JP6915535B2 - ガス拡散電極、微多孔層塗料およびその製造方法 - Google Patents

ガス拡散電極、微多孔層塗料およびその製造方法 Download PDF

Info

Publication number
JP6915535B2
JP6915535B2 JP2017504196A JP2017504196A JP6915535B2 JP 6915535 B2 JP6915535 B2 JP 6915535B2 JP 2017504196 A JP2017504196 A JP 2017504196A JP 2017504196 A JP2017504196 A JP 2017504196A JP 6915535 B2 JP6915535 B2 JP 6915535B2
Authority
JP
Japan
Prior art keywords
microporous layer
diffusion electrode
gas diffusion
thickness
coating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017504196A
Other languages
English (en)
Other versions
JPWO2017130694A1 (ja
Inventor
頌 加藤
頌 加藤
橋本 勝
勝 橋本
道生 若田部
道生 若田部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPWO2017130694A1 publication Critical patent/JPWO2017130694A1/ja
Application granted granted Critical
Publication of JP6915535B2 publication Critical patent/JP6915535B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/861Porous electrodes with a gradient in the porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8636Inert electrodes with catalytic activity, e.g. for fuel cells with a gradient in another property than porosity
    • H01M4/8642Gradient in composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M8/141Fuel cells with fused electrolytes the anode and the cathode being gas-permeable electrodes or electrode layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

燃料電池は、水素と酸素を反応させて水が生成する際に生起するエネルギーを電気的に取り出す機構であり、エネルギー効率が高く、排出物が水しかないことから、クリーンエネルギーとしてその普及が期待されている。本発明は、燃料電池に用いられるガス拡散電極に関する。特に、燃料電池の中でも燃料電池車などの電源として使用される高分子電解質型燃料電池に用いられるガス拡散電極およびそれに使用される微多孔層塗料に関する。
高分子電解質型燃料電池に使用される電極は、高分子電解質型燃料電池において2つのセパレータで挟まれて、その間に配置される。電極は、高分子電解質膜の両面に配置され、高分子電解質膜の表面に形成される触媒層と、この触媒層の外側に形成されるガス拡散層とからなる構造を有する。電極におけるガス拡散層を形成するための個別の部材として、ガス拡散電極が流通している。このガス拡散電極に求められる性能としては、ガス拡散性、触媒層で発生した電気を集電するための導電性、および触媒層表面に発生した水分を効率よく除去する排水性などがあげられる。このようなガス拡散電極を得るため、一般的に、ガス拡散性および導電性を兼ね備えた導電性多孔質基材が用いられる。
