서,
    슬러리를 제조하는 단계는,
    헤모글로빈 10 내지 40 중량부, 바인더 5 내지 20 중량부 및 탄소재 50 내지 90 중량부를 혼합하고, 혼합된 혼합물을 용매에 분산시키는 것인, 공기 전지용 양극의 제조방법.
  11. 제9항에 있어서,
    슬러리를 전류 집전체에 도포하는 단계 이후, 공기분위기에서 50 내지 300 ℃의 온도로, 1 내지 15 시간 동안 건조하는 단계를 더 포함하는 리튬 공기 전지용 양극의 제조방법.
  12. 헤모글로빈 및 탄소재를 혼합하여 촉매 복합체를 형성하는 단계;
    촉매 복합체 및 바인더를 혼합하여 슬러리를 제조하는 단계; 및
    슬러리를 전류 집전체에 도포하는 단계; 를 포함하는 리튬 공기 전지용 양극의 제조방법.
  13. 제12항에 있어서,
    촉매 복합체를 형성하는 단계는
    상기 헤모글로빈 및 탄소재를 혼합한 후, 질소 분위기에서 평균 450 내지 700℃ 의 온도로 탄화시키는 단계를 포함하는 리튬 공기 전지용 양극의 제조방법.
  14. 제12항에 있어서,
    슬러리를 제조하는 단계는,
    촉매 복합체 10 내지 100 중량부 및 바인더 5 내지 20 중량부를 혼합하고, 혼합된 혼합물을 용매에 분산시키는 것인, 공기 전지용 양극의 제조방법.
  15. 제12항에 있어서,
    슬러리를 전류 집전체에 도포하는 단계 이후, 공기분위기에서 50 내지 300 ℃의 온도로, 1 내지 15 시간 동안 건조하는 단계를 더 포함하는 리튬 공기 전지용 양극의 제조방법.
PCT/KR2018/012348 2017-10-18 2018-10-18 리튬 공기 전지용 양극, 이를 포함하는 리튬 공기 전지, 및 리튬 공기 전지용 양극의 제조방법 WO2019078644A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170135097 2017-10-18
KR10-2017-0135097 2017-10-18

Publications (2)

Publication Number Publication Date
WO2019078644A2 true WO2019078644A2 (ko) 2019-04-25
WO2019078644A3 WO2019078644A3 (ko) 2019-06-06

Family

ID=66174050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/012348 WO2019078644A2 (ko) 2017-10-18 2018-10-18 리튬 공기 전지용 양극, 이를 포함하는 리튬 공기 전지, 및 리튬 공기 전지용 양극의 제조방법

Country Status (2)

Country Link
KR (1) KR102226521B1 (ko)
WO (1) WO2019078644A2 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110451482A (zh) * 2019-08-19 2019-11-15 北京理工大学 一种氮硫共掺杂碳纳米片材料的制备方法
CN110492203A (zh) * 2019-07-08 2019-11-22 南京航空航天大学 一种新型锂-二氧化碳电池及其正极材料的制备
CN111362312A (zh) * 2020-03-17 2020-07-03 东北大学秦皇岛分校 一种利用酸洗铁红回收处理得到锂-空气电池正极材料的方法
WO2022127648A1 (zh) * 2020-12-14 2022-06-23 桂林理工大学 一种液态金属@碳纳米管锂空气电池正极及其制备方法
CN114944493A (zh) * 2022-05-05 2022-08-26 青岛大学 一种锂离子锂氧气混合电池及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220014108A (ko) * 2020-07-28 2022-02-04 숙명여자대학교산학협력단 촉매 리튬-이산화탄소 반응을 위한 탄소 나노 튜브에 내장된 철 나노입자의 모세관 구동 형성

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08173775A (ja) * 1994-10-24 1996-07-09 Sumitomo Electric Ind Ltd 酸素選択透過膜およびそれを用いた電池
US6921593B2 (en) * 2001-09-28 2005-07-26 Hewlett-Packard Development Company, L.P. Fuel additives for fuel cell
JP2010159480A (ja) * 2008-07-31 2010-07-22 Blue Aqua Industry Kk 空気電池式反応装置。
JP5936201B2 (ja) * 2011-09-06 2016-06-22 住友化学株式会社 電極触媒の分散液の製造方法、電極触媒の製造方法、電極触媒、電極構造体、膜電極接合体、燃料電池および空気電池
KR102339437B1 (ko) * 2014-08-11 2021-12-16 에스케이이노베이션 주식회사 리튬-공기 전지
KR20170089122A (ko) 2016-01-26 2017-08-03 경기대학교 산학협력단 리튬-공기 이차전지, 이의 양극 및 양극 제조방법
KR101781442B1 (ko) * 2016-10-20 2017-09-25 부산대학교 산학협력단 철이 도핑된 질소 및 황을 포함하는 탄소 촉매 및 이의 제조방법

