WO2019069570A1 - 炭素フォーム、積層炭素フォーム、及び積層炭素フォームの製造方法 - Google Patents
炭素フォーム、積層炭素フォーム、及び積層炭素フォームの製造方法 Download PDFInfo
- Publication number
- WO2019069570A1 WO2019069570A1 PCT/JP2018/030845 JP2018030845W WO2019069570A1 WO 2019069570 A1 WO2019069570 A1 WO 2019069570A1 JP 2018030845 W JP2018030845 W JP 2018030845W WO 2019069570 A1 WO2019069570 A1 WO 2019069570A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon foam
- foam
- carbon
- laminated
- less
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/663—Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/0022—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B18/00—Layered products essentially comprising ceramics, e.g. refractory products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/05—Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/52—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
- C04B35/524—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from polymer precursors, e.g. glass-like carbon material
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/665—Composites
- H01M4/667—Composites in the form of layers, e.g. coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
- H01M4/80—Porous plates, e.g. sintered carriers
- H01M4/808—Foamed, spongy materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/18—Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
- H01M8/184—Regeneration by electrochemical means
- H01M8/188—Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00612—Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00844—Uses not provided for elsewhere in C04B2111/00 for electronic applications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00853—Uses not provided for elsewhere in C04B2111/00 in electrochemical cells or batteries, e.g. fuel cells
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/48—Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5264—Fibers characterised by the diameter of the fibers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5268—Orientation of the fibers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6581—Total pressure below 1 atmosphere, e.g. vacuum
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6583—Oxygen containing atmosphere, e.g. with changing oxygen pressures
- C04B2235/6584—Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6586—Processes characterised by the flow of gas
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/661—Multi-step sintering
- C04B2235/662—Annealing after sintering
- C04B2235/663—Oxidative annealing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/72—Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
- C04B2235/723—Oxygen content
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/36—Non-oxidic
- C04B2237/363—Carbon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/56—Using constraining layers before or during sintering
- C04B2237/568—Using constraining layers before or during sintering made of non-oxide ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/62—Forming laminates or joined articles comprising holes, channels or other types of openings
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/70—Forming laminates or joined articles comprising layers of a specific, unusual thickness
- C04B2237/704—Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/86—Joining of two substrates at their largest surfaces, one surface being complete joined and covered, the other surface not, e.g. a small plate joined at it's largest surface on top of a larger plate
Definitions
- the present invention relates to carbon foams, laminated carbon foams, and methods of making laminated carbon foams.
- Carbon foam is, for example, a material obtained by heat-treating and carbonizing melamine resin foam (foam) in an inert gas atmosphere (see, for example, Patent Document 1), and its porosity, flexibility and electrical properties It is used in various applications depending on the characteristics.
- This carbon foam has a large difference from a general carbon fiber non-woven fabric in that it has an integral structure in which all of the fibers are connected because the fiber diameter is narrow and the specific surface area is wide.
- Patent Document 2 describes the use of carbon foam as a filter used under special conditions such as high temperature or drug use.
- Patent Document 3 describes that carbon foam is used as a heat insulating material having high heat insulation even at high temperatures.
- Patent Document 4 describes the use of carbon foam as an electrode having high electrical activity and conductivity.
- an object of the present invention is to provide a thin film carbon foam and a method for producing the same.
- Another object of the present invention is to provide a laminated carbon foam having a small number of through holes and a method of manufacturing the same.
- Patent Document 2 describes a case where a foamed melamine resin foam is impregnated with a thermosetting resin and compressed up to 10 times.
- thinning by this method has a limit on compression ratio, and if compression is performed at a certain level or more, it causes breakage of the internal structure, so it is difficult to make the thickness at a certain level or less.
- Another possible method is to use a thin film material.
- the problem with this method is that penetration defects occur in the resin foam of the raw material, the carbon fiber sheet is easily broken, and the handling property is significantly reduced.
- fine pores of various diameters are randomly opened by foaming, for example, many pores with a diameter of about 1 to 3 mm are observed in melamine resin foam, and a diameter of about 5 mm in a large pore. Holes can also be seen. Therefore, when the material is thinned to a thickness of 2 to 3 mm, a completely penetrating defect (through hole) can be observed, and in the case of a material having a thickness of 1 mm or less, a penetrating defect can be confirmed everywhere.
- the present inventors clarified that this penetration defect is a starting point and adversely affects physical properties after carbonization. Therefore, the present inventors completed a thin sheet of sheet-like carbon foam with high handling properties by using a thin film of foamed resin foam with very few penetration defects.
- the inventors of the present invention have intensively studied a method for remarkably reducing penetration defects of the raw material foam resin foam. As a result, it has been found that random penetration defects can be mutually compensated by stacking two or more thin film raw materials in which penetration defects exist randomly, and the present invention has been completed.
- a laminated carbon foam characterized in that it is a laminated body in which at least two layers of a single layer carbon foam having a linear portion and a bonding portion for bonding the linear portion are laminated.
- a through hole penetrating the laminated carbon foam, in the contact surface of two adjacent single-layered carbon foams, one of the single-layer carbon foams in the contact surface The laminated carbon foam of [1], wherein there is a through hole in which the outer end of the through hole and the outer end of the through hole of the other single-layer carbon foam in the contact surface are offset.
- the cross section in the thickness direction of the laminated carbon foam is a hole which does not penetrate the laminated carbon foam, and in the two adjacent single-layered carbon foams, the one-layered carbon foam from the one single-layer carbon foam surface
- the laminated carbon foam of any one of the above [1] to [3] may satisfy the requirements described in the following [4] to [10]. [4] What is claimed is: 1.
- a carbon foam having a linear portion and a bonding portion for bonding the linear portion comprising A carbon foam characterized in that the ratio of the number of large through holes having a diameter of 1 mm or more to the surface area of the carbon foam is 0.0003 pieces / mm 2 or less.
- the carbon foam of [4] wherein the thickness of the carbon foam is 0.01 mm or more and 5.0 mm or less.
- the carbon foam of [4], wherein the thickness of the carbon foam is 0.01 mm or more and 0.5 mm or less.
- the carbon foam has an area of 60 mm ⁇ 60 mm or more in which the ratio of the number of large through holes having a diameter of 1 mm or more to the surface area of the carbon foam is 0.0003 / mm 2 or less, [4] to [6] Any carbon form.
- the carbon foam has a region of 100 mm ⁇ 100 mm or more in which the ratio of the number of large through holes having a diameter of 1 mm or more to the surface area of the carbon foam is 0.0003 / mm 2 or less [4] Any carbon foam.
- the carbon foam has a region of 200 mm ⁇ 200 mm or more in which the ratio of the number of large through holes with a diameter of 1 mm or more to the surface area of the carbon foam is 0.0003 / mm 2 or less [4] Any carbon foam.
- the carbon foam has a thickness of 0.01 mm or more and 0.5 mm or less, and the carbon foam has a ratio of the number of large through holes having a diameter of 1 mm or more to the surface area of the carbon foam is 0.0003 / mm 2.
- the carbon foam according to any one of [4] to [6], having an area of 60 mm ⁇ 60 mm or more, which is as follows.
- the carbon foam of any of the above [4] to [10] may satisfy the requirements described in the above [1] to [3].
- [11] The laminated carbon foam or carbon foam according to any one of [1] to [10], wherein the ratio of the number of linear parts to the number of bonding parts is 1.2 or more and 1.7 or less.
- [12] [11] The laminated carbon foam or carbon foam according to [11], wherein the ratio of the number of the linear parts to the number of the bonding parts is 1.4 or more and 1.6 or less.
- the thickness direction of the carbon foam be the x direction
- the direction perpendicular to the x direction be the y direction
- the x direction and the direction perpendicular to the y direction be the z direction
- the average value of the orientation angle with respect to the x direction of the linear portion included in the region of 300 ⁇ m ⁇ 300 ⁇ m ⁇ 300 ⁇ m is ⁇ avex
- the average value of the orientation angle with respect to the y direction is ⁇ avey
- the average value of the orientation angle with respect to the z direction is ⁇ avez
- the Shitaavex, the Shitaavey, difference theta c between the maximum value and the minimum value among the ⁇ avez is 3 ° or more
- [14] The laminated carbon foam or carbon foam according to any one of [1] to [13], including a region in which the density of the bonding portion is 15,000 pieces / mm 3 or more.
- [15] The laminated carbon foam or carbon foam according to any one of [1] to [14], wherein the proportion of oxygen atoms measured by surface analysis by fluorescent X-ray analysis is 0.03% by mass to 10% by mass.
- [16] The laminated carbon foam or carbon foam according to any one of [1] to [15], which has a carbon content of 51% by mass or more.
- the laminated carbon foam or carbon foam according to any one of [1] to [16] which is in the form of a sheet.
- An electrode for a redox flow battery comprising the laminated carbon foam or carbon foam according to any one of [1] to [17].
- Manufacturing a laminated carbon foam which is a laminate of a first single-layer carbon foam having the first and second single-layer carbon foams having a linear portion and a bonding portion connecting the linear portions.
- a method of making a laminated carbon foam characterized in that it comprises:
- the laminated carbon foam obtained in the above [19] may satisfy the requirements described in the above [1] to [18].
- a first single-layer carbon foam having a linear portion and a bonding portion for bonding the linear portion, and a second single-layer carbon foam having a linear portion and a bonding portion for bonding the linear portion are laminated.
- a thin film carbon foam and a method for producing the same can be provided.
- FIG. 1 is a schematic view showing an example of a cross section in the thickness direction of the laminated carbon foam of the present embodiment.
- FIG. 2 is schematic which shows an example of the cross section of the thickness direction of the laminated carbon foam of this embodiment.
- FIG. 3 is a SEM image of interrupted holes in the laminated carbon foam of the present embodiment.
- FIG. 4 is a SEM image of a cross section in the thickness direction of the interrupted hole of the laminated carbon foam of the present embodiment.
- FIG. 5 is a SEM image of the through holes of the carbon foam of the present embodiment.
- 1 is an X-ray CT analysis image obtained from the carbon foam of Example 1.
- FIG. It is the image which changed the angle of FIG. It is the image after the image processing which performed the line of the image of FIG. 6, and node detection.
- the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail, but the present invention is not limited to the following description, and within the scope of the gist thereof Various modifications are possible.
- the carbon foam of the present embodiment is a carbon foam having a linear portion (carbon fiber) and a bonding portion for bonding the linear portion.
- a laminated carbon foam, or a linear portion and the linear portion which is a laminate in which at least two single-layer carbon foams having a linear portion and a joint portion coupling the linear portion are laminated.
- a bonding portion for bonding wherein the ratio of the number of large through holes having a diameter of 1 mm or more to the surface area of the carbon foam is 0.0003 / mm 2 or less.
- the carbon foam according to the present embodiment is a carbon foam having a linear portion and a bonding portion that bonds the linear portion.
- the carbon foam is preferably in the form of a sheet.
- the carbon foam may be a single-layer carbon foam composed of one layer of carbon foam, or may be a laminated carbon foam composed of two or more layers of single-layer carbon foam. In addition, another layer may be provided between the surface layer and each layer.
- the laminated carbon foam may be a laminate of the same carbon foam, or may be a laminate of different carbon foams.
- the laminated carbon foam may be a laminate of a single-layer carbon foam having a linear portion and a bonding portion for bonding the linear portion, or a bonding portion for bonding a linear portion and the linear portion. May be a laminate of sheet-like single-layer carbon foam having a sheet-like single-layer or multi-layer carbon foam having a linear part and a bonding part for bonding the linear part and another carbon foam It may be a laminate of
- the ratio of the number of large through holes having a diameter of 1 mm or more to the surface area of carbon foam is 0.0003 / mm 2 than sheet-shaped carbon foam (preferably less, 1.0mm or less is 0.01mm or more thickness, the ratio of the number of large through-hole diameter of at least 1mm to the surface area of the carbon foam is 0.0003 pieces / mm Sheet-like carbon foam having a size of 2 or less (sometimes referred to as “carbon foam I” in the present specification), (ii) a first linear part and a joint part for connecting the linear part A laminated carbon foam which is a laminate of a carbon foam, a linear part and a second carbon foam having a bonding part for bonding the linear parts, the cross section in the thickness direction of the laminated carbon foam being the above-mentioned Laminated carbon foam In the contact surface between the first carbon foam and the second carbon foam, the outer end of the through hole of the first carbon foam
- a laminated carbon foam preferably, a sheet-like laminated carbon foam (sometimes referred to as “carbon foam III” in the present specification) or the like in which there are holes that do not penetrate the laminated carbon foam that breaks at the contact surface
- the "through hole” refers to a hole connected from one surface to the other surface in the thickness direction of the carbon foam, and a through hole having a diameter of 1 mm or more is referred to as a "large through hole”.
- the large through hole means a through hole derived from a raw material foam or a through hole generated in a carbonization manufacturing process, and does not include a through hole generated by processing a carbon foam with a blade type or the like later.
- "pore” refers to a hole which does not penetrate carbon foam, and examples thereof include depressions on the surface, air bubbles in carbon foam, and interrupted holes described later.
- the thickness of the carbon foam according to the present embodiment is preferably 0. from the viewpoint of ensuring contact at the interface between the electrode and the current collector when used as an electrode.
- 01 mm or more is preferable, 0.05 mm or more is more preferable, 0.1 mm or more is more preferable.
- 5.0 mm or less is preferable, 3.0 mm or less is preferable, 1.0 mm or less is preferable, 0.7 mm or less is more preferable, and 0.6 mm or less is more
- 0.5 mm or less is more preferable.
- the ratio of the number of large through holes having a diameter of 1 mm or more to the surface area of the carbon foam of the carbon foam according to the present embodiment is 0.0003 / mm 2 or less And more preferably 0.0002 particles / mm 2 or less, and still more preferably 0.0001 particles / mm 2 or less.
- the ratio of the number of large through holes refers to the ratio of the number of large through holes present on the surface of the carbon foam to the total surface area of one surface of the carbon foam.
- the number of large through holes having a diameter of 1 mm or more within the range of 100 mm ⁇ 100 mm is preferably 3 or less, more preferably 2 or less, still more preferably 1 It is less than one.
- the lower limit of the number of large through holes having a diameter of 1 mm or more within the surface 100 mm ⁇ 100 mm is not particularly limited, but may be 0 or 1 or more.
- the ratio of the number of large through holes having a diameter of 1 mm or more to the surface area of the carbon foam is 0.0003 / mm 2 or less It is preferable to have a region of 60 mm ⁇ 60 mm or more (preferably a region of 60 mm ⁇ 60 mm), more preferably a region of 80 mm ⁇ 80 mm or more (preferably 80 mm ⁇ 80 mm), a region of 100 mm ⁇ 100 mm or more It is more preferable to have (a region of preferably 100 mm ⁇ 100 mm), and it is more preferable to have a region of 200 mm ⁇ 200 mm or more (preferably a region of 200 mm ⁇ 200 mm).
- the upper limit is not particularly limited, but an area of 1000 mm ⁇ 1000 mm or less (preferably 1000 mm ⁇ 1000 mm) in which the ratio of the number of large through holes having a diameter of 1 mm or more to the surface area of carbon foam is 0.0003 / mm 2 or less. It is preferable to have an area of 800 mm ⁇ 800 mm or less (preferably 800 mm ⁇ 800 mm), and preferably an area of 500 mm ⁇ 500 mm or less (preferably 500 mm ⁇ 500 mm). When the number of the large through holes having a diameter of 1 mm or more is in the above range, the carbon foam is less likely to be broken when the carbon foam is handled, and the handling property is improved.
- the diameter of the through hole can be evaluated by inspection or inspection using an inspection apparatus (for example, a pinhole inspection machine) equipped with a light source and a light detector. Specifically, a light source is disposed on one surface S side of the carbon foam, and a light detector is disposed on the other surface opposite to the surface. Then, light is emitted from the light source toward one surface S of the carbon foam. If there is a through hole in the carbon foam, the irradiated light passes through the through hole to reach the light detector. Thus, the through holes can be detected. The arrangement of the light source and the light detector may be reversed. The measurement of the diameter of the through hole can be measured using a microscope or an electron microscope.
- the “diameter” is a line segment (may pass through the outside of the shape) connecting two points on the outer periphery of the shape formed by the light reaching the light detector, The length of the line segment that maximizes the length.
- the diagonal is a diameter
- the major axis is a diameter.
- the area of the large through holes is preferably 10 mm 2 or more, more preferably 4 mm 2 or more.
- the area of the large through hole can be measured using an inspection device, a microscope or the like in the same manner as the above diameter.
- the shape of the through hole (for example, the shape of the through hole on the surface of the carbon foam, the shape formed by the light reaching the light detector, etc.) is not limited, and a crack or linear one is included in the through hole.
- the laminated carbon foam of the present embodiment is a through hole penetrating the laminated carbon foam in a cross section in the thickness direction of the laminated carbon foam, A through hole in which the outer end of the through hole of one carbon foam in the contact surface is offset from the outer end of the through hole of the other carbon foam in the contact surface at the contact surface of the carbon foam of the layer (simply It is preferred that there be “a through hole” which is The presence of the misaligned through holes makes it more difficult for the carbon foam to break as triggered by the through holes.
- the through holes will be specifically described with reference to FIG. FIG.
- the through hole 71 is a non-shifted through hole in which the outer end 2 a of the through hole 71 of one carbon foam 2 in the contact surface 4 and the outer end 3 a of the through hole 71 of the other carbon foam 3 face each other It is.
- the outer end 2a of the through hole of one carbon foam 2 and the outer end 3a of the through hole of the other carbon foam 3 are deviated at both ends in the contact surface 4.
- the outer end 2a and the outer end 3a face each other at one outer end and are in contact with each other, and the outer end 2a and the outer end 3a are shifted at one outer end.
- the offset through hole means a through hole including the contact surface 4 in at least a part of the outer edge of the through hole in the cross section of the laminated carbon foam, and the outer end 2a and the outer end 3a are at least one outer end Examples thereof include misaligned through holes (for example, misaligned through holes 51, 52, etc.) and the like. Above all, it is preferable that the shifted through holes are through holes in which the outer end 2a and the outer end 3a are shifted at both outer ends.
- the offset through holes may be present in any cross section of the laminated carbon foam of the present embodiment.
- the offset through holes mean through holes offset at at least one contact surface included in the multilayer carbon foam, and offset at all contact surfaces. It is preferable that it is a through hole.
- the ratio of the number of through holes deviated to the number of all through holes is preferably 5% or more Is preferably 30% or more, more preferably 60% or more.
- the upper limit is not particularly limited, but may be 100% or less, and may be 95% or less.
- breakage of the carbon foam becomes even less likely to occur.
- the ratio of the number of deviated through holes to the number of all large through holes is in the above range.
- the above ratio of the number of through holes deviates means the ratio measured by analyzing 100 arbitrary through holes, and if the number of through holes is less than 100, the entire through holes are analyzed and measured. Say the rate at which
- the laminated carbon foam of the present embodiment is a hole which does not penetrate the laminated carbon foam in the cross section in the thickness direction of the laminated carbon foam, and adjacent two layers.
- a hole (sometimes referred to simply as a "broken hole") which is connected from the surface of one carbon foam to the contact surface of the one carbon foam and the other carbon foam and breaks at the contact surface. Is preferred. If there are broken holes, the proportion of shifted through holes will increase, and breakage of the carbon foam triggered by the through holes will be even less likely to occur.
- the interrupted holes will be specifically described with reference to FIG. FIG.
- the cut holes 61 are holes which are connected from the surface of one carbon foam 2 to the contact surface 4 and cut off at the contact surface 4.
- the broken holes 62 are connected from the surface of one carbon foam 2 to the contact surface 4, a part is broken at the contact surface 4 and a part is recessed in the other carbon foam 3, and one carbon foam at the contact surface 4
- the outer end 2b of the hole 2 and the outer end 3b of the hole of the other carbon foam 3 are holes that are offset at both ends.
- the discontinuous holes 63 are holes in which the outer end 2b of one hole and the outer end 3b of the other hole face each other at one outer end and are shifted at the other outer end in the contact surface 4 .
- the interrupted holes 64 are holes connected to the depression of the other carbon foam 3 larger than the holes connected from the surface of one carbon foam 2 to the contact surface 4 at the contact surface 4.
- the above-mentioned discontinuous hole means a non-penetrating hole in which at least a part of the outer edge of the hole includes the contact surface 4 in the cross section of the laminated carbon foam.
- the said interrupted hole means the hole interrupted at the at least 1 contact surface contained in laminated carbon foam.
- the ratio R of the number N 1 of linear parts to the number N n of joints is 1.2 or more and 1.7 or less Is preferred.
- the ratio R (N 1 / N n ) is, in other words, the average number of branches branched at the junction. In the case of a structure in which the linear portions do not have a three-dimensional network structure bonded at the bonding portion and the linear portions that are not bonded are in contact as in a non-woven fabric, this R is a small value.
- this R is a large value.
- the ratio R is more preferably 1.4 or more and 1.65 or less, still more preferably 1.4 or more and 1.6 or less, still more preferably 1.42 or more and 1.60 or less, still more preferably 1.44 or more and 1.58 Hereinafter, particularly preferably 1.45 or more and 1.55 or less.
- the diameter d of the carbon fiber constituting the carbon foam is preferably 0.1 ⁇ m or more and 10.0 ⁇ m or less.
- the diameter of the carbon fiber refers to the thickness of the linear portion connecting the bonding portions. Physical strength and conductivity can be secured when the diameter of the carbon fiber is 0.1 ⁇ m or more, more preferably 1.0 ⁇ m or more, still more preferably 1.5 ⁇ m or more, and particularly preferably 2 ⁇ m or more .
- the diameter of the carbon fiber is 10.0 ⁇ m or less, deformability and restorability at the time of compression behavior can be ensured, more preferably 5.0 ⁇ m or less, still more preferably 4 ⁇ m or less, particularly preferably 3.5 ⁇ m It is below.
- the diameter d of the linear portion (carbon fiber) constituting the carbon foam is determined by image analysis of a scanning electron microscope (SEM) image. Specifically, the carbon foam is observed at a magnification of 10,000 using a scanning electron microscope. From the obtained observation image, the thickness of the linear portion (carbon fiber) is randomly measured at 20 points. Assuming that the cross-sectional shape is circular, this average thickness is taken as the diameter d.
- SEM scanning electron microscope
- the carbon fibers constituting the skeleton of the carbon foam have an isotropic structure in which the carbon fibers are uniformly spread in all directions.
- the average value of the orientation angle with respect to the x direction of the linear portions included in the 300 ⁇ m ⁇ 300 ⁇ m ⁇ 300 ⁇ m region is ⁇ ave x
- the average value of the orientation angle with respect to the y direction is ⁇ ave y
- the difference ⁇ c between the maximum value and the minimum value of ⁇ ave x, ⁇ ave y, and ⁇ ave z is usually 1 ° or less in many cases.
- the thickness direction of carbon foam is the x direction
- the direction perpendicular to the x direction is the y direction
- the x direction and the direction perpendicular to the y direction are the z direction.
