WO2019070069A1 - 殺細胞活性を有する細胞抽出成分又は組成物の調製方法 - Google Patents

殺細胞活性を有する細胞抽出成分又は組成物の調製方法 Download PDF

Info

Publication number
WO2019070069A1
WO2019070069A1 PCT/JP2018/037430 JP2018037430W WO2019070069A1 WO 2019070069 A1 WO2019070069 A1 WO 2019070069A1 JP 2018037430 W JP2018037430 W JP 2018037430W WO 2019070069 A1 WO2019070069 A1 WO 2019070069A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
derived
solution
cells
malignant tumor
Prior art date
Application number
PCT/JP2018/037430
Other languages
English (en)
French (fr)
Inventor
知行 田島
良房 近藤
Original Assignee
医療法人社団市川クリニック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 医療法人社団市川クリニック filed Critical 医療法人社団市川クリニック
Priority to AU2018344749A priority Critical patent/AU2018344749B2/en
Priority to CN201880065351.7A priority patent/CN111201320B/zh
Priority to CA3078175A priority patent/CA3078175C/en
Priority to EP22180424.8A priority patent/EP4086354B1/en
Priority to EP18865032.9A priority patent/EP3693467B1/en
Priority to US16/651,330 priority patent/US11318162B2/en
Priority to KR1020207010665A priority patent/KR102483786B1/ko
Priority to JP2019547038A priority patent/JP6673558B2/ja
Priority to IL273738A priority patent/IL273738B2/en
Publication of WO2019070069A1 publication Critical patent/WO2019070069A1/ja
Priority to US17/470,697 priority patent/US11963978B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
    • C12P1/04Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes by using bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/13Tumour cells, irrespective of tissue of origin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0693Tumour cells; Cancer cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2509/00Methods for the dissociation of cells, e.g. specific use of enzymes
    • C12N2509/10Mechanical dissociation

