WO2019073987A1 - 2,5-ビス(アミノメチル)テトラヒドロフランの製造方法 - Google Patents

2,5-ビス(アミノメチル)テトラヒドロフランの製造方法 Download PDF

Info

Publication number
WO2019073987A1
WO2019073987A1 PCT/JP2018/037649 JP2018037649W WO2019073987A1 WO 2019073987 A1 WO2019073987 A1 WO 2019073987A1 JP 2018037649 W JP2018037649 W JP 2018037649W WO 2019073987 A1 WO2019073987 A1 WO 2019073987A1
Authority
WO
WIPO (PCT)
Prior art keywords
aminomethyl
bis
tetrahydrofuran
furan
catalyst
Prior art date
Application number
PCT/JP2018/037649
Other languages
English (en)
French (fr)
Inventor
良 浅井
智明 桐野
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to CN201880066162.1A priority Critical patent/CN111201221B/zh
Priority to JP2019548207A priority patent/JP7243630B2/ja
Priority to EP18866438.7A priority patent/EP3696172B1/en
Priority to US16/754,997 priority patent/US11396498B2/en
Publication of WO2019073987A1 publication Critical patent/WO2019073987A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/04Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D307/10Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/14Radicals substituted by nitrogen atoms not forming part of a nitro radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a process for the preparation of 2,5-bis (aminomethyl) tetrahydrofuran.
  • Compounds having a tetrahydrofuran skeleton are useful as raw materials and intermediates for resins, pharmaceuticals, and perfumes.
  • 2,5-bis (aminomethyl) tetrahydrofuran is useful as an epoxy resin curing agent, an intermediate raw material of a compound, and the like because it has an amino group as a functional group, and its production method has been studied.
  • Patent Document 1 starts from ⁇ 5- (iminomethyl) furan-2-yl ⁇ methanamine or ⁇ 5- (iminomethyl) furan-2-yl ⁇ methane azide, and the presence of a Raney nickel catalyst It is disclosed that 2,5-bis (aminomethyl) tetrahydrofuran can be synthesized by carrying out a catalytic hydrogenation reaction below.
  • Patent Document 1 From the availability of raw materials and the stability of supply of 2,5-bis (aminomethyl) tetrahydrofuran, ⁇ 5- (iminomethyl) furan-2-yl ⁇ methanamine and ⁇ 5- (iminomethyl) furan in Patent Document 1 are known. There is a need for a method for efficiently producing 2,5-bis (aminomethyl) tetrahydrofuran from raw materials other than 2-yl ⁇ methane azide and the like. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a production method capable of efficiently producing 2,5-bis (aminomethyl) tetrahydrofuran.
  • the present invention is as follows.
  • Process for producing 5-bis (aminomethyl) tetrahydrofuran The manufacturing method as described in ⁇ 1> which is ⁇ 2> one pot synthesis.
  • the hydrogenation catalyst comprises at least one selected from the group consisting of Fe, Co, Ni, Cu, Ru, Rh, Pd, Ir, Pt, Re and Os. Manufacturing method described.
  • ⁇ 4> The hydrogenation catalyst according to ⁇ 1> or ⁇ 2>, wherein the hydrogenation catalyst contains at least one selected from the group consisting of Fe, Co, Ni, Cu, Ru, Pd, Ir, Pt, Re and Os. Production method.
  • ⁇ 5> The hydrogenation catalyst according to ⁇ 1> or ⁇ 2>, wherein the hydrogenation catalyst includes at least one selected from the group consisting of Fe, Co, Cu, Ru, Rh, Pd, Ir, Pt, Re and Os. Production method.
  • ⁇ 7> The method according to any one of ⁇ 1> to ⁇ 6>, wherein the hydrogen source comprises at least one of hydrogen and an alcohol having 1 to 5 carbon atoms.
  • the reaction is performed at a hydrogen pressure of more than 0 MPa and at a pressure of 25 MPa or less.
  • the manufacturing method as described in any one of ⁇ 1>- ⁇ 9> including supplying ⁇ 9> 2, 5- bis (aminomethyl) furan to a reaction kettle.
  • the production method of the present invention can efficiently obtain 2,5-bis (aminomethyl) tetrahydrofuran and is an industrially advantageous production method.
  • 2,5-bis (aminomethyl) tetrahydrofuran obtained by the production method of the present invention is useful as a raw material or an intermediate for resins, pharmaceuticals and perfumes.
  • the production method of the present embodiment is characterized by reacting 2,5-bis (aminomethyl) furan (hereinafter also referred to as H-BAF) with a hydrogen source using a hydrogenation catalyst. It is characterized by including a step of obtaining 5-bis (aminomethyl) tetrahydrofuran (hereinafter also referred to as BAF). With such a configuration, 2,5-bis (aminomethyl) tetrahydrofuran can be efficiently obtained. Preferably, it can be obtained by one-pot synthesis.
  • a hydrogenation catalyst particularly, Fe, Co, Ni, Cu, Ru, Rh, Pd, and so on
  • the olefin is selectively reacted by reacting a hydrogen source using a hydrogenation catalyst containing at least one selected from the group consisting of Ir, Pt, Re and Os, 2- (aminomethyl) -5
  • a hydrogenation catalyst containing at least one selected from the group consisting of Ir, Pt, Re and Os, 2- (aminomethyl) -5
  • 2,5-bis (aminomethyl) furan The 2,5-bis (aminomethyl) furan in this embodiment is commercially available.
  • 2,5-bis (aminomethyl) furan may be synthesized from known compounds such as 5-hydroxymethylfurfural and 5- (chloromethyl) furfural using an organic synthesis method.
  • the hydrogenation catalyst in the present embodiment preferably contains at least one metal selected from the group consisting of Fe, Co, Ni, Cu, Ru, Rh, Pd, Ir, Pt, Re and Os. These metals may be used alone or in a combination of two or more. As described above, since 2,5-bis (aminomethyl) tetrahydrofuran is highly reactive, it tends to produce by-products. In particular, at least one metal selected from the group consisting of Fe, Co, Ni, Cu, Ru, Rh, Pd, Ir, Pt, Re and Os is a by-product because it is not too active as a catalyst. It is believed that the formation of certain 2- (aminomethyl) -5-methyltetrahydrofurans can be suppressed.
  • the metal mentioned above may be supported by a carrier.