- the average value of the orientation angles with respect to each of the three directions orthogonal to each other of the linear portions is the average value of the orientation angles with respect to one direction
- the difference theta c and at least one of the mean value of the orientation angle with respect to the other direction is 3 ° or more (is anisotropic) is preferred.
- the difference theta c is preferably 5 ° or more, more preferably 8 ° or more, particularly preferably 10 ° or more. Further, the above difference theta c in terms of the flexibility of the carbon foam, preferably 35 ° or less, more preferably 25 ° or less, further preferably 20 ° or less. Conversely, when the difference theta c falls below 3 °, it increases the isotropic orientation, the carbon fibers when a compressive load is applied falls ruptured, so-called dusting occurs substantial amount.
- the average value of the orientation angle with respect to the x direction of the linear portion included in the 300 ⁇ m ⁇ 300 ⁇ m ⁇ 300 ⁇ m region in the carbon foam of the present embodiment is ⁇ ave x
- the carbon foam has the second maximum value among ⁇ ave x, ⁇ ave y, and ⁇ ave z. preferably includes a region difference theta d of a large value is 3 ° or more.
- the difference ⁇ d between the maximum value and the second largest value among ⁇ ave x, ⁇ ave y, and ⁇ ave z is more preferably 5 ° or more, still more preferably 8 ° or more, and particularly preferably 10 ° or more It is.
- the upper limit of the difference between the maximum value and the second largest value among ⁇ ave x, ⁇ ave y, and ⁇ ave z is not particularly limited, but is preferably 35 ° or less, more preferably from the viewpoint of the flexibility of carbon foam Is 25 ° or less, more preferably 20 ° or less.
- the difference between the maximum value of ⁇ ave x, ⁇ ave y, and ⁇ ave z and the remaining two is preferably 3 ° or more, more preferably 5 ° or more, and still more preferably 8 ° or more. And particularly preferably 10 ° or more.
- An area of 300 ⁇ m in length ⁇ 300 ⁇ m in width ⁇ 300 ⁇ m in height satisfying the above ⁇ ave x, ⁇ ave y, and ⁇ ave z may be included in the carbon foam.
- the number N n, the number N l of the linear portion of the coupling portion, the density and orientation angle ⁇ of the coupling portion, photographing a carbon foam with a X-ray CT (Computerized Tomography) apparatus After using Median filter as pre-processing from the obtained tomographic image data, Otsu's binarization algorithm (Otsu Toruyuki, "Automatic threshold selection method based on discrimination and least squares criterion", Electronic information communication Domain division into structure and space using the Journal of Academic Journal D, Vol. J 63-D, No. 4, pp. 346-356 (1980) to create a three-dimensional image of the structure including the inside of carbon foam And the value obtained using structural analysis software from the obtained three-dimensional image.
- Otsu Toruyuki Automatic threshold selection method based on discrimination and least squares criterion
- the number N n of coupled portions and the number N 1 of linear portions are to detect the coupled portions and the linear portions included in the three-dimensional image obtained as described above and count the number thereof. It asks by. From N n and N l thus obtained, it is possible to obtain a ratio R of N l for N n.
- orientation angle ⁇ of the linear portion is an angle between a straight line connecting the coupling portions at both ends of the linear portion and each direction, and is determined for each of three directions orthogonal to each other in the three-dimensional image, The average value of the orientation angles of the linear portions is determined for each direction.
- a CT apparatus used for structural analysis of carbon foam a CT apparatus using low energy and high brightness X-rays, for example, a high resolution 3DX line microscope nano3DX manufactured by Rigaku Corporation can be used. Further, for image processing and structural analysis, for example, Centerline editor of software simpleware manufactured by JSOL Corporation can be used.
- the density of the bonding portion of the carbon foam of the present embodiment is 15,000 pieces / mm 3 or more from the viewpoint of the restorability when a compressive load is applied. It is preferable that it is more preferably 20,000 pieces / mm 3 or more, and still more preferably 30,000 pieces / mm 3 or more. Further, in view of the flexibility of the carbon foam, it is preferably 5,000,000 pieces / mm 3 or less, more preferably 3,000,000 pieces / mm 3 or less, further preferably 2,000, It is less than 000 pieces / mm 3 .
- the carbon foam of the present embodiment has a portion satisfying the density of the bonding portion, more preferably 50% by volume to satisfy the density range, and 75% by volume satisfy the density range. Is more preferable, and it is particularly preferable to satisfy the above-mentioned density range at any place of the carbon foam.
- the carbon content of the carbon foam of the present embodiment is preferably 51% by mass or more, more preferably 60% by mass or more
- the content is preferably 65% by mass or more, more preferably 70% by mass or more, further preferably 75% by mass or more, still more preferably 80% by mass or more, still more preferably 85% by mass or more, and particularly preferably 90% by mass or more.
- the upper limit is not particularly limited, but may be 100% by mass or less, 99% by mass or less, or 98% by mass or less.
- the carbon content rate of carbon foam is a mass ratio of the carbon atom with respect to the mass of all the atoms which comprise carbon foam, and can be calculated
- ⁇ Proportion of oxygen atom> The proportion of oxygen atoms (oxygen content) measured in the surface analysis of the carbon foam of the present embodiment (for example, the above embodiments [1] to [18], etc.) by X-ray fluorescence analysis From the viewpoint of the properties, 0.03% by mass or more is preferable, 0.05% by mass or more is more preferable, and 0.07% by mass or more is more preferable. Further, from the viewpoint of the resistance of the electrode, 10% by mass or less is preferable, 5% by mass or less is more preferable, and 3% by mass or less is more preferable.
- the oxygen content in carbon foam is a mass ratio of oxygen atoms to the mass of all the atoms constituting the carbon foam, and can be determined from fluorescent X-ray measurement.
- the proportion of oxygen atoms can be increased by increasing the temperature of the oxidation process performed in the treatment after carbonization.
- the total mass of a carbon atom and an oxygen atom may be 60 mass% or more, and may be 99.9 mass% or less.
- the crystallite size Lc of the carbon foam according to the present embodiment is preferably 1.1 nm or more, and is 1.5 nm or more from the viewpoint of conductivity. Is more preferred. Moreover, it is preferable that it is 4.0 nm or less from the point of physical vulnerability, and it is more preferable that it is 3.0 nm or less. Lc can be determined from the diffraction of the (002) plane of carbon foam obtained from wide-angle X-ray diffraction.
- the higher the temperature at which carbonization occurs the higher the crystallinity, and the larger the value of Lc.
- Lc (K ⁇ ) / ⁇ cos ⁇ (14)
- K represents the form factor
- ⁇ represents the wavelength of the radiation source. Since the form factor is (002) plane diffraction, 0.90 is substituted. Since CuK ⁇ is used as the radiation source this time, calculation is performed by substituting 1.541.
- the porosity of the carbon foam according to the present embodiment is preferably 50% or more, more preferably 60% or more, from the viewpoint of flexibility. It is more preferably 70% or more, particularly preferably 80% or more, particularly preferably 90% or more, and particularly preferably 95% or more.
- the porosity is a value obtained from bulk density and true density. Bulk density is the density based on the volume including the voids contained in the carbon foam. In contrast, true density is the density based on the volume occupied by the carbon foam material.
- the dimensions of the carbon foam are measured using a caliper or the like, and the bulk volume V bulk of the carbon foam is determined from the obtained dimensions.
- the bulk density bul bulk of the carbon foam can be determined using the following equation (1).
- ⁇ bulk M / V bulk (1)
- In bulk density from the viewpoint of reducing the resistance when used as an electrode, is preferably 3.0Kgm -3 or more, more preferably 3.5Kgm -3 or more, more preferably 4.0Kgm -3 or more is there. From the viewpoint of flexibility of the carbon foam is preferably at 400Kgm -3 or less, more preferably 300Kgm -3 or less, more preferably 200Kgm -3 or less.
- the real density real real of the carbon foam can be determined by the float and sink method using a mixture of n-heptane, carbon tetrachloride and ethylene dibromide. Specifically, first, put a carbon foam of appropriate size into a stoppered test tube. Next, three kinds of solvents are appropriately mixed, added to a test tube, and dipped in a 30 ° C. thermostat. If the sample piece floats, add low density n-heptane. On the other hand, when the test piece sinks, ethylene dibromide having high density is added. Repeat this operation to allow the test piece to float in the liquid. Finally, the density of the solution is measured using a Geulsac pycnometer.
- V f, pore ((1 / ⁇ bulk )-(1 / ⁇ real )) / (1 / ⁇ bulk ) ⁇ 100 (%) ...
- the carbon foam of the present embodiment can be suitably used as, for example, an electrode, a filter, a buffer material, and the like.
- an electrode it is preferable for the use as a fuel cell, a redox flow cell, electrolysis, and is especially suitable for a redox flow cell.
- the redox flow battery electrode of the present embodiment preferably includes the above-mentioned laminated carbon foam or carbon foam. Since carbon foam II and carbon foam III have few through holes, for example, when used as an electrode of a battery, they have higher conductivity than an electrode formed by arranging carbon foam having a small surface area. Moreover, when using it as a filter, it can collect without releasing the substance which should be collected.
- carbon foam I has small large through holes and is thin, when used as an electrode, in addition to high conductivity, resistance can be further reduced. Moreover, when using it as a filter, it becomes possible to make it thin, and besides being excellent in collecting property, it becomes possible to make it lightweight.
- Examples of the method for producing the carbon foam include a method including the step of carbonizing a resin foam which is a raw material of the carbon foam (carbonization step).
- a method including a carbonization step and a step of laminating and pressing resin foam or carbon foam (pressing step), and applying a large load to resin foam or carbon foam to carbon (1) laminating and pressing at least two layers of resin foam to form a resin foam laminate (resin foam pressing process), and resin foam lamination A step of carbonizing the body to produce a laminated carbon foam (preferably, a sheet-like laminated carbon foam) (carbonization step); (2) laminating at least two layers of carbon foam to form a laminate Step of forming (carbon foam layering step) and step of pressing laminated body to produce laminated carbon foam (preferably sheet-like laminated carbon foam) Element foam pressing step); (3) laminating at least one resin foam and at least one carbon foam and pressing to form a laminate, carbonizing the laminate and laminating carbon A step of producing a foam (preferably, a sheet-like laminated carbon foam) (carbonization step); (4) laminating at least two layers of resin foam and applying a large load to
- Examples of the method for producing Carbon Form I, Carbon Form II, and Carbon Form III include, for example, the above-mentioned methods, preferably the above-mentioned method (1) or (2), more preferably the above-mentioned method (1). It is.
- the carbon foam one in which a laminate is integrated is preferable from the viewpoint that carbon is connected in the thickness direction and resistance can be reduced.
- a resin to be fused is present at the time of carbonization (mixing the resin before pressing or before applying a load), for example, the above (1), (3), ( 4) or the method of (5), a method of coating a carbon foam with a resin and carbonizing at least a part of the carbon foam, and the like.
- a first carbon foam having a linear portion and a joint portion joining the linear portion, and a joint portion joining the linear portion and the linear portion
- a process comprising: laminating the second carbon foam having one another to form a laminate; and pressing the laminate to produce a laminated carbon foam (preferably, a sheet-like laminated carbon foam) preferable.
- the above-mentioned carbon foam is preferable, More preferably, it is carbon foam I, carbon foam II, or carbon foam III.
- the resin foam examples include any resin foam known as a raw material of carbon foam such as melamine resin foam; urethane resin foam; phenol resin foam; acrylonitrile resin foam; Among them, melamine resin foam is preferable from the viewpoint of the size and uniformity of the diameter of the linear portion.
- the above-mentioned melamine resin foam for example, after foaming an aqueous solution or dispersion containing a precondensate of melamines and formaldehyde, an emulsifier, a foaming agent, a curing agent, and, if necessary, a well-known filler and the like It can be manufactured by applying a curing treatment.
- the solution composed of the above components may be heated to a temperature (for example, a temperature equal to or higher than the boiling point of the foaming agent) set according to the type of the foaming agent used.
- melamines include melamine, guanamine, N-butylmelamine, N-phenylmelamine, N, N-diphenylmelamine, N, N-diallylmelamine, N, N ′, N ′ ′-triphenylmelamine, N, N ′ , N "-trimethylolmelamine, benzoguanamine, 2,4-diamino-6-methyl-1,3,5-triazine, 2,4-diamino-6-butyl-1,3,5-triazine, 2,4- Diamino-6-benzyloxy-1,3,5-triazine, 2,4-diamino-6-butoxy-1,3,5-triazine, 2,4-diamino-6-cyclohexyl-1,3,5-triazine 2,4-diamino-6-chloro-1,3,5-triazine, 2,4-diamino-6-mercapto-1,3,5-tritri
- the said melamines may be used individually by 1 type, and may be used in combination of 2 or more type.
- the above precondensate may use monomers other than melamines and formaldehyde.
- conditions for condensation for example, pH 7 to 10, temperature 70 to 100 ° C. and the like can be mentioned.
- the emulsifier examples include alkylsulfonic acid and sodium salt of arylsulfonic acid.
- the emulsifier can be used in a proportion of 0.5 to 5% by mass with respect to 100% by mass of the precondensate.
- the blowing agent can be used in a proportion of 1 to 50% by mass with respect to 100% by mass of the precondensate.
- the curing agent examples include hydrochloric acid, sulfuric acid and formic acid.
- the curing agent can be used in a proportion of 0.01 to 20% by mass with respect to 100% by mass of the precondensate.
- melamine resin foam for example, a melamine / formaldehyde condensation foam produced by the method disclosed in JP-A-4-349178 can be used.
- the said urethane resin foam, the said phenol resin foam, and the said acrylonitrile resin foam can be suitably manufactured by a well-known method.
- the bulk density of the resin foam is preferably 0.001 to 0.1 g / mm 3 , more preferably 0.005 to 0.02 g / mm 3 .
- the porosity of the resin foam is preferably 60 to 99.9%, more preferably 80 to 99%.
- the resin foam is subjected to heat treatment in an inert gas flow such as nitrogen or in an inert gas atmosphere such as vacuum while applying a compressive load to the resin foam;
- a raw material foam introduction step to be introduced a temperature raising step of raising the temperature in the heat treatment furnace to the heat treatment temperature at a first temperature rising rate, and carbon foam by carbonizing the resin foam by holding for a predetermined time at the above heat treatment temperature.
- Method including a carbonizing step to be performed, a temperature lowering step of decreasing the temperature in the heat treatment furnace to room temperature, and a carbon foam discharging step of discharging the carbon foam from the heat treatment furnace.
- the temperature raising step may be performed while depressurizing and exhausting the inside of the heat treatment furnace at least in a first temperature region where a large amount of decomposable desorption gas is generated from the resin foam.
- the heat treatment furnace for carbonizing the resin foam of the raw material is not limited as long as it is a furnace for carbonizing the resin foam to obtain a carbon foam, for example, a reaction for containing the resin foam of the raw material Furnace, heater for heating the inside of the reaction furnace, a gas inlet for introducing an inert gas into the reaction furnace, a gas outlet for discharging gas from the inside of the reaction furnace, and depressurizing the inside of the reaction furnace for vacuum
- a heat treatment furnace provided with a vacuum pump can be used.
- the temperature raising step it is preferable to carry out evacuation of the inside of the heat treatment furnace in a first temperature range where a large amount of decomposable desorption gas is generated from the resin foam.
- resin foam which is a raw material of carbon foam
- the active decomposable desorption gas generated from the resin foam reacts with the carbon fibers constituting the carbon foam to be decomposed and defects in the carbon foam (for example, large through holes) ) Occurs.
- the generation amount of the decomposable desorption gas depends on the temperature in the furnace.
- the decomposable removal generated inside the resin foam is performed by reducing the pressure in the heat treatment furnace.
- the outgassing can be facilitated to diffuse out of the resin foam to prevent the formation of defects in the carbon foam.
- the weight of the resin foam of the raw material in the temperature raising step is monitored in advance at intervals of 0 ° C. to 100 ° C.
- the temperature range is such that the weight of the resin foam decreases by 5% or more of the initial weight per 100.degree. For example, if the weight of the resin foam decreases by 5% or more of the initial weight per 100 ° C. in all temperature ranges of 300 ° C. or more and less than 400 ° C., 400 ° C. or more and less than 500 ° C. and 500 ° C. or more and less than 600 ° C.
- the temperature range of 1 is set to 300 ° C.
- the temperature range (first temperature range) in which the generation amount of decomposable desorption gas is large is a temperature range of 200 ° C. or more and less than 800 ° C.
- the reduced pressure evacuation can be performed using an evacuation unit such as a vacuum pump.
- the evacuation is preferably performed using a pump having an evacuation capacity capable of reducing the pressure in the furnace to 1 Pa or less within 10 minutes.
- the temperature rising rate to the heat treatment temperature is 10 ° C./min or less from the viewpoint of suppressing the generation amount of decomposable desorption gas. It is preferable to do. Moreover, it is preferable that the said 1st temperature rising rate shall be 1 degree C / min or more from a viewpoint of the whole productivity.
- the temperature raising rate to the heat treatment temperature (first temperature raising rate) It is preferable to carry out at a low temperature rise rate (second temperature rise rate).
- second temperature rise rate the amount of decomposable desorption gas generated per unit time generated in the resin foam can be reduced, and the diffusion of the decomposable desorption gas to the outside of the foam structure can be further promoted.
- the second temperature range in the region where the increase rate of the generation amount of the decomposable desorption gas is high (second temperature region). It is preferable to carry out at a temperature rising rate lower than the temperature rising rate (third temperature rising rate). Thereby, the amount of decomposable desorption gas generated per unit time generated in the resin foam can be further reduced, and the diffusion of the decomposable desorption gas to the outside of the foam structure can be further promoted.
- the weight of the resin foam of the raw material in the temperature raising step is separated by It monitors beforehand and sets it as the temperature range which the weight of a resin foam reduces 20% or more of the initial weight per 100 degreeC.
- the second temperature range is 300 ° C. to 500 ° C. Less than ° C.
- desorption gas from resin foam is a temperature range 300 degreeC-400 degreeC.
- the temperature rising rate is more preferably 5 ° C./min or less in the first temperature range, and particularly preferably 3 ° C./min or less in the second temperature range .
- the atmosphere in a furnace into inert gas atmosphere or vacuum.
- the inside of the furnace is "vacuum” indicates that the degree of vacuum in the furnace is less than 1 Pa.
- transducing the resin foam used as the raw material of a carbon foam into the heat processing furnace it is preferable to pressure-evacuate the furnace inside and to deduct the air containing oxygen after inert gas atmosphere. Then, it is preferable to introduce nitrogen gas after the inside of the furnace reaches a degree of vacuum less than 1 Pa and the air is sufficiently degassed.
- the inside of the furnace can be made into a nitrogen gas atmosphere.
- the inside of the furnace is set to an inert gas atmosphere or vacuum, the temperature rise is started, and the inside of the furnace is depressurized and exhausted in the first temperature range.
- first temperature region of 200 ° C. or more and less than 800 ° C. where the desorbed gas amount of the melamine resin foam is large
- inert gas such as nitrogen gas or argon gas
- the discharge of decomposable desorption gas generated in the resin foam can be promoted.
- the flow rate of the inert gas is preferably 1 L / min or more, It is more preferable to set it as 3 L / min or more, and it is especially preferable to set it as 5 L / min or more.
- the flow rate of the inert gas is preferably 40 L / min or less, more preferably 30 L / min or less, and particularly preferably 20 L / min or less.
- the temperature is raised and held at the heat treatment temperature reached for a predetermined time, and the resin foam is carbonized to form a carbon foam.
- the said heat processing temperature is the temperature more than the softening point of the resin foam of a raw material.
- the softening point of the melamine resin foam is 300 ° C. to 400 ° C.
- the heat treatment temperature is set to a temperature higher than the softening point.
- it is 800 degreeC or more, More preferably, it is 1000 degreeC or more.
- the temperature is preferably 3000 ° C. or less, more preferably 2500 ° C. or less.
- time heat processing time
- the holding time is preferably 0.5 hours or more, more preferably 1 hour or more, and still more preferably 2 hours or more. Further, from the viewpoint of productivity, it is preferably 5 hours or less, more preferably 4 hours or less.
- the temperature lowering rate at the time of carbonization of the melamine resin foam is preferably 20 ° C./min or less from the viewpoint of alleviating damage to the heater and the heat insulating material in the furnace due to the rapid cooling. More preferably, it is 15 ° C./min or less. In addition, in view of the overall productivity, 5 ° C./min or more is preferable. More preferably, it is 10 ° C./min or more. With the above control, it is possible to produce a carbon foam having a large surface area.
- skeleton structure which has anisotropy in the expansion of carbon fiber can be obtained by performing the said temperature rising process and the said carbonization process, applying a compressive load to the resin foam of a raw material. Even when a compressive load is applied, carbon foam having anisotropy can suppress breakage of carbon fibers to reduce dusting or achieve high restorability.
- the application of the compressive load can be performed by placing a weight of, for example, a graphite plate on the raw material resin foam.
- the compression load to be applied is preferably 50 Pa or more, more preferably 200 Pa or more. Moreover, Preferably it is 2000 Pa or less, More preferably, it is 1500 Pa or less.
- the temperature raising step When a compressive load is applied to the resin foam of the raw material, the diffusion of the decomposable desorption gas is suppressed by the weight of the graphite plate or the like. Therefore, in the temperature raising step, the temperature raising rate is reduced as compared with the case where the compression load is not applied, and the exhaustion of the decomposable gas is promoted by continuing the depressurization exhaust while supplying the inert gas into the furnace. Is particularly preferred.
- the temperature rise rate is preferably 5 ° C./min or less in the temperature range (first temperature range) of 200 ° C. or more and less than 800 ° C.
- first temperature range a temperature range of 200 ° C. or more and less than 800 ° C.
- second temperature range where the increase rate of the amount of generation of is high
- an inert gas such as nitrogen gas or argon gas into the heat treatment furnace in a temperature range (first temperature range) of 200 ° C. or more and less than 800 ° C.
- the production of the laminated carbon foam can be performed separately by separating the laminated resin foam, carbon foam, or the pressing step of compressing the resin foam and the carbon foam, and the carbonization step.
- the single-layer carbon foam may also be carbonized after the following pressing step.
- the pressing step is not particularly limited as long as it is an apparatus capable of discharging the active gas and heating and compressing the resin foam or an apparatus capable of compressing the laminate of carbon foam, for example, a top plate for pressing the resin foam
- a heat treatment furnace may be used which includes a heater for heating the top plate, a gas outlet for discharging gas from the apparatus, and a vacuum pump for reducing the pressure in the apparatus to evacuate the apparatus.
- the same apparatus as that used for laminating the resin foam may be used.
- the foam etc. which carbonized the melamine resin are mentioned, From a powder removal viewpoint, it is a foam which has anisotropy in a surface direction more preferably.
- the resin foam pressing step when laminating the resin foam, for example, one resin foam may be sliced and plural resin foams cut out may be stacked, or different resin foams may be stacked.