Definitions

  • the present invention relates to a method of producing a composition having cell killing activity, a method of preparing a cell extract component having cell killing activity, and the like.
  • Patent Document 1 discloses a malignant tumor cell growth inhibitor obtained by removing malignant tumor cells from a culture medium after culturing malignant tumor cells.
  • a malignant tumor cell growth inhibitor obtained by removing malignant tumor cells from a culture medium after culturing malignant tumor cells.
  • a composition containing extremely miscellaneous substances is a composition containing extremely miscellaneous substances, and it is very difficult to isolate a substance having antineoplastic activity from such a composition. And was considered virtually impossible.
  • a method for producing a composition that can be used as a novel anticancer agent, or a composition that can be used to obtain a substance useful as a new anticancer agent from cultured cells It can.
  • a method which makes it possible to obtain a cell extract having cell killing activity there can be provided.
  • the inventors of the present invention have found that the phenomenon in which the cells die if the cell culture is continued without passaging is that the cells cover the culture vessel surface and further proliferate and become overpopulation. It has been newly found that it appears even if sufficient nutrient and energy sources are replenished by medium replacement at the time when suppression of In addition, the present inventors have cultured the malignant tumor-derived cells in the culture medium at least until the density of the cells does not affect the passaging, and then the culture medium is treated with a physiologically buffered saline solution (nutrition and / or Or even when replaced with an energy source, it has newly been found that the cells are producing substances that cause them to die.
  • a physiologically buffered saline solution nutrition and / or Or even when replaced with an energy source
  • a method for producing a composition having cell killing activity which comprises: Culturing the malignant tumor-derived cells in the culture medium at least until the density of the cells does not affect passage. After the culture, replacing the culture medium with a physiological buffered saline solution, and after the time when morphological cell death of the malignant tumor-derived cells is observed in the physiological buffered saline solution, the physiology Said method, comprising recovering a concentrated buffered salt solution.
  • the production method according to [1] wherein the physiologically buffered salt solution does not contain glucose.
  • a method for preparing a cell extract component derived from malignant tumor-derived cells Culturing the malignant tumor-derived cells in the culture medium at least until the density of the cells does not affect passage.
  • a dried product of the solution is dissolved in water, a nonpolar organic solvent is added to the obtained aqueous solution to form an aqueous layer and an organic layer, the aqueous layer is extracted, and Separating by chromatography the cell extract derived from the tumor-derived cells, Said
  • a pharmaceutical composition for treating cancer comprising a composition having cell killing activity obtained by the method according to any one of [1] to [5] and [8].
  • a pharmaceutical composition for treating cancer which comprises, as an active ingredient, a cell extract component derived from malignant tumor-derived cells obtained by the preparation method described in [6] or [7] above.
  • a composition that can be used as a novel anti-cancer agent, or a composition that can be used to obtain a substance useful as a new anti-cancer agent can be inexpensively, simply, and And / or can be manufactured in the short term.
  • Cell extracts having cell killing activity may be effective against various cancers.
  • FIG. 16 is a semilogarithmic graph showing the mean and standard deviation of cell viability of HRC23 measured by MTT assay in serial dilution series of test samples prepared from HRC23 using serum-containing medium (Eagle's MEM with 10% FBS) .
  • the abscissa represents the concentration of the test sample (stock solution mL / mL) on a common logarithmic scale.
  • FIG. 16 is a half-log graph showing the mean value and standard deviation of cell viability of HRC23 measured by MTT assay in a serial dilution series of test samples prepared from HRC23 using serum-free medium (Eagle's MEM).
  • the abscissa represents the concentration of the test sample (stock solution mL / mL) on a common logarithmic scale. Mean and standard deviation of HRC23 cell viability measured by MTT assay in serial dilution series of test samples prepared from HRC23 using physiological buffered saline (Hawks' balanced salt solution without glucose: HBSS-) Is a single logarithm graph showing.
  • the abscissa represents the concentration of the test sample (stock solution mL / mL) on a common logarithmic scale. It is a chromatogram by gel filtration chromatography. Of eight fractions A to H, the fraction of A in which cell killing activity is detected (105 to 141 minutes) is indicated by hatching.
  • the color development on the microplate observed by the MTT assay is a piece showing the average value and the standard deviation of the measured cell viability It is shown with a logarithmic graph.
  • the abscissa represents the concentration of the test sample (stock solution mL / mL) on a common logarithmic scale. It is a chromatogram by ion exchange chromatography. Fractions in which cell killing activity was detected (fractions with Na 2 SO 4 concentration of 165 to 170 mM) are indicated by hatching. It is a chromatogram by gel filtration chromatography.
  • the cell killing activity is detected in the forward peak, which contains three fractions (Fr57, Fr58 and Fr59). 7 is a mass spectrum for fraction 57. 7 is a mass spectrum for fraction 58. 7 is a mass spectrum for fraction 59. Mass spectrum for matrix only. It is the figure which expanded and showed signal vicinity of m / z value 114.09 in the spectrum of fraction 58.
  • FIG. Mean value and standard of cell viability of various cells measured by MTT assay in serial dilution series of test sample prepared from HRC23 using physiological buffered saline (Hawks' balanced salt solution without glucose: HBSS-) It is a single logarithm graph which shows deviation.
  • the abscissa represents the minimum concentration of the test sample showing 0% survival rate with respect to HRC 23 as an arbitrary unit 1 on a common logarithmic scale.
  • Mean and standard deviation of cell viability of HRC23 measured by MTT assay in serial dilution series of test samples prepared from LLC with physiological buffered saline (Hawks balanced salt solution without glucose: HBSS-) Is a single logarithm graph showing.
  • the abscissa represents the concentration of the test sample (stock solution mL / mL) on a common logarithmic scale.
  • the cell concentration of the cultured HRC23 was determined by MTT assay in serial dilution series of each test sample prepared from HRC23 different in cell density after culture using physiological buffered salt solution (Hanks balanced salt solution without glucose: HBSS-). It is a semilogarithmic graph which shows the average value and standard deviation of cell survival rate.
  • the abscissa represents the concentration of the test sample (stock solution mL / mL) on a common logarithmic scale.
  • Measured by MTT assay in serial dilution series of test samples prepared from LK-2 using serum-containing medium (RPMI 1640 with 10% FBS) or physiological buffered salt solution (Hanks balanced salt solution without glucose: HBSS-) 1 is a semilogarithmic graph showing the mean and standard deviation of cell viability of LK-2 obtained.
  • the abscissa represents the concentration of the test sample (stock solution mL / mL) on a common logarithmic scale.
  • One embodiment of the present invention is a method of producing a composition having cell killing activity, Culturing the malignant tumor-derived cells in the culture medium at least until the density of the cells does not affect passage. After the culture, replacing the culture medium with a physiological buffered saline solution, and after the time when morphological cell death of the malignant tumor-derived cells is observed in the physiological buffered saline solution, the physiology The method, comprising recovering a concentrated buffered salt solution.
  • malignant tumor-derived cell means a cultured cell (primary culture cell) obtained from a malignant tumor or a malignant tumor-derived cell line.
  • the established cell culture can be cultured indefinitely if it is passaged, and if it is not passaged, it has a common point of being killed even in fresh medium. From this, it is considered that the "natural cell death" (necrosis) involves the cell-derived substance having cell-killing activity to kill the cell. Therefore, all cell lines are considered to be a raw material for producing substances having such cell killing activity.
  • malignant tumor is generally referred to as cancer and is used in a broad sense including cancer, sarcoma and hematologic malignancy (hematopoietic tumors).
  • malignant tumor-derived cells may be epithelial or non-epithelial, lung cancer, gastric cancer, esophageal cancer, liver cancer, liver cancer, biliary cancer, pancreatic cancer, colon cancer, renal cancer, bladder cancer, prostate cancer, testicular cancer Uterine cancer, ovarian cancer, breast cancer, skin cancer, laryngeal cancer, colorectal cancer, melanoma, thyroid cancer, fibrosarcoma, fibrosarcoma, fibrosarcoma, uterine sarcoma, liposarcoma, myosoma, hemangiosarcoma, Kaposi's sarcoma, lymphangiosarcoma , Osteosarcoma, leukemia, lymphoma, and cancers such as myeloma.
  • cancers may be derived from humans or may be derived from mammals such as mice (except for humans).
  • malignant tumor-derived cells are derived from any tissue types, including epithelial cells and non-epithelial cells, including adenocarcinomas, squamous cell carcinomas, small cell carcinomas, and large cell carcinomas, but not limited to sarcomas. possible.
  • the "malignant tumor-derived cells” may be ones which are not genetically engineered and cultured without adding physiologically active substances other than the culture solution.
  • "culturing the malignant tumor-derived cells in the culture medium at least until the density of the cells does not affect the passaging" can be appropriately carried out based on known techniques.
  • to culture the cells to at least a density at which the density of the cells does not impair passage may be to culture the cells to a confluent state, or to culture to a fully confluent state. .
  • culture is not limited to the above, at least until the cell density reaches a density that does not affect passage, and culture to a state of 60 to 100%, preferably 70 to 100% confluence, adherent cells
  • the liquid surface of the culture medium is completely Culturing may be performed until it is covered or until the liquid surface of the culture medium is covered at least about 80%. It is more preferable to culture the cells to 80 to 100% confluence, more preferably to culture the cells to 90 to 100% confluence, from the viewpoint of production efficiency of the cell extract having cell killing activity. It is even more preferable to culture the cells to confluence or free confluence. Whether or not at least the density of cells has reached a level that does not affect passage can be appropriately determined based on the ordinary knowledge of those skilled in the art.
  • a culture medium may be used which is suitable for the malignant tumor-derived cell to be used.
  • the culture medium Eagle's MEM, Dulbecco's modified MEM, RPMI 1640, HAMF-12, a completely synthetic medium which does not require FBS, and the like can be mentioned.
  • vitamins, coenzymes, amino acids, metal ions, sugars, cell growth factors, interleukins, cytokines, serum, serum-derived components, antibiotics, etc. may be added to these culture media. Good.
  • the malignant tumor-derived cells used may be already passaged, and passage can be performed based on the ordinary knowledge of those skilled in the art.
  • “replacing the culture medium with a physiologically buffered salt solution” means, for example, adding the physiologically buffered salt solution to the culture vessel after removing the culture medium from the culture vessel such as the culture flask. It is to be.
  • the physiologically buffered saline is not particularly limited.
  • HBSS Hanks balanced salt solution
  • PBS phosphate buffered saline
  • Simms balanced salt solution Tyrode balanced salt solution
  • Gey balanced salt solution Gey balanced salt solution
  • Puck balanced salt solution Eagle balanced salt solution and the like.
  • the physiological buffered saline solution does not contain glucose.
  • the physiological buffered saline solution is Hanks Balanced Salt Solution, Earle Balanced Salt Solution or Phosphate Buffered Saline, and preferably does not contain glucose. More preferably, the physiological buffered salt solution is Hanks Balanced Salt Solution (HBSS-) without glucose.
  • HBSS- Hanks Balanced Salt Solution
  • “recovering the physiologically buffered saline solution after the time when morphological cell death of the malignant tumor-derived cells is observed in physiologically buffered saline solution” For example, the physiological buffered salt solution is recovered after a time when morphological death of the malignant tumor-derived cells can be confirmed by microscopic observation, MTT method or the like. The observation or confirmation of morphological cell death of malignant tumor-derived cells can be appropriately determined based on the ordinary knowledge of those skilled in the art depending on the type of malignant tumor-derived cells used.
  • morphological cell death of malignant tumor-derived cells is observed. It can be recognized that the observation or confirmation was successful.
  • the culture medium may be physiological buffered salt solution It may be 3 to 7 days after the date of exchange.
  • dead cell fragments are contained after recovery, they are stable for 1 month at 4 ° C. under aseptic conditions at the time of culture.
  • the physiological buffered salt solution after collection, and to collect the obtained supernatant.
  • the conditions for centrifugation may be 1,000 to 17,000 ⁇ g for 10 to 20 minutes at 4 ° C. to room temperature (eg, 25 ° C.), but are not limited thereto.
  • membrane filters such as a 0.1 micrometer membrane filter, and to collect filtrate.
  • physiological buffered salt solution such as HBSS-
  • it is a closed system that does not allow the water evaporated in the atmosphere to escape, and it is at 36 ° C to 37 ° C in an incubator or a temperature-controlled room. Incubate.
  • malignant tumor-derived cells may be incubated in physiological buffered saline under the same conditions as normal culture conditions.
  • the same conditions as ordinary culture conditions are, for example, temperature is in the range of 30 to 38 ° C., preferably 35 to 37 ° C., humidity is in the range of 70 to 100%, preferably 90 to 100%, carbon dioxide concentration is It may be in the range of 2 to 8%, preferably 4 to 6%, but is not limited thereto.
  • physiologically buffered saline solutions requiring pH control with carbon dioxide can be used as well, with reduced NaHCO 3 content.
  • the production method of the present invention may further include obtaining a dried material containing a fraction with a molecular weight of 1 kDa or less among the collected physiologically buffered salt solution.
  • the fraction having a molecular weight of 1 kDa or less can be obtained by a known means such as ultrafiltration using a commercially available membrane filter or the like.
  • a dried product containing a fraction having a molecular weight of 1 kDa or less can be obtained by a known means such as vacuum drying.
  • the production method of the present invention may further comprise dissolving the thus obtained dried product in a medium and removing salts, nucleic acids and proteins from the obtained solution.
  • Dissolving the dried product in a medium and removing salts, nucleic acids and proteins from the resulting solution can be carried out specifically by the following steps, but is not limited thereto.
  • the solvent containing an alcohol having 1 to 3 carbon atoms is specifically a solvent containing methanol, ethanol, n-propyl alcohol or isopropyl alcohol.
  • the solvent containing an alcohol having 1 to 3 carbon atoms may be a mixture with an organic solvent such as chloroform or an alcohol.
  • the organic solvent is not particularly limited as long as it is sufficient to form an aqueous layer and an organic layer, and for example, a nonpolar organic solvent, specifically, chloroform or a mixture of chloroform and ethyl acetate etc. is used It can.
  • “Extract the dried product with a solvent containing an alcohol having 1 to 3 carbon atoms” means, for example, adding a solvent containing an alcohol having a carbon number of 1 to 3 to the dried product and adding 5 to 1000 to 2000 ⁇ g. Centrifuge for 10 minutes to obtain a supernatant.
  • the organic solvent is not particularly limited as long as it is sufficient to form the aqueous layer and the organic layer.
  • gel filtration chromatography is preferable for removing salts and the like by chromatography, it is not limited thereto.
  • the composition having cell killing activity obtained by the production method of the present invention comprises a cell extract having cell killing activity derived from malignant tumor-derived cells.
  • the cell extract having cell killing activity is effective against various cancers and demonstrated to be resistant to various anticancer agents, as demonstrated in the following examples. Even against it is effective.
  • Glucose-free physiological buffered saline is a medium that has no nutrients and no energy source for cells. Therefore, the cell extract component having cell killing activity derived from malignant tumor-derived cells, which is contained in the composition having cell killing activity obtained by the production method of the present invention, uses only the substance in the cells as the material. It was revealed that they were produced by cells. Serum-containing media and serum-free media used for culturing cells contain various components suitable for culturing cells.
  • the production method of the present invention can make it possible to obtain a cell extract having cell killing activity inexpensively, simply and / or in a short period of time.
  • the composition having cell killing activity obtained by the production method of the present invention becomes a system containing no energy source, and the amount of lactic acid produced is reduced to achieve pH.
  • the reduction can be prevented, and since lactic acid is soluble in an organic solvent such as ethanol, the influence on purification can be suppressed by reducing the amount of lactic acid produced.
  • One embodiment of the present invention is a method of preparing a cell extract component derived from malignant tumor-derived cells, which comprises: Culturing the malignant tumor-derived cells in the culture medium at least until the density of the cells does not affect passage. Replacing the culture medium with a physiological buffered saline solution after the culture; Recovering the physiologically buffered saline after the time when morphological death of the malignant tumor-derived cells is observed in the physiologically buffered saline; Obtaining a dried product containing a fraction having a molecular weight of 1 kDa or less among the collected physiologically buffered salt solution, Extracting the dried product using a solvent containing an alcohol having 1 to 3 carbon atoms, and drying the obtained solution; A dried product of the solution is dissolved in water, a nonpolar organic solvent is added to the obtained aqueous solution to form an aqueous layer and an organic layer, the aqueous layer is extracted, and Separating by chromatography the cell extract derived from the
  • “extracting the dried product with a solvent containing an alcohol having 1 to 3 carbon atoms and drying the obtained solution” can be performed by a usual extraction operation.
  • the solvent containing an alcohol having 1 to 3 carbon atoms is specifically a solvent containing methanol, ethanol, n-propyl alcohol or isopropyl alcohol.
  • the solvent containing an alcohol having 1 to 3 carbon atoms may be a mixture with an organic solvent such as chloroform or an alcohol.
  • “Extract the dried product with a solvent containing an alcohol having 1 to 3 carbon atoms” means, for example, adding a solvent containing an alcohol having a carbon number of 1 to 3 to the dried product and adding 5 to 1000 to 2000 ⁇ g.
  • aqueous layer and an organic layer Centrifuge for 10 minutes to obtain a supernatant.
  • “dissolving the dried product in water, adding a nonpolar organic solvent to the obtained aqueous solution to form an aqueous layer and an organic layer, and extracting the aqueous layer” Can be performed by a normal extraction operation.
  • the nonpolar organic solvent is not particularly limited as long as it is sufficient to form an aqueous layer and an organic layer, and for example, chloroform, a mixture of chloroform and ethyl acetate, etc. may be used.
  • “separation of the cell extract derived from the malignant tumor-derived cells from the aqueous layer by chromatography” can be performed by known chromatography techniques.
  • cell extract components having cell-killing activity derived from malignant tumor-derived cells are separated by gel filtration chromatography and / or cation exchange chromatography.
  • gel filtration chromatography and cation exchange chromatography can be appropriately performed using commercially available devices, carriers and columns.
  • the target substance may be eluted by a gradient method (concentration gradient method), or the target substance may be eluted by an isocratic method (constant composition solution elution method).
  • One embodiment of the present invention relates to a composition having cell killing activity, which is obtained by the above-mentioned production method of the present invention.
  • One embodiment of the present invention relates to a cell extract component derived from malignant tumor-derived cells obtained by the preparation method of the present invention.
  • the composition having cell killing activity obtained by the above-mentioned production method of the present invention is derived from a malignant tumor-derived cell, and it is impossible or impractical to directly identify the substance by structure or characteristics. .