  • the carrier is not particularly limited as long as it is a carrier generally used as a carrier for catalysts, and examples thereof include inorganic oxides, activated carbon, ion exchange resins and the like.
  • Specific examples of the inorganic oxide include silica (SiO 2 ), titania (TiO 2 ), zirconia (ZrO 2 ), alumina (Al 2 O 3 ), magnesium oxide (MgO), and two types of these inorganic oxides.
  • the above-mentioned complex for example, zeolite etc. etc. are mentioned.
  • the hydrogenation catalyst includes at least one selected from the group consisting of Fe, Co, Cu, Ru, Rh, Pd, Ir, Pt, Re and Os.
  • the hydrogenation catalyst includes at least one selected from the group consisting of Fe, Co, Cu, Ru, Pd, Ir, Pt, Re and Os.
  • the hydrogenation catalyst includes at least one of Ru and Rh.
  • the hydrogenation catalyst comprises Rh.
  • iron (Fe) catalyst such as reduced iron
  • cobalt (Co) catalyst such as reduced cobalt and Raney cobalt
  • reduced nickel, nickel oxide and Raney nickel hereinafter referred to as Raney-Ni) Etc.
  • copper (Cu) catalysts such as copper (II) chloride, copper (I) chloride, copper (0), copper suboxide (I), copper (II) oxide, etc .
  • ruthenium / carbon And ruthenium (Ru) catalyst such as ruthenium / alumina
  • rhodium (Rh) catalyst such as rhodium / carbon and rhodium / alumina
  • rhenium (Re) catalyst such as platinum-supported perrhenic acid
  • osmium (Os) catalyst such as osmium / carbon And the like.
  • the amount of catalyst relative to 2,5-bis (aminomethyl) furan may be adjusted as appropriate, and is generally 1 to 200 parts by mass relative to the mass of 2,5-bis (aminomethyl) furan .
  • the amount of catalyst is preferably 1 to 150 parts by weight, more preferably 1 to 100 parts by weight, based on the weight of 2,5-bis (aminomethyl) furan.
  • the hydrogen source in the present embodiment is not particularly limited as long as it is a hydrogen source capable of reducing an olefin, and, for example, hydrogen and alcohols having 1 to 5 carbon atoms are preferably mentioned. These hydrogen sources may be used alone or in combination of two or more.
  • the alcohol having 1 to 5 carbon atoms include methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, isobutanol, tert-butanol, n-amyl alcohol, sec-amyl alcohol, Examples include 3-pentanol, 2-methyl-1-butanol, 3-methyl-1-butanol, 2-methyl-2-butanol, 3-methyl-2-butanol, neopentyl alcohol and the like. These C 1 to C 5 alcohols may be used alone or in combination of two or more.
  • methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, n-amyl alcohol and sec-amyl alcohol are preferable.
  • the reaction of the present embodiment may be carried out in the presence of a solvent.
  • the solvent is not particularly limited, and is appropriately selected depending on the reaction temperature, the reaction product, and the like.
  • the solvent is not particularly limited as long as it can dissolve part or all of 2,5-bis (aminomethyl) furan and does not interfere with the hydrogenation reaction, and examples thereof include aromatic hydrocarbon solvents and amides.
  • a solvent, an ether solvent, an alcohol solvent, a halogen solvent etc. are mentioned, An ether solvent is preferable. These solvents may be used alone or in combination of two or more.
  • the aromatic hydrocarbon solvent include benzene and toluene.
  • Specific examples of the amide solvent include acetonitrile, N, N-dimethylacetamide, N, N-dimethylformamide and the like.
  • the solvent used in the present invention is preferably substantially free of xylene. Substantially free means that xylene is 10% by mass or less of the solvent, preferably 5% by mass or less, more preferably 3% by mass or less, and 1% by mass or less Is more preferable, and 0% by mass is more preferable.
  • Specific examples of the ether solvent include tetrahydrofuran (hereinafter, also described as THF), diethyl ether and the like.
  • Alcohol solvent examples include methanol, ethanol, isopropanol and the like. Alcohol solvents also provide a source of hydrogen. Specific examples of the halogen solvent include dichloromethane, dichloroethane, chloroform and the like.
  • the presence or absence of the use of the solvent and the amount thereof used are not particularly limited, it is preferably 0.5 to 100 times by mass the 2,5-bis (aminomethyl) furan from the viewpoint of productivity and energy efficiency. More preferably, it is 1.0 to 50 times by mass, more preferably 1.0 to 20 times by mass.
  • the solvent in the present embodiment preferably has a low water content.
  • the content of water in the solvent is preferably 0 to 3.0% by mass, more preferably 0 to 2.0% by mass, and still more preferably 0 to 1.0% by mass.
  • the low water content in the solvent By the low water content in the solvent, the formation of by-products can be suppressed, and the selectivity of the desired product 2,5-bis (aminomethyl) tetrahydrofuran can be improved.
  • an aspect in which 95% by mass or more of the solvent is an ether solvent is exemplified.
  • the production method of this embodiment includes a method in which a reaction is performed by mixing 2,5-bis (aminomethyl) furan, a hydrogenation catalyst, a hydrogen source, and, if necessary, a solvent.
  • 2,5-bis (aminomethyl) furan is usually supplied to the reaction system.
  • the reaction system eg, reactor, reaction kettle
  • 2,5-bis (aminomethyl) tetrahydrofuran is more efficiently obtained. can get.
  • the order of mixing the 2,5-bis (aminomethyl) furan, the hydrogenation catalyst, the solvent and the hydrogen source is arbitrary. From the viewpoint of working efficiency, in the production method of the present embodiment, it is preferable to previously mix 2,5-bis (aminomethyl) furan and a hydrogenation catalyst, and then introduce a hydrogen supply source.
  • a hydrogenation catalyst when adding a hydrogenation catalyst, depending on the hydrogenation catalyst to be used, in order to prevent ignition, it may be carried out under an inert gas atmosphere such as nitrogen or argon,