- a method of overlapping resin foams cut out into a plurality of sheets the positions of the through holes of the resin foams to be overlapped are shifted, and the number of the through holes can be reduced.
- Method of laminating by rotating less than 360 °, method of inverting and laminating cut out resin foam, method of changing the order of resin foam cut out when laminating, resin foam cut out from resin foams of different lots of the same standard The method of laminating, the method of laminating by shifting the position, and the like are preferable.
- the cut-out resin foam since the position of the through-hole of the resin foam to overlap overlaps, and it is not possible to reduce the number of through-holes, it is preferable not to use the cut-out resin foam as it is.
- a porous body having a continuous void structure may be used as the different resin foam.
- resin foams of different materials, resin foams of the same material but different void structures, or resin foams of different lots of the same standard are cut out Resin foams and the like.
- the number of resin foams or carbon foams to be laminated may be two or more from the viewpoint of reduction of through holes, and preferably 40 or less from the viewpoint of handling ease at the time of lamination before pressing, More preferably, it is 20 sheets or less, More preferably, it is 10 sheets or less.
- the thickness of the spacer used in the pressing step is preferably 0.05 to 5 mm, more preferably 0. 5 mm, since pressure is applied from the center of the top plate at the time of pressing and the center is thinner than the outer peripheral portion near the spacer. It is preferably 1 to 1 mm, more preferably 0.2 to 0.5 mm.
- the thickness of the spacer used is preferably 0.05 mm to 1 mm, and more preferably 0.1 mm to 0.3 mm.
- the ratio of the spacer thickness to the thickness of the laminated resin foam or carbon foam is preferably 1 to 50%, more preferably 2 to 10% from the viewpoint of obtaining a foam having an appropriate porosity. .
- the pressure for evacuation is preferably 30 Pa or less, more preferably 10 Pa or less.
- the depressurizing exhaust may be continued from the start of the temperature rise to the end of the temperature drop, or may be performed only in the temperature range of 150 ° C. or more where the resin foam and the oxygen in the air hardly react.
- the temperature elevation condition in the above-mentioned pressing step is preferably 1 to 20 ° C./minute from the viewpoint of suppressing the generation amount of decomposable desorption gas per unit time, and more preferably 3 to 10 ° C. from the viewpoint of productivity. / Min.
- the pressing temperature in the pressing step is preferably 250 to 400 ° C., more preferably 320 to 380 ° C., from the viewpoint of the softening temperature of the resin foam and the removability from the base material.
- the temperature is preferably 100 ° C. or more and 250 ° C. or less, and more preferably 120 ° C. or more and 180 ° C. or less from the viewpoint of preventing oxidation of the surface.
- the pressing time in the pressing step is preferably 5 to 120 minutes, more preferably 20 to 60 minutes, from the viewpoint of maintenance of the foam structure and releasability from the substrate.
- the pressing pressure in the pressing step is preferably 0.1 to 10 MPa, more preferably 0.5 to 3 MPa, from the viewpoint of deflection due to the pressure applied to the central portion of the top plate.
- the temperature lowering condition in the pressing step is preferably 1 to 30 ° C./minute from the viewpoint of protecting the pressing device, and more preferably 5 to 20 ° C./minute from the viewpoint of productivity.
- the compressive load to be applied is preferably 10 Pa or more, more preferably 70 Pa or more. Moreover, Preferably it is 700 Pa or less, More preferably, it is 400 Pa or less.
- the pressing step is performed, the amount of decomposable desorption gas generated in the first temperature region in the carbonization step is reduced, so that the temperature may be increased earlier in the first temperature range. From the viewpoint of productivity, it is preferably 2 to 50 ° C./minute, more preferably 5 to 20 ° C./minute.
- the carbon foam of the present embodiment may be separately subjected to oxidation treatment, and examples thereof include a method of oxidation in the middle of the carbonization step and a method of oxidation after the carbonization step is completed.
- the oxidation treatment includes a method of heating in the presence of oxygen, a method of chemical oxidation, and the like.
- Electroless plating conditions The sample was immersed in OPC Condiclean MA (manufactured by Okuno Pharmaceutical Industries Co., Ltd., diluted to 100 mL / L with distilled water) at 70 ° C. for 5 minutes, and then washed with distilled water for 1 minute.
- OPC Condiclean MA manufactured by Okuno Pharmaceutical Industries Co., Ltd., diluted to 100 mL / L with distilled water
- OPC pre-dip 49 L manufactured by Okuno Pharmaceutical Industries Co., Ltd., diluted with distilled water to 10 mL / L, 1.5 mL / L 98% sulfuric acid
- OPC Inducer 50 AM manufactured by Okuno Pharmaceutical Co., Ltd., diluted with distilled water to 100 mL / L
- OPC Inducer 50 CM manufactured by Okuno Pharmaceutical Co., Ltd., diluted to 100 mL / L with distilled water
- the number of parts N n and the number of linear parts N 1 were detected.
- the above structural analysis determined the number N n of the coupling portion included in the test piece, the number N l of the linear portion, the density of the coupling portion, three directions perpendicular to each other (x, y, z) the average value of the orientation angle with respect to The The obtained results are shown in Table 1.
- the orientation angle in Table 1 is a value obtained by setting the y direction and the z direction in the direction perpendicular to the application direction of the compressive load, with the application direction of the compressive load as the x direction.
- the diameter d of the linear portion (carbon fiber) constituting the carbon foam was determined by image analysis of a scanning electron microscope (SEM) image. Specifically, the carbon foam was observed at a magnification of 10,000 times using a scanning electron microscope, and the thickness of the carbon fiber was randomly measured at 20 points from the obtained observation image. This average thickness was calculated assuming that the cross-sectional shape is circular.
- the oxygen content of the carbon foam was determined from x-ray fluorescence measurements.
- a fluorescent X-ray analyzer ZSX-100E microwave dispersion type, Rh tube manufactured by Rigaku Corporation was used.
- the sample used a size of 20 mm ⁇ or more.
- the ratio of the oxygen atom before oxidation treatment and the ratio of the oxygen atom after oxidation treatment were measured using the sample before and behind oxidation treatment after carbonation treatment as described in an Example and a comparative example.
- the carbon content of the carbon foam was determined from x-ray fluorescence measurements.
- fluorescent X-ray measurement a fluorescent X-ray analyzer ZSX-100E (wavelength dispersion type, Rh tube) manufactured by Rigaku Corporation was used.
- the sample used a size of 20 mm ⁇ or more.
- the carbon content rate before an oxidation process and the carbon content rate after an oxidation process were measured using the sample before and behind the oxidation process after a carbonization process as described in an Example and a comparative example.
- ⁇ Number of large through holes The number of large through holes having a diameter of 1 mm or more per unit surface area of carbon foam was evaluated by detecting the through holes by visual inspection and inspection using a pinhole inspection machine (a sheet inspection device manufactured by OMRON Corporation).
- Example 1 As a material of carbon foam, two sheets of melamine resin foam (dimension: 270 mm ⁇ 270 mm ⁇ 1 mm, made by BASF, trade name “BASOTECT W”) are stacked, and a 0.2 mm thick SUS plate is placed around the sample as a spacer. From the top and bottom, it was sandwiched by a 10 mm thick graphite plate and introduced into a vacuum heat press machine (KVHC-II) manufactured by Kitagawa Seiki Co., Ltd. Next, while depressurizing and evacuating with a vacuum pump, the temperature in the press was raised to 360 ° C. at a heating rate of 5 ° C./min and held for 10 minutes.
- KVHC-II vacuum heat press machine
- the press was performed at a pressure of 2.0 MPa while ramping up and holding at 360 ° C. Thereafter, the temperature inside the machine was lowered to 40 ° C., and then the vacuum pump was stopped and the press was released. Next, a 270 mm ⁇ 270 mm ⁇ 4 mm graphite plate was placed on the pressed melamine resin foam, a compressive load of 70 Pa was applied, and the melamine resin foam was introduced into the heat treatment furnace in a state where this compressive load was applied. . Subsequently, nitrogen gas is supplied into the furnace at a flow rate of 2.5 L / min, and the temperature in the furnace is raised to a heat treatment temperature of 1100 ° C.
- Example 2 (Example 2) Dimension: 270 mm ⁇ 270 mm ⁇ 1 mm of the same melamine resin foam as in Example 1 is stacked, and pressing is carried out in the same manner as in Example 1 except that a SUS plate of 0.5 mm in thickness is used as a spacer, A pressed melamine resin foam was obtained. Next, three 270 mm ⁇ 270 mm ⁇ 4 mm graphite plates are placed on the pressed melamine resin foam, a compressive load of 210 Pa is applied, and the melamine resin foam is heat treated in a furnace with this compressive load applied. Introduced to The inside of the furnace was evacuated by a vacuum pump so that the degree of vacuum in the furnace was less than 1 Pa.
- Example 3 A laminated carbon foam was produced in the same manner as in Example 2 except that two sheets of the same melamine resin foam as in Example 1 having dimensions of 270 mm ⁇ 270 mm ⁇ 0.5 mm were stacked and the spacer was changed to 0.1 mm. Details of the obtained carbon foam are shown in Table 1.
- Example 4 Dimensions: 270 mm ⁇ 270 mm ⁇ 1 mm of the same melamine resin foam as in Example 2 were stacked, and a spacer was changed to 0.3 mm in the same manner as in Example 2 to produce a laminated carbon foam. Details of the obtained carbon foam are shown in Table 1.
- Example 5 A single-layer carbon foam was produced in the same manner as in Example 2, except that a 270 mm ⁇ 270 mm ⁇ 10 mm melamine resin foam was pressed as a single layer with a spacer of 0.5 mm. Details of the obtained carbon foam are shown in Table 1.
- Example 6 Two single-layer carbon foams were produced in the same manner as in Example 2 except that a 270 mm ⁇ 270 mm ⁇ 5 mm melamine resin foam was pressed as a single layer with a spacer of 0.5 mm. After that, it is introduced into a vacuum heat press (KVHC-II), the spacer is 0.2 mm, and the temperature in the press is raised to 150 ° C. at a heating rate of 5 ° C./min while evacuation by vacuum pump And held for 10 minutes. The press was performed at a pressure of 2.0 MPa while holding at 150 ° C. Thereafter, the temperature inside the machine was lowered to 40 ° C., the vacuum pump was stopped, and the press was released to produce a laminated carbon foam. Details of the obtained carbon foam are shown in Table 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Structural Engineering (AREA)
- Composite Materials (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Dispersion Chemistry (AREA)