  • One embodiment of the present invention relates to a pharmaceutical composition for treating cancer, which comprises the composition having cell killing activity obtained by the above-mentioned production method of the present invention.
  • One embodiment of the present invention relates to a pharmaceutical composition for treating cancer, which comprises, as an active ingredient, a cell extract component derived from malignant tumor-derived cells obtained by the preparation method of the present invention.
  • One embodiment of the present invention relates to the use of the composition having cell killing activity obtained by the above-mentioned production method of the present invention for the production of a medicament for treating cancer.
  • One embodiment of the present invention relates to the use of a cell extract component derived from malignant tumor-derived cells obtained by the preparation method of the present invention for the manufacture of a medicament for treating cancer.
  • Such cancer that can be treated by the pharmaceutical composition for cancer treatment of the present invention or the drug for treating cancer is limited by the type of malignant tumor-derived cells used in the above-mentioned production method or preparation method of the present invention. It is not something to be done. That is, the pharmaceutical composition for treating cancer or the medicament for treating cancer of the present invention is different from the same kind of cancer as the malignant tumor-derived cells used in the above-mentioned production method or preparation method of the present invention. It may also be effective against certain types of cancer.
  • the pharmaceutical composition for treating cancer or the medicament for treating cancer of the present invention may be effective in any of carcinoma, sarcoma and hematologic malignancy (hematopoietic tumor).
  • the cancer that can be treated by the pharmaceutical composition for treating cancer or the drug for treating cancer of the present invention includes any cancer including adenocarcinoma, squamous cell carcinoma, small cell carcinoma and large cell carcinoma, but not limited to sarcoma. It may be of tissue type.
  • the cancer that can be treated by the pharmaceutical composition for treating cancer or the drug for treating cancer according to the present invention includes lung cancer, gastric cancer, esophageal cancer, liver cancer, biliary cancer, pancreatic cancer, colon cancer, renal cancer , Bladder cancer, prostate cancer, testicular cancer, uterine cancer, ovarian cancer, breast cancer, skin cancer, laryngeal cancer, colorectal cancer, melanoma, thyroid cancer, fibrosarcoma, fibrosarcoma, uterine sarcoma, liposarcoma, myoma, Examples include, but are not limited to, hemangiosarcoma, Kaposi's sarcoma, lymphangiosarcoma, osteosarcoma, leukemia, lymphoma, myeloma and the like.
  • the pharmaceutical composition for treating cancer or the medicament for treating cancer according to the present invention may also contain additives that can be used in medicine, such as pharmaceutically acceptable carriers, diluents, excipients, stabilizers and the like. Good. Such additives can be appropriately selected based on the common technical knowledge of those skilled in the art.
  • the cell extract having cell killing activity derived from malignant tumor-derived cells obtained by the preparation method of the present invention described above is expected to be a water-soluble low molecular weight compound having a molecular weight of 1 kDa or less, and thus various medicines It is expected to use in form.
  • the pharmaceutical composition for treating cancer or the medicament for treating cancer of the present invention can be administered to a subject orally or parenterally such as injection.
  • HRC23 HRC23 Human kidney cancer-derived cell line was established as a cell line from passage of human renal cell carcinoma in nude mice. For passage, phenol red, Eagle's MEM (Nissui Pharmaceutical) without antibiotics, supplemented with 10% FBS was used, and for cell detachment, one added with 0.1% trypsin and 0.01% EDTA was used. In addition, cloning was performed as needed. The culture was performed at 37 ° C. under 5% CO 2 .
  • the cell line used from RIKEN (RCB 0558: LLC) was used. The cells were cultured at 37 ° C. under 5% CO 2 using cells containing 10% FBS in Eagle's MEM for passage, and using 0.1% trypsin and 0.01% EDTA for cell detachment. The cells are highly metastatic, resistant to various anticancer agents, and cultured in vivo (Bertram JS, Janik P., Cancer Lett. 1980 November, 11 (1 ), p. 63-73).
  • human malignant tumor-derived cell lines Four types of human malignant tumor-derived cell lines were used. All these cells were obtained from Pharmaceutical Basic Research Laboratories JCRB cell bank, and were cultured at 37 ° C. under 5% CO 2 using the indicated medium and cell detachment enzyme for passage and assay. The types of cells used are shown in Table 1. Malignant tumors are pathologically roughly classified into epithelial and non-epithelial, and many are epithelial. In Table 1, SKN is non-epithelial, and other than that is epithelial, LLC is a mouse-derived epithelial malignancy tumor cell differing in species and resistant to various anticancer agents. Be done. In addition, representative cells were selected as tissue types.
  • Example 1 Preparation of sample stock solution
  • Sample stock solution prepared using serum-containing medium HRC23 as a material was cultured in Eagle's MEM containing 10% FBS in the same manner as for passage.
  • the Eagle's MEM used is a medium free of antibiotics and phenol red.
  • the HRC23 is cultured in a flask until the cell growth reaches confluence, and further culture to an overgrowth (overdensity), and finally medium exchange is carried out with Eagle's MEM containing 10% FBS as described above. And incubated at 37 ° C., 5% CO 2 . After 9 days, morphological death of cells of HRC23 was observed.
  • this sample stock solution is ultrafiltered to collect a fraction having a molecular weight of 1 kDa or less (Ultracel (R) Amicon (R) Amicon (R) Stirred Cell Model 8050 equipped with Ultracel (R) ultrafiltration membrane PLAC 04310, Merck Inc. (Millipore) was aseptically stored at 4 ° C.
  • the cells were then incubated at 37 ° C., 5% CO 2 in the same Hanks Balanced Salt Solution as above. After 4 days, morphological death of cells of HRC23 was observed.
  • the Hanks Balanced Salt Solution is then collected, centrifuged at 2 ⁇ 10 3 ⁇ g for 10 minutes, and the supernatant obtained is taken, and this supernatant is filtered with a 0.1 ⁇ m membrane filter (Millex® VV, Merck Co., Ltd.) (Millipore)) was stored aseptically at 4 ° C. as a sample stock solution.
  • this sample stock solution is ultrafiltered to collect a fraction having a molecular weight of 1 kDa or less (Ultracel (R) Amicon (R) Amicon (R) Stirred Cell Model 8050 equipped with Ultracel (R) ultrafiltration membrane PLAC 04310, Merck Inc. (Millipore) was aseptically stored at 4 ° C. Furthermore, using glucose-free Earle's balanced salt solution (Earle) and glucose-free phosphate buffered saline (PBS (+)) instead of glucose-free Hanks balanced salt solution (HBSS-) Each sample stock solution was prepared. The compositions of Hanks Balanced Salt Solution, Rs Balanced Salt Solution and Phosphate Buffered Saline without Glucose are shown in Table 2.
  • Example 2 Test for cell killing activity
  • Test for cell killing activity (1) Preparation of serial dilution series of test samples 10% FBS and amino acid combination solution for Eagle's MEM and vitamin combination solution (Cordin Bio; newly added to the sample stock solution (serum-containing medium) prepared in Example 1 (1) above. Amino acid formulated solution 50 times concentrated solution, vitamin blended solution 100 times concentrated solution) and glucose specified amount of Eagle's MEM, and after adjusting pH to 7.1 to 7.4 with 7.5% NaHCO 3 , specified amount glutamine and 10% A volume of FBS was added to make a test sample. This is for the purpose of supplementing the nutrients consumed after the final medium exchange with serum-containing medium.
  • This test sample was subjected to 2-fold serial dilution in control medium (Eagle's MEM supplemented with 10% FBS) to make a serial dilution series of the test sample.
  • Amino acids and vitamins are added to the sample stock solution (serum-free medium) prepared in the above Example 1 (2) in the same manner as in the case of the sample stock solution of the serum-containing medium to adjust pH.
  • Glucose was added and used as a test sample.
  • This test sample was subjected to 2-fold serial dilution in control medium (Eagle's MEM supplemented with 10% FBS) to make a serial dilution series of the test sample.
  • a serial dilution series was similarly prepared for a fraction having a molecular weight of 1 kDa or less collected from a sample stock solution by ultrafiltration.
  • Amino acids and vitamins are added to the sample stock solution (Hanks balanced salt solution) prepared in the above Example 1 (3) in the same manner as in the case of the sample stock solution of the above serum-containing medium to adjust pH, and then 10% with glutamine FBS and glucose were added and used as test samples.
  • This test sample was subjected to 2-fold serial dilution with a control solution (Eagle's MEM supplemented with 10% FBS) to make a serial dilution series of the test sample.
  • a serial dilution series was similarly prepared for a fraction having a molecular weight of 1 kDa or less collected from a sample stock solution by ultrafiltration.
  • Dissolve MTT (Dojindo Laboratories) in Dulbecco's phosphate buffered saline (PBS-) without calcium and magnesium to a 10-fold concentration of 5 mg / mL at use, aseptically with a 0.1 ⁇ m membrane
  • PBS- Dulbecco's phosphate buffered saline
  • the solution was filtered, aliquoted and stored at 4 ° C. After washing the cells with 200 ⁇ L of medium (Eagle's MEM with 10% FBS), 150 ⁇ L of a solution containing 0.5 mM MTT obtained by adding 1/10 volume of the above 5 mg / mL MTT solution to each medium was added to each well of the 96 well microplate.
  • a sample represents the absorbance measured as described above using each serially diluted test sample.
  • a control represents the absorbance measured as described above, but without each serially diluted test sample.
  • a blank represents the absorbance measured as described above but without HRC23.
  • the results are shown in FIGS.
  • a concentration-dependent cell-killing activity was observed in any of the sample prepared using the serum-containing medium, the sample prepared using the serum-free medium, and the sample prepared using the physiological buffer salt solution.
  • the concentration-dependent cell killing activity is similar also in the fraction having a molecular weight of 1 kDa or less and the fraction having a molecular weight of 1 kDa or less of a sample prepared using a physiological buffer salt solution.
  • the sample prepared using physiological buffered saline is a glucose-free Hanks balanced salt solution, ie, a medium prepared without a nutrient and energy source.
  • Example 3 Preparation of cell extract having cell killing activity
  • HBSS- Hank's Balanced Salt Solution
  • 40 mL of HBSS- was used in the final physiological buffered saline solution exchange.
  • the sample stock solution thus obtained was evaporated to dryness under reduced pressure, and 1/10 volume of ethanol of the stock solution was added to dissolve the dried product.
  • Liquid transfer pump 880 PU (JASCO Corporation) Detector: 825 UV (JASCO Ltd.) Mixer: HG-980-31 (JASCO Corporation) Injector: Rheodyne 8125 (Leodyne) Column: Superformance (26 mm x 600 mm) (Merck Corporation) Carrier: HP Cellulofine sf (Chisso Corporation) Mobile phase: 50 mM Na 2 SO 4 Flow rate: 0.6 ml / minute Fraction size: 1.8 ml (3 minutes) Detection: 230 nm; Sensitivity: 0.16 alss
  • FIG. 5 The color development on the microplate observed by this MTT assay is shown in FIG. 5 together with a graph showing the concentration dependency of cell viability.
  • the sample concentration is converted to the undiluted solution.
  • the same amount of methanol was added to the collected fraction of A, and filtered through a 0.22 ⁇ m membrane filter (Millex® GV, Merck Co., Ltd. (Millipore)) to remove Na 2 SO 4 , and then dried under reduced pressure. The resulting dried product was stored at -80 ° C.
  • the sample was injected into a column previously equilibrated with 0.15 M Na 2 SO 4 , and after washing with the solution for 30 minutes, elution was carried out by a linear gradient method of 0.15 M to 0.24 M Na 2 SO 4 .
  • the results of ion exchange chromatography are shown in FIG.
  • the cell killing activity was measured for each fraction by MTT assay, and cell killing activity was detected only in fractions 18 to 21 with a Na 2 SO 4 concentration of 165 to 170 mM.
  • the MTT assay here was performed in the same manner as in Example 3 (2) above.
  • the results of gel filtration chromatography are shown in FIG.
  • the cell killing activity of each fraction was measured by MTT assay, and fraction 57 (elution time 112 to 114 minutes), fraction 58 (elution time 114 to 116) and fraction 59 (elution time) in the front absorption peak Cell killing activity was detected in three fractions (116 to 118 minutes), and was particularly strongly observed in fraction 58.
  • the MTT assay here was performed in the same manner as in Example 3 (2) above. The same amount of methanol is added to the above three collected fractions, and after filtering through a 0.22 ⁇ m membrane filter (Millex (registered trademark) GV, Merck Ltd. (Millipore)) to remove Na 2 SO 4 , the solution is dried under reduced pressure. And got a dry one.
  • the results obtained from the three fractions (57, 58 and 59) are shown in FIGS. 8-10 with m / z values of 100-1500 respectively. Also, the results obtained from the matrix alone are shown in FIG. 11 as m / z values of 100 to 1000.
  • the mass spectra for the three fractions (57, 58 and 59) signals were observed at m / z values 600 and 714 respectively.
  • the spectrum of fraction 58 strong signals were observed at m / z values of 600.16 and 714.04, but in the spectrum of fraction 59, a signal as clear as fraction 57 or fraction 58 was not shown.
  • the cell extract having cell killing activity has a molecular weight of 1 kD or less. This is consistent with the results of FIGS. 2 and 3 showing that cell killing activity was observed in the fraction having a molecular weight of 1 kDa or less.
  • the identification of the cell extract having cell killing activity further includes a study on the stability of the component. Needs to be considered in
  • Example 4 Measurement of cytocidal activity against various cancer cells
  • the dried product obtained in Example 3 (2) above was subjected to 2-fold serial dilution using each culture medium used for culturing HRC23, MKN74, LK2, VMRC-JCP, SKN and LLC, and Serial dilution series were made.
  • Each of HRC23, MKN74, LK2, VMRC-JCP, SKN and LLC is separately seeded in a 96-well microplate in an amount such that it becomes approximately 80% confluent in 3 days of culture, in each predetermined culture medium And culture at 37 ° C. under 5% CO 2 for 24 hours.
  • the medium is replaced with 170 ⁇ L of a test sample, and after incubating for 2 days, 200 ⁇ L of dimethyl sulfoxide is added to each well, and the absorbance at a wavelength of 570 nm is measured with a microplate reader (Model 550, Bio-Rad Laboratories) to obtain MTT.
  • a graph of cell viability of each cancer cell measured by MTT assay is shown in FIG.
  • the minimum concentration of the test sample showing 0% survival rate to HRC23 is represented as arbitrary unit 1 and the horizontal axis is represented on a common logarithmic scale. From this result, the test sample having cell killing activity obtained from HRC23 is also effective against cancers other than HRC23, and regardless of the cancer type and tissue type, the cell concentration is in common depending on the cell killing. It turned out to show an action.
  • Example 5 Measurement of cytocidal activity in a sample derived from LLC or SKN
  • Preparation of sample stock solution LLC and SKN used as materials were cultured in the same way as HRC23 in Eagle's MEM containing 10% FBS.
  • the Eagle's MEM used is a medium free of antibiotics and phenol red. LLC and SKN were cultured in flasks, respectively, until cell growth reached confluence, and cultured for one more day. After washing with Hank's Balanced Salt Solution containing no antibiotic and glucose, the mixture was incubated at 37 ° C., 5% CO 2 in 5 ml / flask of the Hank's Balanced Salt Solution.
  • a serial dilution series was similarly prepared for a fraction having a molecular weight of 1 kDa or less collected from a sample stock solution by ultrafiltration.
  • SKN is a rare non-epithelial malignant tumor cell
  • non-epithelial malignant tumor cells such as SKN produce substances having cell killing activity.
  • the weak cell-killing activity was observed about the sample derived from SKN compared with the sample derived from LLC and the sample derived from HRC23, the number of SKN cells after culture is far more than LLC or HRC23. It seems that it was because it was small.
  • Example 6 Measurement of cell-killing activity when various physiological buffered saline solutions are used.
  • sample stock solution HBSS-, Earle, PBS (+)
  • a mixed solution of 50-fold concentration amino acid and 100-fold concentration vitamin for 10% FBS and Eagle's MEM and glucose were used as Eagle's MEM
  • a specified amount was added, and after adjusting the pH with 7.5% NaHCO 3 , it was taken as a test sample.
  • This test sample is subjected to 2-fold serial dilution with a control solution (HBSS-, Earle or PBS (+) to which a 50-fold concentration amino acid for Eagle's MEM and a 100-fold concentration vitamin solution are added).
  • Serial dilution series of test samples were made.
  • Example 7 Evaluation of the influence of the culture condition of cells on cell killing activity
  • the Eagle's MEM used is a medium free of antibiotics and phenol red.
  • the cells were cultured in a flask in which the number of cells was increased, and cultured until the cell growth reached confluence, and further cultured for 1 day. At this point, in the case of the flask in which the number of cells has been reduced and the cell density has not been impaired for passaging, the cell density is still in the growth phase, and the cell density is approximately 72 compared to the confluent state. %Met. When many cells are seeded, and even when the number of cells is too low, after washing with Hank's Balanced Salt Solution without antibiotics and glucose at this point, the above Hanks Balanced Salt Solution is 5 mL / flask. And incubated at 37 ° C. under 5% CO 2 .
  • Example 8 Measurement of cytocidal activity against LK-2 and HRC23 in a sample derived from LK-2]
  • LK-2 which is a material
  • RPMI 1640 Merck Co., Ltd. (Sigma-Aldrich Japan Co., Ltd.), R883 containing 10% FBS in the same manner as passage.
  • RPMI 1640 Merck Co., Ltd. (Sigma-Aldrich Japan Co., Ltd.), R883
  • FBS FBS
  • LK-2 was used as an antibiotic for the culture in a flask until the cell growth reached a fully confluent state. After washing four times with 30 mL of Hanks balanced salt solution containing no glucose, 5 mL of the Hanks balanced salt solution was placed in a flask and cells were soaked. The above two cultures were incubated at 37 ° C., 5% CO 2 and cultured until morphological death of LK-2 was observed.
  • the medium and Hank's balanced salt solution are respectively collected, centrifuged at 1,500 xg for 10 minutes to obtain supernatants obtained respectively, and these supernatants are each 0.1 ⁇ m membrane filter (Millex (registered trademark) VV, Merck) What was filtered by the corporation (Millipore)) was respectively used as a sample stock solution.
  • a sample stock solution obtained using Hanks balanced salt solution was ultrafiltered to collect a fraction having a molecular weight of 1 kDa or less (Ultracel (R) Amicon (R) YM1 or Ultracel (R) ultrafiltration membrane PLAC 04310 Stirred Cell Model 8050, Merck Co. (Millipore)) was prepared.
  • serial dilution series A ( ⁇ 1 kDa) was similarly produced about what extract
  • a mixed solution of amino acids (50-fold concentration) for Eagle's MEM (same as above) (same as above) and vitamins (100-fold concentration) (same as above)
  • test sample was subjected to 2-fold serial dilution in a control medium (Eagle's MEM with 10% FBS) to prepare a serial dilution series B of the test sample.
  • serial dilution series B ( ⁇ 1 kDa) was similarly produced also about what extract
  • the culture of LK-2 was performed as in the case of using the serial dilution series A.
  • HRC23 is diluted at a dilution rate that is usually passaged, aliquoted into 96-well microplates, and cultured for 24 hours in Eagle's MEM containing 10% FBS at 37 ° C. and 5% CO 2 , The medium was replaced with 170 ⁇ L of each dilution of serial dilution series B.
  • the sample based on the sample stock solution obtained by finally changing the medium with RPMI 1640 showed stronger cell killing activity. This is more than acquiring the component having cell killing activity extracted from malignant tumor-derived cells using physiological buffered saline such as Hanks Balanced Salt Solution, rather than using the culture medium. This suggests that high yields may be achievable, or that it may be possible to obtain the components without reducing the cell-killing activity of the component having the desired cell-killing activity.
  • Example 9 In Vivo Cell Killing Activity on Mice
  • mice C57BL / 6NCrSIc, male, 5 weeks old were inoculated intraperitoneally with 300 ⁇ L of a suspension of LLC (2 ⁇ 10 6 cells) and transplanted with LLC.
  • two mice as a treatment group were dissolved in 300 ⁇ L of FBS-free Eagle's MEM with the dried product obtained in the above [4] (2) in 1 L equivalent of stock solution once a day, It was intraperitoneally administered for 6 days.
  • Two animals in the control group who did not receive such treatment died on the 25th day after transplantation of the LLC, but for the treatment group, one animal on the 35th day and another one on the 48th day after the LLC transplantation. He died in the eye.
  • a clear survival benefit was observed in the treatment group as compared to the control group. In the treatment group, no symptoms that appeared to be side effects were observed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Mycology (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