導電性多孔質基材としては、具体的には、炭素繊維からなるカーボンフェルト、カーボンペーパーおよびカーボンクロスなどが用いられる。中でも機械的強度などの点からカーボンペーパーが最も好ましいとされる。
これらの導電性多孔質基材をそのままガス拡散電極として用いる場合、導電性多孔質基材の粗い表面によって上記電解質膜が損傷し、燃料電池の耐久性が低下することがある。そこで、この耐久性の低下を防止するために、導電性多孔質基材上に微多孔層(マイクロポーラスレイヤー)と呼ばれる層を設ける場合がある。微多孔層は、ガス拡散電極の一部となるため、ガス拡散性および電気伝導性が必要となるため、導電性微粒子を含み、空隙を有することが求められる。
微多孔層は、導電性微粒子を分散した微多孔層塗料を導電性多孔質基材上に塗布、乾燥および焼結することにより得られる。そのため、微多孔層塗料中に粗大な異物が存在すると塗布欠点の原因となる可能性がある。微多孔層塗料から形成される塗膜の表面上に異物による凸状物が存在すると、その凸状物が電解質膜損傷の原因となったり、凸状物に起因して触媒層と微多孔層の界面に生じた空間に生成水がたまりガスの拡散が阻害される(以下、この現象をフラッティングと呼ぶ)原因となる場合もある。そのため、微多孔層塗料中の異物の低減が求められており、塵埃等を極力減らすため、製造工程のクリーン化が行われている。しかし、微多孔層塗料中の異物を低減するためにはクリーン化のみでは不十分である。その理由のひとつに微多孔層塗料中に含まれる導電性微粒子の凝集物があげられる。
そこで従来、微多孔層塗料に強いせん断を長時間与え、分散性を向上させることで凝集物の低減を図ってきた(特許文献1、2)。しかしながら、微多孔層塗料中の凝集物を低減するために微多孔層塗料の分散性を向上させると、微多孔層塗料の粘度が低下し、導電性多孔質基材上に塗布する際、導電性多孔質基材に染込んでしまうという問題がある。微多孔層が導電性多孔質基材へ染込んでしまうと、導電性多孔質電極基材の表面粗さを低減させることができないため、微多孔層の導電性多孔質基材への染込みの抑制が求められている。そのため、微多孔層塗料に増粘剤を添加するなどして流動性の制御が図られていた(特許文献3)。
特開2003−100305号公報 特開平11−273688号公報 特開2015−138656号公報
本発明者らの研究の結果、微多孔層中の凝集物を低減するために微多孔層塗料の分散性を向上させると、導電性多孔質基材への染込を抑制できないことが分かった。そのため、上記特許文献1〜3で開示されている技術により作製されたガス拡散電極では、電解質膜への損傷の抑制とガス拡散性の両立を図ることは困難である。
本発明の目的は、このような従来技術の欠点を克服し、電解質膜への損傷の抑制とガス拡散性を両立し、燃料電池として良好な性能を示すガス拡散電極を提供することにある。
本発明は、上記の課題を解決するため、次のような手段を採用するものである。
導電性多孔質基材の少なくとも片面に微多孔層を有する、ガス拡散電極であって、
前記ガス拡散電極の厚みが30μm以上180μm以下であり、
前記微多孔層の厚みが10μm以上100μm以下であり、かつ、
前記微多孔層の表面を、0.25mmの面積で4000視野観察したときに、該4000視野のうち、最大高さRzが50μm以上である視野の数が0視野以上5視野以下であり、
前記微多孔層の表面のクラックの占有率が0%以上0.072%以下であるガス拡散電極である。
また、本発明は、導電性微粒子を溶媒で湿潤・分散する湿潤・分散工程と、該湿潤・分散工程で得られた塗料中の凝集物を粉砕する粉砕工程とを有する微多孔層塗料の製造方法であって、
前記粉砕工程において、粉砕に用いる装置のせん断部分における最小ギャップが10μm以上500μm以下である、微多孔層塗料の製造方法を含む。
本発明のガス拡散電極を用いることにより、電解質膜の損傷の抑制とガス拡散性の両立が図れるため、耐久性能と発電性能が良好な燃料電池を提供することができる。
微多孔層の表面のクラック 粉砕工程に用いられる装置の一態様の概念図 粉砕工程に用いられる装置の他の態様の概念図 平面方向のガス拡散性を測定するための装置の概略図