- Textile Engineering (AREA)
- Carbon And Carbon Compounds (AREA)
- Laminated Bodies (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
- Inorganic Fibers (AREA)
Abstract
本発明の目的は、薄膜の炭素フォーム及びその製造方法を提供することにある。また、貫通孔が少ない積層炭素フォーム及びその製造方法を提供することにある。 本発明の炭素フォームは、例えば、線状部と該線状部を結合する結合部とを有する単層炭素フォームが少なくとも2層積層された積層体である積層炭素フォーム、線状部と該線状部を結合する結合部とを有する炭素フォームであって、炭素フォームの表面積に対する直径1mm以上の大貫通孔の数の割合が0.0003個/mm2以下である炭素フォームである。
Description
本発明は、炭素フォーム、積層炭素フォーム、及び積層炭素フォームの製造方法に関する。
炭素フォームは、例えばメラミン樹脂フォーム(発泡体)を不活性ガス雰囲気中で熱処理して炭素化することにより得られる材料であり(例えば、特許文献1参照)、その多孔性、柔軟性及び電気的特性により様々な用途に使用されている。この炭素フォームは、繊維径が細いため比表面積が広いという点と、繊維の全てが繋がった一体の構造を有する点で一般的な炭素繊維不織布と大きな違いを有する。
例えば、特許文献2には、高温または薬剤使用といった特殊な条件下で使用されるフィルタとして炭素フォームを使用することが記載されている。また、特許文献3には、高温下でも高い断熱性を有する断熱材として炭素フォームを使用することが記載されている。さらに、特許文献4には、電気的活性及び導電性の高い電極として炭素フォームを使用することが記載されている。
ところで、炭素材料を電極として用いる場合には、抵抗低減の為に薄膜の炭素繊維材料が必要とされることがある。このような場合、炭素繊維を積層させてシート状に加工した厚さ300μm程の炭素繊維シート(東レ社製トレカペーパーや、SGL社製GDL39-AA等)が用いられることが多く、多孔性の炭素フォームが使用された例はほとんど無い。
炭素フォームが使用されない理由の一つとして、発泡樹脂フォームを原料とする炭素フォームは薄膜化が困難であることが挙げられる。
例えば、特許文献1~4の炭素フォームは薄膜とすることが困難であった。また、一層貫通孔が少ない炭素フォームが求められているのが現状である。
そこで本発明の目的は、薄膜の炭素フォーム及びその製造方法を提供することにある。また、貫通孔が少ない積層炭素フォーム及びその製造方法を提供することにある。
炭素フォームが使用されない理由の一つとして、発泡樹脂フォームを原料とする炭素フォームは薄膜化が困難であることが挙げられる。
例えば、特許文献1~4の炭素フォームは薄膜とすることが困難であった。また、一層貫通孔が少ない炭素フォームが求められているのが現状である。
そこで本発明の目的は、薄膜の炭素フォーム及びその製造方法を提供することにある。また、貫通孔が少ない積層炭素フォーム及びその製造方法を提供することにある。
本発明者らは、上記課題を解決する方途について鋭意検討した。発泡樹脂フォームを原料とする炭素フォームを薄膜化しようとする場合、大きく2つの手法を考える事ができる。
1つはプレス機によって圧縮して、薄膜のサンプルを得る方法が考えられる。この例として、特許文献2には、発泡メラミン樹脂フォームに熱硬化性樹脂を含浸して、最大10倍まで圧縮した事例が記載されている。しかしこの手法での薄膜化は、圧縮倍率に限界があり、一定以上の圧縮を行うと内部構造の破断を引き起こすため、一定以下の厚さにすることは困難である。
もう1つの方法としては薄膜の原料を用いる方法が考えられる。この手法における問題点は原料の樹脂フォームに貫通欠陥が発生し、炭素繊維シートが破膜しやすくなり、著しくハンドリング性が低下することが挙げられる。
原料の発泡樹脂フォームには、発泡によって様々な径の微小な孔がランダムに開いており、例えばメラミン樹脂フォームでは1~3mm程の直径の孔が多く見られ、大きい孔では5mm程の径の孔も見られる。そのため、原料を厚さ2~3mmまで薄くすると完全に貫通した欠陥(貫通孔)が見られるようになり、厚さ1mm以下の原料では随所に貫通欠陥が確認できる。本発明者らは検討の結果、この貫通欠陥が起点となり、炭素化後の物性に悪影響を及ぼす事を明らかにした。
そこで本発明者らは、貫通欠陥の非常に少ない薄膜の発泡樹脂フォームを用いることで、ハンドリング性の高い薄膜のシート状炭素フォームを完成した。
本発明者らは、原料の発砲樹脂フォームの貫通欠陥を著しく減少させる手法について鋭意検討した。その結果、ランダムに貫通欠陥の存在する、より薄い薄膜原料を2枚以上重ねていく事でランダムな貫通欠陥を互いに補填することができる事を見出し、本発明を完成させるに至った。
1つはプレス機によって圧縮して、薄膜のサンプルを得る方法が考えられる。この例として、特許文献2には、発泡メラミン樹脂フォームに熱硬化性樹脂を含浸して、最大10倍まで圧縮した事例が記載されている。しかしこの手法での薄膜化は、圧縮倍率に限界があり、一定以上の圧縮を行うと内部構造の破断を引き起こすため、一定以下の厚さにすることは困難である。
もう1つの方法としては薄膜の原料を用いる方法が考えられる。この手法における問題点は原料の樹脂フォームに貫通欠陥が発生し、炭素繊維シートが破膜しやすくなり、著しくハンドリング性が低下することが挙げられる。
原料の発泡樹脂フォームには、発泡によって様々な径の微小な孔がランダムに開いており、例えばメラミン樹脂フォームでは1~3mm程の直径の孔が多く見られ、大きい孔では5mm程の径の孔も見られる。そのため、原料を厚さ2~3mmまで薄くすると完全に貫通した欠陥(貫通孔)が見られるようになり、厚さ1mm以下の原料では随所に貫通欠陥が確認できる。本発明者らは検討の結果、この貫通欠陥が起点となり、炭素化後の物性に悪影響を及ぼす事を明らかにした。
そこで本発明者らは、貫通欠陥の非常に少ない薄膜の発泡樹脂フォームを用いることで、ハンドリング性の高い薄膜のシート状炭素フォームを完成した。
本発明者らは、原料の発砲樹脂フォームの貫通欠陥を著しく減少させる手法について鋭意検討した。その結果、ランダムに貫通欠陥の存在する、より薄い薄膜原料を2枚以上重ねていく事でランダムな貫通欠陥を互いに補填することができる事を見出し、本発明を完成させるに至った。
すなわち、本発明は、以下を提供するものである。
[1]
線状部と該線状部を結合する結合部とを有する単層炭素フォームが少なくとも2層積層された積層体であることを特徴とする、積層炭素フォーム。
[2]
前記積層炭素フォームの厚さ方向の断面に、前記積層炭素フォームを貫通する貫通孔であって、隣り合う2層の単層炭素フォームの接触面において、前記接触面における一方の単層炭素フォームの貫通孔の外端と、前記接触面における他方の単層炭素フォームの貫通孔の外端とがずれている貫通孔が存在する、[1]の積層炭素フォーム。
[3]
前記積層炭素フォームの厚さ方向の断面に、前記積層炭素フォームを貫通しない孔であって、隣り合う2層の単層炭素フォームにおいて、一方の単層炭素フォーム表面から前記一方の単層炭素フォームと他方の単層炭素フォームとの接触面までつながり、前記接触面で途切れる孔が存在する、[1]又は[2]の積層炭素フォーム。
上記[1]~[3]の何れかの積層炭素フォームは、後述の[4]~[10]に記載の要件を満たしていてもよい。
[4]
線状部と該線状部を結合する結合部とを有する炭素フォームであって、
炭素フォームの表面積に対する直径1mm以上の大貫通孔の数の割合が0.0003個/mm2以下であることを特徴とする、炭素フォーム。
[5]
前記炭素フォームの厚さが0.01mm以上5.0mm以下である、[4]の炭素フォーム。
[6]
前記炭素フォームの厚さが0.01mm以上0.5mm以下である、[4]の炭素フォーム。
[7]
前記炭素フォームは、前記炭素フォームの表面積に対する、直径1mm以上の大貫通孔の数の割合が0.0003個/mm2以下となる60mm×60mm以上の領域を有する、[4]~[6]の何れかの炭素フォーム。
[8]
前記炭素フォームは、前記炭素フォームの表面積に対する、直径1mm以上の大貫通孔の数の割合が0.0003個/mm2以下となる100mm×100mm以上の領域を有する[4]~[6]の何れかの炭素フォーム。
[9]
前記炭素フォームは、前記炭素フォームの表面積に対する、直径1mm以上の大貫通孔の数の割合が0.0003個/mm2以下となる200mm×200mm以上の領域を有する[4]~[6]の何れかの炭素フォーム。
[10]
前記炭素フォームの厚さが0.01mm以上0.5mm以下であり、且つ、前記炭素フォームは、前記炭素フォームの表面積に対する直径1mm以上の大貫通孔の数の割合が0.0003個/mm2以下となる60mm×60mm以上の領域を有する[4]~[6]の何れかの炭素フォーム。
上記[4]~[10]の何れかの炭素フォームは、上記[1]~[3]に記載の要件を満たしていてもよい。
[11]
前記結合部の数に対する前記線状部の数の割合が1.2以上1.7以下である[1]~[10]の何れかの積層炭素フォーム又は炭素フォーム。
[12]
前記結合部の数に対する前記線状部の数の割合が1.4以上1.6以下である[11]の積層炭素フォーム又は炭素フォーム。
[13]
炭素フォームの厚み方向をx方向、前記x方向に垂直な方向をy方向、前記x方向及び前記y方向に垂直な方向をz方向とし、
300μm×300μm×300μmの領域内に含まれる前記線状部の
前記x方向に対する配向角度の平均値をθavex、
前記y方向に対する配向角度の平均値をθavey、
前記z方向に対する配向角度の平均値をθavez、
と定義したときに、
前記θavex、前記θavey、前記θavezの中の最大値と最小値との差θcが3°以上となる、[1]~[12]の何れかの積層炭素フォーム又は炭素フォーム。
[14]
前記結合部の密度が15,000個/mm3以上となる領域を含む、[1]~[13]の何れかの積層炭素フォーム又は炭素フォーム。
[15]
蛍光X線分析による表面分析で測定される酸素原子の割合が0.03質量%~10質量%である、[1]~[14]の何れかの積層炭素フォーム又は炭素フォーム。
[16]
炭素含有率が51質量%以上である[1]~[15]の何れかの積層炭素フォーム又は炭素フォーム。
[17]
シート状である[1]~[16]の何れかの積層炭素フォーム又は炭素フォーム。
[18]
[1]~[17]の何れかの積層炭素フォーム又は炭素フォームを含むレドックスフロー電池用電極。
[19]
第1の樹脂フォームと第2の樹脂フォームとを積層しプレスして樹脂フォーム積層体を形成する工程と
前記樹脂フォーム積層体を炭素化して、線状部と該線状部を結合する結合部とを有する第1の単層炭素フォームと線状部と該線状部を結合する結合部とを有する第2の単層炭素フォームとの積層体である積層炭素フォームを製造する工程と、
を含むことを特徴とする、積層炭素フォームの製造方法。
上記[19]で得られる積層炭素フォームは、上記[1]~[18]に記載の要件を満たしていてもよい。
[20]
線状部と該線状部を結合する結合部とを有する第1の単層炭素フォームと線状部と該線状部を結合する結合部とを有する第2の単層炭素フォームとを積層して積層体を形成する工程と、
前記積層体をプレスして積層炭素フォームを製造する工程と、
を含むことを特徴とする、積層炭素フォームの製造方法。
上記[20]で得られる積層炭素フォームは、上記[1]~[18]に記載の要件を満たしていてもよい。
[1]
線状部と該線状部を結合する結合部とを有する単層炭素フォームが少なくとも2層積層された積層体であることを特徴とする、積層炭素フォーム。
[2]
前記積層炭素フォームの厚さ方向の断面に、前記積層炭素フォームを貫通する貫通孔であって、隣り合う2層の単層炭素フォームの接触面において、前記接触面における一方の単層炭素フォームの貫通孔の外端と、前記接触面における他方の単層炭素フォームの貫通孔の外端とがずれている貫通孔が存在する、[1]の積層炭素フォーム。
[3]
前記積層炭素フォームの厚さ方向の断面に、前記積層炭素フォームを貫通しない孔であって、隣り合う2層の単層炭素フォームにおいて、一方の単層炭素フォーム表面から前記一方の単層炭素フォームと他方の単層炭素フォームとの接触面までつながり、前記接触面で途切れる孔が存在する、[1]又は[2]の積層炭素フォーム。
上記[1]~[3]の何れかの積層炭素フォームは、後述の[4]~[10]に記載の要件を満たしていてもよい。
[4]
線状部と該線状部を結合する結合部とを有する炭素フォームであって、
炭素フォームの表面積に対する直径1mm以上の大貫通孔の数の割合が0.0003個/mm2以下であることを特徴とする、炭素フォーム。
[5]
前記炭素フォームの厚さが0.01mm以上5.0mm以下である、[4]の炭素フォーム。
[6]
前記炭素フォームの厚さが0.01mm以上0.5mm以下である、[4]の炭素フォーム。
[7]
前記炭素フォームは、前記炭素フォームの表面積に対する、直径1mm以上の大貫通孔の数の割合が0.0003個/mm2以下となる60mm×60mm以上の領域を有する、[4]~[6]の何れかの炭素フォーム。
[8]
前記炭素フォームは、前記炭素フォームの表面積に対する、直径1mm以上の大貫通孔の数の割合が0.0003個/mm2以下となる100mm×100mm以上の領域を有する[4]~[6]の何れかの炭素フォーム。
[9]
前記炭素フォームは、前記炭素フォームの表面積に対する、直径1mm以上の大貫通孔の数の割合が0.0003個/mm2以下となる200mm×200mm以上の領域を有する[4]~[6]の何れかの炭素フォーム。
[10]
前記炭素フォームの厚さが0.01mm以上0.5mm以下であり、且つ、前記炭素フォームは、前記炭素フォームの表面積に対する直径1mm以上の大貫通孔の数の割合が0.0003個/mm2以下となる60mm×60mm以上の領域を有する[4]~[6]の何れかの炭素フォーム。
上記[4]~[10]の何れかの炭素フォームは、上記[1]~[3]に記載の要件を満たしていてもよい。
[11]
前記結合部の数に対する前記線状部の数の割合が1.2以上1.7以下である[1]~[10]の何れかの積層炭素フォーム又は炭素フォーム。
[12]
前記結合部の数に対する前記線状部の数の割合が1.4以上1.6以下である[11]の積層炭素フォーム又は炭素フォーム。
[13]
炭素フォームの厚み方向をx方向、前記x方向に垂直な方向をy方向、前記x方向及び前記y方向に垂直な方向をz方向とし、
300μm×300μm×300μmの領域内に含まれる前記線状部の
前記x方向に対する配向角度の平均値をθavex、
前記y方向に対する配向角度の平均値をθavey、
前記z方向に対する配向角度の平均値をθavez、
と定義したときに、
前記θavex、前記θavey、前記θavezの中の最大値と最小値との差θcが3°以上となる、[1]~[12]の何れかの積層炭素フォーム又は炭素フォーム。
[14]
前記結合部の密度が15,000個/mm3以上となる領域を含む、[1]~[13]の何れかの積層炭素フォーム又は炭素フォーム。
[15]
蛍光X線分析による表面分析で測定される酸素原子の割合が0.03質量%~10質量%である、[1]~[14]の何れかの積層炭素フォーム又は炭素フォーム。
[16]
炭素含有率が51質量%以上である[1]~[15]の何れかの積層炭素フォーム又は炭素フォーム。
[17]
シート状である[1]~[16]の何れかの積層炭素フォーム又は炭素フォーム。
[18]
[1]~[17]の何れかの積層炭素フォーム又は炭素フォームを含むレドックスフロー電池用電極。
[19]
第1の樹脂フォームと第2の樹脂フォームとを積層しプレスして樹脂フォーム積層体を形成する工程と
前記樹脂フォーム積層体を炭素化して、線状部と該線状部を結合する結合部とを有する第1の単層炭素フォームと線状部と該線状部を結合する結合部とを有する第2の単層炭素フォームとの積層体である積層炭素フォームを製造する工程と、
を含むことを特徴とする、積層炭素フォームの製造方法。
上記[19]で得られる積層炭素フォームは、上記[1]~[18]に記載の要件を満たしていてもよい。
[20]
線状部と該線状部を結合する結合部とを有する第1の単層炭素フォームと線状部と該線状部を結合する結合部とを有する第2の単層炭素フォームとを積層して積層体を形成する工程と、
前記積層体をプレスして積層炭素フォームを製造する工程と、
を含むことを特徴とする、積層炭素フォームの製造方法。
上記[20]で得られる積層炭素フォームは、上記[1]~[18]に記載の要件を満たしていてもよい。
本発明によれば、薄膜の炭素フォーム及びその製造方法を提供することができる。また、貫通孔が少ない積層炭素フォーム及びその製造方法を提供することができる。
以下、本発明を実施するための形態(以下、「本実施形態」と言う。)について、詳細に説明するが、本発明は以下の記載に限定されるものではなく、その要旨の範囲内で種々変形して実施できる。
本実施形態の炭素フォームは、線状部(炭素繊維)と該線状部を結合する結合部とを有する炭素フォームである。具体的には、線状部と該線状部を結合する結合部とを有する単層炭素フォームが少なくとも2層積層された積層体である、積層炭素フォーム、又は線状部と該線状部を結合する結合部とを有する炭素フォームであって、炭素フォームの表面積に対する直径1mm以上の大貫通孔の数の割合が0.0003個/mm2以下である炭素フォームが挙げられる。
[炭素フォーム]
本実施形態による炭素フォームは、線状部と該線状部を結合する結合部とを有する炭素フォームである。上記炭素フォームは、シート状であることが好ましい。上記炭素フォームは、1層の炭素フォームからなる単層炭素フォームであってもよいし、2層以上の単層炭素フォームからなる積層炭素フォームであってもよい。また、表層や各層間には、他の層が設けられていてもよい。
上記積層炭素フォームは、同じ炭素フォームの積層体であってもよいし、異なる炭素フォームの積層体であってもよい。上記積層炭素フォームは、線状部と該線状部を結合する結合部とを有する単層炭素フォームの積層体であってもよいし、線状部と該線状部を結合する結合部とを有するシート状の単層炭素フォームの積層体であってもよいし、線状部と該線状部を結合する結合部とを有するシート状の単層又は積層炭素フォームと他の炭素フォームとの積層体であってもよい。
本実施形態による炭素フォームは、線状部と該線状部を結合する結合部とを有する炭素フォームである。上記炭素フォームは、シート状であることが好ましい。上記炭素フォームは、1層の炭素フォームからなる単層炭素フォームであってもよいし、2層以上の単層炭素フォームからなる積層炭素フォームであってもよい。また、表層や各層間には、他の層が設けられていてもよい。
上記積層炭素フォームは、同じ炭素フォームの積層体であってもよいし、異なる炭素フォームの積層体であってもよい。上記積層炭素フォームは、線状部と該線状部を結合する結合部とを有する単層炭素フォームの積層体であってもよいし、線状部と該線状部を結合する結合部とを有するシート状の単層炭素フォームの積層体であってもよいし、線状部と該線状部を結合する結合部とを有するシート状の単層又は積層炭素フォームと他の炭素フォームとの積層体であってもよい。
本実施形態(例えば、上記[1]~[18]の形態等)の炭素フォームとしては、(i)炭素フォームの表面積に対する直径1mm以上の大貫通孔の数の割合が0.0003個/mm2以下であるシート状の炭素フォーム(好ましくは、厚さが0.01mm以上1.0mm以下であり、炭素フォームの表面積に対する直径1mm以上の大貫通孔の数の割合が0.0003個/mm2以下であるシート状の炭素フォーム)(本明細書において、「炭素フォームI」と称する場合がある)、(ii)線状部と該線状部を結合する結合部とを有する第1の炭素フォームと線状部と該線状部を結合する結合部とを有する第2の炭素フォームとの積層体である積層炭素フォームであって、前記積層炭素フォームの厚さ方向の断面に、前記積層炭素フォームを貫通する貫通孔であって、前記第1の炭素フォームと前記第2の炭素フォームとの接触面において、接触面における前記第1の炭素フォームの貫通孔の外端と、接触面における前記第2の炭素フォームの貫通孔の外端とがずれている貫通孔が存在する、積層炭素フォーム(好ましくは、シート状の積層炭素フォーム)(本明細書において、「炭素フォームII」と称する場合がある)、(iii)線状部と該線状部を結合する結合部とを有する第1の炭素フォームと線状部と該線状部を結合する結合部とを有する第2の炭素フォームとの積層体である積層炭素フォームであって、前記積層炭素フォームの厚さ方向の断面に、前記積層炭素フォームの一方の表面から前記第1の炭素フォームと前記第2の炭素フォームとの接触面までつながり、前記接触面で途切れる、前記積層炭素フォームを貫通しない孔が存在する積層炭素フォーム(好ましくは、シート状の積層炭素フォーム)(本明細書において、「炭素フォームIII」と称する場合がある)等が挙げられる。
なお、本明細書において、「貫通孔」とは、炭素フォームの厚さ方向に、一方の表面から他方の表面までつながる穴をいい、直径1mm以上の貫通孔を「大貫通孔」と称する。なお、大貫通孔は、原料フォームに由来するものや炭素化の製造工程で生じる貫通孔をいい、炭素フォームを後から刃型等で加工して生じる貫通孔は含まない。また、「孔」とは、炭素フォームを貫通しない穴をいい、例えば、表面の窪み、炭素フォーム内の気泡、後述の途切れる孔等が挙げられる。
なお、本明細書において、「貫通孔」とは、炭素フォームの厚さ方向に、一方の表面から他方の表面までつながる穴をいい、直径1mm以上の貫通孔を「大貫通孔」と称する。なお、大貫通孔は、原料フォームに由来するものや炭素化の製造工程で生じる貫通孔をいい、炭素フォームを後から刃型等で加工して生じる貫通孔は含まない。また、「孔」とは、炭素フォームを貫通しない穴をいい、例えば、表面の窪み、炭素フォーム内の気泡、後述の途切れる孔等が挙げられる。
本実施形態(例えば、上記[1]~[18]の形態等)の炭素フォームの厚さは、電極として用いた時の電極と集電板の界面での接触を確保できる観点から、0.01mm以上が好ましく、0.05mm以上がより好ましく、0.1mm以上がさらに好ましい。また、電極として用いた時の抵抗を低減できる観点から、5.0mm以下が好ましく、3.0mm以下が好ましく、1.0mm以下が好ましく、0.7mm以下がより好ましく、0.6mm以下がより好ましく、0.5mm以下がさらに好ましい。
本実施形態(例えば、上記[1]~[18]の形態等)の炭素フォームの、炭素フォームの表面積に対する直径1mm以上の大貫通孔の数の割合は、0.0003個/mm2以下であることが好ましく、より好ましくは0.0002個/mm2以下、更に好ましくは0.0001個/mm2以下である。
上記大貫通孔の数の割合は、炭素フォームの一方の表面の全表面積に対する、炭素フォームの該表面に存在する大貫通孔の数の割合をいう。例えば、炭素フォームの表面が大きい場合、表面100mm×100mmの範囲内にある直径1mm以上の大貫通孔の数は、3個以下であることが好ましく、より好ましくは2個以下、さらに好ましくは1個以下である。表面100mm×100mmの範囲内にある直径1mm以上の大貫通孔の数の下限は特に限定は無いが、0個であってもよく、1個以上であってもよい。
本実施形態(例えば、上記[1]~[18]の形態等)の炭素フォームは、炭素フォームの表面積に対する直径1mm以上の大貫通孔の数の割合が0.0003個/mm2以下となる60mm×60mm以上の領域(好ましくは、60mm×60mmの領域)を有することが好ましく、80mm×80mm以上の領域(好ましくは80mm×80mmの領域)を有することがより好ましく、100mm×100mm以上の領域(好ましくは100mm×100mmの領域)を有することがより好ましく、200mm×200mm以上の領域(好ましくは200mm×200mmの領域)を有することがより好ましい。上限は特に限定は無いが、炭素フォームの表面積に対する直径1mm以上の大貫通孔の数の割合が0.0003個/mm2以下となる1000mm×1000mm以下の領域(好ましくは1000mm×1000mmの領域)を有することが好ましく、800mm×800mm以下の領域(好ましくは800mm×800mmの領域)を有することが好ましく、500mm×500mm以下の領域(好ましくは500mm×500mmの領域)を有することが好ましい。
直径1mm以上の大貫通孔の数が上記範囲であると、炭素フォームの取り扱い時に炭素フォームが破れにくくなり、ハンドリング性が向上する。
貫通孔の直径は、目視又は光源及び光検出器を備える検査装置(例えば、ピンホール検査機)を用いた検査により評価することができる。具体的には、炭素フォームの一方の表面S側に光源を、該表面と反対側の他方の表面に光検出器をそれぞれ配置する。そして、光源から光を炭素フォームの一方の表面Sに向けて照射する。炭素フォームに貫通孔が存在する場合には、照射された光が貫通孔を通過して光検出器に到達する。こうして、貫通孔を検出できる。なお、光源及び光検出器の配置は、逆にしてもよい。
貫通孔の直径の測定は、マイクロスコープ又は電子顕微鏡を用いて測定することができる。ここで、本明細書において、「直径」とは、光検出器に到達した光により形成される形状の外周上の2点を結ぶ線分(形状の外側を通ってもよい)であって、長さが最大となる線分の長さをいう。例えば、長方形の場合は対角線が直径であり、楕円の場合は長径が直径である。
上記大貫通孔の数の割合は、炭素フォームの一方の表面の全表面積に対する、炭素フォームの該表面に存在する大貫通孔の数の割合をいう。例えば、炭素フォームの表面が大きい場合、表面100mm×100mmの範囲内にある直径1mm以上の大貫通孔の数は、3個以下であることが好ましく、より好ましくは2個以下、さらに好ましくは1個以下である。表面100mm×100mmの範囲内にある直径1mm以上の大貫通孔の数の下限は特に限定は無いが、0個であってもよく、1個以上であってもよい。