  • the hydrogenation catalyst may be suspended in a solvent or the like and added as a suspension.
  • the production method of the present embodiment when hydrogen is used as a hydrogen supply source, it is preferable to carry out the reaction at a hydrogen pressure exceeding 0 MPa and 25 MPa or less.
  • the hydrogen pressure is more preferably 0.5 MPa or more and 15 MPa or less, and still more preferably 1.0 MPa or more and 10 MPa or less.
  • the reaction temperature may be appropriately adjusted according to the type of solvent, etc., and is generally 40 to 200 ° C., preferably 50 to 120 ° C., more preferably 50 to 110 ° C., still more preferably 70 to 115 ° C. .
  • the reaction time may be appropriately adjusted by monitoring the progress of the reaction using GC-MS or the like, and is generally 1 minute to 24 hours, preferably 0.5 to 3 hours, more preferably 0.5. ⁇ 2 hours.
  • the separation of the reaction mixture and the catalyst after the reaction can be carried out by a general method such as sedimentation, centrifugation, filtration and the like.
  • the separation of the catalyst is preferably performed under an inert gas atmosphere such as nitrogen or argon as appropriate to prevent ignition depending on the catalyst used.
  • the reaction mixture may be concentrated, as necessary, after the obtained reaction solution is concentrated, and the residue may be used as it is as a raw material or an intermediate, or the reaction mixture may be purified by post-treatment as appropriate.
  • known purification methods such as extraction, distillation, chromatography and the like can be mentioned. These purification methods may be performed in combination of two or more.
  • Example 1 In a pressure-resistant autoclave, THF 3 mL as a solvent, Ru / alumina (Al 2 O 3 ) as a catalyst (the amount of Ru catalyst is 5% by mass with respect to 0.5 g of 2,5-bis (aminomethyl) furan, After charging 0.1 g of “mass% Ru / alumina” etc., the hydrogen pressure was increased to 3 MPaG. In addition, Ru / alumina used what was beforehand reduced at 150 degreeC for 12 hours. Then, the reaction was carried out while maintaining the temperature at 90 ° C. for 1 hour, and the pressure-resistant autoclave was cooled with ice water to stop the reaction.
  • the catalyst and the reaction solution were filtered to remove the catalyst, and the filtrate containing the product was subjected to accurate mass measurement by the CI method.
  • the accurate mass measurement by the CI method was performed using a GC-MS spectrum apparatus Agilent 7890 BGC / 5977 MSD (manufactured by Agilent Technologies, Inc.).
  • a part of the residue obtained by concentrating the filtrate was dissolved in heavy chloroform, and 1 H-NMR and 13 C-NMR measurements were performed.
  • the NMR measurement apparatus used was JNM-ECA 500 (500 MHz) manufactured by Nippon Denshi Co., Ltd.
  • the 2,5-bis (aminomethyl) furan used was manufactured by Toronto Research Chemicals.
  • THF was used for spectral analysis manufactured by Wako Pure Chemical Industries, Ltd.
  • Ru / alumina is a ruthenium catalyst supported on alumina, which was manufactured by N.E. Chemcat Co., Ltd.
  • Example 2 It implemented similarly to Example 1 except having used 5 mass% Pd / carbon (C) as a catalyst.
  • the yield of 2,5-bis (aminomethyl) tetrahydrofuran was determined in the same manner as in Example 1 to be 41%. Further, when the product was identified in the same manner, formation of 2- (aminomethyl) -5-methyltetrahydrofuran was confirmed together with 2,5-bis (aminomethyl) tetrahydrofuran.
  • Pd / Carbon (C) is a Pd catalyst supported on carbon, and used was manufactured by N.E. Chemcat Co., Ltd.
  • Example 3 After adding 8 g of 5% by mass Ru / alumina as a catalyst and 120 mL of THF as a solvent to 20 g of 2,5-bis (aminomethyl) furan in a pressure resistant autoclave, the hydrogen pressure is increased to 6 MPaG and the temperature is 90 ° C. for 1 hour While maintaining the reaction, the reaction was stopped by cooling the pressure-resistant autoclave with ice water. Under argon flow, the catalyst and the reaction solution were filtered to remove the catalyst, and the filtrate containing the product was obtained and then concentrated. In addition, Ru / alumina used what was beforehand reduced at 150 degreeC for 12 hours.
  • the obtained product was analyzed by GC-MS spectrometer Agilent 7890 BGC / 5977 MSD (manufactured by Agilent Technologies, Inc.), and it was found that 91 mol% of 2,5-bis (aminomethyl) tetrahydrofuran, 2,5-bis (amino It was 0 mol% of methyl) furan and 9 mol% of 2- (aminomethyl) -5-methyltetrahydrofuran.
  • the 2,5-bis (aminomethyl) furan used was manufactured by Toronto Research Chemicals.
  • Ru / alumina is a ruthenium catalyst supported on alumina, which was manufactured by N.E. Chemcat Co., Ltd.
  • Example 4 After injecting 5 mass% Rh / C 8 g as a catalyst and 120 mL of THF as a solvent to 20 g of 2,5-bis (aminomethyl) furan in a pressure resistant autoclave, the hydrogen pressure was increased to 6 MPaG and the temperature was maintained at 90 ° C. for 1 hour The reaction was allowed to proceed, and the pressure autoclave was cooled with ice water to stop the reaction. The catalyst and the reaction solution were filtered under argon gas flow to remove the catalyst to obtain a filtrate containing the product, which was then concentrated and purified under reduced pressure distillation at a temperature of 120 ° C. and a pressure of 1 mbar.
  • the resulting product was analyzed by a GC-MS spectrometer Agilent 7890 BGC / 5977 MSD (manufactured by Agilent Technologies, Inc.) to be 100 mol% of 2,5-bis (aminomethyl) tetrahydrofuran.
  • the 2,5-bis (aminomethyl) furan used was manufactured by Toronto Research Chemicals.
  • Rh / alumina is a rhodium catalyst supported on alumina, which was manufactured by NE Chemcat Co., Ltd.