固体高分子型燃料電池において、ガス拡散電極は、セパレータから供給されるガスを触媒へと拡散するための高いガス拡散性、電気化学反応に伴って生成する水をセパレータへ排出するための高い排水性、および発生した電流を取り出すための高い導電性が要求される。
本発明のガス拡散電極は、導電性多孔質基材の少なくとも片面に微多孔層を有するガス拡散電極である。ガス拡散電極は、片面のみに微多孔層を有しても、両面に微多孔層を有しても、特に構わないが、片面のみに微多孔層を有する態様がより好ましい。
導電性多孔質基材としては、導電性、ガス拡散性、排水性等が求められる。導電性多孔質基材としては、具体的には、例えば、炭素繊維織物、炭素繊維抄紙体、炭素繊維不織布、カーボンフェルト、カーボンペーパー、カーボンクロスなどの炭素繊維を含む多孔質基材;発泡焼結金属、金属メッシュ、エキスパンドメタルなどの金属多孔質基材を用いることが好ましい。中でも、耐腐食性が優れることから、導電性多孔質基材としては炭素繊維を含むカーボンフェルト、カーボンペーパー、カーボンクロスなどを用いることが好ましい。さらには、電解質膜の厚み方向の寸法変化を吸収する特性、すなわち「ばね性」に優れることから、炭素繊維抄紙体を炭化物で結着してなる基材、すなわちカーボンペーパーを用いることが好適である。導電性多孔質基材の厚さは20μm以上170μm以下が好ましく、さらに好ましくは50μm以上170μm以下である。
次いで、微多孔層について説明する。微多孔層は導電性微粒子を溶媒に分散させた微多孔層塗料を導電性多孔質基材上に塗布、乾燥および焼結して得られる層である。微多孔層もガス拡散電極の一部になるため、微多孔層には導電性多孔質基材と同様に導電性、ガス拡散性、排水性等が求められる。微多孔層の平均孔径は好ましくは0.01μm以上5μm以下である。
導電性を付与するために微多孔層は導電性微粒子を含む。微多孔層に用いられる導電性微粒子としては、金、銀、銅、白金、チタン、酸化チタン、酸化亜鉛等の金属微粒子または金属酸化物微粒子;カーボンブラック、グラフェン、黒鉛等の炭素材料微粒子;さらには「線状部分を有する導電性材料」である気相成長炭素繊維(VGCF)、カーボンナノチューブ、カーボンナノホーン、カーボンナノコイル、カップ積層型カーボンナノチューブ、竹状カーボンナノチューブ、グラファイトナノファイバー、炭素繊維のチョップドファイバーなどといった線状カーボンなどがあげられる。導電性微粒子は最も長い径の平均が好ましくは0.01μm以上1000μm以下である。
また、発電過程で生成される水を効率よく排水するため、微多孔層に撥水性を持たせる目的で、微多孔層は撥水樹脂をさらに含むことが好ましい。このような撥水樹脂としては、ポリテトラフルオロエチレン(PTFE)、四フッ化エチレン・六フッ化プロピレン共重合体(FEP)、ペルフルオロアルコキシフッ素樹脂(PFA)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン・四フッ化エチレン共重合体(ETFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニリデン(PVdF)等のフッ素樹脂をあげることができる。そして撥水性が高いことから、撥水樹脂としてはPTFEまたはFEPが好ましい。
また、導電性微粒子を溶媒に分散させるために、微多孔層塗料は界面活性剤を含むことも好ましい。なお、微多孔層塗料とは、微多孔層を形成するための導電性微粒子および溶媒を必須成分とする塗料を意味する。このような目的で用いられる界面活性剤としては、ポリエチレングリコールモノ−p−イソオクチルフェニルエーテル、ポリオキシエチレンラウリルエーテル等が好ましく使用される。
導電性多孔質基材の粗い表面により電解質膜を損傷させることを防ぐため、導電性多孔質基材表面に10μm以上の厚さの微多孔層を形成することが好ましい。このため、微多孔層塗料の粘度は、2Pa・s以上であることが好ましく、より好ましくは5Pa・s以上である。微多孔層塗液の粘度がこれより低いと、塗液が導電性多孔質基材の表面上で流れてしまったり、導電性多孔質基材の細孔に塗液が流入して裏抜けを起こしてしまうことがある。逆に粘度が高すぎると、塗工性が低下してしまうため、微多孔層塗料の粘度は15Pa・s以下であることが好ましい。