本実施形態(例えば、上記[1]~[18]の形態等)の炭素フォームは、炭素フォームの表面積に対する直径1mm以上の大貫通孔の数の割合が0.0003個/mm2以下となる60mm×60mm以上の領域(好ましくは、60mm×60mmの領域)を有することが好ましく、80mm×80mm以上の領域(好ましくは80mm×80mmの領域)を有することがより好ましく、100mm×100mm以上の領域(好ましくは100mm×100mmの領域)を有することがより好ましく、200mm×200mm以上の領域(好ましくは200mm×200mmの領域)を有することがより好ましい。上限は特に限定は無いが、炭素フォームの表面積に対する直径1mm以上の大貫通孔の数の割合が0.0003個/mm2以下となる1000mm×1000mm以下の領域(好ましくは1000mm×1000mmの領域)を有することが好ましく、800mm×800mm以下の領域(好ましくは800mm×800mmの領域)を有することが好ましく、500mm×500mm以下の領域(好ましくは500mm×500mmの領域)を有することが好ましい。
直径1mm以上の大貫通孔の数が上記範囲であると、炭素フォームの取り扱い時に炭素フォームが破れにくくなり、ハンドリング性が向上する。
貫通孔の直径は、目視又は光源及び光検出器を備える検査装置(例えば、ピンホール検査機)を用いた検査により評価することができる。具体的には、炭素フォームの一方の表面S側に光源を、該表面と反対側の他方の表面に光検出器をそれぞれ配置する。そして、光源から光を炭素フォームの一方の表面Sに向けて照射する。炭素フォームに貫通孔が存在する場合には、照射された光が貫通孔を通過して光検出器に到達する。こうして、貫通孔を検出できる。なお、光源及び光検出器の配置は、逆にしてもよい。
貫通孔の直径の測定は、マイクロスコープ又は電子顕微鏡を用いて測定することができる。ここで、本明細書において、「直径」とは、光検出器に到達した光により形成される形状の外周上の2点を結ぶ線分(形状の外側を通ってもよい)であって、長さが最大となる線分の長さをいう。例えば、長方形の場合は対角線が直径であり、楕円の場合は長径が直径である。
本実施形態(例えば、上記[1]~[18]の形態等)の炭素フォームにおいて、上記大貫通孔の面積としては、10mm2以上であることが好ましく、より好ましくは4mm2以上である。大貫通孔の面積は、上記直径と同様にして、検査装置、マイクロスコープ等を用いて測定することができる。
上記貫通孔の形状(例えば、炭素フォーム表面における貫通孔の形状、光検出器に到達した光により形成される形状等)は限定されず、亀裂状や線状のものも貫通孔に含まれる。
本実施形態(例えば、上記[1]~[18]の形態等)の積層炭素フォームは、積層炭素フォームの厚さ方向の断面に、積層炭素フォームを貫通する貫通孔であって、隣り合う2層の炭素フォームの接触面において、上記接触面における一方の炭素フォームの貫通孔の外端と、上記接触面における他方の炭素フォームの貫通孔の外端とがずれている貫通孔(単に「ずれている貫通孔」と称する場合がある)が存在することが好ましい。ずれている貫通孔が存在すると、貫通孔がきっかけとなる炭素フォームの破断が一層起こりにくくなる。
図1を用いて貫通孔を具体的に説明する。図1は、2層の炭素フォームからなる積層炭素フォーム1の厚さ方向の断面であり、該断面には、一方の炭素フォーム2と他方の炭素フォーム3との接触面4、積層炭素フォームを貫通する貫通孔71、及びずれている貫通孔51、52がある。貫通孔71は、接触面4における一方の炭素フォーム2の貫通孔71の外端2aと、他方の炭素フォーム3の貫通孔71の外端3aとが向かい合って接している、ずれていない貫通孔である。ずれている貫通孔51は、接触面4において、一方の炭素フォーム2の貫通孔の外端2aと他方の炭素フォーム3の貫通孔の外端3aとが、両端共にずれている。ずれている貫通孔52は、一方の外端で外端2aと外端3aとが向かい合って接しており、一方の外端で外端2aと外端3aとがずれている。
上記ずれている貫通孔とは、積層炭素フォームの断面において、貫通孔の外縁の少なくとも一部に接触面4を含む貫通孔をいい、少なくとも一方の外端で外端2aと外端3aとがずれている貫通孔(例えば、ずれている貫通孔51、52等)等が挙げられる。中でも、上記ずれている貫通孔は、両方の外端で外端2aと外端3aとがずれている貫通孔であることが好ましい。
上記ずれている貫通孔は、本実施形態の積層炭素フォームの任意の断面で存在すればよい。また、積層炭素フォームが3層以上の積層体である場合、上記ずれている貫通孔は、積層炭素フォームに含まれる少なくとも一つの接触面でずれている貫通孔をいい、全ての接触面でずれている貫通孔であることが好ましい。
図1を用いて貫通孔を具体的に説明する。図1は、2層の炭素フォームからなる積層炭素フォーム1の厚さ方向の断面であり、該断面には、一方の炭素フォーム2と他方の炭素フォーム3との接触面4、積層炭素フォームを貫通する貫通孔71、及びずれている貫通孔51、52がある。貫通孔71は、接触面4における一方の炭素フォーム2の貫通孔71の外端2aと、他方の炭素フォーム3の貫通孔71の外端3aとが向かい合って接している、ずれていない貫通孔である。ずれている貫通孔51は、接触面4において、一方の炭素フォーム2の貫通孔の外端2aと他方の炭素フォーム3の貫通孔の外端3aとが、両端共にずれている。ずれている貫通孔52は、一方の外端で外端2aと外端3aとが向かい合って接しており、一方の外端で外端2aと外端3aとがずれている。
上記ずれている貫通孔とは、積層炭素フォームの断面において、貫通孔の外縁の少なくとも一部に接触面4を含む貫通孔をいい、少なくとも一方の外端で外端2aと外端3aとがずれている貫通孔(例えば、ずれている貫通孔51、52等)等が挙げられる。中でも、上記ずれている貫通孔は、両方の外端で外端2aと外端3aとがずれている貫通孔であることが好ましい。
上記ずれている貫通孔は、本実施形態の積層炭素フォームの任意の断面で存在すればよい。また、積層炭素フォームが3層以上の積層体である場合、上記ずれている貫通孔は、積層炭素フォームに含まれる少なくとも一つの接触面でずれている貫通孔をいい、全ての接触面でずれている貫通孔であることが好ましい。
本実施形態(例えば、上記[1]~[18]の形態等)の積層炭素フォームにおいて、全貫通孔の数に対する上記ずれている貫通孔の数の割合は、5%以上であることが好ましく、30%以上であることが好ましく、より好ましくは60%以上である。上限は特に限定は無いが100%以下であってもよく、95%以下であってもよい。ずれている貫通孔の上記割合が上記範囲であると、一層炭素フォームの破断が起こりにくくなる。中でも、全大貫通孔の数に対する上記ずれている貫通孔の数の割合が上記範囲であることがより好ましい。
なお、ずれている貫通孔の数の上記割合は、任意の100個の貫通孔を解析して測定される割合をいい、貫通孔が100個未満の場合は、全貫通孔を解析して測定される割合をいう。
なお、ずれている貫通孔の数の上記割合は、任意の100個の貫通孔を解析して測定される割合をいい、貫通孔が100個未満の場合は、全貫通孔を解析して測定される割合をいう。
本実施形態(例えば、上記[1]~[18]の形態等)の積層炭素フォームは、積層炭素フォームの厚さ方向の断面に、積層炭素フォームを貫通しない孔であって、隣り合う2層の炭素フォームにおいて、一方の炭素フォーム表面から上記一方の炭素フォームと他方の炭素フォームとの接触面までつながり、上記接触面で途切れる孔(単に「途切れる孔」と称する場合がある)が存在することが好ましい。途切れる孔が存在すると、ずれている貫通孔の割合が多くなり、貫通孔がきっかけとなる炭素フォームの破断が一層起こりにくくなる。
図2を用いて途切れる孔を具体的に説明する。図2は、2層の炭素フォームからなる積層炭素フォーム1の厚さ方向の断面であり、該断面には、一方の炭素フォーム2と他方の炭素フォーム3との接触面4、及び途切れる孔61~64がある。途切れる孔61は、一方の炭素フォーム2の表面から接触面4までつながり、接触面4で途切れる孔である。途切れる孔62は、一方の炭素フォーム2の表面から接触面4までつながり、接触面4で一部が途切れ、一部が他方の炭素フォーム3内に窪んでおり、接触面4における一方の炭素フォーム2の孔の外端2bと他方の炭素フォーム3の孔の外端3bとが、両端共にずれている孔である。途切れる孔63は、接触面4において、一方の孔の外端2bと他方の孔の外端3bとが、一方の外端で向かい合って接しており、他方の外端でずれている孔である。途切れる孔64は、接触面4において、一方の炭素フォーム2の表面から接触面4までつながる孔より大きい、他方の炭素フォーム3の窪みとつながっている孔である。
上記途切れる孔とは、積層炭素フォームの断面において、孔の外縁の少なくとも一部が接触面4を含む、貫通しない孔をいう。また、上記途切れる孔は、積層炭素フォームに含まれる少なくとも1つの接触面で途切れている孔をいう。
図2を用いて途切れる孔を具体的に説明する。図2は、2層の炭素フォームからなる積層炭素フォーム1の厚さ方向の断面であり、該断面には、一方の炭素フォーム2と他方の炭素フォーム3との接触面4、及び途切れる孔61~64がある。途切れる孔61は、一方の炭素フォーム2の表面から接触面4までつながり、接触面4で途切れる孔である。途切れる孔62は、一方の炭素フォーム2の表面から接触面4までつながり、接触面4で一部が途切れ、一部が他方の炭素フォーム3内に窪んでおり、接触面4における一方の炭素フォーム2の孔の外端2bと他方の炭素フォーム3の孔の外端3bとが、両端共にずれている孔である。途切れる孔63は、接触面4において、一方の孔の外端2bと他方の孔の外端3bとが、一方の外端で向かい合って接しており、他方の外端でずれている孔である。途切れる孔64は、接触面4において、一方の炭素フォーム2の表面から接触面4までつながる孔より大きい、他方の炭素フォーム3の窪みとつながっている孔である。
上記途切れる孔とは、積層炭素フォームの断面において、孔の外縁の少なくとも一部が接触面4を含む、貫通しない孔をいう。また、上記途切れる孔は、積層炭素フォームに含まれる少なくとも1つの接触面で途切れている孔をいう。
<結合部の数Nnに対する線状部の数Nlの割合R>
本実施形態(例えば、上記[1]~[18]の形態等)の炭素フォームにおいて、結合部の数Nnに対する線状部の数Nlの割合Rは、1.2以上1.7以下であることが好ましい。割合R(Nl/Nn)は、換言すれば、結合部にて分岐する枝分かれの平均数である。線状部が結合部で結合した三次元網目状構造を有さず、不織布のように結合していない線状部が接触している構造の場合は、このRが小さい値となる。また、線状部が帯状の様になった、例えば蜂の巣の様な壁面で覆われた多孔性構造の場合はこのRが大きい値となる。割合Rは、より好ましくは1.4以上1.65以下、さらに好ましくは1.4以上1.6以下、さらに好ましくは1.42以上1.60以下、さらに好ましくは1.44以上1.58以下、特に好ましくは1.45以上1.55以下である。
本実施形態(例えば、上記[1]~[18]の形態等)の炭素フォームにおいて、結合部の数Nnに対する線状部の数Nlの割合Rは、1.2以上1.7以下であることが好ましい。割合R(Nl/Nn)は、換言すれば、結合部にて分岐する枝分かれの平均数である。線状部が結合部で結合した三次元網目状構造を有さず、不織布のように結合していない線状部が接触している構造の場合は、このRが小さい値となる。また、線状部が帯状の様になった、例えば蜂の巣の様な壁面で覆われた多孔性構造の場合はこのRが大きい値となる。割合Rは、より好ましくは1.4以上1.65以下、さらに好ましくは1.4以上1.6以下、さらに好ましくは1.42以上1.60以下、さらに好ましくは1.44以上1.58以下、特に好ましくは1.45以上1.55以下である。
<線状部(炭素繊維)の径>
本実施形態(例えば、上記[1]~[18]の形態等)の炭素フォームにおいて、炭素フォームを構成する炭素繊維の径dは0.1μm以上10.0μm以下であることが好ましい。本実施形態において、「炭素繊維の径」は、結合部を繋ぐ線状部の太さのことを指す。炭素繊維の径が0.1μm以上であると、物理的な強度と導電性を確保することができ、より好ましくは1.0μm以上、さらに好ましくは1.5μm以上、特に好ましくは2μm以上である。また炭素繊維の径が10.0μm以下であると、圧縮挙動時の変形性や復元性を確保することができ、より好ましくは5.0μm以下、さらに好ましくは4μm以下、特に好ましくは3.5μm以下である。
本実施形態(例えば、上記[1]~[18]の形態等)の炭素フォームにおいて、炭素フォームを構成する炭素繊維の径dは0.1μm以上10.0μm以下であることが好ましい。本実施形態において、「炭素繊維の径」は、結合部を繋ぐ線状部の太さのことを指す。炭素繊維の径が0.1μm以上であると、物理的な強度と導電性を確保することができ、より好ましくは1.0μm以上、さらに好ましくは1.5μm以上、特に好ましくは2μm以上である。また炭素繊維の径が10.0μm以下であると、圧縮挙動時の変形性や復元性を確保することができ、より好ましくは5.0μm以下、さらに好ましくは4μm以下、特に好ましくは3.5μm以下である。
(線状部(炭素繊維)径の測定方法)
炭素フォームを構成する線状部(炭素繊維)の径dは、走査型電子顕微鏡(Scanning Electron Microscope,SEM)像を画像解析することによって求める。具体的には、走査型電子顕微鏡を用いて10,000倍の倍率で炭素フォームを観察する。得られた観察像から、線状部(炭素繊維)の太さを無作為に20か所測定する。断面形状が円形であると仮定して、この平均太さを上記径dとする。
炭素フォームを構成する線状部(炭素繊維)の径dは、走査型電子顕微鏡(Scanning Electron Microscope,SEM)像を画像解析することによって求める。具体的には、走査型電子顕微鏡を用いて10,000倍の倍率で炭素フォームを観察する。得られた観察像から、線状部(炭素繊維)の太さを無作為に20か所測定する。断面形状が円形であると仮定して、この平均太さを上記径dとする。
<線状部の配向角度>
炭素フォームは、熱処理炉において、例えばメラミン樹脂フォームを熱処理して炭素化すると、炭素フォームの骨格を構成する炭素繊維が全ての方向に均等に広がった等方的な構造を有するものとなる。このような炭素フォームの場合、300μm×300μm×300μmの領域内に含まれる線状部のx方向に対する配向角度の平均値をθave x、y方向に対する配向角度の平均値をθave y、z方向に対する配向角度の平均値をθave z、と定義したときに、θave x、θave y、θave zの中の最大値と最小値との差θcは通常は1°以下となることが多い。
なお、上記三方向は、炭素フォームの厚み方向をx方向、前記x方向に垂直な方向をy方向、前記x方向及び前記y方向に垂直な方向をz方向とする。
本実施形態(例えば、上記[1]~[18]の形態等)の炭素フォームにおいて、線状部の互いに直交する三方向の各々に対する配向角度の平均値について、一方向に対する配向角度の平均値と、他の方向に対する配向角度の平均値の少なくとも一方との差θcが3°以上である(異方性がある)ことが好ましい。これにより、炭素フォームに圧縮荷重が印加された際にも、炭素繊維(線状部)の破断を抑制して粉落ちを低減することができる。上記差θcは、好ましくは5°以上であり、より好ましくは8°以上であり、特に好ましくは10°以上である。また、上記差θcは炭素フォームの柔軟性の観点から、好ましくは35°以下であり、より好ましくは25°以下であり、さらに好ましくは20°以下である。逆に、上記差θcが3°を下回ると、等方的な配向性が高まり、圧縮荷重が印加された際に炭素繊維が破断して落下する、いわゆる粉落ちが相当量発生する。
炭素フォームは、熱処理炉において、例えばメラミン樹脂フォームを熱処理して炭素化すると、炭素フォームの骨格を構成する炭素繊維が全ての方向に均等に広がった等方的な構造を有するものとなる。このような炭素フォームの場合、300μm×300μm×300μmの領域内に含まれる線状部のx方向に対する配向角度の平均値をθave x、y方向に対する配向角度の平均値をθave y、z方向に対する配向角度の平均値をθave z、と定義したときに、θave x、θave y、θave zの中の最大値と最小値との差θcは通常は1°以下となることが多い。
なお、上記三方向は、炭素フォームの厚み方向をx方向、前記x方向に垂直な方向をy方向、前記x方向及び前記y方向に垂直な方向をz方向とする。
本実施形態(例えば、上記[1]~[18]の形態等)の炭素フォームにおいて、線状部の互いに直交する三方向の各々に対する配向角度の平均値について、一方向に対する配向角度の平均値と、他の方向に対する配向角度の平均値の少なくとも一方との差θcが3°以上である(異方性がある)ことが好ましい。これにより、炭素フォームに圧縮荷重が印加された際にも、炭素繊維(線状部)の破断を抑制して粉落ちを低減することができる。上記差θcは、好ましくは5°以上であり、より好ましくは8°以上であり、特に好ましくは10°以上である。また、上記差θcは炭素フォームの柔軟性の観点から、好ましくは35°以下であり、より好ましくは25°以下であり、さらに好ましくは20°以下である。逆に、上記差θcが3°を下回ると、等方的な配向性が高まり、圧縮荷重が印加された際に炭素繊維が破断して落下する、いわゆる粉落ちが相当量発生する。
本実施形態(例えば、上記[1]~[18]の形態等)の炭素フォーム中の300μm×300μm×300μmの領域内に含まれる線状部のx方向に対する配向角度の平均値をθave x、y方向に対する配向角度の平均値をθave y、z方向に対する配向角度の平均値をθave z、と定義したときに、炭素フォームは、θave x、θave y、θave zの中の最大値と2番目に大きな値との差θdが3°以上となる領域を含むことが好ましい。θave x、θave y、θave zの中の最大値と2番目に大きな値との差θdは、より好ましくは5°以上であり、更に好ましくは8°以上であり、特に好ましくは10°以上である。θave x、θave y、θave zの中の最大値と2番目に大きな値との差の上限は特に限定は無いが、炭素フォームの柔軟性の観点から、好ましくは35°以下であり、より好ましくは25°以下であり、さらに好ましくは20°以下である。
また、θave x、θave y、θave zの中の最大値と残りの2つの差が、共に3°以上となることが好ましく、より好ましくは5°以上であり、更に好ましくは8°以上であり、特に好ましくは10°以上である。θave x、θave y、θave zの中の最大値と残りの2つの差の上限に特に限定は無いが、炭素フォームの柔軟性の観点から、好ましくは35°以下であり、より好ましくは25°以下であり、さらに好ましくは20°以下である。
炭素フォーム中に上記θave x、θave y、θave zを満たす縦300μm×横300μm×高さ300μmの領域が含まれていればよい。
また、θave x、θave y、θave zの中の最大値と残りの2つの差が、共に3°以上となることが好ましく、より好ましくは5°以上であり、更に好ましくは8°以上であり、特に好ましくは10°以上である。θave x、θave y、θave zの中の最大値と残りの2つの差の上限に特に限定は無いが、炭素フォームの柔軟性の観点から、好ましくは35°以下であり、より好ましくは25°以下であり、さらに好ましくは20°以下である。
炭素フォーム中に上記θave x、θave y、θave zを満たす縦300μm×横300μm×高さ300μmの領域が含まれていればよい。
また、本明細書において、上記結合部の数Nn、線状部の数Nl、結合部の密度および配向角度θは、X線CT(Computerized Tomography)装置を用いて炭素フォームを撮影し、得られた断層像データから、前処理としてMedian filterを使用した後に、大津の二値化アルゴリズム(大津 展之著、「判別および最小2乗規準に基づく自動しきい値選定法」、電子情報通信学会論文誌D、Vol.J63-D、No.4、pp.346-356(1980)参照)を用いて構造と空間に領域分割し、炭素フォームの内部を含めた構造の三次元画像を作製し、得られた三次元画像から構造解析ソフトウェアを用いて求めた値である。
具体的には、結合部の数Nn及び線状部の数Nlは、上述のように得られた三次元画像に含まれる結合部及び線状部を検出し、その数をカウントすることにより求める。こうして得られたNn及びNlから、Nnに対するNlの割合Rを求めることができる。
さらに、線状部の配向角度θは、線状部の両端の結合部を結ぶ直線と各方向との間の角度であり、上記三次元画像において互いに直交する三方向の各々に対して求め、各方向について、線状部の配向角度の平均値を求める。
炭素フォームの構造解析に用いるCT装置としては、低エネルギー高輝度X線によるCT装置、例えば株式会社リガク製の高分解能3DX線顕微鏡nano3DXを用いることができる。また、画像処理並びに構造解析には、例えば株式会社JSOL社製のソフトウェアsimplewareのCenterline editorを用いることができる。
<結合部の密度>
本実施形態(例えば、上記[1]~[18]の形態等)の炭素フォームの結合部の密度は、圧縮荷重を印加された際の復元性の観点から、15,000個/mm3以上であることが好ましく、より好ましくは20,000個/mm3以上であり、さらに好ましくは30,000個/mm3以上である。また、炭素フォームの柔軟性の観点から、5,000,000個/mm3以下であることが好ましく、より好ましくは3,000,000個/mm3以下であり、さらに好ましくは2,000,000個/mm3以下である。
本実施形態の炭素フォーム中の少なくとも一部に上記結合部の密度を満たす箇所があれば好ましく、50体積%で上記密度範囲を満たしていればより好ましく、75体積%で上記密度範囲を満たしていればさらに好ましく、炭素フォームの任意の箇所で上記密度範囲を満たしていることが特に好ましい。
本実施形態(例えば、上記[1]~[18]の形態等)の炭素フォームの結合部の密度は、圧縮荷重を印加された際の復元性の観点から、15,000個/mm3以上であることが好ましく、より好ましくは20,000個/mm3以上であり、さらに好ましくは30,000個/mm3以上である。また、炭素フォームの柔軟性の観点から、5,000,000個/mm3以下であることが好ましく、より好ましくは3,000,000個/mm3以下であり、さらに好ましくは2,000,000個/mm3以下である。
本実施形態の炭素フォーム中の少なくとも一部に上記結合部の密度を満たす箇所があれば好ましく、50体積%で上記密度範囲を満たしていればより好ましく、75体積%で上記密度範囲を満たしていればさらに好ましく、炭素フォームの任意の箇所で上記密度範囲を満たしていることが特に好ましい。
<炭素含有率>
本実施形態(例えば、上記[1]~[18]の形態等)の炭素フォームの炭素含有率は、導電性の観点から、好適には51質量%以上、より好ましくは60質量%以上、さらに好ましくは65質量%以上、さらに好ましくは70質量%以上、さらに好ましくは75質量%以上、さらに好ましくは80質量%以上、さらに好ましくは85質量%以上、特に好ましくは90質量%以上である。上限は特に限定は無いが、100質量%以下であってもよく、99質量%以下であってもよく、98質量%以下であってもよい。
なお、炭素フォームの炭素含有率は、炭素フォームを構成する全原子の質量に対する炭素原子の質量割合であり、蛍光X線測定から求めることができる。
本実施形態(例えば、上記[1]~[18]の形態等)の炭素フォームの炭素含有率は、導電性の観点から、好適には51質量%以上、より好ましくは60質量%以上、さらに好ましくは65質量%以上、さらに好ましくは70質量%以上、さらに好ましくは75質量%以上、さらに好ましくは80質量%以上、さらに好ましくは85質量%以上、特に好ましくは90質量%以上である。上限は特に限定は無いが、100質量%以下であってもよく、99質量%以下であってもよく、98質量%以下であってもよい。
なお、炭素フォームの炭素含有率は、炭素フォームを構成する全原子の質量に対する炭素原子の質量割合であり、蛍光X線測定から求めることができる。
<酸素原子の割合>
本実施形態(例えば、上記[1]~[18]の形態等)の炭素フォームの、蛍光X線分析による表面分析で測定される酸素原子の割合(酸素含有率)は、電解液への濡れ性の観点から、0.03質量%以上が好ましく、0.05質量%以上がより好ましく、0.07質量%以上がさらに好ましい。また、電極の抵抗の観点から10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下がさらに好ましい。炭素フォーム中の酸素含有率は、炭素フォームを構成する全原子の質量に対する酸素原子の質量割合であり、蛍光X線測定から求めることができる。また、酸素原子の割合は、炭化後の処理で行う酸化工程の温度を高くすること等により、高くすることができる。
なお、炭素原子と酸素原子との合計質量は、60質量%以上であってよく、99.9質量%以下であってよい。
本実施形態(例えば、上記[1]~[18]の形態等)の炭素フォームの、蛍光X線分析による表面分析で測定される酸素原子の割合(酸素含有率)は、電解液への濡れ性の観点から、0.03質量%以上が好ましく、0.05質量%以上がより好ましく、0.07質量%以上がさらに好ましい。また、電極の抵抗の観点から10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下がさらに好ましい。炭素フォーム中の酸素含有率は、炭素フォームを構成する全原子の質量に対する酸素原子の質量割合であり、蛍光X線測定から求めることができる。また、酸素原子の割合は、炭化後の処理で行う酸化工程の温度を高くすること等により、高くすることができる。
なお、炭素原子と酸素原子との合計質量は、60質量%以上であってよく、99.9質量%以下であってよい。
<結晶子サイズ>
本実施形態(例えば、上記[1]~[18]の形態等)の炭素フォームの結晶子サイズLcは、1.1nm以上であることが好ましく、導電性の観点からは1.5nm以上であることがより好ましい。また、物理的な脆弱性の点から4.0nm以下であることが好ましく、3.0nm以下であることがより好ましい。