殺細胞活性を有する組成物の製造方法等を提供する。 殺細胞活性を有する組成物の製造方法は、 悪性腫瘍由来細胞を、少なくとも細胞の密度が継代に支障のない密度になるまで培養培地中で培養すること、 前記培養後、前記培養培地を生理的緩衝塩類溶液と交換すること、及び 前記生理的緩衝塩類溶液中で、前記悪性腫瘍由来細胞の形態学的に細胞の死滅が観察される時期後、前記生理的緩衝塩類溶液を回収することを含む。

Description

殺細胞活性を有する細胞抽出成分又は組成物の調製方法
 本発明は、殺細胞活性を有する組成物の製造方法、及び殺細胞活性を有する細胞抽出成分の調製方法等に関する。
 細胞を培養する場合、多くの樹立株細胞は細胞が増殖して培養器面を覆いつくした時期にトリプシン等で分散し、これを新鮮な培地に希釈し、他の培養器へ移し変えて培養すれば無限増殖が可能である。これを継代と言うが、継代をせずにそのまま培養を継続すると細胞は死滅してしまう。
 特許文献1には、悪性腫瘍細胞を培養した後の培地から悪性腫瘍細胞を除去してなる悪性腫瘍細胞増殖抑制剤が開示されている。しかしながら、培地から悪性腫瘍細胞を除去して得たものは、極めて雑多な物質を含有する組成物であり、このような組成物から抗悪性腫瘍活性を有する物質を単離することは多大な困難を伴い、事実上不可能であると考えられた。
特開昭59-33223号公報
 今日までがん治療を目的として種々の治療剤の研究・開発がされてきたが、従来の抗がん剤は副作用が強く、十分な効果が得られないことも少なくないため、依然として更なる薬剤の開発が求められている。
 本発明の一態様によれば、新たな抗がん剤として利用し得る組成物、又は新たな抗がん剤として有用な物質の取得に利用し得る組成物の培養細胞からの製造方法を提供し得る。
 また、本発明の一態様によれば、殺細胞活性を有する細胞抽出成分の取得を可能とする方法を提供し得る。
 本発明者らは、鋭意検討した結果、継代をせずに細胞の培養を継続すると細胞が死滅してしまう現象は、細胞が培養器面を覆いつくし、更に増殖し過密(overpopulation)となり増殖の抑制が出現する時期に、培地交換により充分な栄養やエネルギー源を補給したとしても現れることを新たに見出した。
 また、本発明者らは、悪性腫瘍由来細胞を、少なくとも細胞の密度が継代に支障のない密度になるまで培養培地中で培養した後、前記培養培地を生理的緩衝塩類溶液(栄養及び/又はエネルギー源を含まない)と交換した場合にも、細胞は自身を死に至らしめる物質を産生していることを新たに見出した。これは、細胞が、細胞内にある物質のみを材料として、殺細胞活性を有する物質を産生し、自らを死に至らしめることを示す知見である。このような知見はこれまで一切報告も示唆もされておらず、悪性腫瘍由来細胞から抽出される殺細胞活性を有する成分の取得に、生理的緩衝塩類溶液が利用できることは、全く予想外のことである。
 本発明の一実施態様は、以下のものに関する。
〔1〕殺細胞活性を有する組成物の製造方法であって、
 悪性腫瘍由来細胞を、少なくとも細胞の密度が継代に支障のない密度になるまで培養培地中で培養すること、
 前記培養後、前記培養培地を生理的緩衝塩類溶液と交換すること、及び
 前記生理的緩衝塩類溶液中で、前記悪性腫瘍由来細胞の形態学的に細胞の死滅が観察される時期後、前記生理的緩衝塩類溶液を回収すること
を含む、前記方法。
〔2〕前記生理的緩衝塩類溶液が、グルコースを含有しない、前記〔1〕に記載の製造方法。
〔3〕前記生理的緩衝塩類溶液が、ハンクス平衡塩類溶液、アール平衡塩類溶液及びリン酸緩衝生理食塩水からなる群から選択される、前記〔1〕又は〔2〕に記載の製造方法。
〔4〕前記回収した生理的緩衝塩類溶液のうちの分子量1kDa以下の画分を含む乾燥物を得ること、及び
 前記乾燥物を媒体中に溶解し、得られた溶液から塩類、核酸及びタンパク質を除去すること、
を更に含む、前記〔1〕~〔3〕のいずれか1項に記載の製造方法。
〔5〕前記殺細胞活性を有する組成物が、前記悪性腫瘍由来細胞に由来する細胞抽出成分を含む、前記〔1〕~〔4〕のいずれか1項に記載の製造方法。
〔6〕悪性腫瘍由来細胞に由来する細胞抽出成分を調製する方法であって、
 悪性腫瘍由来細胞を、少なくとも細胞の密度が継代に支障のない密度になるまで培養培地中で培養すること、
 前記培養後、前記培養培地を生理的緩衝塩類溶液と交換すること、
 前記生理的緩衝塩類溶液中で、前記悪性腫瘍由来細胞の形態学的に細胞の死滅が観察される時期後、前記生理的緩衝塩類溶液を回収すること、
 前記回収した生理的緩衝塩類溶液のうちの分子量1kDa以下の画分を含む乾燥物を得ること、
 前記乾燥物を炭素数1~3のアルコールを含む溶媒を用いて抽出し、得られた溶液を乾燥すること、
 前記溶液の乾燥物を水中に溶解し、得られた水溶液中に非極性有機溶媒を添加して水層と有機層を形成させ、前記水層を抽出すること、及び
 前記水層から、前記悪性腫瘍由来細胞に由来する細胞抽出成分をクロマトグラフィーにより分離すること、
を含み、前記細胞抽出成分が殺細胞活性を有する、前記方法。
〔7〕前記クロマトグラフィーが、ゲルろ過クロマトグラフィー及び/又は陽イオン交換クロマトグラフィーを含む、前記〔6〕に記載の調製方法。
〔8〕前記悪性腫瘍由来細胞が、遺伝子操作されておらず、かつ培養液以外の生理活性物質を加えることなく培養されたものである、前記〔1〕~〔7〕のいずれか1項に記載の製造方法又は調製方法。
〔9〕前記〔1〕~〔5〕及び〔8〕のいずれか1項に記載の製造方法により得られる、殺細胞活性を有する組成物。
〔10〕前記〔6〕又は〔7〕に記載の調製方法により得られる、悪性腫瘍由来細胞に由来する細胞抽出成分。
〔11〕前記〔1〕~〔5〕及び〔8〕のいずれか1項に記載の製造方法により得られる殺細胞活性を有する組成物を含有する、がん治療用医薬組成物。
〔12〕前記〔6〕又は〔7〕に記載の調製方法により得られる悪性腫瘍由来細胞に由来する細胞抽出成分を有効成分として含有する、がん治療用医薬組成物。
〔13〕前記〔1〕~〔5〕及び〔8〕のいずれか1項に記載の製造方法により得られる殺細胞活性を有する組成物の、がんを治療するための医薬の製造のための使用。
〔14〕前記〔6〕又は〔7〕に記載の調製方法により得られる悪性腫瘍由来細胞に由来する細胞抽出成分の、がんを治療するための医薬の製造のための使用。
 本発明の一態様によれば、新たな抗がん剤として利用し得る組成物、又は新たな抗がん剤として有用な物質の取得に利用し得る組成物を、安価で、簡便に、及び/又は短期に製造することができる。
 本発明の一態様によれば、殺細胞活性を有する細胞抽出成分の取得を、安価で、簡便に、及び/又は短期に可能とすることができる。殺細胞活性を有する細胞抽出成分は、種々のがんに対して有効であり得る。
血清含有培地(10%FBS含有Eagle's MEM)を用いてHRC23から作製した試験試料の段階希釈系列において、MTTアッセイにより測定されたHRC23の細胞生存率の平均値と標準偏差を示す片対数グラフである。横軸は、試験試料の濃度(原液mL/mL)を常用対数目盛で表している。 無血清培地(Eagle's MEM)を用いてHRC23から作製した試験試料の段階希釈系列において、MTTアッセイにより測定されたHRC23の細胞生存率の平均値と標準偏差を示す片対数グラフである。横軸は、試験試料の濃度(原液mL/mL)を常用対数目盛で表している。 生理的緩衝塩類溶液(グルコースを含まないハンクス平衡塩類溶液:HBSS-)を用いてHRC23から作製した試験試料の段階希釈系列において、MTTアッセイにより測定されたHRC23の細胞生存率の平均値と標準偏差を示す片対数グラフである。横軸は、試験試料の濃度(原液mL/mL)を常用対数目盛で表している。 ゲルろ過クロマトグラフィーによるクロマトグラムである。A~Hの8つの画分のうち、殺細胞活性が検出されたAの画分(105分~141分)を斜線で示す。 ゲルろ過クロマトグラフィーで得られたAの画分についての段階希釈系列において、MTTアッセイにより観察されたマイクロプレート上での発色の様子を、測定された細胞生存率の平均値と標準偏差を示す片対数グラフとともに示したものである。横軸は、試験試料の濃度(原液mL/mL)を常用対数目盛で表している。 イオン交換クロマトグラフィーによるクロマトグラムである。殺細胞活性が検出された画分(Na2SO4濃度が165~170mMの画分)を斜線で示す。 ゲルろ過クロマトグラフィーによるクロマトグラムである。前方のピークにおいて殺細胞活性が検出され、このピークには3つの画分(Fr57、Fr58及びFr59)が含まれる。 画分57についての質量スペクトルである。 画分58についての質量スペクトルである。 画分59についての質量スペクトルである。 マトリックスのみについての質量スペクトルである。 画分58のスペクトルにおけるm/z値114.09のシグナル付近を拡大して示した図である。 生理的緩衝塩類溶液(グルコースを含まないハンクス平衡塩類溶液:HBSS-)を用いてHRC23から作製した試験試料の段階希釈系列において、MTTアッセイにより測定された各種細胞の細胞生存率の平均値と標準偏差を示す片対数グラフである。横軸は、HRC23に対して生存率0%を示す試験試料の最小濃度を任意単位(arbitrary unit)1として常用対数目盛で表している。 生理的緩衝塩類溶液(グルコースを含まないハンクス平衡塩類溶液:HBSS-)を用いてLLCから作製した試験試料の段階希釈系列において、MTTアッセイにより測定されたHRC23の細胞生存率の平均値と標準偏差を示す片対数グラフである。横軸は、試験試料の濃度(原液mL/mL)を常用対数目盛で表している。 生理的緩衝塩類溶液(グルコースを含まないハンクス平衡塩類溶液:HBSS-)を用いてSKNから作製した試験試料の段階希釈系列において、MTTアッセイにより測定されたHRC23の細胞生存率の平均値と標準偏差を示す片対数グラフである。横軸は、試験試料の濃度(原液mL/mL)を常用対数目盛で表している。 生理的緩衝塩類溶液(グルコースを含まないハンクス平衡塩類溶液:HBSS-、アール平衡塩類溶液:Earle、リン酸緩衝生理食塩水:PBS(+))を用いてHRC23から作製した試験試料の段階希釈系列において、MTTアッセイにより測定されたHRC23の細胞生存率の平均値と標準偏差を示す片対数グラフである。横軸は、試験試料の濃度(原液mL/mL)を常用対数目盛で表している。 生理的緩衝塩類溶液(グルコースを含まないハンクス平衡塩類溶液:HBSS-)を用いて、培養後の細胞密度が異なるHRC23から作製した各試験試料の段階希釈系列において、MTTアッセイにより測定されたHRC23の細胞生存率の平均値と標準偏差を示す片対数グラフである。横軸は、試験試料の濃度(原液mL/mL)を常用対数目盛で表している。 血清含有培地(10%FBS含有RPMI1640)又は生理的緩衝塩類溶液(グルコースを含まないハンクス平衡塩類溶液:HBSS-)を用いてLK-2から作製した試験試料の段階希釈系列において、MTTアッセイにより測定されたLK-2の細胞生存率の平均値と標準偏差を示す片対数グラフである。横軸は、試験試料の濃度(原液mL/mL)を常用対数目盛で表している。 血清含有培地(10%FBS含有RPMI1640)又は生理的緩衝塩類溶液(グルコースを含まないハンクス平衡塩類溶液:HBSS-)を用いてLK-2から作製した試験試料の段階希釈系列において、MTTアッセイにより測定されたHRC23の細胞生存率の平均値と標準偏差を示す片対数グラフである。横軸は、試験試料の濃度(原液mL/mL)を常用対数目盛で表している。
 以下、本発明について詳述する。
 本発明の一実施態様は、殺細胞活性を有する組成物の製造方法であって、
 悪性腫瘍由来細胞を、少なくとも細胞の密度が継代に支障のない密度になるまで培養培地中で培養すること、
 前記培養後、前記培養培地を生理的緩衝塩類溶液と交換すること、及び
 前記生理的緩衝塩類溶液中で、前記悪性腫瘍由来細胞の形態学的に細胞の死滅が観察される時期後、前記生理的緩衝塩類溶液を回収することを含む、前記方法に関する。
 本明細書において、「悪性腫瘍由来細胞」とは、悪性腫瘍より得られた培養細胞(初代培養細胞)又は悪性腫瘍由来株化細胞を意味する。なお、株化培養細胞は継代していれば無限に培養でき、継代しなければ新鮮な培地中でも死滅する共通点がある。このことから、「細胞の自然死」(ネクローシス)に、細胞に由来する殺細胞活性を有する物質が関与して細胞が死滅すると考えられる。そのため、株化細胞は全てこのような殺細胞活性を有する物質の産生原料であると考えられる。
 「悪性腫瘍」とは、一般的にがんとも言われ、癌腫、肉腫及び血液悪性腫瘍(造血器腫瘍)をも含む広い意味で用いられる。
 例えば、「悪性腫瘍由来細胞」は、上皮性、非上皮性を問わず、肺癌、胃癌、食道癌、肝臓癌、胆道癌、膵臓癌、大腸癌、腎癌、膀胱癌、前立腺癌、精巣癌、子宮癌、卵巣癌、乳癌、皮膚癌、喉頭癌、結腸直腸癌、黒色腫、甲状腺癌、線維肉腫、皮膚線維肉腫、子宮肉腫、脂肪肉腫、筋肉腫、血管肉腫、カポジ肉腫、リンパ管肉腫、骨肉腫、白血病、リンパ腫、及び骨髄腫等のがんに由来するものであり得る。これらのがんは、ヒトに由来するものであってもよく、マウス等の哺乳動物(ヒトを除く)に由来するものであってもよい。
 また、「悪性腫瘍由来細胞」は、上皮性、非上皮性を問わず、腺癌、扁平上皮癌、小細胞癌、及び大細胞癌に限らず、肉腫を含むあらゆる組織型に由来するものであり得る。
 本発明の一実施態様においては、「悪性腫瘍由来細胞」は、遺伝子操作されておらず、かつ培養液以外の生理活性物質を加えることなく培養されたものであり得る。
 本発明の製造方法において、「悪性腫瘍由来細胞を、少なくとも細胞の密度が継代に支障のない密度になるまで培養培地中で培養すること」とは、周知技術に基づいて適宜実施得る。
 例えば、少なくとも細胞の密度が継代に支障のない密度になるまで培養するとは、細胞をコンフルエント(confluent)な状態まで培養すること、又はフリーコンフルエント(fully confluent)な状態まで培養することであり得る。また、少なくとも細胞の密度が継代に支障のない密度になるまで培養するとは、上記に限定されず、60~100%、好ましくは70~100%コンフルエントな状態まで培養すること、細胞が接着細胞の場合、培養容器の接着面が完全に覆われるまで培養すること若しくは培養容器の接着面が少なくとも80%程度覆われるまで培養すること、又は細胞が浮遊細胞の場合、培養培地の液面が完全に覆われるまで培養すること若しくは培養培地の液面が少なくとも80%程度覆われるまで培養することであってもよい。殺細胞活性を有する細胞抽出成分の生産効率の観点から、細胞を80~100%コンフルエントな状態まで培養することがより好ましく、細胞を90~100%コンフルエントな状態まで培養することが更に好ましく、細胞をコンフルエントな状態又はフリーコンフルエントな状態まで培養することがより一層好ましい。少なくとも細胞の密度が継代に支障のない密度になったか否かは、当業者の通常の知識に基づいて適宜判断し得るものである。
 本発明の製造方法において、培養培地は、用いる悪性腫瘍由来細胞に適したものを使用すればよい。例えば、培養培地としては、Eagle's MEM、ダルベッコ変法MEM、RPMI1640、HAM F-12や、FBSを必要としない完全合成培地等が挙げられる。また、これらの培養培地中には、必要に応じて、ビタミン、補酵素、アミノ酸、金属イオン、糖、細胞増殖因子、インターロイキン、サイトカイン、血清、血清由来成分、抗生物質等を添加してもよい。
 本発明の製造方法において、用いる悪性腫瘍由来細胞はすでに継代済のものでもよく、継代は当業者の通常の知識に基づいて行うことができる。
 本発明の製造方法において、「培養培地を生理的緩衝塩類溶液と交換すること」とは、例えば、培養フラスコ等の培養容器から培養培地を取り除いた後、生理的緩衝塩類溶液を培養容器に添加することである。
 生理的緩衝塩類溶液は、特に限定されるものではないが、例えば、ハンクス(Hanks)平衡塩類溶液(HBSS)、アール(Earle)平衡塩類溶液、リン酸緩衝生理食塩水(PBS)、リンガー(Ringer)平衡塩類溶液、シムス(Simms)平衡塩類溶液、タイロード(Tyrode)平衡塩類溶液、ゲイ(Gey)平衡塩類溶液、パック(Puck)平衡塩類溶液、イーグル(Eagle)平衡塩類溶液等が挙げられる。好ましくは、生理的緩衝塩類溶液はグルコースを含有しない。生理的緩衝塩類溶液には抗生物質等の追加成分を添加してもよいし、添加しなくてもよい。
 本発明の一実施態様において、生理的緩衝塩類溶液は、ハンクス平衡塩類溶液、アール平衡塩類溶液又はリン酸緩衝生理食塩水であり、好ましくは、グルコースを含有しない。より好ましくは、生理的緩衝塩類溶液は、グルコースを含有しないハンクス平衡塩類溶液(HBSS-)である。
 本発明の製造方法において、「生理的緩衝塩類溶液中で、前記悪性腫瘍由来細胞の形態学的に細胞の死滅が観察される時期後、前記生理的緩衝塩類溶液を回収すること」とは、例えば、顕微鏡観察やMTT法等により悪性腫瘍由来細胞の形態学的に細胞の死滅を確認できる時期後、生理的緩衝塩類溶液を回収することである。悪性腫瘍由来細胞の形態学的な細胞の死滅の観察又は確認は、用いる悪性腫瘍由来細胞の種類に応じて、適宜、当業者の通常の知識に基づいて判断し得るものである。例えば、肉眼で、細胞(断片)が浮遊していたり、フラスコを軽くたたいてみた時に細胞が剥がれ落ちる様な状態が見られる場合には、悪性腫瘍由来細胞の形態学的な細胞の死滅の観察又は確認ができたと認められ得る。
「悪性腫瘍由来細胞の形態学的に細胞の死滅が観察される時期後」とは、用いる悪性腫瘍由来細胞の種類や細胞培養の条件により異なり得るものの、例えば、培養培地を生理的緩衝塩類溶液と交換した日から3~7日後であり得る。なお、回収後は死滅した細胞断片が入っていても培養時レベルの無菌状態で4℃にて1ヶ月は安定である。
 また、回収後の生理的緩衝塩類溶液は、遠心分離し、得られた上清を採取することが好ましい。遠心分離の条件としては、4℃~室温(例えば25℃)において、1,000~17,000×gで10~20分間等でよいが、これに限定されるものではない。また、この上清を0.1μmメンブレンフィルター等の膜フィルターを用いてろ過し、ろ液を採取することが好ましい。
 本発明の製造方法において、悪性腫瘍由来細胞の形態学的に細胞の死滅が観察される時期後、生理的緩衝塩類溶液を回収するまでの間、悪性腫瘍由来細胞を生理的緩衝塩類溶液中で培養する際の条件は、適宜選択し得る。基本的には、HBSS-のような開放系に設計された生理的緩衝塩類溶液の場合は大気下で蒸発した水分を逃さない閉鎖系で孵卵器や恒温室などで36℃~37℃にてインキュベートする。もしくは、悪性腫瘍由来細胞を、生理的緩衝塩類溶液中、通常の培養条件と同じ条件下でインキュベートしてもよい。通常の培養条件と同じ条件とは、例えば、温度は30~38℃、好ましくは35~37℃の範囲内、湿度は70~100%、好ましくは90~100%の範囲内、二酸化炭素濃度は2~8%、好ましくは4~6%の範囲内であり得るが、これらに限定されるものではない。また、炭酸ガスによるpHコントロールを要する生理的緩衝塩類溶液も、NaHCO3含量を減らしたりして同様に使用し得る。
 本発明の製造方法は、回収した生理的緩衝塩類溶液のうちの分子量1kDa以下の画分を含む乾燥物を得ることを更に含み得る。分子量1kDa以下の画分は、市販の膜フィルター等を用いて、限外ろ過等の公知の手段により得ることができる。また、分子量1kDa以下の画分を含む乾燥物は、減圧乾燥等の公知の手段により得ることができる。
 本発明の製造方法は、このようにして得た乾燥物を媒体中に溶解し、得られた溶液から塩類、核酸及びタンパク質を除去することを更に含み得る。乾燥物を媒体中に溶解し、得られた溶液から塩類、核酸及びタンパク質を除去することは、具体的には、以下のような工程により実施され得るが、以下に限定されるものではない。
(1)乾燥物を炭素数1~3のアルコールを含む溶媒を用いて抽出し、得られた溶液を乾燥する工程、及び前記溶液の乾燥物を水中に溶解し、得られた水溶液中に有機溶媒を添加して、又は前記溶液の乾燥物を水添加有機溶媒に添加して、水層と有機層を形成させ前記水層を抽出する工程。
 ここで、炭素数1~3のアルコールを含む溶媒とは、具体的には、メタノール、エタノール、n-プロピルアルコール又はイソプロピルアルコールを含む溶媒である。炭素数1~3のアルコールを含む溶媒は、クロロホルム等の有機溶媒やアルコール等との混液であってもよい。
 また、有機溶媒は、水層と有機層を形成させるのに十分なものであればよく、特に限定されないが、例えば、非極性有機溶媒、具体的にはクロロホルムやクロロホルム・酢酸エチル混液等を使用し得る。