本発明者らの研究の結果、凝集物を低減するために分散性を向上させた微多孔層塗料を導電性多孔質基材に塗布した場合、図1に示すように、大きなクラック1が発生することがわかった。導電性微粒子はその特性上、1次粒子として存在せず、1次粒子が凝集した1次凝集体、その1次凝集体がさらに凝集した2次凝集体、その2次凝集体がさらに凝集した3次凝集体というように、様々な大きさの凝集体が、ある大きさの部分をピークとする分布をなして存在している。このような導電性微粒子を溶媒へ分散させる場合、分散性を向上するということは凝集体の大きさの分布を小さい側へシフトしていくことを意味する。このように分散性を向上させ、大きさが小さくなった導電性微粒子の凝集体は、絡み合いの力が弱いため、乾燥・焼結時の熱膨張による応力によって前記凝集体の絡み合いが解消され、微多孔層にクラックが発生する。つまり微多孔層におけるクラックの発生は、微多孔層塗料の分散性の指標として用いることが可能である。本発明で用いる微多孔層塗料は分散性が高すぎないことが好ましいため、本発明のガス拡散電極は、その微多孔層の表面のクラックの占有率が0%以上0.072%以下であることが好ましい。微多孔層の表面のクラックの占有率は、0%以上0.035%がより好ましく、0%以上0.0072%以下がさらに好ましく、0%以上0.00072%以下が特に好ましい。
また、本発明者らの研究の結果、微多孔層塗料の分散性と光沢度には相関関係があり、分散性が向上すると光沢度が増加することが分かった。ここで、光沢度とは、微多孔層塗料をガラス基板上に塗布して形成した微多孔層の表面を、光沢度測定装置を用いて測定することにより得られる値のことである。詳しい測定方法は後述する。前述の通り、導電性微粒子を溶媒へ分散させる場合、分散性を向上すると、凝集体の大きさの分布自体を小さい側へシフトしていくことになる。この凝集体の大きさのピークシフトが光沢度の変化として現れていると考えている。光沢度はある角度で照射された光の反射率であるため、微多孔層塗料から形成された塗膜の表面粗さが重要な因子となっている。微多孔層塗料から形成された塗膜の表面粗さは凝集体の大きさの分布のピーク位置に依存していることが考えられる。凝集体の大きさの分布のピーク位置が大きい部分にあれば、その微多孔層塗料を用いて形成された塗膜の表面は粗くなり、その結果光沢度は低くなる。一方前記ピーク位置が小さい部分にあれば、その微多孔層塗料を用いて形成された微多孔層の表面は滑らかになり、その結果光沢度は高くなる。つまり光沢度は、微多孔層塗料の分散性の指標として用いることが可能である。
本発明者らの研究の結果、微多孔層塗料の分散性が過度に向上すると、微多孔層塗料の導電性多孔質基材への染込みが発生することが分かった。この原因としては、分散性を向上させた結果、導電性微粒子の凝集体の大きさが小さくなり、凝集体が導電性多孔質基材の孔へ落ち込んでしまうためであると考えられる。
以上より、ガス拡散性の低下の要因となる微多孔層の導電性多孔質基材への染込みを抑制するために、微多孔層塗料の分散性の指標を表す光沢度に関して、本発明の微多孔層塗料の光沢度は30%以下であり、好ましくは20%以下である。また光沢度が低すぎると表面平滑性が失われるため、本発明の微多孔層塗料の光沢度は1%以上である。
また、微多孔層塗料中の導電性微粒子の凝集体に関して、大きすぎると電解質膜を損傷させたり、フラッティングが発生することにつながる。そのため、本発明の微多孔層塗料は、ガラス基板上に塗布した微多孔層の表面を、0.25mmの面積で2000視野観察したときに、該2000視野のうち、最大山高さRpが10μm以上である視野の数が0視野以上25視野以下であり、好ましくは0視野以上5視野以下、さらに好ましくは0視野である。Rpの詳しい測定方法については後述する。
また、導電性多孔質基材の少なくとも片面に形成された微多孔層の表面の最大高さRzが導電性微粒子の凝集体に起因して50μm以上であると電解質膜を損傷させたり、フラッティングが発生することにつながる。そのため、本発明のガス拡散電極は、微多孔層の表面を、0.25mmの面積で4000視野観察したときに、該4000視野のうち、最大高さRzが50μm以上である視野の数が0視野以上5視野以下であり、好ましくは0視野である。Rzの詳しい測定方法については後述する。