尚、Lcは広角X線回折から得られる炭素フォームの(002)面の回折から求めることができる。具体的には、サンプルを乳鉢で粉砕した後、卓上X線回折装置 D2 PHASER(Bluker社製)を用いて粉砕したサンプルの広角X線測定を行う方法が挙げられ、具体的な測定条件としては以下の条件が挙げられる。
[測定条件]
線源:Cu Kα
管電流:30mA
管電圧:40kV
スリット:1mm
試料回転速度:10回転/min
1ステップの測定時間:0.3sec
開始角度(2θ):5.00°
測定ステップ(2θ):0.01°
終了角度(2θ):90.00°
上記測定後、得られたデータを解析し、結晶子サイズLcを算出することができる。結晶子サイズLcの算出には2θ=25度の付近に現れる(002)面の回折ピークの半値幅β、ピーク最大値の角度θを下記のScherrerの式(14)に代入して求めることができる。一般的に高い温度で炭素化するほど高い結晶性を有し、Lcの値が大きくなる。
Lc=(Kλ)/βcosθ・・・(14)
ここでKは形状因子、λは線源の波長を表す。形状因子は(002)面回折であるため、0.90を代入する。線源は今回CuKαを用いているため、1.541を代入して計算を行う。
本実施形態(例えば、上記[1]~[18]の形態等)の炭素フォームの結晶子サイズLcは、1.1nm以上であることが好ましく、導電性の観点からは1.5nm以上であることがより好ましい。また、物理的な脆弱性の点から4.0nm以下であることが好ましく、3.0nm以下であることがより好ましい。
尚、Lcは広角X線回折から得られる炭素フォームの(002)面の回折から求めることができる。具体的には、サンプルを乳鉢で粉砕した後、卓上X線回折装置 D2 PHASER(Bluker社製)を用いて粉砕したサンプルの広角X線測定を行う方法が挙げられ、具体的な測定条件としては以下の条件が挙げられる。
[測定条件]
線源:Cu Kα
管電流:30mA
管電圧:40kV
スリット:1mm
試料回転速度:10回転/min
1ステップの測定時間:0.3sec
開始角度(2θ):5.00°
測定ステップ(2θ):0.01°
終了角度(2θ):90.00°
上記測定後、得られたデータを解析し、結晶子サイズLcを算出することができる。結晶子サイズLcの算出には2θ=25度の付近に現れる(002)面の回折ピークの半値幅β、ピーク最大値の角度θを下記のScherrerの式(14)に代入して求めることができる。一般的に高い温度で炭素化するほど高い結晶性を有し、Lcの値が大きくなる。
Lc=(Kλ)/βcosθ・・・(14)
ここでKは形状因子、λは線源の波長を表す。形状因子は(002)面回折であるため、0.90を代入する。線源は今回CuKαを用いているため、1.541を代入して計算を行う。
<空隙率>
本実施形態(例えば、上記[1]~[18]の形態等)の炭素フォームの空隙率は、柔軟性の観点から50%以上とすることが好ましく、60%以上とすることがより好ましく、70%以上とすることがさらに好ましく、80%以上とすることが特に好ましく、90%以上とすることが特に好ましく、95%以上とすることが特に好ましい。なお、本明細書において、空隙率は、かさ密度及び真密度から求めた値である。かさ密度は、炭素フォームに含まれる空隙も含めた体積に基づいた密度である。これに対して、真密度は、炭素フォームの材料が占める体積に基づいた密度である。
本実施形態(例えば、上記[1]~[18]の形態等)の炭素フォームの空隙率は、柔軟性の観点から50%以上とすることが好ましく、60%以上とすることがより好ましく、70%以上とすることがさらに好ましく、80%以上とすることが特に好ましく、90%以上とすることが特に好ましく、95%以上とすることが特に好ましい。なお、本明細書において、空隙率は、かさ密度及び真密度から求めた値である。かさ密度は、炭素フォームに含まれる空隙も含めた体積に基づいた密度である。これに対して、真密度は、炭素フォームの材料が占める体積に基づいた密度である。
(かさ密度の測定)
まず、ノギス等を用いて炭素フォームの寸法を測定し、得られた寸法から、炭素フォームのかさ体積Vbulkを求める。次に、精密天秤を用いて、炭素フォームの質量Mを測定する。得られた質量M及びかさ体積Vbulkから、下記の式(1)を用いて炭素フォームのかさ密度ρbulkを求めることができる。
ρbulk=M/Vbulk ・・・(1)
かさ密度は、電極として用いた際の抵抗を下げる観点から、3.0kgm-3以上であることが好ましく、より好ましくは3.5kgm-3以上であり、さらに好ましくは4.0kgm-3以上である。また、炭素フォームの柔軟性の観点から、400kgm-3以下であることが好ましく、より好ましくは300kgm-3以下であり、さらに好ましくは200kgm-3以下である。
まず、ノギス等を用いて炭素フォームの寸法を測定し、得られた寸法から、炭素フォームのかさ体積Vbulkを求める。次に、精密天秤を用いて、炭素フォームの質量Mを測定する。得られた質量M及びかさ体積Vbulkから、下記の式(1)を用いて炭素フォームのかさ密度ρbulkを求めることができる。
ρbulk=M/Vbulk ・・・(1)
かさ密度は、電極として用いた際の抵抗を下げる観点から、3.0kgm-3以上であることが好ましく、より好ましくは3.5kgm-3以上であり、さらに好ましくは4.0kgm-3以上である。また、炭素フォームの柔軟性の観点から、400kgm-3以下であることが好ましく、より好ましくは300kgm-3以下であり、さらに好ましくは200kgm-3以下である。
(真密度の測定)
炭素フォームの真密度ρrealは、n-ヘプタン、四塩化炭素及び二臭化エチレンからなる混合液を用いて浮沈法によって求めることができる。具体的には、まず、共栓試験管に適当なサイズの炭素フォームを入れる。次に、3種の溶媒を適宜混合して試験管に加え、30℃の恒温槽に漬ける。試料片が浮く場合は、低密度であるn-ヘプタンを加える。一方、試験片が沈む場合は、高密度である二臭化エチレンを加える。この操作を繰り返して、試験片が液中に漂うようにする。最後に、液の密度をゲーリュサック比重瓶を用いて測定する。
炭素フォームの真密度ρrealは、n-ヘプタン、四塩化炭素及び二臭化エチレンからなる混合液を用いて浮沈法によって求めることができる。具体的には、まず、共栓試験管に適当なサイズの炭素フォームを入れる。次に、3種の溶媒を適宜混合して試験管に加え、30℃の恒温槽に漬ける。試料片が浮く場合は、低密度であるn-ヘプタンを加える。一方、試験片が沈む場合は、高密度である二臭化エチレンを加える。この操作を繰り返して、試験片が液中に漂うようにする。最後に、液の密度をゲーリュサック比重瓶を用いて測定する。
(空隙率の算出)
上述のように求めたかさ密度ρbulk及び真密度ρrealから、下記の式(2)を用いて空隙率Vf,poreを求めることができる。
Vf,pore=((1/ρbulk)-(1/ρreal))/(1/ρbulk)×100 (%)
・・・(2)
上述のように求めたかさ密度ρbulk及び真密度ρrealから、下記の式(2)を用いて空隙率Vf,poreを求めることができる。
Vf,pore=((1/ρbulk)-(1/ρreal))/(1/ρbulk)×100 (%)
・・・(2)
本実施形態の炭素フォームは、例えば、電極、フィルタ、緩衝材等として好適に使用することができる。電極としては、燃料電池、レドックスフロー電池、電気分解としての用途に好ましく、特にレドックスフロー電池に適している。本実施形態のレドックスフロー電池用電極としては、上記積層炭素フォーム又は炭素フォームを含むことが好ましい。
炭素フォームII、炭素フォームIIIは、貫通孔が少ないため、例えば、電池の電極として使用する場合には、小面積の表面を有する炭素フォームを並べて構成した電極に比べて、高い導電性を有する。また、フィルタとして使用する場合には、捕集すべき物質を逃すことなく捕集することができる。
また、炭素フォームIは、大貫通孔が少なく、薄いため、電極として用いる場合には、高い導電性に加えて、一層抵抗を低減させることができる。また、フィルタとして使用する場合には、薄膜化が可能となり、捕集性に優れる上に、軽量化が可能となる。
炭素フォームII、炭素フォームIIIは、貫通孔が少ないため、例えば、電池の電極として使用する場合には、小面積の表面を有する炭素フォームを並べて構成した電極に比べて、高い導電性を有する。また、フィルタとして使用する場合には、捕集すべき物質を逃すことなく捕集することができる。
また、炭素フォームIは、大貫通孔が少なく、薄いため、電極として用いる場合には、高い導電性に加えて、一層抵抗を低減させることができる。また、フィルタとして使用する場合には、薄膜化が可能となり、捕集性に優れる上に、軽量化が可能となる。
[炭素フォームの製造方法]
上記炭素フォームの製造方法としては、炭素フォームの原料となる樹脂フォームを炭素化する工程(炭素化工程)を含む方法が挙げられる。
上記炭素フォームの製造方法としては、炭素フォームの原料となる樹脂フォームを炭素化する工程(炭素化工程)を含む方法が挙げられる。
例えば、単層炭素フォームの製造方法としては、厚膜の樹脂フォーム原料を高倍率でプレスする工程(プレス工程)と、炭素フォームを製造する工程(炭素化工程)を含む工程や、大きい圧縮荷重を加える炭素化工程等が挙げられる。
また、積層炭素フォームの製造方法としては、炭素化工程と、樹脂フォーム又は炭素フォームを積層してプレスする工程(プレス工程)とを含む方法と、樹脂フォーム又は炭素フォームを大きい荷重を加えて炭素化する工程を含む方法が挙げられ、具体的には、(1)少なくとも2層の樹脂フォームを積層し、プレスして樹脂フォーム積層体を形成する工程(樹脂フォームプレス工程)と、樹脂フォーム積層体を炭素化して積層炭素フォーム(好ましくは、シート状の積層炭素フォーム)を製造する工程(炭素化工程)と、を含む方法;(2)少なくとも2層の炭素フォームを積層して積層体を形成する工程(炭素フォーム積層工程)と、積層体をプレスして積層炭素フォーム(好ましくは、シート状の積層炭素フォーム)を製造する工程(炭素フォームプレス工程)と、を含む方法;(3)少なくとも1層の樹脂フォームと少なくとも1層の炭素フォームを積層し、プレスして積層体を形成する工程と、積層体を炭素化して積層炭素フォーム(好ましくは、シート状の積層炭素フォーム)を製造する工程(炭素化工程)と、を含む方法;(4)少なくとも2層の樹脂フォームを積層し、大きい荷重を加えて炭素化する工程を含む方法;(5)少なくとも1層の樹脂フォームと少なくとも1層の炭素フォームを積層し、大きい荷重を加えて炭素化する工程を含む方法;等が挙げられる。
炭素フォームI、炭素フォームII、及び炭素フォームIIIの製造方法としては、例えば、上述の方法等が挙げられ、好ましくは上記(1)又は(2)の方法、より好ましくは上記(1)の方法である。
炭素フォームとしては、厚み方向に炭素がつながっており抵抗を低減できる観点から、積層体が一体化されているものが好ましい。製造方法としては、炭化する際に、融着する樹脂が存在していること(プレス前又は荷重を加える前に、樹脂を混合すること)が好ましく、例えば上記(1)、(3)、(4)又は(5)の方法や、炭素フォームを積層する際に、少なくとも一部の炭素フォームに樹脂を被覆して炭化する方法などが挙げられる。
また、積層炭素フォームの製造方法としては、炭素化工程と、樹脂フォーム又は炭素フォームを積層してプレスする工程(プレス工程)とを含む方法と、樹脂フォーム又は炭素フォームを大きい荷重を加えて炭素化する工程を含む方法が挙げられ、具体的には、(1)少なくとも2層の樹脂フォームを積層し、プレスして樹脂フォーム積層体を形成する工程(樹脂フォームプレス工程)と、樹脂フォーム積層体を炭素化して積層炭素フォーム(好ましくは、シート状の積層炭素フォーム)を製造する工程(炭素化工程)と、を含む方法;(2)少なくとも2層の炭素フォームを積層して積層体を形成する工程(炭素フォーム積層工程)と、積層体をプレスして積層炭素フォーム(好ましくは、シート状の積層炭素フォーム)を製造する工程(炭素フォームプレス工程)と、を含む方法;(3)少なくとも1層の樹脂フォームと少なくとも1層の炭素フォームを積層し、プレスして積層体を形成する工程と、積層体を炭素化して積層炭素フォーム(好ましくは、シート状の積層炭素フォーム)を製造する工程(炭素化工程)と、を含む方法;(4)少なくとも2層の樹脂フォームを積層し、大きい荷重を加えて炭素化する工程を含む方法;(5)少なくとも1層の樹脂フォームと少なくとも1層の炭素フォームを積層し、大きい荷重を加えて炭素化する工程を含む方法;等が挙げられる。
炭素フォームI、炭素フォームII、及び炭素フォームIIIの製造方法としては、例えば、上述の方法等が挙げられ、好ましくは上記(1)又は(2)の方法、より好ましくは上記(1)の方法である。
炭素フォームとしては、厚み方向に炭素がつながっており抵抗を低減できる観点から、積層体が一体化されているものが好ましい。製造方法としては、炭化する際に、融着する樹脂が存在していること(プレス前又は荷重を加える前に、樹脂を混合すること)が好ましく、例えば上記(1)、(3)、(4)又は(5)の方法や、炭素フォームを積層する際に、少なくとも一部の炭素フォームに樹脂を被覆して炭化する方法などが挙げられる。
上記(1)の製造方法としては、第1の樹脂フォームと第2の樹脂フォームとを積層しプレスして樹脂フォーム積層体を形成する工程と、上記樹脂フォーム積層体を炭素化して、線状部と該線状部を結合する結合部とを有する第1の炭素フォームと線状部と該線状部を結合する結合部とを有する第2の炭素フォームとの積層体積層炭素フォーム(好ましくは、シート状の積層炭素フォーム)を製造する工程と、を含む方法が好ましい。
また、上記(2)の製造方法としては、線状部と該線状部を結合する結合部とを有する第1の炭素フォームと、線状部と該線状部を結合する結合部とを有する第2の炭素フォームとを積層して積層体を形成する工程と、上記積層体をプレスして積層炭素フォーム(好ましくは、シート状の積層炭素フォーム)を製造する工程と、を含む方法が好ましい。
また、上記(2)の製造方法としては、線状部と該線状部を結合する結合部とを有する第1の炭素フォームと、線状部と該線状部を結合する結合部とを有する第2の炭素フォームとを積層して積層体を形成する工程と、上記積層体をプレスして積層炭素フォーム(好ましくは、シート状の積層炭素フォーム)を製造する工程と、を含む方法が好ましい。
上記(1)、(2)の製造方法で得られる積層炭素フォームとしては、上述の炭素フォームが好ましく、より好ましくは炭素フォームI、炭素フォームII、又は炭素フォームIIIである。
<樹脂フォーム>
上記樹脂フォームとしては、例えば、メラミン樹脂フォーム;ウレタン樹脂フォーム;フェノール樹脂フォーム;アクリロニトリル樹脂フォーム;等の炭素フォームの原料として公知の任意の樹脂フォームが挙げられる。中でも、線状部の径のサイズと均一性の観点から、メラミン樹脂フォームが好ましい。
上記樹脂フォームとしては、例えば、メラミン樹脂フォーム;ウレタン樹脂フォーム;フェノール樹脂フォーム;アクリロニトリル樹脂フォーム;等の炭素フォームの原料として公知の任意の樹脂フォームが挙げられる。中でも、線状部の径のサイズと均一性の観点から、メラミン樹脂フォームが好ましい。
上記メラミン樹脂フォームとしては、例えば、メラミン類とホルムアルデヒドとの前縮合物、乳化剤、発泡剤、硬化剤、及び必要に応じて周知の充填剤等とを含有する水溶液または分散液を発泡処理した後、硬化処理を施すことにより製造することができる。発泡処理及び硬化処理は、使用する発泡剤の種類等に応じて設定される温度(例えば、発泡剤の沸点以上の温度等)に、上記成分からなる溶液を加熱すればよい。
上記メラミン類としては、メラミン、グアナミン、N-ブチルメラミン、N-フェニルメラミン、N,N-ジフェニルメラミン、N,N-ジアリルメラミン、N,N’,N”-トリフェニルメラミン、N,N’,N”-トリメチロールメラミン、ベンゾグアナミン、2,4-ジアミノ-6-メチル-1,3,5-トリアジン、2,4-ジアミノ-6-ブチル-1,3,5-トリアジン、2,4-ジアミノ-6-ベンジルオキシ-1,3,5-トリアジン、2,4-ジアミノ-6-ブトキシ-1,3,5-トリアジン、2,4-ジアミノ-6-シクロヘキシル-1,3,5-トリアジン、2,4-ジアミノ-6-クロロ-1,3,5-トリアジン、2,4-ジアミノ-6-メルカプト-1,3,5-トリアジン、アメリン(N,N,N’,N’-テトラシアノエチルベンゾグアナミン)等が挙げられる。上記メラミン類は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
上記前縮合物は、メラミン類、ホルムアルデヒド以外の単量体を用いてもよい。
上記前縮合物としては、例えばメラミン類:ホルムアルデヒド=1:1.5~1:4、平均分子量が200~1000のものを使用することができる。
縮合の条件としては、例えば、pH7~10、温度70~100℃等が挙げられる。
上記前縮合物は、メラミン類、ホルムアルデヒド以外の単量体を用いてもよい。
上記前縮合物としては、例えばメラミン類:ホルムアルデヒド=1:1.5~1:4、平均分子量が200~1000のものを使用することができる。
縮合の条件としては、例えば、pH7~10、温度70~100℃等が挙げられる。
上記乳化剤としては、アルキルスルホン酸、アリールスルホン酸のナトリウム塩等が挙げられる。上記乳化剤は、上記前縮合物100質量%に対して、0.5~5質量%の割合で用いることができる。
上記発泡剤としては、ペンタン、ヘキサン、トリクロロフルオロメタン、トリクロロトリフルオロエタン、ヒドロキシフルオロエーテル等が挙げられる。上記発泡剤は、上記前縮合物100質量%に対して、1~50質量%の割合で用いることができる。
上記硬化剤としては、塩酸、硫酸、蟻酸等が挙げられる。上記硬化剤は、上記前縮合物100質量%に対して、0.01~20質量%の割合で用いることができる。
上記メラミン樹脂フォームとしては、例えば特開平4-349178号公報に開示されている方法により製造されるメラミン/ホルムアルデヒド縮合発泡体を用いることができる。
また、上記ウレタン樹脂フォーム、上記フェノール樹脂フォーム、上記アクリロニトリル樹脂フォームは、適宜、公知の方法により製造することができる。
また、上記ウレタン樹脂フォーム、上記フェノール樹脂フォーム、上記アクリロニトリル樹脂フォームは、適宜、公知の方法により製造することができる。
上記樹脂フォームのかさ密度としては、0.001~0.1g/mm3であることが好ましく、より好ましくは0.005~0.02g/mm3である。
また、上記樹脂フォームの空隙率としては、60~99.9%であることが好ましく、より好ましくは80~99%である。
また、上記樹脂フォームの空隙率としては、60~99.9%であることが好ましく、より好ましくは80~99%である。
<炭素化工程>
上記炭素化工程としては、樹脂フォームに対して圧縮荷重を印加しつつ、窒素等の不活性気流中や真空等の不活性雰囲気下で熱処理して炭素化する方法;樹脂フォームを熱処理炉内に導入する原料フォーム導入工程と、熱処理炉内の温度を第1の昇温速度で熱処理温度まで昇温する昇温工程と、上記熱処理温度で所定の時間保持して樹脂フォームを炭素化して炭素フォームとする炭化工程と、熱処理炉内の温度を室温まで降温する降温工程と、熱処理炉から炭素フォームを搬出する炭素フォーム搬出工程とを含む方法;等が挙げられる。ここで、上記昇温工程は、少なくとも樹脂フォームからの分解性脱離ガスの発生量が多い第1の温度領域において、熱処理炉内を減圧排気しながら行う工程が挙げられる。
上記炭素化工程としては、樹脂フォームに対して圧縮荷重を印加しつつ、窒素等の不活性気流中や真空等の不活性雰囲気下で熱処理して炭素化する方法;樹脂フォームを熱処理炉内に導入する原料フォーム導入工程と、熱処理炉内の温度を第1の昇温速度で熱処理温度まで昇温する昇温工程と、上記熱処理温度で所定の時間保持して樹脂フォームを炭素化して炭素フォームとする炭化工程と、熱処理炉内の温度を室温まで降温する降温工程と、熱処理炉から炭素フォームを搬出する炭素フォーム搬出工程とを含む方法;等が挙げられる。ここで、上記昇温工程は、少なくとも樹脂フォームからの分解性脱離ガスの発生量が多い第1の温度領域において、熱処理炉内を減圧排気しながら行う工程が挙げられる。
上記原料フォーム導入工程において、原料の樹脂フォームを炭素化するための熱処理炉としては、樹脂フォームを炭素化して炭素フォームが得られる炉であれば限定されず、例えば原料の樹脂フォームを収容する反応炉と、反応炉内を加熱するヒーターと、反応炉内に不活性ガスを導入するガス導入口と、反応炉内からガスを排出するガス排出口と、反応炉内を減圧して真空にする真空ポンプとを備える熱処理炉を用いることができる。
上記昇温工程において、樹脂フォームからの分解性脱離ガスの発生量が多い第1の温度領域において、熱処理炉内を減圧排気しながら行うことが好ましい。
炭素フォームの原料である樹脂フォームを加熱すると、樹脂フォームから発生した活性な分解性脱離ガスが、炭素フォームを構成する炭素繊維と反応して分解し、炭素フォームに欠陥(例えば、大貫通孔)が発生する。上記分解性脱離ガスの発生量は、炉内の温度に依存する。昇温工程における、樹脂フォームからの分解性脱離ガスの発生量が多い温度領域(第1の温度領域)において、熱処理炉内を減圧排気することにより、樹脂フォームの内部で発生した分解性脱離ガスが樹脂フォーム外へ拡散するのを促進して、炭素フォームに欠陥が形成されるのを防止することができる。
炭素フォームの原料である樹脂フォームを加熱すると、樹脂フォームから発生した活性な分解性脱離ガスが、炭素フォームを構成する炭素繊維と反応して分解し、炭素フォームに欠陥(例えば、大貫通孔)が発生する。上記分解性脱離ガスの発生量は、炉内の温度に依存する。昇温工程における、樹脂フォームからの分解性脱離ガスの発生量が多い温度領域(第1の温度領域)において、熱処理炉内を減圧排気することにより、樹脂フォームの内部で発生した分解性脱離ガスが樹脂フォーム外へ拡散するのを促進して、炭素フォームに欠陥が形成されるのを防止することができる。
なお、「樹脂フォームからの分解性脱離ガスの発生量が多い温度領域(第1の温度領域)」は、昇温工程における原料の樹脂フォームの重量を0℃から100℃間隔で予めモニタリングし、樹脂フォームの重量が100℃当たり初期重量の5%以上減少する温度領域とする。例えば、300℃以上400℃未満、400℃以上500℃未満及び500℃以上600℃未満の全ての温度領域において、樹脂フォームの重量が100℃当たり初期重量の5%以上減少した場合には、第1の温度領域は300℃以上600℃未満とする。
樹脂フォームがメラミン樹脂フォームの場合、分解性脱離ガスの発生量が多い温度領域(第1の温度領域)は、200℃以上800℃未満の温度領域である。
樹脂フォームがメラミン樹脂フォームの場合、分解性脱離ガスの発生量が多い温度領域(第1の温度領域)は、200℃以上800℃未満の温度領域である。
上記減圧排気は、真空ポンプ等の排気手段を用いて行うことができる。排気は、少なくとも炉内の圧力を10分以内に1Pa以下にできる排気能力を有するポンプを用いて行うことが好ましい。
熱処理温度までの昇温速度(第1の昇温速度)は、例えば、原料の樹脂フォームがメラミン樹脂フォームの場合、分解性脱離ガスの発生量を抑制する観点から、10℃/分以下にすることが好ましい。また、全体の生産性の観点から、上記第1の昇温速度は1℃/分以上とすることが好ましい。
また、昇温工程は、上記樹脂フォームからの分解性脱離ガスの発生量が多い温度領域(第1の温度領域)においては、熱処理温度までの昇温速度(第1の昇温速度)よりも低い昇温速度(第2の昇温速度)で行うことが好ましい。これにより、樹脂フォーム内で発生する単位時間当たりの分解性脱離ガスの発生量を低減して、フォーム構造外への分解性脱離ガスの拡散をより促進することができる。第1の温度領域において昇温速度を低減した場合(すなわち、第2の昇温速度に変更した場合)、炉内の温度が第1の温度領域の上限を超えた場合には、昇温速度を第1の昇温速度に戻して昇温すればよい。
さらに、昇温工程は、上記脱離ガスの発生量が多い第1の温度領域内の、分解性脱離ガスの発生量の増加率が高い領域(第2の温度領域)において、上記第2の昇温速度よりも低い昇温速度(第3の昇温速度)で行うことが好ましい。これにより、樹脂フォーム内で発生する単位時間当たりの分解性脱離ガスの発生量をさらに低減して、フォーム構造外への分解性脱離ガスの拡散をさらに促進することができる。
なお、「樹脂フォームからの分解性脱離ガスの発生量の増加率が高い温度領域(第2の温度領域)」は、昇温工程における原料の樹脂フォームの重量を0℃から100℃間隔で予めモニタリングし、樹脂フォームの重量が100℃当たり初期重量の20%以上減少する温度領域とする。例えば、300℃以上400℃未満及び400℃以上500℃未満の温度領域において、樹脂フォームの重量が100℃当たり初期重量の20%以上減少した場合には、第2の温度領域は300℃以上500℃未満とする。
原料の樹脂フォームがメラミン樹脂フォームの場合、樹脂フォームからの脱離ガスの発生量の増加率が高い温度領域(第2の温度領域)は、300℃以上400℃未満の温度領域である。樹脂フォームがメラミン樹脂フォームの場合、昇温速度は、第1の温度領域において5℃/分以下にすることがより好ましく、さらに第2の温度領域において3℃/分以下にすることが特に好ましい。
また、昇温工程及び後述する炭化工程において、酸素と炭素フォームを構成する炭素繊維との分解反応を防止するために、炉内の雰囲気を不活性ガス雰囲気又は真空とすることが好ましい。ここで、炉内が「真空」であるとは、炉内の真空度が1Pa未満であることを指す。また、不活性ガス雰囲気は、炭素フォームの原料となる樹脂フォームを熱処理炉内に導入した後(原料フォーム導入工程)、炉内を減圧排気して酸素が含まれる空気を抜くことが好ましい。そして、炉内が1Pa未満の真空度に達して十分に空気が脱気された後、窒素ガスを導入することが好ましい。こうして炉内を窒素ガス雰囲気にすることができる。このように、炉内を不活性ガス雰囲気又は真空とした後、昇温を開始し、第1の温度領域においては炉内を減圧排気する。