 「乾燥物を炭素数1~3のアルコールを含む溶媒を用いて抽出する」とは、例えば、乾燥物に炭素数1~3のアルコールを含む溶媒を添加し、1000~2000×gで5~10分間遠心分離して上清を得ることである。
(2)乾燥物を水添加有機溶媒に添加して水層と有機層を形成させ、前記水層を抽出する工程、及び前記水層からクロマトグラフィーにより塩類等を除去する工程。
 ここで、有機溶媒は、水層と有機層を形成させるのに十分なものであればよく、特に限定されるものではない。クロマトグラフィーにより塩類等を除去するには、ゲルろ過クロマトグラフィーが好ましいが、これに限定されるものではない。
 本発明の製造方法により得られる殺細胞活性を有する組成物は、悪性腫瘍由来細胞に由来する殺細胞活性を有する細胞抽出成分を含む。殺細胞活性を有する細胞抽出成分は、以下の実施例にて実証されるとおり、種々のがんに対して有効であり、各種の抗癌剤に対して抵抗性を持つとされるマウス・ルイス肺癌に対してさえ有効である。
 グルコースを含まない生理的緩衝塩類溶液は、細胞にとって栄養とエネルギー源を有しない媒体である。従って、本発明の製造方法により得られる殺細胞活性を有する組成物中に含まれる、悪性腫瘍由来細胞に由来する殺細胞活性を有する細胞抽出成分は、当該細胞内にある物質のみを材料として当該細胞により産生されていることが明らかにされた。
 細胞の培養に用いられる血清含有培地や無血清培地は、細胞の培養に適するよう種々の成分を含むものである。従って、血清含有培地や無血清培地から悪性腫瘍由来細胞に由来する殺細胞活性を有する細胞抽出成分を単離・精製することは極めて困難である。一方、生理的緩衝塩類溶液から悪性腫瘍由来細胞に由来する殺細胞活性を有する細胞抽出成分を単離・精製することは、血清含有培地や無血清培地からの単離・精製に比較して容易である。よって、本発明の製造方法は、殺細胞活性を有する細胞抽出成分の取得を、安価で、簡便に、及び/又は短期に可能とすることができる。特に、グルコースを含まない生理的緩衝塩類溶液を用いれば、本発明の製造方法により得られる殺細胞活性を有する組成物はエネルギー源を含まない系となり、産生される乳酸量を少なくしてpHの低下を防ぐことができ、また、乳酸はエタノール等の有機溶媒に溶けるため、産生される乳酸量を減らすことで精製への影響を抑えることができる。
 本発明の一実施態様は、悪性腫瘍由来細胞に由来する細胞抽出成分を調製する方法であって、
 悪性腫瘍由来細胞を、少なくとも細胞の密度が継代に支障のない密度になるまで培養培地中で培養すること、
 前記培養後、前記培養培地を生理的緩衝塩類溶液と交換すること、
 前記生理的緩衝塩類溶液中で、前記悪性腫瘍由来細胞の形態学的に細胞の死滅が観察される時期後、前記生理的緩衝塩類溶液を回収すること、
 前記回収した生理的緩衝塩類溶液のうちの分子量1kDa以下の画分を含む乾燥物を得ること、
 前記乾燥物を炭素数1~3のアルコールを含む溶媒を用いて抽出し、得られた溶液を乾燥すること、
 前記溶液の乾燥物を水中に溶解し、得られた水溶液中に非極性有機溶媒を添加して水層と有機層を形成させ、前記水層を抽出すること、及び
 前記水層から、前記悪性腫瘍由来細胞に由来する細胞抽出成分をクロマトグラフィーにより分離すること、
を含み、前記細胞抽出成分が殺細胞活性を有する、前記方法に関する。
 本発明の調製方法において、「悪性腫瘍由来細胞を、少なくとも細胞の密度が継代に支障のない密度になるまで培養培地中で培養すること」、「培養培地を生理的緩衝塩類溶液と交換すること」、「生理的緩衝塩類溶液中で、前記悪性腫瘍由来細胞の形態学的に細胞の死滅が観察される時期後、前記生理的緩衝塩類溶液を回収すること」、及び「前記回収した生理的緩衝塩類溶液のうちの分子量1kDa以下の画分を含む乾燥物を得ること」は、上記した殺細胞活性を有する組成物の製造方法におけるものと同様である。
 本発明の調製方法において、「乾燥物を炭素数1~3のアルコールを含む溶媒を用いて抽出し、得られた溶液を乾燥すること」は、通常の抽出操作により行うことができる。
 ここで、炭素数1~3のアルコールを含む溶媒とは、具体的には、メタノール、エタノール、n-プロピルアルコール又はイソプロピルアルコールを含む溶媒である。炭素数1~3のアルコールを含む溶媒は、クロロホルム等の有機溶媒やアルコール等との混液であってもよい。
 「乾燥物を炭素数1~3のアルコールを含む溶媒を用いて抽出する」とは、例えば、乾燥物に炭素数1~3のアルコールを含む溶媒を添加し、1000~2000×gで5~10分間遠心分離して上清を得ることである。
 本発明の調製方法において、「溶液の乾燥物を水中に溶解し、得られた水溶液中に非極性有機溶媒を添加して水層と有機層を形成させ、前記水層を抽出すること」は、通常の抽出操作により行うことができる。
 非極性有機溶媒は、水層と有機層を形成させるのに十分なものであればよく、特に限定されないが、例えば、クロロホルムやクロロホルム・酢酸エチル混液等を使用し得る。
 本発明の調製方法において、「水層から、前記悪性腫瘍由来細胞に由来する細胞抽出成分をクロマトグラフィーにより分離すること」は、公知のクロマトグラフィー技術により行うことができる。好ましくは、ゲルろ過クロマトグラフィー及び/又は陽イオン交換クロマトグラフィーにより悪性腫瘍由来細胞に由来する殺細胞活性を有する細胞抽出成分を分離する。
 ここで、ゲルろ過クロマトグラフィー及び陽イオン交換クロマトグラフィーは、市販の装置、担体及びカラムを用いて適宜行うことができる。陽イオン交換クロマトグラフィーは、グラジエント法(濃度勾配法)により目的物を溶離してもよいし、アイソクラチック法(一定組成溶液溶離法)により目的物を溶離してもよい。
 また、陽イオン交換クロマトグラフィーでは、強陽イオン交換カラムを用いるのが好ましい。
 本発明の一実施態様は、上記本発明の製造方法により得られる、殺細胞活性を有する組成物に関する。
 本発明の一実施態様は、上記本発明の調製方法により得られる、悪性腫瘍由来細胞に由来する細胞抽出成分に関する。
 上記本発明の製造方法により得られる、殺細胞活性を有する組成物は、悪性腫瘍由来細胞に由来するものであり、その物を構造又は特性により直接特定することは不可能又は非実際的である。上記本発明の調製方法により得られる、悪性腫瘍由来細胞に由来する細胞抽出成分に関して、その物質の構造特定には多量の純品サンプルを必要とし、極めて高価な測定機器が必要であり、その物質の安定性等の諸性質を検討した上で、著しく多くの試行錯誤を重ねることが必要であり、膨大な時間と費用がかかることから、およそ実際的ではない。
 本発明の一実施態様は、上記本発明の製造方法により得られる殺細胞活性を有する組成物を含有する、がん治療用医薬組成物に関する。
 本発明の一実施態様は、上記本発明の調製方法により得られる悪性腫瘍由来細胞に由来する細胞抽出成分を有効成分として含有する、がん治療用医薬組成物に関する。
 本発明の一実施態様は、上記本発明の製造方法により得られる殺細胞活性を有する組成物の、がんを治療するための医薬の製造のための使用に関する。
 本発明の一実施態様は、上記本発明の調製方法により得られる悪性腫瘍由来細胞に由来する細胞抽出成分の、がんを治療するための医薬の製造のための使用に関する。
 このような本発明のがん治療用医薬組成物又はがんを治療するための医薬により治療され得るがんは、上記本発明の製造方法又は調製方法において用いられる悪性腫瘍由来細胞の種類により限定されるものではない。即ち、本発明のがん治療用医薬組成物又はがんを治療するための医薬は、上記本発明の製造方法又は調製方法において用いられる悪性腫瘍由来細胞と同じ種類のがんに対しても異なる種類のがんに対しても有効であり得る。
 また、本発明のがん治療用医薬組成物又はがんを治療するための医薬は、癌腫、肉腫及び血液悪性腫瘍(造血器腫瘍)のいずれにおいても有効であり得る。本発明のがん治療用医薬組成物又はがんを治療するための医薬により治療され得るがんは、腺癌、扁平上皮癌、小細胞癌、及び大細胞癌に限らず、肉腫を含むあらゆる組織型に由来するものであり得る。例えば、本発明のがん治療用医薬組成物又はがんを治療するための医薬により治療され得るがんは、肺癌、胃癌、食道癌、肝臓癌、胆道癌、膵臓癌、大腸癌、腎癌、膀胱癌、前立腺癌、精巣癌、子宮癌、卵巣癌、乳癌、皮膚癌、喉頭癌、結腸直腸癌、黒色腫、甲状腺癌、線維肉腫、皮膚線維肉腫、子宮肉腫、脂肪肉腫、筋肉腫、血管肉腫、カポジ肉腫、リンパ管肉腫、骨肉腫、白血病、リンパ腫、骨髄腫等が挙げられるが、これらに限定されるものではない。
 本発明のがん治療用医薬組成物又はがんを治療するための医薬は、医薬的に許容される担体、希釈剤、賦形剤、安定剤等の医薬に使用し得る添加物を含んでもよい。このような添加物は当業者の技術常識に基づき適宜選択され得る。
 上記本発明の調製方法により得られる悪性腫瘍由来細胞に由来する殺細胞活性を有する細胞抽出成分は、水溶性の分子量1kDa以下の低分子化合物であることが予想されることから、医薬として様々な形態での利用が期待される。例えば、本発明のがん治療用医薬組成物又はがんを治療するための医薬は、経口で、又は注射等の非経口で対象に投与され得る。
 以下において、本発明について、具体的な実施例を参照しながら更に詳細に説明するが、本発明の範囲は、これらの実施例に何ら限定されるものではない。
[用いた悪性腫瘍由来樹立細胞株]
(1)ヒト腎癌由来細胞株:HRC23
 HRC23はヒト腎細胞癌をヌードマウスに継代移植したものより株細胞として樹立したものである。継代には、フェノールレッド、抗生剤を含まないEagle's MEM(日水製薬)に10%FBSを添加したものを用い、細胞剥離には0.1%トリプシン、0.01%EDTAを添加したものを用いた。また、必要に応じクローニングを行なった。培養は37℃、5%CO2下で行なった。
(2)マウス・ルイス肺癌由来細胞株
 理化学研究所より分与されたものを使用した(RCB0558:LLC)。継代には、Eagle's MEMに10%FBSを添加したものを用い、細胞剥離には0.1%トリプシン、0.01%EDTAを添加したものを用い、37℃、5%CO2下で培養した。当細胞は転移性が高く、各種の制癌剤に抵抗性があり、in vivoで継代していたものを培養化したものである(Bertram JS, Janik P., Cancer Lett. 1980 November, 11(1), p.63-73)。
(3)その他のヒト悪性腫瘍由来細胞株
 ヒト悪性腫瘍由来の株細胞4種類を使用した。これらの細胞はすべて医薬基盤研究所JCRB細胞バンクより入手し、継代及びアッセイには指示された培地及び細胞剥離用酵素を使用し、37℃、5%CO2下で培養した。
 使用した細胞の種類を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 なお、悪性腫瘍は病理学的に大きくは上皮性と非上皮性に分類され、多くは上皮性である。表1中、SKNは非上皮性であり、それ以外は上皮性であるが、LLCは種を異にするマウス由来上皮性悪性腫瘍細胞であって、各種の抗癌剤に対して抵抗性を持つとされる。また、組織型も代表的な細胞を選択した。
[実施例1:試料原液の作製]
(1)血清含有培地を用いて作製した試料原液
 材料となるHRC23は、継代と同様に10%FBS含有のEagle's MEMで培養した。使用したEagle's MEMは抗生剤及びフェノールレッドを含まない培地である。HRC23を、フラスコ内で、細胞の増殖がコンフルエントな状態に達するまで培養し、更にオーバーグロース(過密度)になるまで培養した後、上記と同じ10%FBS含有のEagle's MEMで最終的に培地交換し、37℃、5%CO2下でインキュベートした。9日後、HRC23の形態学的に細胞の死滅が観察された。その後、培地を回収し、3×103×gで10分間遠心分離して得られた上清を取り、この上清を0.1μmメンブレンフィルター(Millex(登録商標) VV、メルク株式会社(ミリポア))でろ過したものを試料原液として無菌的に4℃で保存した。
(2)無血清培地を用いて作製した試料原液
 材料となるHRC23は、継代と同様に10%FBS含有のEagle's MEMで培養した。使用したEagle's MEMは抗生剤及びフェノールレッドを含まない培地である。HRC23を、フラスコ内で、細胞の増殖がコンフルエントな状態に達するまで培養し、更にオーバーグロース(過密度)になるまで培養した後、抗生剤及びフェノールレッドを含まない無血清のEagle's MEMで培地交換し、37℃、5%CO2下で5~7時間インキュベートした。その間、上記と同じ無血清Eagle's MEMで細胞を数回リンスした。上記と同じ無血清Eagle's MEMで最終的に培地交換し、37℃、5%CO2下でインキュベートした。9日後、HRC23の形態学的に細胞の死滅が観察された。その後、培地を回収し、3×103×gで10分間遠心分離して得られた上清を取り、この上清を0.1μmメンブレンフィルター(Millex(登録商標) VV、メルク株式会社(ミリポア))でろ過したものを試料原液として無菌的に4℃で保存した。
 また、この試料原液を限外ろ過し分子量1kDa以下の画分を採取し(Ultracel(登録商標) Amicon(登録商標) YM1やUltracel(登録商標)限外ろ過膜 PLAC04310を備えたStirred Cell Model 8050、メルク株式会社(ミリポア))、無菌的に4℃で保存した。
(3)生理的緩衝塩類溶液を用いて作製した試料原液
 材料となるHRC23は、継代と同様に10%FBS含有のEagle's MEMで培養した。使用したEagle's MEMは抗生剤及びフェノールレッドを含まない培地である。HRC23を、フラスコ内で、細胞の増殖がコンフルエントな状態に達するまで培養し、更にオーバーグロース(過密度)になるまで培養した後、培地を、抗生剤及びグルコースを含まないハンクス平衡塩類溶液(pH7.3、HBSS-とも称される)で交換し、37℃、5%CO2下で5~7時間インキュベートした。その間、上記と同じハンクス平衡塩類溶液で細胞を数回リンスした。その後、細胞を、最終的な上記と同じハンクス平衡塩類溶液中で、37℃、5%CO2下でインキュベートした。4日後、HRC23の形態学的に細胞の死滅が観察された。その後、ハンクス平衡塩類溶液を回収し、2×103×gで10分間遠心分離して得られた上清を取り、この上清を0.1μmメンブレンフィルター(Millex(登録商標) VV、メルク株式会社(ミリポア))でろ過したものを試料原液として無菌的に4℃で保存した。
 また、この試料原液を限外ろ過し分子量1kDa以下の画分を採取し(Ultracel(登録商標) Amicon(登録商標) YM1やUltracel(登録商標)限外ろ過膜 PLAC04310を備えたStirred Cell Model 8050、メルク株式会社(ミリポア))、無菌的に4℃で保存した。
 更に、グルコースを含まないハンクス平衡塩類溶液(HBSS-)に代えて、グルコースを含まないアール平衡塩類溶液(Earle)及びグルコースを含まないリン酸緩衝生理食塩水(PBS(+))を用いて、それぞれ試料原液を作製した。グルコースを含まないハンクス平衡塩類溶液、アール平衡塩類溶液及びリン酸緩衝生理食塩水の組成は表2に示されるとおりである。
Figure JPOXMLDOC01-appb-T000002
[実施例2:殺細胞活性についての試験]
(1)試験試料の段階希釈系列の作製
 上記実施例1(1)で作製した試料原液(血清含有培地)に新たに10%FBSとEagle's MEM用のアミノ酸配合液及びビタミン配合液(コージンバイオ;アミノ酸配合液は50倍濃縮液、ビタミン配合液は100倍濃縮液)、並びにグルコースをEagle's MEMの規定量加え、7.5%NaHCO3でpHを7.1~7.4に調整後、規定量のグルタミンと10%容量のFBSを加えて試験試料とした。これは、血清含有培地で最終的に培地交換した後に消費された栄養を補う目的である。この試験試料を、コントロール用の培地(10%FBS添加したEagle's MEM)で2倍の段階希釈を行ない、試験試料の段階希釈系列を作製した。
 上記実施例1(2)で作製した試料原液(無血清培地)に上記血清含有培地の試料原液の場合と同じように、アミノ酸及びビタミンを添加し、pHを調整後、グルタミンと10%FBSとグルコースを添加し、試験試料とした。この試験試料を、コントロール用の培地(10%FBS添加したEagle's MEM)で2倍の段階希釈を行ない、試験試料の段階希釈系列を作製した。また、試料原液から限外ろ過により分子量1kDa以下の画分を採取したものについても、同様に段階希釈系列を作製した。
 上記実施例1(3)で作製した試料原液(ハンクス平衡塩類溶液)に、上記血清含有培地の試料原液の場合と同じように、アミノ酸及びビタミンを添加し、pHを調整後、グルタミンと10%FBSとグルコースを添加し、試験試料とした。この試験試料を、コントロール用の溶液(10%FBS添加したEagle's MEM)で2倍の段階希釈を行ない、試験試料の段階希釈系列を作製した。また、試料原液から限外ろ過により分子量1kDa以下の画分を採取したものについても、同様に段階希釈系列を作製した。
(2)MTTアッセイによる細胞生存率の測定
 HRC23を、通常継代する希釈率で希釈を行ない96ウェルマイクロプレートへ分注し、37℃、5%CO2下で10%FBS含有のEagle's MEM中で培養し、24時間後(Day 1)に培地を各段階希釈した試験試料170μLと交換した。更に、1日おきに新鮮な試験試料で2回交換しつつ(Day 3、Day 5)、インキュベートした。Day 6において、MTTアッセイにより細胞生存率を測定した(n=3)。
 なお、MTTアッセイは以下のとおり行なった。MTT(同仁化学研究所)を、カルシウム及びマグネシウムを含有しないダルベッコリン酸緩衝生理食塩水(PBS-)中に溶解し、使用時の10倍濃度の5mg/mLとし、無菌的に、0.1μmメンブレンフィルターでろ過・分注し、4℃で保存した。細胞を200μLの培地(10%FBS含有のEagle's MEM)で洗浄した後、各培地中に上記5mg/mLのMTT溶液を培地の1/10量添加して得た0.5mMのMTTを含む溶液150μLを、96ウェルマイクロプレートの各ウェルに加えた。37℃で30~40分間インキュベートした後、各ウェル中の溶液を吸引除去し、200μLの培地で洗浄した。次いで、200μLのジメチルスルホキシドを各ウェルに加えた。マイクロプレートリーダー(Model 550、Bio-Rad Laboratories)で、570nmの波長における吸光度を測定した。細胞生存率は以下の式より算出した。
Figure JPOXMLDOC01-appb-M000003
 A sampleは、各段階希釈した試験試料を用いて上記のとおり測定した吸光度を表す。
 A controlは、各段階希釈した試験試料を用いずに行う以外は上記のとおり測定した吸光度を表す。
 A blankは、HRC23を用いずに行う以外は上記のとおり測定した吸光度を表す。
 結果を図1~3に示す。血清含有培地を用いて作製した試料、無血清培地を用いて作製した試料、及び生理的緩衝塩類溶液を用いて作製した試料のいずれにおいても、濃度依存的な殺細胞活性が認められた。また、無血清培地を用いて作製した試料の分子量1kDa以下の画分、及び生理的緩衝塩類溶液を用いて作製した試料の分子量1kDa以下の画分においても、同様に濃度依存的な殺細胞活性が認められた。
 生理的緩衝塩類溶液を用いて作製した試料は、グルコースを含まないハンクス平衡塩類溶液、即ち、栄養とエネルギー源を有しない媒体を用いて作製されたものである。つまり、これは、外部からの栄養やエネルギー源の供給を遮断した状態であっても、栄養及びエネルギー源存在下と同じように、細胞が殺細胞活性を有する物質を産生したことを示すものであり、非常に驚くべきことである。この結果から、細胞が、細胞内にある物質のみを材料として、殺細胞活性を有する物質を産生し、自らを死に至らしめることが示された。
[実施例3:殺細胞活性を有する細胞抽出成分の調製]
(1)濃縮
 上記実施例1(3)で試料原液を作製したのと同様の方法で、大量処理用に181cm2の表面積を有するフラスコを用いて試料原液を作製した。生理的緩衝塩類溶液としてはグルコースを含まないハンクス平衡塩類溶液(HBSS-)を用い、最終的な生理的緩衝塩類溶液の交換では、40mLのHBSS-を用いた。こうして得た試料原液を減圧乾固し、当該原液の1/10量のエタノールを加えて乾燥物を溶解した。3×103×gで10分間遠心分離して得られた上清を取り、再び減圧乾固した。このエタノール抽出を繰り返し、試料原液の約1000倍にまで濃縮した乾燥物を得た。この乾燥物を-80℃で保存した。
(2)ゲルろ過クロマトグラフィー