また、微多孔層塗料を導電性多孔質基材に塗布するときに、取扱を容易にするため、前記塗料にチクソトロピー性もしくは逆チクソトロピー性が無いことが好ましい。ここでいうチクソトロピー性とは、塗料にせん断をかけたとき、見かけの粘度が一時的に低下し、せん断をやめた後でも一定時間粘度が低下したままとなる特性のことで、レオロジー測定を行うとヒステリシス曲線を描く。また逆チクソトロピー性とは、塗料にせん断をかけたとき、見かけの粘度が一時的に増加し、せん断をやめた後でも一定時間粘度が増加したままとなる特性のことで、レオロジー測定を行うとヒステリシス曲線を描く。
上記の微多孔層塗料の製造工程は、導電性微粒子を溶媒で湿潤(溶媒と混合)し、分散させる工程(以下、湿潤・分散工程と呼ぶ)と、該湿潤・分散工程で得られた塗料中の凝集物を粉砕する工程(以下、粉砕工程と呼ぶ)とを有することが好ましい。
湿潤・分散工程に用いられる装置としては、攪拌混合装置、自転公転ミキサー、混練押出機、粉体吸引式連続溶解分散装置、ホモジナイザー、縦型固液混合機、横型固液混合機等が挙げられる。導電性微粒子と溶媒を湿潤・分散可能なものならばどれを用いても良い。
粉砕工程において、より効率的に塗料にせん断をかけるため、湿潤・分散工程後で、粉砕工程前の塗料の粘度は、5Pa・s以上であることが好ましく、より好ましくは10Pa・s以上である。一方、粘度が高すぎると、粉砕工程において塗料にせん断がかかりすぎ、分散が過度に進行してしまうため、湿潤・分散工程後で、粉砕工程前の塗料の粘度は、300Pa・s以下が好ましく、より好ましくは100Pa・s以下、さらに好ましくは40Pa・s以下である。
粉砕工程に用いられる装置としては、図2、図3のような装置を用いることが好ましい。図2は2つのロール(205)が互いに逆方向に回転(203)することによって、塗料(201)がロールの最小ギャップ(204)に入り込み、せん断がかかることにより、塗料(201)中の凝集物を粉砕する。このとき、せん断がかかる部分をせん断部分(202)と呼ぶ。図2の構造をもつ装置を3本ロールミルと呼ぶ。図3はロータ(306)が回転することにより、ステータ(307)との間で塗料(304)にせん断がかかることにより、塗料(304)中の凝集物を粉砕する。このとき、せん断がかかる部分をせん断部分(305)と呼ぶ。図3の構造をもつ装置をメディアレスミルと呼ぶ。塗料中の凝集物を粉砕するため、せん断部分(202、305)における最小ギャップは500μm以下が好ましく、より好ましくは300μm以下、さらに好ましくは100μm以下である。最小ギャップが小さすぎると塗料の分散が進行してしまうため、せん断部分における最小ギャップは10μm以上が好ましく、より好ましくは20μm以上である。
また、塗料の分散が過度に進行するのを抑制するため、粉砕に用いる装置のせん断部分の最小ギャップ部分における塗料の滞留時間は0秒よりも長く5秒以下であることが好ましく、より好ましくは0秒よりも長く1秒以下である。なお、塗料が粉砕に用いる装置を複数回通過する結果、粉砕に用いる装置のせん断部分の最小ギャップ部分を複数回通過する場合であっても、ここでいう「粉砕に用いる装置のせん断部分の最小ギャップ部分における塗料の滞留時間」とは、1回の通過における滞留時間を意味し、複数回の合計値を意味するものではない。
また、塗料の分散が過度に進行するのを抑制するため、粉砕に用いる装置が1パスであることが好ましい。ここで、粉砕に用いる装置が1パスとは、粉砕に用いる装置を1回塗料が通過したとき、塗料が1度のみ、せん断部の最小ギャップ部分を通過する構造の装置であることを意味する。最適な塗料特性を得るために、微多孔層塗料を粉砕に用いる装置に複数回通過させてもかまわない(図2、図3)。
また、粉砕に用いる装置のせん断部におけるせん断速度は1000s−1以上1000000s−1以下であることが好ましい。ここで、せん断速度とは粉砕に用いる装置のせん断部分の最小ギャップ間隙距離(m)と前記せん断部におけるロールやロータの周速(m/s)とをかけたものである。