さらに、メラミン樹脂フォームの脱離ガス量が多い200℃以上800℃未満の領域(第1の温度領域)においては、炉内に不活性ガスを導入しながら減圧排気し続けることが好ましい。これにより、炉内に窒素ガスやアルゴンガス等の不活性ガスの流れを発生させて、樹脂フォーム内で発生した分解性脱離ガスの排出を促進することができる。
上記不活性ガスの導入の際、不活性ガスの流量は1L/分以上とすることが好ましく、
3L/分以上とすることがより好ましく、5L/分以上とすることが特に好ましい。また、不活性ガスの流量は40L/分以下とすることが好ましく、30L/分以下とすることがより好ましく、20L/分以下とすることが特に好ましい。
3L/分以上とすることがより好ましく、5L/分以上とすることが特に好ましい。また、不活性ガスの流量は40L/分以下とすることが好ましく、30L/分以下とすることがより好ましく、20L/分以下とすることが特に好ましい。
上記炭化工程において、昇温して到達した熱処理温度で所定の時間保持し、樹脂フォームを炭素化して炭素フォームとする。上記熱処理温度は、原料の樹脂フォームの軟化点以上の温度であることが好ましい。例えば、樹脂フォームがメラミン樹脂フォームの場合、メラミン樹脂フォームの軟化点は300℃~400℃であるため、熱処理温度は軟化点以上の温度とする。好ましくは800℃以上、より好ましくは1000℃以上である。また、高い結晶性による物理的な脆弱性の観点から、好ましくは3000℃以下、より好ましくは2500℃以下である。
また上記熱処理温度で保持する時間(熱処理時間)は、原料の樹脂フォームが完全に炭素化する時間とすることが好ましい。例えば、原料の樹脂フォームがメラミン樹脂フォームの場合、保持時間は、好ましくは0.5時間以上、より好ましくは1時間以上、さらに好ましくは2時間以上である。また、生産性の点から、好ましくは5時間以下、より好ましくは4時間以下である。
上記降温工程において、メラミン樹脂フォームの炭素化の際の温度の降温速度については、急冷による炉内のヒーターや断熱材へのダメージを緩和する観点から、20℃/分以下にすることが好ましい。より好ましくは、15℃/分以下である。また、全体の生産性の点から5℃/分以上が好ましい。より好ましくは、10℃/分以上である。
上述の制御を行うことで、大きな表面積を有する炭素フォームを製造することができる。
上述の制御を行うことで、大きな表面積を有する炭素フォームを製造することができる。
なお、上記昇温工程及び上記炭化工程を、原料の樹脂フォームに圧縮荷重を印加しながら行うことにより、炭素繊維の拡がりに異方性を有する骨格構造の炭素フォームを得ることができる。異方性を有する炭素フォームは、圧縮荷重が印加された際にも、炭素繊維の破断を抑制して粉落ちを低減したり、高い復元性を実現したりすることができる。
上記圧縮荷重の印加は、原料の樹脂フォーム上に、例えば黒鉛板等のおもりを載せることによって行うことができる。印加する圧縮荷重は、好ましくは50Pa以上であり、より好ましくは200Pa以上である。また、好ましくは2000Pa以下であり、より好ましくは1500Pa以下である。
原料の樹脂フォームに圧縮荷重を印加する場合、分解性脱離ガスの拡散が、黒鉛板等のおもりによって抑制される。そのため、昇温工程では、圧縮荷重を印加しない場合に比べて、昇温速度を低減し、かつ不活性ガスを炉内に供給しながら減圧排気し続けて、分解性ガスの排出促進を行うことが特に好ましい。
例えば、原料の樹脂フォームがメラミン樹脂フォームの場合、200℃以上800℃未満の温度領域(第1の温度領域)においては、昇温速度は5℃/分以下にすることが好ましく、脱離ガスの発生量の増加率が高い300℃以上400℃未満の温度領域(第2の温度領域)においては、2℃/分以下にすることがより好ましい。また、200℃以上800℃未満の温度領域(第1の温度領域)において、窒素ガスやアルゴンガス等の不活性ガスを熱処理炉内に供給することが好ましい。
なお、原料の樹脂フォームへの圧縮応力は、一方向のみならず、二方向から印加してもよい。
<プレス工程>
積層炭素フォームの製造は、積層した樹脂フォーム、炭素フォーム、又は樹脂フォームと炭素フォームを圧縮するプレス工程と、炭素化工程とを分離して別々に行うことができる。また単層炭素フォームも下記プレス工程を行ってから炭素化してもよい。
積層炭素フォームの製造は、積層した樹脂フォーム、炭素フォーム、又は樹脂フォームと炭素フォームを圧縮するプレス工程と、炭素化工程とを分離して別々に行うことができる。また単層炭素フォームも下記プレス工程を行ってから炭素化してもよい。
プレス工程としては、活性ガスの排出が可能で、樹脂フォームを加熱して圧縮できる装置、又は炭素フォームの積層体を圧縮できる装置であれば特に限定されず、例えば、樹脂フォームをプレスする天板と、該天板を加熱するヒーターと、装置内からガスを排出するガス排出口と、装置内を減圧して真空にする真空ポンプを備える熱処理炉を用いることができる。プレス工程では、樹脂フォームの積層に用いる装置と同じ装置を用いてもよい。
上記プレス工程において用いる炭素フォームとしては、メラミン樹脂を炭素化したフォーム等が挙げられ、粉落ちの観点からより好ましくは面方向に異方性を有するフォームである。
上記樹脂フォームプレス工程において、樹脂フォームを積層する際には、例えば、一つの樹脂フォームをスライスして、複数枚に切り出した樹脂フォームを重ねてもよいし、異なる樹脂フォームを重ねてもよい。
複数枚に切り出した樹脂フォームを重ねる方法としては、重ねる樹脂フォームの貫通孔の位置がずれて、貫通孔の数を減らすことができる観点から、切り出した樹脂フォームを積層する際に、0°超360°未満回転させて積層する方法、切り出した樹脂フォームを反転させて積層する方法、積層する際に切り出した樹脂フォームの順番を入れ替える方法、同一規格のロットが異なる樹脂フォームから切り出した樹脂フォームを積層する方法、位置をずらして積層する方法等が好ましい。なお、重ねる樹脂フォームの貫通孔の位置が重なり、貫通孔の数を減らすことができないため、切り出した樹脂フォームをそのまま重ねて使用しないことが好ましい。
上記異なる樹脂フォームとしては、連続した空隙構造を持つ多孔体を用いればよく、例えば、異なる素材の樹脂フォームや、同一素材で空隙構造が異なる樹脂フォームや、同一規格のロットが異なる樹脂フォームから切り出した樹脂フォーム等が挙げられる。
複数枚に切り出した樹脂フォームを重ねる方法としては、重ねる樹脂フォームの貫通孔の位置がずれて、貫通孔の数を減らすことができる観点から、切り出した樹脂フォームを積層する際に、0°超360°未満回転させて積層する方法、切り出した樹脂フォームを反転させて積層する方法、積層する際に切り出した樹脂フォームの順番を入れ替える方法、同一規格のロットが異なる樹脂フォームから切り出した樹脂フォームを積層する方法、位置をずらして積層する方法等が好ましい。なお、重ねる樹脂フォームの貫通孔の位置が重なり、貫通孔の数を減らすことができないため、切り出した樹脂フォームをそのまま重ねて使用しないことが好ましい。
上記異なる樹脂フォームとしては、連続した空隙構造を持つ多孔体を用いればよく、例えば、異なる素材の樹脂フォームや、同一素材で空隙構造が異なる樹脂フォームや、同一規格のロットが異なる樹脂フォームから切り出した樹脂フォーム等が挙げられる。
上記プレス工程において、積層する樹脂フォーム又は炭素フォームの数としては、貫通孔の低減の観点から2枚以上であれば良く、プレス前の積層時の取り扱い安さの観点から、40枚以下が好ましく、より好ましくは20枚以下、更に好ましくは10枚以下である。
上記プレス工程において、用いるスペーサーの厚さとしては、プレス時に天板中央から圧力が加わり、中央付近はスペーサー付近の外周部より薄くなる点から、0.05~5mmが好ましく、より好ましくは0.1~1mm、更に好ましくは0.2~0.5mmである。
炭素フォームを積層圧縮する際には、用いるスペーサーの厚さとしては、0.05mm~1mmが好ましく、0.1mm~0.3mmがより好ましい。
積層した樹脂フォーム又は炭素フォームの厚さに対する、上記スペーサー厚さの割合としては、適度な空隙率を有するフォームが得られる観点から、1~50%が好ましく、より好ましくは2~10%である。
炭素フォームを積層圧縮する際には、用いるスペーサーの厚さとしては、0.05mm~1mmが好ましく、0.1mm~0.3mmがより好ましい。
積層した樹脂フォーム又は炭素フォームの厚さに対する、上記スペーサー厚さの割合としては、適度な空隙率を有するフォームが得られる観点から、1~50%が好ましく、より好ましくは2~10%である。
上記プレス工程は、発生する分解性脱離ガス排出の観点から、減圧排気をしながら行うことが好ましい。減圧排気の条件としては、圧力30Pa以下とすることが好ましく、より好ましくは10Pa以下である。プレス工程において、減圧排気は、昇温開始から降温終了までの間続けてもよいし、樹脂フォームと空気中の酸素が反応しにくい150℃以上の温度領域の間でのみ行ってもよい。
上記プレス工程における昇温条件は、分解性脱離ガスの単位時間当たりの生成量抑制の観点から、1~20℃/分であることが好ましく、生産性の観点からより好ましくは3~10℃/分である。
上記プレス工程におけるプレス温度は、樹脂フォームの軟化温度と基材からの剥離性の観点から、250~400℃であることが好ましく、より好ましくは320~380℃である。
炭素フォームを積層圧縮する際には、表面の酸化防止の観点から、100℃以上250℃以下が好ましく、120℃以上180℃以下がより好ましい。
また、上記プレス工程におけるプレス時間は、フォーム構造の維持と基材からの剥離性の観点から、5~120分であることが好ましく、より好ましくは20~60分である。
また、上記プレス工程におけるプレス圧力は、天板中央部にかかる圧力によるたわみの観点から、0.1~10MPaであることが好ましく、より好ましくは0.5~3MPaである。
炭素フォームを積層圧縮する際には、表面の酸化防止の観点から、100℃以上250℃以下が好ましく、120℃以上180℃以下がより好ましい。
また、上記プレス工程におけるプレス時間は、フォーム構造の維持と基材からの剥離性の観点から、5~120分であることが好ましく、より好ましくは20~60分である。
また、上記プレス工程におけるプレス圧力は、天板中央部にかかる圧力によるたわみの観点から、0.1~10MPaであることが好ましく、より好ましくは0.5~3MPaである。
上記プレス工程における降温条件は、プレス装置保護の観点から、1~30℃/分であることが好ましく、より好ましくは生産性の観点から5~20℃/分である。
上記プレス工程を経た積層樹脂フォームを炭素化する際にも、たわみを抑制する観点から黒鉛板等を載せて圧縮荷重を加えることが望ましい。この場合印加する圧縮荷重は、好ましくは10Pa以上であり、より好ましくは70Pa以上である。また、好ましくは700Pa以下であり、より好ましくは400Pa以下である。
また上記プレス工程を行った場合、炭素化工程で第1の温度領域で発生する分解性脱離ガス量が減少するため、第1の温度領ではより早い昇温を加えてもよい。生産性の観点から好ましくは2~50℃/分であり、より好ましくは5~20℃/分である。
本実施形態の炭素フォームは、別途酸化処理を加えてもよく、例えば、炭化工程の途中で酸化する方法、炭素化工程を終えた後に酸化する方法が挙げられる。酸化処理は、酸素存在下で加熱する方法や、化学的に酸化する方法等が挙げられる。
また上記プレス工程を行った場合、炭素化工程で第1の温度領域で発生する分解性脱離ガス量が減少するため、第1の温度領ではより早い昇温を加えてもよい。生産性の観点から好ましくは2~50℃/分であり、より好ましくは5~20℃/分である。
本実施形態の炭素フォームは、別途酸化処理を加えてもよく、例えば、炭化工程の途中で酸化する方法、炭素化工程を終えた後に酸化する方法が挙げられる。酸化処理は、酸素存在下で加熱する方法や、化学的に酸化する方法等が挙げられる。
以下、具体的な実施例及び比較例を挙げて説明するが、本発明はこれらに限定されるものではない。
<X線CTによる構造解析>
実施例1~6及び比較例1及び2による炭素フォームに対して、X線CTによる構造解析を行った。具体的には、X線画像を撮像しやすくするため、実施例及び比較例の各々に無電解銅めっきを行った後、試験片を採取し、高分解能3DX線顕微鏡nano3DX(株式会社リガク製)を用いて、採取した試験片に対して構造解析を行った。図6、図7に実施例1の炭素フォームより得られるX線CT解析画像を、図8に図6の画像のライン、ノード検出を行った画像処理後の図を結果の一例として示す。
具体的な無電解めっき条件、X線CT解析条件は以下のとおりである。
[無電解めっき条件]
サンプルをOPCコンディクリーンMA(奥野製薬工業社製、100mL/Lに蒸留水で希釈)に70℃で5分間浸漬した後、蒸留水で1分間洗浄した。続いてOPCプリディップ49L(奥野製薬工業社製、10mL/Lに蒸留水で希釈、98%硫酸を1.5mL/L添加)に70℃で2分間浸漬した後、蒸留水で1分間洗浄した。続いてOPCインデューサー50AM(奥野製薬工業社製、100mL/Lに蒸留水で希釈)及び、OPCインデューサー50CM(奥野製薬工業社製、100mL/Lに蒸留水で希釈)を1:1で混合した溶液中に45℃で5分間浸漬した後、蒸留水で1分間洗浄した。続いてOPC-150クリスタMU(奥野製薬工業社製、150mL/Lに蒸留水で希釈)に室温で5分間浸漬した後、蒸留水で1分間洗浄した。続いてOPC-BSM(奥野製薬工業社製、125mL/Lに蒸留水で希釈)に室温で5分間浸漬した。続いて化学銅500A(奥野製薬工業社製、250mL/Lに蒸留水で希釈)及び、化学銅500B(奥野製薬工業社製、250mL/Lに蒸留水で希釈)を1:1で混合した溶液中に室温で10分間浸漬した後、蒸留水で5分間洗浄した。その後90℃で12時間真空乾燥を行い、水分を乾燥させた。
<X線CTによる構造解析>
実施例1~6及び比較例1及び2による炭素フォームに対して、X線CTによる構造解析を行った。具体的には、X線画像を撮像しやすくするため、実施例及び比較例の各々に無電解銅めっきを行った後、試験片を採取し、高分解能3DX線顕微鏡nano3DX(株式会社リガク製)を用いて、採取した試験片に対して構造解析を行った。図6、図7に実施例1の炭素フォームより得られるX線CT解析画像を、図8に図6の画像のライン、ノード検出を行った画像処理後の図を結果の一例として示す。
具体的な無電解めっき条件、X線CT解析条件は以下のとおりである。
[無電解めっき条件]
サンプルをOPCコンディクリーンMA(奥野製薬工業社製、100mL/Lに蒸留水で希釈)に70℃で5分間浸漬した後、蒸留水で1分間洗浄した。続いてOPCプリディップ49L(奥野製薬工業社製、10mL/Lに蒸留水で希釈、98%硫酸を1.5mL/L添加)に70℃で2分間浸漬した後、蒸留水で1分間洗浄した。続いてOPCインデューサー50AM(奥野製薬工業社製、100mL/Lに蒸留水で希釈)及び、OPCインデューサー50CM(奥野製薬工業社製、100mL/Lに蒸留水で希釈)を1:1で混合した溶液中に45℃で5分間浸漬した後、蒸留水で1分間洗浄した。続いてOPC-150クリスタMU(奥野製薬工業社製、150mL/Lに蒸留水で希釈)に室温で5分間浸漬した後、蒸留水で1分間洗浄した。続いてOPC-BSM(奥野製薬工業社製、125mL/Lに蒸留水で希釈)に室温で5分間浸漬した。続いて化学銅500A(奥野製薬工業社製、250mL/Lに蒸留水で希釈)及び、化学銅500B(奥野製薬工業社製、250mL/Lに蒸留水で希釈)を1:1で混合した溶液中に室温で10分間浸漬した後、蒸留水で5分間洗浄した。その後90℃で12時間真空乾燥を行い、水分を乾燥させた。
[X線条件]
X線ターゲット:Cu
X線管電圧:40kV
X線管電流:30mA
[撮影条件]
投影数:1500枚
回転角度:180°
露光時間:20秒/枚
空間解像度:0.54μm/ピクセル
[X線CT解析条件]
得られた3次元画像を、Median filterで隣接する1pixelにて処理し、大津のアルゴリズムを用いて二値化した。
続いて、JSOL社製のソフトウェアsimplewareのCenterline editor(Ver.7)をデフォルトの設定値で使用して、2.16μm以下の線をノイズとして除去した後、測定視野300μm×300μm×300μm内の結合部の数Nn、線状部の数Nlを検出した。
上記構造解析により、試験片に含まれる結合部の数Nn、線状部の数Nl、結合部の密度、互いに直交する3方向(x、y、z)に対する配向角度の平均値を求めた。得られた結果を表1に示す。なお、表1における配向角度は、圧縮荷重の印加方向をx方向とし、圧縮荷重の印加方向に垂直な方向にy方向及びz方向を設定して求めた値である。
X線ターゲット:Cu
X線管電圧:40kV
X線管電流:30mA
[撮影条件]
投影数:1500枚
回転角度:180°
露光時間:20秒/枚
空間解像度:0.54μm/ピクセル
[X線CT解析条件]
得られた3次元画像を、Median filterで隣接する1pixelにて処理し、大津のアルゴリズムを用いて二値化した。
続いて、JSOL社製のソフトウェアsimplewareのCenterline editor(Ver.7)をデフォルトの設定値で使用して、2.16μm以下の線をノイズとして除去した後、測定視野300μm×300μm×300μm内の結合部の数Nn、線状部の数Nlを検出した。
上記構造解析により、試験片に含まれる結合部の数Nn、線状部の数Nl、結合部の密度、互いに直交する3方向(x、y、z)に対する配向角度の平均値を求めた。得られた結果を表1に示す。なお、表1における配向角度は、圧縮荷重の印加方向をx方向とし、圧縮荷重の印加方向に垂直な方向にy方向及びz方向を設定して求めた値である。
<繊維径の評価>
炭素フォームを構成する線状部(炭素繊維)の径dは、走査型電子顕微鏡(Scanning Electron Microscope,SEM)像を画像解析することによって求めた。具体的には、走査型電子顕微鏡を用いて10,000倍の倍率で炭素フォームを観察し、得られた観察像から、炭素繊維の太さを無作為に20か所測定した。断面形状が円形であると仮定して、この平均太さを算出した。
炭素フォームを構成する線状部(炭素繊維)の径dは、走査型電子顕微鏡(Scanning Electron Microscope,SEM)像を画像解析することによって求めた。具体的には、走査型電子顕微鏡を用いて10,000倍の倍率で炭素フォームを観察し、得られた観察像から、炭素繊維の太さを無作為に20か所測定した。断面形状が円形であると仮定して、この平均太さを算出した。
<酸素原子の割合(質量%)の測定>
炭素フォームの酸素含有率は、蛍光X線測定から求めた。蛍光X線測定は、株式会社リガク製の蛍光X線分析装置ZSX-100E(波長分散型、Rh管球)を用いた。サンプルは20mmφ以上のサイズを用いた。
なお、実施例、比較例に記載の、炭素化処理した後の、酸化処理の前後の試料を用いて、酸化処理前の酸素原子の割合、及び酸化処理後の酸素原子の割合を測定した。
炭素フォームの酸素含有率は、蛍光X線測定から求めた。蛍光X線測定は、株式会社リガク製の蛍光X線分析装置ZSX-100E(波長分散型、Rh管球)を用いた。サンプルは20mmφ以上のサイズを用いた。
なお、実施例、比較例に記載の、炭素化処理した後の、酸化処理の前後の試料を用いて、酸化処理前の酸素原子の割合、及び酸化処理後の酸素原子の割合を測定した。
<炭素含有率の評価>
炭素フォームの炭素含有率は、蛍光X線測定から求めた。蛍光X線測定は、株式会社リガク製の蛍光X線分析装置ZSX-100E(波長分散型、Rh管球)を用いた。サンプルは20mmφ以上のサイズを用いた。
なお、実施例、比較例に記載の、炭素化処理した後の、酸化処理の前後の試料を用いて、酸化処理前の炭素含有率、及び酸化処理後の炭素含有率を測定した。
炭素フォームの炭素含有率は、蛍光X線測定から求めた。蛍光X線測定は、株式会社リガク製の蛍光X線分析装置ZSX-100E(波長分散型、Rh管球)を用いた。サンプルは20mmφ以上のサイズを用いた。
なお、実施例、比較例に記載の、炭素化処理した後の、酸化処理の前後の試料を用いて、酸化処理前の炭素含有率、及び酸化処理後の炭素含有率を測定した。
<大貫通孔の数>
炭素フォームの単位表面積に対する直径1mm以上の大貫通孔の数は、目視検査及びピンホール検査機(オムロン社製シート検査装置)を用いた検査により、貫通孔を検出することで評価した。
炭素フォームの単位表面積に対する直径1mm以上の大貫通孔の数は、目視検査及びピンホール検査機(オムロン社製シート検査装置)を用いた検査により、貫通孔を検出することで評価した。
(実施例1)
炭素フォームの材料としてメラミン樹脂フォーム(寸法:270mm×270mm×1mm、BASF社製、商品名「BASOTECT W」)を2枚重ね、厚さ0.2mmのSUS板をスペーサーとしてサンプルの周囲に配置し、上下から厚さ10mmの黒鉛板で挟み込んで北川精機社製真空熱プレス機(KVHC-II)に導入した。次いで、真空ポンプにて減圧排気しつつプレス機内の温度を昇温速度:5℃/分で360℃まで昇温し、10分間保持した。昇温中及び360℃で保持する間、2.0MPaの圧力でプレスを行った。その後、機内の温度を40℃まで降温した後、真空ポンプを停止し、プレスを解除した。
次いで、プレスしたメラミン樹脂フォーム上に、270mm×270mm×4mmの黒鉛板を載置して、70Paの圧縮荷重を印加し、この圧縮荷重を印加した状態でメラミン樹脂フォームを熱処理炉内に導入した。続いて、炉内に窒素ガスを流量:2.5L/分で供給し、炉内の温度を昇温速度:5℃/分で1100℃の熱処理温度まで昇温した後、1時間保持してプレスしたメラミン樹脂フォームを炭素化した。その後、炉内の温度を室温まで降温し、炉から炭素化したメラミン樹脂フォームを取り出した。その後、別の加熱炉に移し、乾燥空気流速:1L/分の気流下で300℃にて1時間熱処理することにより、表面を酸化させた積層炭素フォームを得た。こうして実施例1による積層炭素フォームを作製した。
得られた炭素フォームの詳細を表1に示す。
炭素フォームの材料としてメラミン樹脂フォーム(寸法:270mm×270mm×1mm、BASF社製、商品名「BASOTECT W」)を2枚重ね、厚さ0.2mmのSUS板をスペーサーとしてサンプルの周囲に配置し、上下から厚さ10mmの黒鉛板で挟み込んで北川精機社製真空熱プレス機(KVHC-II)に導入した。次いで、真空ポンプにて減圧排気しつつプレス機内の温度を昇温速度:5℃/分で360℃まで昇温し、10分間保持した。昇温中及び360℃で保持する間、2.0MPaの圧力でプレスを行った。その後、機内の温度を40℃まで降温した後、真空ポンプを停止し、プレスを解除した。
次いで、プレスしたメラミン樹脂フォーム上に、270mm×270mm×4mmの黒鉛板を載置して、70Paの圧縮荷重を印加し、この圧縮荷重を印加した状態でメラミン樹脂フォームを熱処理炉内に導入した。続いて、炉内に窒素ガスを流量:2.5L/分で供給し、炉内の温度を昇温速度:5℃/分で1100℃の熱処理温度まで昇温した後、1時間保持してプレスしたメラミン樹脂フォームを炭素化した。その後、炉内の温度を室温まで降温し、炉から炭素化したメラミン樹脂フォームを取り出した。その後、別の加熱炉に移し、乾燥空気流速:1L/分の気流下で300℃にて1時間熱処理することにより、表面を酸化させた積層炭素フォームを得た。こうして実施例1による積層炭素フォームを作製した。
得られた炭素フォームの詳細を表1に示す。
(実施例2)
寸法:270mm×270mm×1mmの実施例1と同様のメラミン樹脂フォームを5枚重ね、厚さ0.5mmのSUS板をスペーサーとして用いたこと以外は、実施例1と同様にしてプレスを行い、プレスしたメラミン樹脂フォームを得た。
次いで、プレスしたメラミン樹脂フォームの上に、270mm×270mm×4mmの黒鉛板を3枚載置して、210Paの圧縮荷重を印加し、この圧縮荷重を印加した状態でメラミン樹脂フォームを熱処理炉内に導入した。真空ポンプにより炉内を減圧排気して炉内の真空度を1Pa未満とした。続いて、減圧排気しつつ炉内に窒素ガスを流量:2L/分で供給し、炉内の温度を昇温速度:5℃/分で800℃まで昇温した。炉内の温度が800℃に到達した時点での炉内の減圧度は約700Paであった。炉内の温度が800℃に到達した時点で窒素ガスの供給を停止し、昇温速度:5℃/分で1500℃の熱処理温度まで昇温し、1時間保持してプレスしたメラミン樹脂フォームを炭素化した。炉内の温度が1500℃に到達した時点での炉内の減圧度は10Pa未満であった。その後、炉内の温度を室温まで降温した後、真空ポンプを停止し、炉から炭素化したメラミン樹脂フォームを取り出した。その後、別の加熱炉に移し、乾燥空気流速:1L/分の気流下で500℃にて1時間熱処理することにより、表面を酸化させた積層炭素フォームを得た。こうして実施例2による積層炭素フォームを作製した。
得られた炭素フォームの詳細を表1に示す。
寸法:270mm×270mm×1mmの実施例1と同様のメラミン樹脂フォームを5枚重ね、厚さ0.5mmのSUS板をスペーサーとして用いたこと以外は、実施例1と同様にしてプレスを行い、プレスしたメラミン樹脂フォームを得た。
次いで、プレスしたメラミン樹脂フォームの上に、270mm×270mm×4mmの黒鉛板を3枚載置して、210Paの圧縮荷重を印加し、この圧縮荷重を印加した状態でメラミン樹脂フォームを熱処理炉内に導入した。真空ポンプにより炉内を減圧排気して炉内の真空度を1Pa未満とした。続いて、減圧排気しつつ炉内に窒素ガスを流量:2L/分で供給し、炉内の温度を昇温速度:5℃/分で800℃まで昇温した。炉内の温度が800℃に到達した時点での炉内の減圧度は約700Paであった。炉内の温度が800℃に到達した時点で窒素ガスの供給を停止し、昇温速度:5℃/分で1500℃の熱処理温度まで昇温し、1時間保持してプレスしたメラミン樹脂フォームを炭素化した。炉内の温度が1500℃に到達した時点での炉内の減圧度は10Pa未満であった。その後、炉内の温度を室温まで降温した後、真空ポンプを停止し、炉から炭素化したメラミン樹脂フォームを取り出した。その後、別の加熱炉に移し、乾燥空気流速:1L/分の気流下で500℃にて1時間熱処理することにより、表面を酸化させた積層炭素フォームを得た。こうして実施例2による積層炭素フォームを作製した。