Abstract

効率的に2,5-ビス(アミノメチル)テトラヒドロフランを製造できる製造方法を提供すること。2,5-ビス(アミノメチル)テトラヒドロフランの製造方法であって、2,5-ビス(アミノメチル)フランに対して、水素化触媒を用いて水素供給源を反応させることにより、2,5-ビス(アミノメチル)テトラヒドロフランを得る工程を含む、2,5-ビス(アミノメチル)テトラヒドロフランの製造方法。

Description

2,5-ビス(アミノメチル)テトラヒドロフランの製造方法
 本発明は、2,5-ビス(アミノメチル)テトラヒドロフランの製造方法に関する。
 テトラヒドロフラン骨格を有する化合物は、樹脂、医薬品、および香料等の原材料や中間体として有用である。中でも、2,5-ビス(アミノメチル)テトラヒドロフランは、官能基としてアミノ基を有するため、エポキシ樹脂硬化剤や、化合物の中間原料等として有用であり、その製造方法が検討されている。
 例えば、特許文献1には、以下に示すように、{5-(イミノメチル)フラン-2-イル}メタンアミンや{5-(イミノメチル)フラン-2-イル}メタンアジドを出発物とし、ラネーニッケル触媒の存在下、接触水素化反応を行うことにより、2,5-ビス(アミノメチル)テトラヒドロフランを合成できることが開示されている。
Figure JPOXMLDOC01-appb-C000001
国際公開第2015/175528号
 原料の入手容易性や、2,5-ビス(アミノメチル)テトラヒドロフランの供給の安定性から、特許文献1における{5-(イミノメチル)フラン-2-イル}メタンアミンや{5-(イミノメチル)フラン-2-イル}メタンアジド等以外の原料から、効率的に2,5-ビス(アミノメチル)テトラヒドロフランを製造する方法が求められている。
 本発明は、上記事情に鑑みなされたものであり、効率的に2,5-ビス(アミノメチル)テトラヒドロフランを製造できる製造方法を提供することを課題とする。
 本発明者らが2,5-ビス(アミノメチル)テトラヒドロフランの製造方法について鋭意検討した結果、触媒を用いて2,5-ビス(アミノメチル)フランを水素化反応に供することによって、効率的に2,5-ビス(アミノメチル)テトラヒドロフランを製造できることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下のとおりである。
<1>2,5-ビス(アミノメチル)フランに対して、水素化触媒を用いて水素供給源を反応させることにより、2,5-ビス(アミノメチル)テトラヒドロフランを得る工程を含む、2,5-ビス(アミノメチル)テトラヒドロフランの製造方法。
<2>ワンポット合成である、<1>に記載の製造方法。
<3>前記水素化触媒が、Fe、Co、Ni、Cu、Ru、Rh、Pd、Ir、Pt、ReおよびOsからなる群より選択される少なくとも一種を含む、<1>または<2>に記載の製造方法。
<4>前記水素化触媒が、Fe、Co、Ni、Cu、Ru、Pd、Ir、Pt、ReおよびOsからなる群より選択される少なくとも一種を含む、<1>または<2>に記載の製造方法。
<5>前記水素化触媒が、Fe、Co、Cu、Ru、Rh、Pd、Ir、Pt、ReおよびOsからなる群より選択される少なくとも一種を含む、<1>または<2>に記載の製造方法。
<6>前記水素化触媒が、Rhを含む、<1>または<2>に記載の製造方法。
<7>前記水素供給源が、水素および炭素数1~5のアルコールの少なくとも1種を含む、<1>~<6>のいずれか一つに記載の製造方法。
<8>前記反応が、水素圧0MPa超過25MPa以下で行なわれる、<1>~<7>のいずれか一つに記載の製造方法。
<9>2,5-ビス(アミノメチル)フランを反応釜に供給することを含む、<1>~<9>のいずれか一つに記載の製造方法。
 本発明の製造方法は、効率的に2,5-ビス(アミノメチル)テトラヒドロフランを得ることができ、工業的に有利な製造方法である。また、本発明の製造方法によって得られる2,5-ビス(アミノメチル)テトラヒドロフランは、樹脂、医薬品、および香料の原材料や中間体として有用である。
 以下に本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。
 以下において、本発明の内容について詳細に説明する。なお、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本実施形態の製造方法は、2,5-ビス(アミノメチル)フラン(以下、H-BAFとも記載する。)に対して、水素化触媒を用いて水素供給源を反応させることにより、2,5-ビス(アミノメチル)テトラヒドロフラン(以下、BAFとも記載する。)を得る工程を含むことを特徴とする。このような構成とすることにより、効率的に2,5-ビス(アミノメチル)テトラヒドロフランが得られる。好ましくは、ワンポット合成で得ることができる。
Figure JPOXMLDOC01-appb-C000002
 本発明者らが2,5-ビス(アミノメチル)フランから2,5-ビス(アミノメチル)テトラヒドロフランを製造する方法について検討を行った結果、反応基質である2,5-ビス(アミノメチル)フランは反応性が高いために、副生成物が生じやすいことがわかった。具体的には、副生成物として、以下の2-(アミノメチル)-5-メチルテトラヒドロフランを生成することが確認された。下記において、Meはメチル基である。
Figure JPOXMLDOC01-appb-C000003
 副生成物の生成は、目的物である2,5-ビス(アミノメチル)テトラヒドロフランの収率低下や、副生成物を除去するために精製を必要とし、製造工程が煩雑になるといった問題を招来する。特に2-(アミノメチル)-5-メチルテトラヒドロフランは、目的物である2,5-ビス(アミノメチル)テトラヒドロフランと構造が近似しているため、生成物の混合物から、一般的な精製方法によって目的物と分離することが困難な副生成物である。
 本発明者らは、反応条件についてさらに検討を重ねた結果、2,5-ビス(アミノメチル)フランに対して、水素化触媒(特に、Fe、Co、Ni、Cu、Ru、Rh、Pd、Ir、Pt、ReおよびOsからなる群より選択される少なくとも一種を含む水素化触媒)を用いて水素供給源を反応させることにより、オレフィンが選択的に反応し、2-(アミノメチル)-5-メチルテトラヒドロフランが生じることなく、2,5-ビス(アミノメチル)テトラヒドロフランを効率的に得られることを見出した。
(2,5-ビス(アミノメチル)フラン)
 本実施形態における2,5-ビス(アミノメチル)フランは、市販品として入手可能である。また、2,5-ビス(アミノメチル)フランは、5-ヒドロキシメチルフルフラールや5-(クロロメチル)フルフラール等の公知の化合物から有機合成手法を用いて合成してもよい。
(水素化触媒)