粉砕工程に用いられる装置としては、上記の特徴を持つ装置で、具体的には、3本ロールミル、メディアレスミル等が用いられる。
微多孔層塗液の導電性多孔質基材への塗布は、市販されている各種の塗布装置を用いて行うことができる。具体的には、スクリーン印刷、ロータリースクリーン印刷、スプレー噴霧、凹版印刷、グラビア印刷、ダイコーター塗布、バー塗布、ブレード塗布、コンマコーター塗布などが使用できる。導電性多孔質基材の表面粗さによらず塗布量の定量化を図ることができる点で、ダイコーターによる塗布が好ましい。また、燃料電池にガス拡散電極を組み込んだ場合に触媒層との密着を高めるため塗布面の平滑性を求める場合には、ブレードコーターやコンマコーターによる塗布が好適に用いられる。以上例示した塗布方法はあくまでも例示のためであり、必ずしもこれらに限定されるものではない。
微多孔層は、単層でも多層でもいずれでも構わないが、導電性多孔質基材に接する第1の微多孔層、および、該第1の微多孔層に接し、ガス拡散電極の最表面に位置する第2の微多孔層からなることが特に好ましい。このような第1の微多孔層および第2の微多孔層を有するガス拡散電極を製造する場合、導電性多孔質基材の一方の表面に第1の微多孔層塗液を塗布し、その上に続いて第2の微多孔層塗液を塗布することが好ましい。
上記の多層塗布においては、第1の微多孔層塗液の塗布をダイコーターで行い、さらに第2の微多孔層塗液の塗布もダイコーターで行う方法、第1の微多孔層塗液の塗布を各種のロールコーターで行い、第2の微多孔層塗液の塗布をダイコーターで行なう方法、第1の微多孔層塗液の塗布をコンマコーターで行い、第2の微多孔層塗液の塗布をダイコーターで行なう方法、第1の微多孔層塗液の塗布をリップコーターで行い、第2の微多孔層塗液の塗布をダイコーターで行なう方法、スライドダイコーターを用いて、基材に塗布する前に第1の微多孔層塗液と第2の微多孔層塗液を重ねて同時に塗布する方法などが適用できる。特に、高粘度の塗液を均一に塗布するためには、第1の微多孔層塗液の塗布をダイコーターまたはコンマコーターで行なうことが好ましい。
微多孔層塗液を塗布した後、必要に応じ、微多孔層塗液の分散媒(水系の場合は水)を乾燥除去する。乾燥の温度は、分散媒が水の場合、室温(20℃前後)から150℃以下が好ましく、60℃以上120℃以下がさらに好ましい。この分散媒の乾燥は後の焼結工程において一括して行なっても良い。
微多孔層塗液を塗布した後、微多孔層塗液に用いた界面活性剤を除去する目的および撥水樹脂を一度溶解して導電性微粒子を結着させる目的で、焼結を行なうことが一般的である。
焼結の温度は、添加されている界面活性剤の沸点あるいは分解温度にもよるが、250℃以上、400℃以下で行なうことが好ましい。焼結の温度が250℃未満では界面活性剤の除去が十分に達成し得ないか、あるいは完全に除去するために膨大な時間がかかる。焼結の温度が、400℃を越えると撥水樹脂の分解が起こる可能性がある。
焼結時間は、生産性の点からできるかぎり短時間、好ましくは20分以内、より好ましくは10分以内、さらに好ましくは5分以内である。焼結時間が短すぎると界面活性剤の除去が十分行えない、撥水樹脂が十分に溶解しない等の問題が発生する場合があるため、好ましくは10秒以上である。
焼結の温度と時間は、撥水樹脂の融点あるいは分解温度と界面活性剤の分解温度に鑑みて最適な温度および時間を選択する。
ガス拡散電極は、ガス拡散性に優れることが求められるため、厚み方向のガス拡散性が、好ましくは30%以上であり、より好ましくは30%以上50%以下、さらに好ましくは30%以上40%以下である。厚み方向のガス拡散性の測定方法は後述する。
この厚み方向のガス拡散性能を達成するために、ガス拡散電極の厚みは180μm以下であり、好ましくは150μm以下、さらに好ましくは130μm以下である。薄くしすぎると強度が低下するため、ガス拡散電極の厚みは30μm以上であり、好ましくは40μm以上である。
また、前述の通り微多孔層の厚みは10μm以上であり、好ましくは20μm以上である。一方、厚くしすぎると厚み方向のガス拡散性が低下してしまうため、微多孔層の厚みは100μm以下であり、好ましくは50μm以下である。