 上記実施例3(1)で得た乾燥物を純水に溶解し、クロロホルム・酢酸エチル混液で洗い、水層を回収したものを試料とし、この洗浄後の試料を、300μLの50mM Na2SO4に溶解し、以下の装置及び条件でゲルろ過クロマトグラフィーを行なった。
 送液ポンプ:880PU(日本分光(株))
 検出器:825UV(日本分光(株))
 ミキサー:HG-980-31(日本分光(株))
 インジェクター:Rheodyne8125(レオダイン社)
 カラム:Superformance(26mm×600mm)(メルク株式会社)
 担体:HPセルロファインsf(チッソ(株))
 移動相:50mM Na2SO4
 流速:0.6ml/分
 分画サイズ:1.8ml(3分)
 検出:230nm; 感度:0.16aufs
 ゲルろ過クロマトグラフィーの結果を図4に示す。図4に示されるA~Hの8つの画分を回収し、各画分についてMTTアッセイにより殺細胞活性を測定した。その結果、Aの画分(105分~141分)にのみ殺細胞活性が検出された。
 なお、ここでのMTTアッセイは、HRC23を、通常継代する希釈率で希釈を行ない96ウェルマイクロプレートへ分注し、37℃、5%CO2下で10%FBS含有のEagle's MEM中で培養し、24時間後に、当該培地を各画分から調製した試料170μLと交換し、2日間インキュベートした後、200μLのジメチルスルホキシドを各ウェルに加え、マイクロプレートリーダー(Model 550、Bio-Rad Laboratories)で570nmの波長における吸光度を測定して行なった。試料は、各画分のアリコートに同量のメタノールを加え、0.22μmメンブレンフィルター(Millex(登録商標) GV、メルク株式会社(ミリポア))でろ過してNa2SO4を除去した後、乾燥させて得たものを10%FBS含有のEagle's MEMに溶解し、2倍の段階希釈を行なって調製した。
 このMTTアッセイにより観察されたマイクロプレート上での発色の様子を、細胞生存率の濃度依存性を示すグラフとともに図5に示す。なお、図5において、試料濃度は原液換算したものである。
 回収したAの画分に同量のメタノールを加え、0.22μmメンブレンフィルター(Millex(登録商標) GV、メルク株式会社(ミリポア))でろ過してNa2SO4を除去した後、減圧乾固し、得られた乾燥物を-80℃で保存した。
(3)イオン交換クロマトグラフィー
 上記実施例3(2)で得た乾燥物を0.15M Na2SO4 200μL中に溶解したものを試料として、以下の装置及び条件でイオン交換クロマトグラフィーを行ない、強陽イオン交換樹脂にNa2SO4の直線的濃度勾配法を用いて活性画分を分離した。
 送液ポンプ:880PU(日本分光(株))
 検出器:825UV(日本分光(株))
 ミキサー:HG-980-31(日本分光(株))
 インジェクター:Rheodyne8125(レオダイン社)
 カラム:ResourceTMS; 1ml(GEヘルスケア社)2本直結して使用。
     溶出は表3に示す直線的濃度勾配法により行なった。
 流速:0.25ml/分
 分画サイズ:0.75ml(3分)
 移動相:A;H2O  B;0.3M Na2SO4
 検出:230nm; 感度:0.16aufs
Figure JPOXMLDOC01-appb-T000004
 予め0.15M Na2SO4で平衡化したカラムに試料を注入し、その後当該溶液で30分間洗浄した後、0.15Mから0.24MのNa2SO4の直線的濃度勾配法により溶出を行なった。
 イオン交換クロマトグラフィーの結果を図6に示す。各画分についてMTTアッセイにより殺細胞活性を測定したところ、Na2SO4濃度が165~170mMの画分18~21にのみ殺細胞活性が検出された。なお、ここでのMTTアッセイは、上記実施例3(2)と同じように行なった。
 回収したNa2SO4濃度が165~170mMの画分に同量のメタノールを加え、0.22μmメンブレンフィルター(Millex(登録商標) GV、メルク株式会社(ミリポア))でろ過してNa2SO4を除去した後、減圧乾固し、得られた乾燥物を-80℃で保存した。
(4)再ゲルろ過クロマトグラフィー
 上記実施例3(3)で得た乾燥物を300μLの50mM Na2SO4に溶解したものを試料として、以下の装置及び条件で、再度、ゲルろ過クロマトグラフィーを行なった。
 送液ポンプ:880PU(日本分光(株))
 検出器:825UV(日本分光(株))
 ミキサー:HG-980-31(日本分光(株))
 インジェクター:Rheodyne8125(レオダイン社)
 カラム:Superformance(26mm×600mm)(メルク株式会社)
 担体:HPセルロファインsf(チッソ(株))
 移動相:50mM Na2SO4
 流速:0.6ml/分
 分画サイズ:1.2ml(2分)
 検出:205nm; 感度:0.16aufs
 ゲルろ過クロマトグラフィーの結果を図7に示す。各画分についてMTTアッセイにより殺細胞活性を測定したところ、前方の吸収ピーク中の画分57(溶出時間112~114分)、画分58(溶出時間114~116)及び画分59(溶出時間116~118分)の3つの画分において殺細胞活性が検出され、特に画分58において強く認められた。なお、ここでのMTTアッセイは、上記実施例3(2)と同じように行なった。
 回収した上記3つの画分に同量のメタノールを加え、0.22μmメンブレンフィルター(Millex(登録商標) GV、メルク株式会社(ミリポア))でろ過してNa2SO4を除去した後、減圧乾固し、乾燥物を得た。
(5)質量分析法(TOF-MS)
 上記実施例3(3)で得た乾燥物を、アセトニトリル:水:TFA(50:50:1)中5mg/mLのα‐シアノ-4-ヒドロキシケイ皮酸(α-CHCA)で構成された緩衝液10μL中に再懸濁させたものを試料として、以下の装置及び条件で質量分析法により分析した。
 分析機器:Voyager System 6366 (Applied Biosystem)
 印加電圧:+20000V
 サンプル導入:手動;MALDI plate
 マトリクス:a-Cyano-4-hydroxycinnamic acid (a-CHCA)(東京化成(株))
 を用いペプチド分析プログラムに従い分析を行なった。
 3つの画分(57、58及び59)より得られた結果を、図8~10において、それぞれm/z値100~1500で示す。また、マトリックスのみより得られた結果を図11において、m/z値100~1000で示す。
 3つの画分(57、58及び59)についての質量スペクトルでは、それぞれm/z値600と714においてシグナルが観察された。特に、画分58のスペクトルでは、m/z値600.16と714.04において強いシグナルが観察されたが、画分59のスペクトルでは、画分57や画分58ほど明確なシグナルは示されなかった。また、画分58のスペクトルでは、m/z値114.09においてシグナルが明確に観察された(拡大図を図12として示す)。
 一方で、m/z値1000よりもm/z値が大きいシグナルは観察されなかった。従って、殺細胞活性を有する細胞抽出成分は、分子量1kD以下であることが示唆される。これは、分子量1kDa以下の画分において殺細胞活性が認められたことを示す図2及び3の結果と一致する。
 しかしながら、上記のとおり得られた質量スペクトルにおいてもm/z値が300以下のシグナルが多いことを踏まえ、殺細胞活性を有する細胞抽出成分の特定には、当該成分の安定性に関する検討を含め更なる詳細な検討が必要と考えられる。
[実施例4:種々のがん細胞に対する殺細胞活性の測定]
 上記実施例3(2)で得た乾燥物を、HRC23、MKN74、LK2、VMRC-JCP、SKN及びLLCの培養に用いた各培養培地を用いて、2倍の段階希釈を行ない、試験試料の段階希釈系列を作製した。HRC23、MKN74、LK2、VMRC-JCP、SKN及びLLCを、それぞれ別々に、96ウェルマイクロプレート中に、3日間の培養でおよそ80%コンフルエントになるような量で播種し、各所定の培養培地中で、37℃、5%CO2下で24時間培養した。当該培地を170μLの試験試料と交換し、2日間インキュベートした後、200μLのジメチルスルホキシドを各ウェルに加え、マイクロプレートリーダー(Model 550、Bio-Rad Laboratories)で570nmの波長における吸光度を測定してMTTアッセイを行なった(n=3)。
 MTTアッセイにより測定された各がん細胞の細胞生存率のグラフを図13に示す。HRC23に対して生存率0%を示す試験試料の最小濃度を任意単位(arbitrary unit)1として横軸を常用対数目盛で表した。この結果より、HRC23から得られた殺細胞活性を有する試験試料は、HRC23以外のがんに対しても有効であり、がん種、組織型にかかわらず、共通して濃度依存性に殺細胞作用を示すことがわかった。
[実施例5:LLC又はSKNに由来する試料における殺細胞活性の測定]
(1)試料原液の作製
 材料となるLLCとSKNは、10%FBS含有のEagle's MEMでHRC23と同じように培養した。使用したEagle's MEMは抗生剤及びフェノールレッドを含まない培地である。LLC及びSKNを、フラスコ内で、それぞれ細胞の増殖がコンフルエントな状態に達するまで培養し、更に1日培養した。抗生剤及びグルコースを含まないハンクス平衡塩類溶液で洗浄後、当該ハンクス平衡塩類溶液5mL/フラスコにて、37℃、5%CO2下でインキュベートした。LLC及びSKNの形態学的に細胞の死滅が観察された後、ハンクス平衡塩類溶液を回収し、1,500×gで 10分間遠心分離して得られた上清を取り、この上清を0.1μmメンブレンフィルター(Millex(登録商標) VV、メルク株式会社(ミリポア))でろ過したものをそれぞれ試料原液とした。
 また、この試料原液を限外ろ過し分子量1kDa以下の画分を採取した(Ultracel(登録商標) Amicon(登録商標) YM1やUltracel(登録商標)限外ろ過膜 PLAC04310を備えたStirred Cell Model 8050、メルク株式会社(ミリポア))ものを準備した。
(2)MTTアッセイによる細胞生存率の測定
 上記実施例5(1)で作製した試料原液に10%FBSとEagle's MEM用のアミノ酸、ビタミンの配合液及びグルコースをEagle's MEMの規定量加え、7.5%NaHCO3でpHを調整後、試験試料とした。この試験試料を、コントロール用の溶液(ハンクス平衡塩類溶液にEagle's MEM用の50倍濃度アミノ酸、100倍濃度ビタミンの配合液を添加したもの)で2倍の段階希釈を行ない、試験試料の段階希釈系列を作製した。また、試料原液から限外ろ過により分子量1kDa以下の画分を採取したものについても、同様に段階希釈系列を作製した。
 上記実施例2(2)に記載の方法に準じてMTTアッセイを行ない、HRC23の細胞生存率を測定した(n=3)。結果を図14及び15に示す。
 LLCに由来する試料においても、SKNに由来する試料においても、HRC23に由来する試料と同じように、HRC23に対する殺細胞活性を示した。LLCに由来する試料において、HRC23に対する殺細胞活性を示したことと、実施例4における結果(HRC23に由来する試料において、LLCに対する殺細胞活性を示したこと)を踏まえると、種を超えてのクロス反応が確認されたこととなる。また、SKNは稀な非上皮性悪性腫瘍細胞であり、SKNのような非上皮性悪性腫瘍細胞でも殺細胞活性を有する物質を産生していることが確認された。なお、SKNに由来する試料については、LLCに由来する試料やHRC23に由来する試料と比べて弱い殺細胞活性が観察されたが、これは、培養後のSKN細胞数がLLCやHRC23よりはるかに少なかったためと思われる。
[実施例6:種々の生理的緩衝塩類溶液を用いた場合の殺細胞活性の測定]
 上記実施例1(3)で作製した試料原液(HBSS-、Earle、PBS(+))に10%FBSとEagle's MEM用の50倍濃度アミノ酸、100倍濃度ビタミンの配合液及びグルコースをEagle's MEMの規定量加え、7.5%NaHCO3でpHを調整後、試験試料とした。この試験試料を、コントロール用の溶液(HBSS-、Earle又はPBS(+)にEagle's MEM用の50倍濃度アミノ酸、100倍濃度ビタミンの配合液を添加したもの)で2倍の段階希釈を行ない、試験試料の段階希釈系列を作製した。
 上記実施例2(2)に記載の方法に準じてMTTアッセイを行ない、HRC23の細胞生存率を測定した(n=3)。結果を図16に示す。
 HBSS-を用いた場合、Earleを用いた場合、PBS(+)を用いた場合のいずれにおいても、強度は異なるものの殺細胞活性が観察された。
[実施例7:細胞の培養状況が殺細胞活性に及ぼす影響の評価]
 通常の培養培地を用いた場合には、増殖期の細胞は増殖を継続するために、培養培地では細胞密度の異なる試験は困難であるが、栄養源を含まないハンクス平衡塩類溶液(グルコースフリー)を用いることにより、増殖期の段階での殺細胞活性を有する成分の産生を調べることが可能となった。
 25cm2の継代培養用フラスコにて、HRC23を異なった細胞数で藩種したものを準備し、10%FBS含有のEagle's MEMで培養した。使用したEagle's MEMは抗生剤及びフェノールレッドを含まない培地である。細胞数を多く藩種したフラスコにて、細胞の増殖がコンフルエントな状態に達するまで培養し、更に1日培養した。この時点で、細胞数を少なく藩種したフラスコでは、細胞の密度が継代に支障のない密度となっていたものの、まだ増殖期の状態であり、細胞密度はコンフルエントな状態に比べておよそ72%であった。細胞数を多く藩種した場合、細胞数を少なく藩種した場合のいずれにおいても、この時点で、抗生剤及びグルコースを含まないハンクス平衡塩類溶液で洗浄後、当該ハンクス平衡塩類溶液5mL/フラスコにて、37℃、5%CO2下でインキュベートした。HRC23の形態学的に細胞の死滅が観察された後、ハンクス平衡塩類溶液を回収し、1,500×gで10分間遠心分離して得られた上清を取り、この上清を0.1μmメンブレンフィルター(Millex(登録商標) VV、メルク株式会社(ミリポア))でろ過したものを試料原液とした。
 上記実施例2(2)に記載の方法に準じてMTTアッセイを行ない(25cm2の継代培養用フラスコにて)、HRC23の細胞生存率を測定した(n=3)。結果を図17に示す。
 細胞数を多く藩種した場合、細胞数を少なく藩種した場合のいずれにおいても、強度は異なるものの殺細胞活性が観察された。従って、増殖期の細胞であっても殺細胞活性を有する成分を産生することが示された。これにより、細胞の時期にかかわらず、細胞は意図的に殺細胞効果を有する成分の産生を行えることが示された。
[実施例8:LK-2に由来する試料におけるLK-2及びHRC23に対する殺細胞活性の測定]
(1)試料原液の作製
 材料となるLK-2は、継代と同様に10%FBS含有のRPMI1640(メルク株式会社(シグマ アルドリッチ ジャパン合同会社),R883)で培養した。LK-2を、フラスコ内で、細胞の増殖がフリーコンフルエント(fully confluent)な状態に達するまで培養した後、5mLの10%FBS含有RPMI1640で最終的に培地交換した。また、10%FBS含有RPMI1640で培地交換した前記の例とは別に、LK-2を、フラスコ内で、細胞の増殖がフリーコンフルエント(fully confluent)な状態に達するまで培養したものについて、抗生剤及びグルコースを含まないハンクス平衡塩類溶液30mLで4回洗浄後、当該ハンクス平衡塩類溶液5mLをフラスコに入れ、細胞を浸した。
 上記2種の培養液を37℃、5%CO2下でインキュベートし、LK-2の形態学的に細胞の死滅が観察されるまで培養した。その後、培地及びハンクス平衡塩類溶液をそれぞれ回収し、1,500×gで10分間遠心分離して得られた上清をそれぞれ取り、これらの上清を0.1μmメンブレンフィルター(Millex(登録商標) VV、メルク株式会社(ミリポア))でろ過したものをそれぞれ試料原液とした。また、ハンクス平衡塩類溶液を用いて得た試料原液を限外ろ過し分子量1kDa以下の画分を採取した(Ultracel(登録商標) Amicon(登録商標) YM1やUltracel(登録商標)限外ろ過膜 PLAC04310を備えたStirred Cell Model 8050、メルク株式会社(ミリポア))ものを準備した。
(2)試験試料の段階希釈系列の作製
 上記実施例8(1)で作製したそれぞれの試料原液に、RPMI1640用のアミノ酸(50倍濃縮)(メルク株式会社(シグマ アルドリッチ ジャパン合同会社),M5550)、ビタミン(100倍濃縮)(メルク株式会社(シグマ アルドリッチ ジャパン合同会社),R7256)の配合液を添加し、酢酸でpHを7.2~7.3に調整後、10%FBSと10%グルコースおよび200mMグルタミン0.1容を添加して、試験試料とした。この試験試料について、コントロール用の培地(10%FBS含有RPMI1640)で2倍の段階希釈を行ない、試験試料の段階希釈系列Aを作製した。また、試料原液から限外ろ過により分子量1kDa以下の画分を採取したものについても、同様に段階希釈系列A(<1kDa)を作製した。
 また、上記実施例8(1)で作製したそれぞれの試料原液に、Eagle's MEM用のアミノ酸(50倍濃縮)(上記と同じ)、ビタミン(100倍濃縮)(上記と同じ)の配合液を添加し、酢酸でpHを7.2~7.3に調整後、10%FBSと10%グルコースおよび200mMグルタミン0.1容を添加して、試験試料とした。この試験試料について、コントロール用の培地(10%FBS含有Eagle's MEM)で2倍の段階希釈を行ない、試験試料の段階希釈系列Bを作製した。また、試料原液から限外ろ過により分子量1kDa以下の画分を採取したものについても、同様に段階希釈系列B(<1kDa)を作製した。
(3)MTTアッセイによる細胞生存率の測定
 LK-2を、通常継代する希釈率で希釈を行ない96ウェルマイクロプレートへ分注し、37℃、5%CO2下で10%FBS含有のRPMI1640中で24時間培養した後、それぞれの培地を段階希釈系列Aの各希釈液170μLと交換した。段階希釈系列Aの各希釈液中で24時間培養後、各希釈液をそれと同じ希釈倍率の段階希釈系列Aの新鮮な各希釈液と交換し、更に24時間培養した。段階希釈系列A(<1kDa)を用いた場合についても、段階希釈系列Aを用いた場合と同様にLK-2の培養を行なった。
 上記実施例2(2)に記載の方法に準じてMTTアッセイを行ない、LK-2の細胞生存率を測定した(n=3)。結果を図18に示す。
 また、HRC23を、通常継代する希釈率で希釈を行ない96ウェルマイクロプレートへ分注し、37℃、5%CO2下で10%FBS含有のEagle's MEM中で24時間培養した後、それぞれの培地を段階希釈系列Bの各希釈液170μLと交換した。段階希釈系列Bの各希釈液中で24時間培養後、各希釈液をそれと同じ希釈倍率の段階希釈系列Bの新鮮な各希釈液と交換し、更に24時間培養した。段階希釈系列B(<1kDa)を用いた場合についても、段階希釈系列Bを用いた場合と同様にHRC23の培養を行なった。
 上記実施例2(2)に記載の方法に準じてMTTアッセイを行ない、HRC23の細胞生存率を測定した(n=3)。結果を図19に示す。
 LK-2に由来する試料は、LK-2及びHRC23に対する殺細胞活性を示した。また、RPMI1640で最終的に培地交換して得た試料原液に基づく試料と比べて、ハンクス平衡塩類溶液を用いて得た試料原液に基づく試料の方が、強い殺細胞活性を示した。これは、ハンクス平衡塩類溶液等の生理的緩衝塩類溶液を用いて、悪性腫瘍由来細胞から抽出される殺細胞活性を有する成分を取得することで、培養培地を用いて当該成分を取得するよりも、高い収率を達成可能であり得ること、又は目的とする殺細胞活性を有する成分の殺細胞活性を低減させずに当該成分の取得が可能であり得ることを示唆する。
[実施例9:マウスに対するin vivo殺細胞活性]
 4匹のマウス(C57BL/6NCrSIc、オス、5週齢)にLLCの懸濁液300μL(2×106細胞)を腹腔内接種し、LLCを移植した。1週間後、処置群として2匹のマウスに、原液換算1L分の、上記[4](2)で得た乾燥物を300μLのFBS無添加Eagle’s MEM中に溶解したものを1日1回、6日間腹腔内投与した。このような処置を行わなかった対照群の2匹は、LLCの移植後25日目に死亡したが、処置群については、LLCの移植後、1匹は35日目、もう1匹は48日目に死亡した。対照群と比較して、処置群には明らかな延命効果が認められた。なお、処置群において、副作用と思われる症状は認められなかった。