 本実施形態における水素化触媒は、Fe、Co、Ni、Cu、Ru、Rh、Pd、Ir、Pt、ReおよびOsからなる群より選択される少なくとも一種の金属を含むことが好ましい。これらの金属は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 上述したように、2,5-ビス(アミノメチル)テトラヒドロフランは反応性が高いために、副生成物が生じやすい。特に、Fe、Co、Ni、Cu、Ru、Rh、Pd、Ir、Pt、ReおよびOsからなる群より選択される少なくとも一種の金属は、触媒としての活性が強すぎないため、副生成物である2-(アミノメチル)-5-メチルテトラヒドロフランの生成を抑制できると考えられる。
 上述した金属は、担体に担持されていてもよい。担体としては、触媒の担体として通常使用される担体であれば特に制限されず、例えば、無機酸化物、活性炭素、イオン交換樹脂等が挙げられる。無機酸化物としては、具体的には、シリカ(SiO)、チタニア(TiO)、ジルコニア(ZrO)、アルミナ(Al)、酸化マグネシウム(MgO)、これら無機酸化物の二種以上の複合体(例えば、ゼオライト等)等が挙げられる。
 水素化触媒の好ましい形態として、水素化触媒は、Fe、Co、Cu、Ru、Rh、Pd、Ir、Pt、ReおよびOsからなる群より選択される少なくとも一種を含むことが挙げられる。
また、他の好ましい形態として、水素化触媒は、Fe、Co、Cu、Ru、Pd、Ir、Pt、ReおよびOsからなる群より選択される少なくとも一種を含むことが挙げられる。
 さらに他の好ましい形態として、水素化触媒は、RuおよびRhの少なくとも一種を含むことが挙げられる。
 さらに他の好ましい形態として、水素化触媒は、Rhを含むことが挙げられる。
 水素化触媒としては、具体的には、還元鉄等の鉄(Fe)触媒;還元コバルトおよびラネーコバルト等のコバルト(Co)触媒;還元ニッケル、酸化ニッケルおよびラネーニッケル(以下、Raney-Niとも記載する。)等のニッケル(Ni)触媒;塩化銅(II)、塩化銅(I)、銅(0)、亜酸化銅(I)、酸化銅(II)等の銅(Cu)触媒;ルテニウム/炭素およびルテニウム/アルミナ等のルテニウム(Ru)触媒;ロジウム/炭素およびロジウム/アルミナ等のロジウム(Rh)触媒;白金担持過レニウム酸等のレニウム(Re)触媒;オスミウム/炭素等のオスミウム(Os)触媒;等が挙げられる。
 2,5-ビス(アミノメチル)フランに対する触媒の量は、適宜調整すればよく、一般的には、2,5-ビス(アミノメチル)フランの質量に対して、1~200質量部である。触媒の量は、2,5-ビス(アミノメチル)フランの質量に対して、好ましくは1~150質量部であり、より好ましくは1~100質量部である。
(水素供給源)
 本実施形態における水素供給源は、オレフィンを還元することができる水素源であれば特に制限されず、例えば、水素および炭素数1~5のアルコールが好適に挙げられる。これらの水素供給源は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 炭素数1~5のアルコールとしては、具体的には、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、sec-ブタノール、イソブタノール、tert-ブタノール、n-アミルアルコール、sec-アミルアルコール、3-ペンタノール、2-メチル-1-ブタノール、3-メチル-1-ブタノール、2-メチル-2-ブタノール、3-メチル-2-ブタノール、ネオペンチルアルコール等が挙げられる。これらの炭素数1~5のアルコールは、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 これらの炭素数1~5のアルコールの中でも好ましくは、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、sec-ブタノール、n-アミルアルコール、sec-アミルアルコールである。
 本実施形態の反応は、溶媒の存在下で行ってもよい。溶媒は、特に限定されず、反応温度や反応物等によって適宜選択される。
 溶媒としては、2,5-ビス(アミノメチル)フランの一部または全量を溶解することができ、水素化反応を妨げないものであれば特に限定されず、例えば、芳香族炭化水素溶媒、アミド溶媒、エーテル溶媒、アルコール溶媒、ハロゲン溶媒等が挙げられ、エーテル溶媒が好ましい。これら溶媒は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 芳香族炭化水素溶媒としては、具体的には、ベンゼン、トルエン等が挙げられる。
 アミド溶媒としては、具体的には、アセトニトリル、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等が挙げられる。本発明で用いる溶媒は、キシレンを実質的に含まないことが好ましい。実質的に含まないとは、キシレンが溶媒の10質量%以下であることをいい、5質量%以下であることが好ましく、3質量%以下であることがより好ましく、1質量%以下であることがさらに好ましく、0質量%であることがさらに好ましい。
 エーテル溶媒としては、具体的には、テトラヒドロフラン(以下、THFとも記載する。)、ジエチルエーテル等が挙げられる。
 アルコール溶媒としては、具体的には、メタノール、エタノール、イソプロパノール等が挙げられる。アルコール溶媒は、水素供給源にもなる。
 ハロゲン溶媒としては、具体的には、ジクロロメタン、ジクロロエタン、クロロホルム等が挙げられる。
 溶媒の使用の有無およびその使用量は、特に限定されないが、生産性およびエネルギー効率の観点から、2,5-ビス(アミノメチル)フランに対して、好ましくは0.5~100質量倍であり、より好ましくは1.0~50質量倍であり、さらに好ましくは1.0~20質量倍である。
 本実施形態における溶媒は、水の含有量が少ないことが好ましい。溶媒中の水の含有量は、好ましくは0~3.0質量%であり、より好ましくは0~2.0質量%であり、さらに好ましくは0~1.0質量%である。溶媒中の水の含有量が少ないことにより、副生成物の生成を抑えられ、さらに目的物である2,5-ビス(アミノメチル)テトラヒドロフラン生成の選択性を向上させることができる。
 本実施形態において、溶媒の95質量%以上がエーテル溶媒である態様が例示される。
(反応条件)
 本実施形態の製造方法は、具体的には、2,5-ビス(アミノメチル)フラン、水素化触媒、および水素供給源、並びに必要に応じて溶媒を混合して、反応させる方法を挙げることができる。本発明では、通常、反応系に2,5-ビス(アミノメチル)フランが供給される。このように反応系(例えば、反応器、反応釜)に直接に2,5-ビス(アミノメチル)フランを原料として投入することにより、より効率的に2,5-ビス(アミノメチル)テトラヒドロフランが得られる。
 2,5-ビス(アミノメチル)フラン、水素化触媒、溶媒および水素供給源を混合する順番は任意である。作業効率の観点から、本実施形態の製造方法では、あらかじめ2,5-ビス(アミノメチル)フランと水素化触媒とを混合し、次に水素供給源を導入することが好ましい。