得られた炭素フォームの詳細を表1に示す。
(実施例3)
寸法:270mm×270mm×0.5mmの実施例1と同様のメラミン樹脂フォームを2枚重ね、スペーサーを0.1mmにしたこと以外は、実施例2と同様にして積層炭素フォームを作製した。
得られた炭素フォームの詳細を表1に示す。
寸法:270mm×270mm×0.5mmの実施例1と同様のメラミン樹脂フォームを2枚重ね、スペーサーを0.1mmにしたこと以外は、実施例2と同様にして積層炭素フォームを作製した。
得られた炭素フォームの詳細を表1に示す。
(実施例4)
寸法:270mm×270mm×1mmの実施例2と同様のメラミン樹脂フォームを10枚重ね、スペーサーを0.3mmにしたこと以外は、実施例2と同様にして積層炭素フォームを作製した。
得られた炭素フォームの詳細を表1に示す。
寸法:270mm×270mm×1mmの実施例2と同様のメラミン樹脂フォームを10枚重ね、スペーサーを0.3mmにしたこと以外は、実施例2と同様にして積層炭素フォームを作製した。
得られた炭素フォームの詳細を表1に示す。
(実施例5)
寸法:270mm×270mm×10mmのメラミン樹脂フォームを単層で、スペーサーを0.5mmにしてプレスしたこと以外は、実施例2と同様にして単層炭素フォームを作製した。
得られた炭素フォームの詳細を表1に示す。
寸法:270mm×270mm×10mmのメラミン樹脂フォームを単層で、スペーサーを0.5mmにしてプレスしたこと以外は、実施例2と同様にして単層炭素フォームを作製した。
得られた炭素フォームの詳細を表1に示す。
(実施例6)
寸法:270mm×270mm×5mmのメラミン樹脂フォームを単層で、スペーサーを0.5mmにしてプレスしたこと以外は、実施例2と同様にして単層炭素フォームを2枚作製した。その後、真空熱プレス機(KVHC-II)に導入し、スペーサーを0.2mmにして、真空ポンプにて減圧排気しつつプレス機内の温度を昇温速度:5℃/分で150℃まで昇温し、10分間保持した。150℃で保持する間、2.0MPaの圧力でプレスを行った。その後、機内の温度を40℃まで降温した後、真空ポンプを停止し、プレスを解除して積層炭素フォームを作製した。
得られた炭素フォームの詳細を表1に示す。
寸法:270mm×270mm×5mmのメラミン樹脂フォームを単層で、スペーサーを0.5mmにしてプレスしたこと以外は、実施例2と同様にして単層炭素フォームを2枚作製した。その後、真空熱プレス機(KVHC-II)に導入し、スペーサーを0.2mmにして、真空ポンプにて減圧排気しつつプレス機内の温度を昇温速度:5℃/分で150℃まで昇温し、10分間保持した。150℃で保持する間、2.0MPaの圧力でプレスを行った。その後、機内の温度を40℃まで降温した後、真空ポンプを停止し、プレスを解除して積層炭素フォームを作製した。
得られた炭素フォームの詳細を表1に示す。
(比較例1)
寸法:120mm×90mm×2mmの実施例1と同様のメラミン樹脂フォームを1枚用いて、積層を行わなかったこと以外は、実施例1と同様にして単層炭素フォームを作製した。
炭素化した単層炭素フォームを取り出す際に、炭素フォームが一部破断した。
得られた炭素フォームの詳細を表1に示す。
寸法:120mm×90mm×2mmの実施例1と同様のメラミン樹脂フォームを1枚用いて、積層を行わなかったこと以外は、実施例1と同様にして単層炭素フォームを作製した。
炭素化した単層炭素フォームを取り出す際に、炭素フォームが一部破断した。
得られた炭素フォームの詳細を表1に示す。
(比較例2)
寸法:120mm×90mm×1mmの実施例1と同様のメラミン樹脂フォームを1枚用いて、積層を行わなかったこと以外は、実施例3と同様にしてプレス処理、炭素化処理を行い単層炭素フォームを作製した。
炭素化した単層炭素フォームを取り出す際に、炭素フォームが全面で破断した。
得られた炭素フォームの詳細を表1に示す。
寸法:120mm×90mm×1mmの実施例1と同様のメラミン樹脂フォームを1枚用いて、積層を行わなかったこと以外は、実施例3と同様にしてプレス処理、炭素化処理を行い単層炭素フォームを作製した。
炭素化した単層炭素フォームを取り出す際に、炭素フォームが全面で破断した。
得られた炭素フォームの詳細を表1に示す。
1 積層炭素フォーム
2 一方の炭素フォーム
2a 接触面における一方の炭素フォームの貫通孔の外端
2b 接触面における一方の炭素フォームの孔の外端
3 他方の炭素フォーム
3a 接触面における他方の炭素フォームの貫通孔の外端
3b 接触面における他方の炭素フォームの孔の外端
4 接触面
51-52 ずれている貫通孔
61-64 途切れる孔
71 貫通孔
2 一方の炭素フォーム
2a 接触面における一方の炭素フォームの貫通孔の外端
2b 接触面における一方の炭素フォームの孔の外端
3 他方の炭素フォーム
3a 接触面における他方の炭素フォームの貫通孔の外端
3b 接触面における他方の炭素フォームの孔の外端
4 接触面
51-52 ずれている貫通孔
61-64 途切れる孔
71 貫通孔
Claims (20)
- 線状部と該線状部を結合する結合部とを有する単層炭素フォームが少なくとも2層積層された積層体であることを特徴とする、積層炭素フォーム。
- 前記積層炭素フォームの厚さ方向の断面に、前記積層炭素フォームを貫通する貫通孔であって、隣り合う2層の単層炭素フォームの接触面において、前記接触面における一方の単層炭素フォームの貫通孔の外端と、前記接触面における他方の単層炭素フォームの貫通孔の外端とがずれている貫通孔が存在する、請求項1に記載の積層炭素フォーム。
- 前記積層炭素フォームの厚さ方向の断面に、前記積層炭素フォームを貫通しない孔であって、隣り合う2層の単層炭素フォームにおいて、一方の単層炭素フォーム表面から前記一方の単層炭素フォームと他方の単層炭素フォームとの接触面までつながり、前記接触面で途切れる孔が存在する、請求項1又は2に記載の積層炭素フォーム。
- 線状部と該線状部を結合する結合部とを有する炭素フォームであって、
炭素フォームの表面積に対する直径1mm以上の大貫通孔の数の割合が0.0003個/mm2以下であることを特徴とする、炭素フォーム。 - 前記炭素フォームの厚さが0.01mm以上5.0mm以下である、請求項4に記載の炭素フォーム。
- 前記炭素フォームの厚さが0.01mm以上0.5mm以下である、請求項4に記載の炭素フォーム。
- 前記炭素フォームは、前記炭素フォームの表面積に対する、直径1mm以上の大貫通孔の数の割合が0.0003個/mm2以下となる60mm×60mm以上の領域を有する、請求項4~6の何れか1項に記載の炭素フォーム。
- 前記炭素フォームは、前記炭素フォームの表面積に対する、直径1mm以上の大貫通孔の数の割合が0.0003個/mm2以下となる100mm×100mm以上の領域を有する請求項4~6の何れか1項に記載の炭素フォーム。
- 前記炭素フォームは、前記炭素フォームの表面積に対する、直径1mm以上の大貫通孔の数の割合が0.0003個/mm2以下となる200mm×200mm以上の領域を有する請求項4~6の何れか1項に記載の炭素フォーム。
- 前記炭素フォームの厚さが0.01mm以上0.5mm以下であり、且つ、前記炭素フォームは、前記炭素フォームの表面積に対する直径1mm以上の大貫通孔の数の割合が0.0003個/mm2以下となる60mm×60mm以上の領域を有する請求項4~6の何れか1項に記載の炭素フォーム。
- 前記結合部の数に対する前記線状部の数の割合が1.2以上1.7以下である請求項1~10の何れか1項に記載の積層炭素フォーム又は炭素フォーム。
- 前記結合部の数に対する前記線状部の数の割合が1.4以上1.6以下である請求項11に記載の積層炭素フォーム又は炭素フォーム。
- 炭素フォームの厚み方向をx方向、前記x方向に垂直な方向をy方向、前記x方向及び前記y方向に垂直な方向をz方向とし、
300μm×300μm×300μmの領域内に含まれる前記線状部の
前記x方向に対する配向角度の平均値をθavex、
前記y方向に対する配向角度の平均値をθavey、
前記z方向に対する配向角度の平均値をθavez、
と定義したときに、
前記θavex、前記θavey、前記θavezの中の最大値と最小値との差θcが3°以上となる、請求項1~12の何れか1項に記載の積層炭素フォーム又は炭素フォーム。 - 前記結合部の密度が15,000個/mm3以上となる領域を含む、請求項1~13の何れか1項に記載の積層炭素フォーム又は炭素フォーム。
- 蛍光X線分析による表面分析で測定される酸素原子の割合が0.03質量%~10質量%である、請求項1~14の何れか1項に記載の積層炭素フォーム又は炭素フォーム。
- 炭素含有率が51質量%以上である請求項1~15の何れか1項に記載の積層炭素フォーム又は炭素フォーム。
- シート状である請求項1~16の何れか1項に記載の積層炭素フォーム又は炭素フォーム。
- 請求項1~17のいずれか1項に記載の積層炭素フォーム又は炭素フォームを含むレドックスフロー電池用電極。
- 第1の樹脂フォームと第2の樹脂フォームとを積層しプレスして樹脂フォーム積層体を形成する工程と
前記樹脂フォーム積層体を炭素化して、線状部と該線状部を結合する結合部とを有する第1の単層炭素フォームと線状部と該線状部を結合する結合部とを有する第2の単層炭素フォームとの積層体である積層炭素フォームを製造する工程と、
を含むことを特徴とする、積層炭素フォームの製造方法。 - 線状部と該線状部を結合する結合部とを有する第1の単層炭素フォームと線状部と該線状部を結合する結合部とを有する第2の単層炭素フォームとを積層して積層体を形成する工程と、
前記積層体をプレスして積層炭素フォームを製造する工程と、
を含むことを特徴とする、積層炭素フォームの製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18865273.9A EP3693349B1 (en) | 2017-10-05 | 2018-08-21 | Layered carbon foam and production method for layered carbon foam |
US16/649,980 US11450856B2 (en) | 2017-10-05 | 2018-08-21 | Carbon foam, stack carbon foam, and method of manufacturing stack carbon foam |
JP2019546561A JP6782854B2 (ja) | 2017-10-05 | 2018-08-21 | 炭素フォーム、積層炭素フォーム、及び積層炭素フォームの製造方法 |
CN201880053882.4A CN111051266B (zh) | 2017-10-05 | 2018-08-21 | 碳泡沫、层积碳泡沫以及层积碳泡沫的制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017195416 | 2017-10-05 | ||
JP2017-195416 | 2017-10-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019069570A1 true WO2019069570A1 (ja) | 2019-04-11 |
Family
ID=65994742
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/030845 WO2019069570A1 (ja) | 2017-10-05 | 2018-08-21 | 炭素フォーム、積層炭素フォーム、及び積層炭素フォームの製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11450856B2 (ja) |
EP (1) | EP3693349B1 (ja) |
JP (1) | JP6782854B2 (ja) |
CN (1) | CN111051266B (ja) |
TW (1) | TWI694051B (ja) |
WO (1) | WO2019069570A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020045645A1 (ja) * | 2018-08-31 | 2020-03-05 | 旭化成株式会社 | 炭素フォーム、複合体及び製造方法 |
WO2023286560A1 (ja) * | 2021-07-13 | 2023-01-19 | 旭化成株式会社 | 有機ハイドライド製造用カソード拡散層 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61270268A (ja) * | 1985-05-22 | 1986-11-29 | 株式会社神戸製鋼所 | 複合炭素材及びその製造方法 |
JPS62132717A (ja) * | 1985-12-05 | 1987-06-16 | Mitsui Petrochem Ind Ltd | 接合された炭素質製品の製造方法 |
JPS6294830U (ja) * | 1985-12-06 | 1987-06-17 | ||
JPS62162611A (ja) * | 1986-01-14 | 1987-07-18 | Mitsui Petrochem Ind Ltd | 炭素多孔体の製造方法 |
JPH04349178A (ja) | 1991-05-24 | 1992-12-03 | Nisshinbo Ind Inc | 低密度炭素多孔体及びその製造方法 |
JPH09167621A (ja) | 1995-08-28 | 1997-06-24 | Mitsubishi Chem Corp | 炭素電極 |
JP2002326871A (ja) | 2001-04-27 | 2002-11-12 | Inoac Corp | 炭素化フォームおよびその製造方法 |
JP2002338372A (ja) * | 2001-05-08 | 2002-11-27 | Inoac Corp | 炭素化フォームおよびその製造方法 |
JP2004107106A (ja) * | 2002-09-13 | 2004-04-08 | Inoac Corp | 積層多孔質体及びその製造方法並びにフィルタ |
JP2004217446A (ja) | 2003-01-10 | 2004-08-05 | Mitsubishi Gas Chem Co Inc | 低熱伝導性炭素フォーム |
JP2006117507A (ja) * | 2004-10-21 | 2006-05-11 | Ucar Carbon Co Inc | 高強度モノリス炭素フォーム |
US20070281162A1 (en) * | 2006-06-02 | 2007-12-06 | Touchstone Research Laboratory, Ltd. | Bonded carbon foam assemblies |
US20070281163A1 (en) * | 2006-06-02 | 2007-12-06 | Touchstone Research Laboratory, Ltd. | Carbonized bonded thermosetting plastic foam assemblies |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4546910B2 (ja) * | 2005-09-22 | 2010-09-22 | 三菱樹脂株式会社 | 多孔積層体の製造方法および多孔積層体 |
JP5662077B2 (ja) * | 2010-08-04 | 2015-01-28 | イビデン株式会社 | 炭素繊維構造体の製造方法 |
JP5507766B2 (ja) * | 2011-09-22 | 2014-05-28 | 三菱樹脂株式会社 | 積層多孔フィルムの製造方法 |
US9812883B2 (en) * | 2014-02-18 | 2017-11-07 | Massachusetts Institute Of Technology | Materials for use with aqueous redox flow batteries and related methods and systems |
GB2531808A (en) * | 2014-11-03 | 2016-05-04 | Short Brothers Plc | Methods and precursors for manufacturing a perforated composite part |
US20180104380A1 (en) * | 2015-03-25 | 2018-04-19 | Wichita State University | Carbon particulates and composites thereof for musculoskeletal and soft tissue regeneration |
US10170749B2 (en) * | 2016-06-07 | 2019-01-01 | Nanotek Instruments, Inc. | Alkali metal battery having an integral 3D graphene-carbon-metal hybrid foam-based electrode |
-
2018
- 2018-08-21 WO PCT/JP2018/030845 patent/WO2019069570A1/ja unknown
- 2018-08-21 CN CN201880053882.4A patent/CN111051266B/zh active Active
- 2018-08-21 EP EP18865273.9A patent/EP3693349B1/en active Active
- 2018-08-21 JP JP2019546561A patent/JP6782854B2/ja active Active
- 2018-08-21 US US16/649,980 patent/US11450856B2/en active Active
- 2018-08-28 TW TW107129870A patent/TWI694051B/zh active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61270268A (ja) * | 1985-05-22 | 1986-11-29 | 株式会社神戸製鋼所 | 複合炭素材及びその製造方法 |
JPS62132717A (ja) * | 1985-12-05 | 1987-06-16 | Mitsui Petrochem Ind Ltd | 接合された炭素質製品の製造方法 |
JPS6294830U (ja) * | 1985-12-06 | 1987-06-17 | ||
JPS62162611A (ja) * | 1986-01-14 | 1987-07-18 | Mitsui Petrochem Ind Ltd | 炭素多孔体の製造方法 |
JPH04349178A (ja) | 1991-05-24 | 1992-12-03 | Nisshinbo Ind Inc | 低密度炭素多孔体及びその製造方法 |
JPH09167621A (ja) | 1995-08-28 | 1997-06-24 | Mitsubishi Chem Corp | 炭素電極 |
JP2002326871A (ja) | 2001-04-27 | 2002-11-12 | Inoac Corp | 炭素化フォームおよびその製造方法 |
JP2002338372A (ja) * | 2001-05-08 | 2002-11-27 | Inoac Corp | 炭素化フォームおよびその製造方法 |
JP2004107106A (ja) * | 2002-09-13 | 2004-04-08 | Inoac Corp | 積層多孔質体及びその製造方法並びにフィルタ |
JP2004217446A (ja) | 2003-01-10 | 2004-08-05 | Mitsubishi Gas Chem Co Inc | 低熱伝導性炭素フォーム |
JP2006117507A (ja) * | 2004-10-21 | 2006-05-11 | Ucar Carbon Co Inc | 高強度モノリス炭素フォーム |
US20070281162A1 (en) * | 2006-06-02 | 2007-12-06 | Touchstone Research Laboratory, Ltd. | Bonded carbon foam assemblies |
US20070281163A1 (en) * | 2006-06-02 | 2007-12-06 | Touchstone Research Laboratory, Ltd. | Carbonized bonded thermosetting plastic foam assemblies |
Non-Patent Citations (2)
Title |
---|
NOBUYUKI OTSU: "Automatic Threshold Selection Method based on Discrimination and Least Squares Criterion", THE IEICE TRANSACTIONS D, vol. J63-D, no. 4, 1980, pages 346 - 356 |
See also references of EP3693349A4 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020045645A1 (ja) * | 2018-08-31 | 2020-03-05 | 旭化成株式会社 | 炭素フォーム、複合体及び製造方法 |
JPWO2020045645A1 (ja) * | 2018-08-31 | 2021-08-12 | 旭化成株式会社 | 炭素フォーム、複合体及び製造方法 |
JP7158487B2 (ja) | 2018-08-31 | 2022-10-21 | 旭化成株式会社 | 炭素フォーム、複合体及び製造方法 |
US11820714B2 (en) | 2018-08-31 | 2023-11-21 | Asahi Kasei Kabushiki Kaisha | Carbon foam, assembly and manufacturing method |
WO2023286560A1 (ja) * | 2021-07-13 | 2023-01-19 | 旭化成株式会社 | 有機ハイドライド製造用カソード拡散層 |
Also Published As
Publication number | Publication date |
---|---|
TW201922613A (zh) | 2019-06-16 |
EP3693349B1 (en) | 2022-04-20 |
EP3693349A1 (en) | 2020-08-12 |
CN111051266B (zh) | 2022-07-19 |
TWI694051B (zh) | 2020-05-21 |
EP3693349A4 (en) | 2020-09-09 |
JP6782854B2 (ja) | 2020-11-11 |
US11450856B2 (en) | 2022-09-20 |
JPWO2019069570A1 (ja) | 2020-04-02 |
CN111051266A (zh) | 2020-04-21 |
US20200243866A1 (en) | 2020-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015146706A1 (ja) | ガス拡散電極およびその製造方法 | |
TWI705953B (zh) | 碳發泡材、複合體及製造方法 | |
CA2988934C (en) | Gas diffusion electrode | |
CN112928283A (zh) | 气体扩散电极 | |
JP6915535B2 (ja) | ガス拡散電極、微多孔層塗料およびその製造方法 | |
WO2017110693A1 (ja) | ガス拡散電極および燃料電池 | |
JP2009211928A (ja) | 炭素繊維紙及びその製造方法 | |
WO2019069570A1 (ja) | 炭素フォーム、積層炭素フォーム、及び積層炭素フォームの製造方法 | |
TWI656684B (zh) | 製造具有優異鋪展特性之卷式氣體擴散層的方法 | |
KR20180039004A (ko) | 복합방열시트 및 이의 제조방법 | |
TWI671275B (zh) | 碳泡沫體及其製造方法 | |
EP3352269A1 (en) | Gas diffusion electrode and method for producing same | |
TW201728435A (zh) | 碳片、氣體擴散電極基材、捲繞體及燃料電池 | |
JP7149106B2 (ja) | 炭素フォーム及びその製造方法 | |
JP2021008369A (ja) | 炭素フォーム | |
JP2005038610A (ja) | 燃料電池電極用材料の製造方法、燃料電池電極用材料および燃料電池 | |
JP2008190072A (ja) | 炭素繊維紙及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18865273 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019546561 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018865273 Country of ref document: EP Effective date: 20200506 |