Claims (14)

  1.  殺細胞活性を有する組成物の製造方法であって、
     悪性腫瘍由来細胞を、少なくとも細胞の密度が継代に支障のない密度になるまで培養培地中で培養すること、
     前記培養後、前記培養培地を生理的緩衝塩類溶液と交換すること、及び
     前記生理的緩衝塩類溶液中で、前記悪性腫瘍由来細胞の形態学的に細胞の死滅が観察される時期後、前記生理的緩衝塩類溶液を回収すること
    を含む、前記方法。
  2.  前記生理的緩衝塩類溶液が、グルコースを含有しない、請求項1に記載の製造方法。
  3.  前記生理的緩衝塩類溶液が、ハンクス平衡塩類溶液、アール平衡塩類溶液及びリン酸緩衝生理食塩水からなる群から選択される、請求項1又は2に記載の製造方法。
  4.  前記回収した生理的緩衝塩類溶液のうちの分子量1kDa以下の画分を含む乾燥物を得ること、及び
     前記乾燥物を媒体中に溶解し、得られた溶液から塩類、核酸及びタンパク質を除去すること、
    を更に含む、請求項1~3のいずれか1項に記載の製造方法。
  5.  前記殺細胞活性を有する組成物が、前記悪性腫瘍由来細胞に由来する細胞抽出成分を含む、請求項1~4のいずれか1項に記載の製造方法。
  6.  悪性腫瘍由来細胞に由来する細胞抽出成分を調製する方法であって、
     悪性腫瘍由来細胞を、少なくとも細胞の密度が継代に支障のない密度になるまで培養培地中で培養すること、
     前記培養後、前記培養培地を生理的緩衝塩類溶液と交換すること、
     前記生理的緩衝塩類溶液中で、前記悪性腫瘍由来細胞の形態学的に細胞の死滅が観察される時期後、前記生理的緩衝塩類溶液を回収すること、
     前記回収した生理的緩衝塩類溶液のうちの分子量1kDa以下の画分を含む乾燥物を得ること、
     前記乾燥物を炭素数1~3のアルコールを含む溶媒を用いて抽出し、得られた溶液を乾燥すること、
     前記溶液の乾燥物を水中に溶解し、得られた水溶液中に非極性有機溶媒を添加して水層と有機層を形成させ、前記水層を抽出すること、及び
     前記水層から、前記悪性腫瘍由来細胞に由来する細胞抽出成分をクロマトグラフィーにより分離すること、
    を含み、前記細胞抽出成分が殺細胞活性を有する、前記方法。
  7.  前記クロマトグラフィーが、ゲルろ過クロマトグラフィー及び/又は陽イオン交換クロマトグラフィーを含む、請求項6に記載の調製方法。
  8.  前記悪性腫瘍由来細胞が、遺伝子操作されておらず、かつ培養液以外の生理活性物質を加えることなく培養されたものである、請求項1~7のいずれか1項に記載の製造方法又は調製方法。
  9.  請求項1~5及び8のいずれか1項に記載の製造方法により得られる、殺細胞活性を有する組成物。
  10.  請求項6又は7に記載の調製方法により得られる、悪性腫瘍由来細胞に由来する細胞抽出成分。
  11.  請求項1~5及び8のいずれか1項に記載の製造方法により得られる殺細胞活性を有する組成物を含有する、がん治療用医薬組成物。
  12.  請求項6又は7に記載の調製方法により得られる悪性腫瘍由来細胞に由来する細胞抽出成分を有効成分として含有する、がん治療用医薬組成物。
  13.  請求項1~5及び8のいずれか1項に記載の製造方法により得られる殺細胞活性を有する組成物の、がんを治療するための医薬の製造のための使用。
  14.  請求項6又は7に記載の調製方法により得られる悪性腫瘍由来細胞に由来する細胞抽出成分の、がんを治療するための医薬の製造のための使用。
PCT/JP2018/037430 2017-10-05 2018-10-05 殺細胞活性を有する細胞抽出成分又は組成物の調製方法 WO2019070069A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
AU2018344749A AU2018344749B2 (en) 2017-10-05 2018-10-05 Method for preparing cell extract component or composition exhibiting cytocidal activity
CN201880065351.7A CN111201320B (zh) 2017-10-05 2018-10-05 具有细胞杀伤活性的细胞提取物成分或组合物的制备方法
CA3078175A CA3078175C (en) 2017-10-05 2018-10-05 Method for preparing cell extract component or composition having cytocidal activity
EP22180424.8A EP4086354B1 (en) 2017-10-05 2018-10-05 Method for preparing cell extract component or composition having cytocidal activity
EP18865032.9A EP3693467B1 (en) 2017-10-05 2018-10-05 Method for preparing cell extract component or composition exhibiting cytocidal activity
US16/651,330 US11318162B2 (en) 2017-10-05 2018-10-05 Method for preparing cell extract component or composition having cytocidal activity
KR1020207010665A KR102483786B1 (ko) 2017-10-05 2018-10-05 살세포 활성을 가지는 세포 추출 성분 또는 조성물의 조제 방법
JP2019547038A JP6673558B2 (ja) 2017-10-05 2018-10-05 殺細胞活性を有する細胞抽出成分又は組成物の調製方法
IL273738A IL273738B2 (en) 2017-10-05 2018-10-05 A method for preparing an ingredient or composition of a cell extract that has cell-killing activity
US17/470,697 US11963978B2 (en) 2017-10-05 2021-09-09 Method for preparing cell extract component or composition having cytocidal activity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-194988 2017-10-05
JP2017194988 2017-10-05