 本実施形態の製造方法において、水素化触媒を添加するときは、使用する水素化触媒に応じ、適宜、発火することを防ぐため、窒素やアルゴン等の不活性ガス雰囲気下で行ってもよく、水素化触媒を溶媒等に懸濁させ、懸濁液として添加してもよい。
 本実施形態の製造方法は、水素供給源として水素を用いる場合、反応を水素圧0MPa超過25MPa以下で行うことが好ましい。水素圧は、より好ましくは0.5MPa以上15MPa以下であり、さらに好ましくは1.0MPa以上10MPa以下である。
 反応温度は、溶媒の種類等に応じて適宜調整すればよく、一般的には40~200℃、好ましくは50~120℃、より好ましくは50~110℃、さらに好ましくは70~115℃である。
 反応時間は、GC-MS等を用い反応の進行状況をモニタリングすることによって適宜調整すればよく、一般的には1分~24時間、好ましくは0.5~3時間、より好ましくは0.5~2時間である。
 反応後における反応混合物と触媒との分離は、沈降、遠心分離、濾過等の一般的な方法により行うことができる。触媒の分離は、使用する触媒に応じ、発火することを防ぐため、適宜、窒素やアルゴン等の不活性ガス雰囲気下で行うことが好ましい。
 また、反応混合物は、得られた反応溶液を必要に応じて濃縮した後、残渣をそのまま原材料や中間体として使用してもよく、反応混合物を適宜後処理して精製してもよい。後処理の具体的な方法としては、抽出、蒸留、クロマトグラフィー等の公知の精製方法を挙げることができる。これらの精製方法は、二種以上を組み合わせて行ってもよい。
 以下、実験例を挙げて本発明をさらに詳しく説明するが、本発明は以下の実験例に何ら限定されるものではない。
(例1)
 耐圧オートクレーブに2,5-ビス(アミノメチル)フラン0.5gに対し、溶媒としてTHF3mL、触媒としてRu/アルミナ(Al)(Ru触媒の量は5質量%である、以下、「5質量%Ru/アルミナ」等と表示する)0.1gを投入後、水素圧力を3MPaGまで昇圧した。なお、Ru/アルミナは、事前に150℃で12時間還元させたものを使用した。
 その後温度を90℃で1時間保持したまま反応し、耐圧オートクレーブを氷水で冷却して反応を停止した。
 アルゴンガス流通下、触媒と反応液を濾過することによって触媒を除去し、生成物を含む濾液についてCI法による精密質量測定を行った。なお、CI法による精密質量測定は、GC-MSスペクトル装置Agilent7890BGC/5977MSD(Agilent Technologies,Inc.製)を用いて実施した。
 また、濾液を濃縮して得られた残渣の一部を、重クロロホルムに溶解し、H-NMR、13C-NMR測定を行った。なお、NMR測定装置は、日本電子株式会社製のJNM-ECA500(500MHz)を使用した。
 なお、2,5-ビス(アミノメチル)フランは、トロントリサーチケミカルス社製のものを使用した。
 THFは、和光純薬工業株式会社製、分光分析用を使用した。
 Ru/アルミナは、アルミナに担持されたルテニウム触媒であり、エヌ・イー ケムキャット株式会社製のものを使用した。
<生成物の収率>
 GC-FID検出強度(面積値)における全ピークの面積値に対する2,5-ビス(アミノメチル)テトラヒドロフランの面積値の割合を2,5-ビス(アミノメチル)テトラヒドロフランの収率とした。
 具体的には、反応液のGC-FID測定により得られたGC-FID検出強度(面積値)から全ピークの面積値を求め、全ピークの面積値に対する2,5-ビス(アミノメチル)テトラヒドロフランの面積値の割合が82%であったため、2,5-ビス(アミノメチル)テトラヒドロフランの収率を82%とした。
<生成物の同定(H-NMR、13C-NMR、CI法による精密質量測定の結果)>
 例1にて得られた生成物をH-NMR、13C-NMR測定したところ、原料である2,5-ビス(アミノメチル)フランを差し引いたケミカルシフトより、得られた化合物はH-NMR測定からテトラヒドロフラン環を有し、13C-NMR測定から分子構造に対称性があることが分かった。さらにChemDrawから計算した2,5-ビス(アミノメチル)テトラヒドロフランのH-NMR、13C-NMRシフトと測定したケミカルシフトがほぼ一致した。
 さらにCI法により精密分子量を求めたところ131であり、これは2,5-ビス(アミノメチル)テトラヒドロフランにカウンターカチオンとしてプロトンが配位した分子量であったため、目的物であることが確認された。2-(アミノメチル)-5-メチルテトラヒドロフランの生成は見られなかった。
(例2)
 触媒として5質量%Pd/カーボン(C)を用いたこと以外は、例1と同様に実施した。
 例1と同様に2,5-ビス(アミノメチル)テトラヒドロフランの収率を求めたところ、41%であった。また、生成物の同定を同様に行ったところ2,5-ビス(アミノメチル)テトラヒドロフランと共に、2-(アミノメチル)-5-メチルテトラヒドロフランの生成が確認された。
 Pd/カーボン(C)は、カーボンに担持されたPd触媒であり、エヌ・イー ケムキャット株式会社製のものを使用した。
(例3)
 耐圧オートクレーブに2,5-ビス(アミノメチル)フラン20gに対し、触媒として5質量%のRu/アルミナ8g、溶媒としてTHF120mLを投入後、水素圧力を6MPaGまで昇圧し、温度を90℃で1時間保持したまま反応し、耐圧オートクレーブを氷水で冷却して反応を停止した。アルゴンガス流通下、触媒と反応液をろ過することによって触媒を除去し、生成物を含む濾液を得た後濃縮した。なお、Ru/アルミナは、事前に150℃で12時間還元させたものを使用した。
 得られた生成物を、GC-MSスペクトル装置Agilent7890BGC/5977MSD(Agilent Technologies,Inc.製)にて分析したところ、2,5-ビス(アミノメチル)テトラヒドロフラン91モル%、2,5-ビス(アミノメチル)フラン0モル%、2-(アミノメチル)-5-メチルテトラヒドロフラン9モル%であった。
 なお、2,5-ビス(アミノメチル)フランは、トロントリサーチケミカルス社製のものを使用した。
 Ru/アルミナは、アルミナに担持されたルテニウム触媒であり、エヌ・イー ケムキャット株式会社製のものを使用した。
(例4)
 耐圧オートクレーブに2,5-ビス(アミノメチル)フラン20gに対し、触媒として5質量%Rh/C8g、溶媒としてTHF120mLを投入後、水素圧力を6MPaGまで昇圧し、温度を90℃で1時間保持したまま反応し、耐圧オートクレーブを氷水で冷却して反応を停止した。アルゴンガス流通下、触媒と反応液をろ過することによって触媒を除去し、生成物を含む濾液を得た後、濃縮し、減圧蒸留を温度120℃、圧力1mbarで行い、精製した。得られた生成物を、GC-MSスペクトル装置Agilent7890BGC/5977MSD(Agilent Technologies,Inc.製)にて分析したところ、2,5-ビス(アミノメチル)テトラヒドロフラン100モル%であった。
 なお、2,5-ビス(アミノメチル)フランは、トロントリサーチケミカルス社製のものを使用した。
 Rh/アルミナは、アルミナに担持されたロジウム触媒であり、エヌ・イー ケムキャット株式会社製のものを使用した。