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110492203A (zh) * 2019-07-08 2019-11-22 南京航空航天大学 一种新型锂-二氧化碳电池及其正极材料的制备
CN110492203B (zh) * 2019-07-08 2022-05-03 南京航空航天大学 一种锂-二氧化碳电池及其正极材料的制备
CN110451482A (zh) * 2019-08-19 2019-11-15 北京理工大学 一种氮硫共掺杂碳纳米片材料的制备方法
CN111362312A (zh) * 2020-03-17 2020-07-03 东北大学秦皇岛分校 一种利用酸洗铁红回收处理得到锂-空气电池正极材料的方法
CN111362312B (zh) * 2020-03-17 2022-03-01 东北大学秦皇岛分校 一种利用酸洗铁红回收处理得到锂-空气电池正极材料的方法
WO2022127648A1 (zh) * 2020-12-14 2022-06-23 桂林理工大学 一种液态金属@碳纳米管锂空气电池正极及其制备方法
CN114944493A (zh) * 2022-05-05 2022-08-26 青岛大学 一种锂离子锂氧气混合电池及其制备方法
CN114944493B (zh) * 2022-05-05 2024-02-06 青岛大学 一种锂离子锂氧气混合电池及其制备方法

Also Published As

Publication number Publication date
WO2019078644A3 (ko) 2019-06-06
KR102226521B1 (ko) 2021-03-11
KR20190043493A (ko) 2019-04-26

Similar Documents

Publication Publication Date Title
WO2019078644A2 (ko) 리튬 공기 전지용 양극, 이를 포함하는 리튬 공기 전지, 및 리튬 공기 전지용 양극의 제조방법
WO2021066458A1 (ko) 복합 음극 활물질, 이의 제조방법, 및 이를 포함하는 음극
WO2017111542A1 (ko) 리튬 이차전지용 음극활물질 및 이를 포함하는 리튬 이차전지용 음극
WO2015084036A1 (ko) 다공성 실리콘계 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2018169371A2 (ko) 리튬 이차전지용 전해질 및 이를 포함하는 리튬 이차전지
WO2021235794A1 (ko) 이차전지
WO2021215830A1 (ko) 음극 및 이를 포함하는 이차 전지
WO2018110776A1 (ko) 구겨진 형상의 그래핀 복합체 제조방법, 이에 따라 제조되는 복합체 및 복합체를 포함하는 슈퍼커패시터
WO2017099481A1 (ko) 이차전지용 양극 및 이를 포함하는 이차전지
WO2022103091A1 (ko) 다공성 아라미드 나노섬유 박막, 이의 제조방법, 및 이를 포함하는 이차전지
WO2019194613A1 (ko) 양극 활물질, 상기 양극 활물질의 제조 방법, 상기 양극 활물질을 포함하는 양극, 및 상기 양극을 포함하는 이차 전지
WO2020235841A1 (ko) 음극 제조장치 및 음극의 제조방법
WO2020171483A1 (ko) 전기화학 소자 및 이의 제조방법
WO2023121247A1 (ko) 음극 및 이를 포함하는 이차전지
WO2017209561A1 (ko) 음극 활물질, 이를 포함하는 음극 및 이를 포함하는 리튬 이차전지
WO2020167021A1 (ko) 전기화학 소자 및 이의 제조방법
WO2021015535A1 (ko) 리튬 이차전지
WO2021029534A1 (ko) 표면에 인산 음이온이 흡착된 옥시수산화질산철, 이의 제조방법, 상기 표면에 인산 음이온이 흡착된 옥시수산화질산철을 포함하는 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2021010626A1 (ko) 리튬-황 이차전지
WO2019066403A2 (ko) 리튬 이차 전지용 전극 활물질 복합체 및 상기 전극 활물질 복합체의 제조방법
WO2022019698A1 (ko) 리튬-황 전지용 음극 및 이를 포함하는 리튬-황 전지
WO2022005064A1 (ko) 다공성 실리콘옥시카바이드 제조용 중간체, 이의 제조방법, 이로부터 제조된 다공성 실리콘옥시카바이드를 음극활물질로 포함하는 리튬 이차전지
WO2018236046A1 (ko) 리튬-황 전지
WO2021118144A1 (ko) 음극 활물질, 이의 제조방법, 이를 포함하는 음극 및 이차전지
WO2020067769A1 (ko) 고체 전해질 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868590

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18868590

Country of ref document: EP

Kind code of ref document: A2