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/651,330 A-371-Of-International US11318162B2 (en) 2017-10-05 2018-10-05 Method for preparing cell extract component or composition having cytocidal activity
US17/470,697 Continuation US11963978B2 (en) 2017-10-05 2021-09-09 Method for preparing cell extract component or composition having cytocidal activity

Publications (1)

Publication Number Publication Date
WO2019070069A1 true WO2019070069A1 (ja) 2019-04-11

Family

ID=65995156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037430 WO2019070069A1 (ja) 2017-10-05 2018-10-05 殺細胞活性を有する細胞抽出成分又は組成物の調製方法

Country Status (9)

Country Link
US (2) US11318162B2 (ja)
EP (2) EP4086354B1 (ja)
JP (2) JP6673558B2 (ja)
KR (1) KR102483786B1 (ja)
CN (1) CN111201320B (ja)
AU (1) AU2018344749B2 (ja)
CA (1) CA3078175C (ja)
IL (1) IL273738B2 (ja)
WO (1) WO2019070069A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4086354A1 (en) 2017-10-05 2022-11-09 Medical Corporation Ichikawa Clinic Method for preparing cell extract component or composition having cytocidal activity

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933223A (ja) 1982-08-20 1984-02-23 Koken Kk 人の悪性腫瘍細胞増殖抑制剤
JPS59204122A (ja) * 1983-05-06 1984-11-19 Koken Kk 人の悪性腫瘍細胞増殖抑制剤の製造方法
JPS6028930A (ja) * 1983-07-28 1985-02-14 Koken Kk 人の癌由来細胞の増殖抑制剤の精製方法
JPS6028931A (ja) * 1983-07-28 1985-02-14 Koken Kk ヒト腎細胞癌由来樹立株細胞の増殖抑制剤の濃縮方法
JPS6043386A (ja) * 1983-08-20 1985-03-07 Koken Kk ヒト腎細胞癌由来樹立株細胞の増殖抑制剤の製造方法
JPH01265029A (ja) * 1988-04-15 1989-10-23 Koken Kk 人の悪性腫瘍細胞増殖抑制剤

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124520A (ja) * 1984-07-12 1986-02-03 Takeshi Makitsubo 腫瘍壊死因子様物質を抽出する方法
JP2788987B2 (ja) * 1988-08-31 1998-08-20 協同乳業株式会社 免疫賦活作用を有する粗糖蛋白質画分及びその製造法
CN101081225A (zh) * 2006-05-31 2007-12-05 房静远 一种通过调节表观遗传修饰防治胃肠肿瘤的药物组合物
AU2008202078B2 (en) * 2007-10-10 2012-05-31 Wellkey Holdings Limited Stability of secondary metabolite mass production through synchronized plant cell cultures
CN103340903A (zh) * 2013-06-14 2013-10-09 浙江大学 一种肿瘤外切酶体疫苗的提取方法及其应用
CN104324022A (zh) * 2014-10-30 2015-02-04 北京大学 一种治疗和/或预防肿瘤的药物
CN107151645A (zh) * 2017-05-16 2017-09-12 武汉大学深圳研究院 一种为肺癌提供离体个体化药物测试的方法及培养基
CN111201320B (zh) 2017-10-05 2023-09-01 医疗法人社团市川诊所 具有细胞杀伤活性的细胞提取物成分或组合物的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933223A (ja) 1982-08-20 1984-02-23 Koken Kk 人の悪性腫瘍細胞増殖抑制剤
JPS59204122A (ja) * 1983-05-06 1984-11-19 Koken Kk 人の悪性腫瘍細胞増殖抑制剤の製造方法
JPS6028930A (ja) * 1983-07-28 1985-02-14 Koken Kk 人の癌由来細胞の増殖抑制剤の精製方法
JPS6028931A (ja) * 1983-07-28 1985-02-14 Koken Kk ヒト腎細胞癌由来樹立株細胞の増殖抑制剤の濃縮方法
JPS6043386A (ja) * 1983-08-20 1985-03-07 Koken Kk ヒト腎細胞癌由来樹立株細胞の増殖抑制剤の製造方法
JPH01265029A (ja) * 1988-04-15 1989-10-23 Koken Kk 人の悪性腫瘍細胞増殖抑制剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BERTRAM JSJANIK P., CANCER LETT., vol. 11, no. 1, November 1980 (1980-11-01), pages 63 - 73

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4086354A1 (en) 2017-10-05 2022-11-09 Medical Corporation Ichikawa Clinic Method for preparing cell extract component or composition having cytocidal activity

Also Published As

Publication number Publication date
IL273738B1 (en) 2023-10-01
IL273738A (en) 2020-05-31
CN111201320B (zh) 2023-09-01
US11963978B2 (en) 2024-04-23
KR102483786B1 (ko) 2022-12-30
IL273738B2 (en) 2024-02-01
US20200222458A1 (en) 2020-07-16
CN111201320A (zh) 2020-05-26
AU2018344749A1 (en) 2020-04-16
EP3693467A1 (en) 2020-08-12
EP3693467B1 (en) 2022-08-03
JPWO2019070069A1 (ja) 2020-02-06
CA3078175A1 (en) 2019-04-11
JP2020096631A (ja) 2020-06-25
EP4086354B1 (en) 2024-05-01
CA3078175C (en) 2023-06-20
JP6861305B2 (ja) 2021-04-21
US20210401882A1 (en) 2021-12-30
EP3693467A4 (en) 2020-11-04
JP6673558B2 (ja) 2020-03-25
KR20200044127A (ko) 2020-04-28
US11318162B2 (en) 2022-05-03
EP4086354A1 (en) 2022-11-09
AU2018344749B2 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
US9950021B2 (en) Anti-cancer active substance from Antrodia camphorata, method for preparing the same and use thereof
Wei et al. Sea cucumber intestinal peptide induces the apoptosis of MCF-7 cells by inhibiting PI3K/AKT pathway
Katsuzaki et al. Cyanidin 3-O-β-D-glucoside isolated from skin of black Glycine max and other anthocyanins isolated from skin of red grape induce apoptosis in human lymphoid leukemia Molt 4B cells
US10920248B2 (en) Method for mass-producing viniferin using stevioside from cell culture of grapevine tissue
JP6861305B2 (ja) 殺細胞活性を有する細胞抽出成分又は組成物の調製方法
CN110218200B (zh) 一种红树内生真菌中环缩肽化合物及其制备方法与应用
Wang et al. HPLC-ESI-MS analysis of flavonoids obtained from tissue culture of Dracaena cambodiana
Corradi et al. Metabolite profile and antiproliferative effects in HaCaT cells of a Salix reticulata extract
Lee et al. Resveratrol production from hairy root cultures of Scutellaria baicalensis
JP2017074047A (ja) リグナン系化合物を含む食品組成物
KR20220158320A (ko) 약물전달물질로서의 위암 특이적 표적 엑소좀 조성물 및 이의 용도
CN115554340B (zh) 一种协同化疗药物治疗肝癌的牡丹籽粕提取物及其制备方法与应用
Lin et al. Study on some bioactivities of Sular-Na-Phar (Oldenlandia corymbosa L.) plant
Chatnarin et al. Potential of β-D-glucan polysaccharide from Ophiocordyceps sinensis OS8 cultivated mycelium on anticancer activity via inducing liver cancer cell death apoptosis
Arroyo-Cruz et al. Selective Antineoplastic Potential of Fractionated Caribbean Native Ganoderma Species Extracts on Triple-Negative Breast Cancer Cells
CN105218552B (zh) 一种取代苯基二氢吲哚咔唑衍生物及其制备方法与应用
KR20220133456A (ko) 발효해삼 추출물 및 발효흑삼 추출물의 복합소재를 제조하는 방법
EP0909822A1 (en) Novel antitumor compounds and process for producing the same
CN116333054A (zh) 从海绵中提取的环肽类化合物及其制备方法与应用
CN101863897B (zh) 螺环类化合物及其制备方法和用途
BR102018067418A2 (pt) Composição farmacêutica, processo de obtenção e uso de metabólitos secundários produzido pelo fungo exserohilum rostratum na regeneração celular e tecidual
Li et al. Isolation, Identification, Phytochemical Characterization, and In Vitro Anti‐Inflammatory Property of an Endophytic Trametes versicolor CL‐1 Isolated from Rosa roxburghii

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18865032

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019547038

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3078175

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207010665

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018344749

Country of ref document: AU

Date of ref document: 20181005

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018865032

Country of ref document: EP

Effective date: 20200506