Claims (9)

  1. 2,5-ビス(アミノメチル)フランに対して、水素化触媒を用いて水素供給源を反応させることにより、2,5-ビス(アミノメチル)テトラヒドロフランを得る工程を含む、2,5-ビス(アミノメチル)テトラヒドロフランの製造方法。
  2. ワンポット合成である、請求項1に記載の製造方法。
  3. 前記水素化触媒が、Fe、Co、Ni、Cu、Ru、Rh、Pd、Ir、Pt、ReおよびOsからなる群より選択される少なくとも一種を含む、請求項1または2に記載の製造方法。
  4. 前記水素化触媒が、Fe、Co、Ni、Cu、Ru、Pd、Ir、Pt、ReおよびOsからなる群より選択される少なくとも一種を含む、請求項1または2に記載の製造方法。
  5. 前記水素化触媒が、Fe、Co、Cu、Ru、Rh、Pd、Ir、Pt、ReおよびOsからなる群より選択される少なくとも一種を含む、請求項1または2に記載の製造方法。
  6. 前記水素化触媒が、Rhを含む、請求項1または2に記載の製造方法。
  7.  前記水素供給源が、水素および炭素数1~5のアルコールの少なくとも1種を含む、請求項1~6のいずれか一項に記載の製造方法。
  8.  前記反応が、水素圧0MPa超過25MPa以下で行なわれる、請求項1~7のいずれか一項に記載の製造方法。
  9. 2,5-ビス(アミノメチル)フランを反応系に供給することを含む、請求項1~8のいずれか一項に記載の製造方法。
PCT/JP2018/037649 2017-10-11 2018-10-10 2,5-ビス(アミノメチル)テトラヒドロフランの製造方法 WO2019073987A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880066162.1A CN111201221B (zh) 2017-10-11 2018-10-10 2,5-双(氨基甲基)四氢呋喃的制造方法
JP2019548207A JP7243630B2 (ja) 2017-10-11 2018-10-10 2,5-ビス(アミノメチル)テトラヒドロフランの製造方法
EP18866438.7A EP3696172B1 (en) 2017-10-11 2018-10-10 Method for producing 2,5-bis (aminomethyl) tetrahydrofuran
US16/754,997 US11396498B2 (en) 2017-10-11 2018-10-10 Method for producing 2,5-bis(aminomethyl)tetrahydrofuran

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017197724 2017-10-11
JP2017-197724 2017-10-11

Publications (1)

Publication Number Publication Date
WO2019073987A1 true WO2019073987A1 (ja) 2019-04-18

Family

ID=66101539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037649 WO2019073987A1 (ja) 2017-10-11 2018-10-10 2,5-ビス(アミノメチル)テトラヒドロフランの製造方法

Country Status (6)

Country Link
US (1) US11396498B2 (ja)
EP (1) EP3696172B1 (ja)
JP (1) JP7243630B2 (ja)
CN (1) CN111201221B (ja)
TW (1) TWI785127B (ja)
WO (1) WO2019073987A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220106436A1 (en) * 2019-01-22 2022-04-07 Mitsubishi Gas Chemical Company, Inc. Composition, cured product, method for manufacturing cured product, method for manufacturing coating film, and method for manufacturing composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008143832A (ja) * 2006-12-08 2008-06-26 New Japan Chem Co Ltd 脂環式アミン又は飽和複素環式アミンの製造方法
JP2014524953A (ja) * 2011-07-08 2014-09-25 ロディア オペレーションズ 新規なポリアミド、その製造方法及びその使用
WO2015175528A1 (en) 2014-05-12 2015-11-19 Micromidas, Inc. Methods of producing compounds from 5-(halomethyl)furfural
JP2017101179A (ja) * 2015-12-03 2017-06-08 ユニチカ株式会社 ポリアミドおよびその製造方法
JP2017521430A (ja) * 2014-07-10 2017-08-03 ローディア オペレーションズ 芳香族第一級ジアミンの製造方法
CN107474026A (zh) * 2016-06-08 2017-12-15 中国科学院大连化学物理研究所 一种2,5‑二氨甲基四氢呋喃的制备方法
WO2018113599A1 (en) * 2016-12-22 2018-06-28 Rhodia Operations A process for producing a tetrahydrofuran compound comprising at least two amine functional groups

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2857397A (en) 1956-02-27 1958-10-21 Arthur C Cope 2, 5-bis(phthalimidomethyl)-tetrahydrofuran
CN103073526B (zh) * 2012-12-26 2014-12-03 中国科学院宁波材料技术与工程研究所 一种2,5-二取代的四氢呋喃类混合物的制备方法
CN106795127A (zh) * 2014-08-28 2017-05-31 微麦德斯公司 二胺化合物、二硝基化合物和其它化合物及其制备方法和与其相关的用途
CN108129426B (zh) * 2016-12-01 2021-06-29 中国科学院大连化学物理研究所 一种2,5-二氰基呋喃催化加氢合成2,5-二甲胺基呋喃的方法
US11214559B2 (en) * 2017-07-21 2022-01-04 Mitsubishi Gas Chemical Company, Inc. Method for producing 2,5-bis(aminomethyl)furan
JP7255491B2 (ja) * 2017-10-11 2023-04-11 三菱瓦斯化学株式会社 2,5-ビス(アミノメチル)テトラヒドロフランの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008143832A (ja) * 2006-12-08 2008-06-26 New Japan Chem Co Ltd 脂環式アミン又は飽和複素環式アミンの製造方法
JP2014524953A (ja) * 2011-07-08 2014-09-25 ロディア オペレーションズ 新規なポリアミド、その製造方法及びその使用
WO2015175528A1 (en) 2014-05-12 2015-11-19 Micromidas, Inc. Methods of producing compounds from 5-(halomethyl)furfural
JP2017521430A (ja) * 2014-07-10 2017-08-03 ローディア オペレーションズ 芳香族第一級ジアミンの製造方法
JP2017101179A (ja) * 2015-12-03 2017-06-08 ユニチカ株式会社 ポリアミドおよびその製造方法
CN107474026A (zh) * 2016-06-08 2017-12-15 中国科学院大连化学物理研究所 一种2,5‑二氨甲基四氢呋喃的制备方法
WO2018113599A1 (en) * 2016-12-22 2018-06-28 Rhodia Operations A process for producing a tetrahydrofuran compound comprising at least two amine functional groups

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HOLM, D.R. ET AL.: "Kinetics of the Liquid Phase Hydrogenation of Furan Amines", INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, vol. 34, no. 10, 1995, pages 3392 - 3398, XP055492670, ISSN: 0888-5885, DOI: doi:10.1021/ie00037a026 *
KOMANOYA, T. ET AL.: "Electronic Effect of Ruthenium Nanoparticles on Efficient Reductive Amination of Carbonyl Compounds", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 139, no. 33, 11 August 2017 (2017-08-11), pages 11493 - 11499, XP055593669 *

Also Published As

Publication number Publication date
CN111201221A (zh) 2020-05-26
JPWO2019073987A1 (ja) 2020-12-03
EP3696172B1 (en) 2023-05-31
US20200308126A1 (en) 2020-10-01
EP3696172A1 (en) 2020-08-19
US11396498B2 (en) 2022-07-26
JP7243630B2 (ja) 2023-03-22
TW201922719A (zh) 2019-06-16
CN111201221B (zh) 2023-10-24
EP3696172A4 (en) 2020-08-19
TWI785127B (zh) 2022-12-01

Similar Documents

Publication Publication Date Title
CN108299423B (zh) 一种二氢吡咯并2-氨基喹啉类化合物的合成方法
CN103124715A (zh) 双(氨基甲基)环己烷类的制造方法
JP6624490B2 (ja) メチルアミノ基を有する芳香族化合物又はフラン誘導体の製造法
JP7243630B2 (ja) 2,5-ビス(アミノメチル)テトラヒドロフランの製造方法
JP7255491B2 (ja) 2,5-ビス(アミノメチル)テトラヒドロフランの製造方法
US9475786B2 (en) Method for synthesising 2,5-di(hydroxymethyl)furan and 2,5-di(hydroxymethyl)tetrahydrofuran by selective hydrogenation of furan-2,5-dialdehyde
EP3656766B1 (en) Method for producing 2,5-bis(aminomethyl)furan
US20140100400A1 (en) Method for preparing phenylcyclohexane
JP4332084B2 (ja) N−アルキル置換アミノフェノール類の製造方法
JP4072341B2 (ja) エチル基含有脂環族第三アルコールの製造方法
US20170174698A1 (en) Method for the synthesis of primary isohexide amines
JP6030397B2 (ja) カプロラクタム及びその製造法
JP4264512B2 (ja) 3,3,5−トリメチルシクロヘキサノンの製造方法
JP4359679B2 (ja) 3,3,5−トリメチルシクロヘキサノンの製造法
TW202244046A (zh) 製備脒類的方法
Zhao et al. Selective Reduction of 5-Nitro-2-Chloro-2', 4'-Dimethylbenzene Sulfonanilide on Pd-Ru/[gamma]-Al^ sub 2^ O^ sub 3^ Catalysts in Ionic Liquids
JP2008260723A (ja) シス−4−アルキルシクロヘキシルアミンの製造方法
JP2009035537A (ja) N−置換アニリン誘導体及び1−置換インドール誘導体の製造方法
JP2004137228A (ja) 2−置換−4−オキソ−4,5,6,7−テトラヒドロインドール化合物の製造方法
JP2014070036A (ja) 1,8−テトラリンジカルボン酸無水物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18866438

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019548207

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018866438

Country of ref document: EP

Effective date: 20200511