また、微多孔層の厚みが確保できていたとしても、微多孔層が導電性多孔質基材へ染込んでいた場合、平面方向のガス拡散性が阻害される可能性がある。ガス拡散電極の平面方向のガス拡散性は、x(μm)をガス拡散電極の厚み、eをネイピア数とすると、好ましくは0.7e0.025xcc/min以上、より好ましくは0.7e0.025xcc/min以上200cc/min以下、特に好ましくは0.7e0.025xcc/min以上150cc/min以下である。平面方向のガス拡散性がこの範囲より小さい場合、燃料電池内でのガスの利用効率が低下し、燃料電池の発電性能が低下する可能性がある。平面方向のガス拡散性の測定方法は後述する。この平面方向のガス拡散性を0.7e0.025xcc/min以上とするためには、導電性多孔質基材への微多孔層の染込みを抑制する必要があり、前述の方法で作製された微多孔層塗料を塗布して微多孔層を形成することが有効である。
微多孔層表面の凝集物を低減し、かつ、微多孔層表面のクラック発生を抑制し、さらに平面方向のガス拡散性を確保するために、微多孔層は、導電性多孔質基材に接する第1の微多孔層、および、該第1の微多孔層に接し、ガス拡散電極の最表面に位置する第2の微多孔層を有することが好ましい。第1の微多孔層は、前述の方法を用いて作製することにより、第1の微多孔層中の凝集物低減、クラック発生抑制、および導電性多孔質基材への染込み抑制がされる。第2の微多孔層は、従来の方法を用いて高分散で作製しても、第1の微多孔層表面が平滑でかつ厚みが薄ければクラックが発生せず、かつ第1の微多孔層の目止め効果により第2の微多孔層が導電性多孔質基材に染込むことは無いため、微多孔層表面の凝集物低減とクラック発生抑制と平面方向のガス拡散性確保を両立させることができる。
微多孔層が多層構造である場合、導電性多孔質基材の粗さが電解質膜に転写されることによる電解質膜の物理的損傷防止の効果を発現させるために、微多孔層の合計の厚みが10μm以上であることが好ましい。より好ましくは、第1の微多孔層の厚みだけで9.9μm以上、より好ましくは10μm以上、さらに好ましくは19.9μm以上である。ただし、第2の微多孔層が上に積層されても、ガス拡散性を確保する必要性から、第1の微多孔層の厚みは100μm未満であることが好ましい。
第2の微多孔層の厚みについては0.1μm以上、10μm未満であることが好ましい。第2の微多孔層の厚みが、0.1μm未満では、第1の微多孔層の表面を第2の微多孔層が完全に覆うことができないため、第1の微多孔層に凝集物やクラックが存在した場合に微多孔層の表面に現れてしまうことがある。また第2の微多孔層の厚みが10μm以上だと、微多孔層表面にクラックが発生することがある。第2の微多孔層の厚みは、好ましくは7μm以下、より好ましくは5μm以下である。
以下、実施例によって本発明を具合的に説明する。実施例で用いた材料、ガス拡散電極の作製方法、微多孔層塗料の作製方法、ガス拡散電極の評価方法、微多孔層塗料の評価方法を次に示した。
<材料>
A:導電性多孔質基材
(1)厚み100μm、空隙率85%のカーボンペーパーを以下のように調製した。
まず、以下の抄紙工程により、炭素繊維紙を製造した。東レ(株)製ポリアクリロニトリル系炭素繊維“トレカ”(登録商標)T300−6K(平均単繊維径:7μm、単繊維数:6,000本)を6mmの長さにカットし、パルプと共に、水を抄造媒体として連続的に抄造し、得られたシートをさらにポリビニルアルコールの10質量%水溶液に浸漬した後、乾燥することによって、長尺の炭素繊維紙を連続的に製造し、ロール状に巻き取った。得られた炭素繊維紙の目付けは15g/mであり、炭素繊維100質量部に対して、パルプの量は40質量部、ポリビニルアルコールの付着量は20質量部であった。
次に、以下の樹脂含浸工程により、上記により得られた炭素繊維紙にフェノール樹脂を含浸させた。鱗片状黒鉛(平均粒子径:5μm、アスペクト比:15)、フェノール樹脂およびメタノールを2:3:25の質量比で混合した分散液を用意した。炭素繊維100質量部に対してフェノール樹脂が78質量部の樹脂含浸量になるように、上記炭素繊維紙に、上記分散液を連続的に含浸し、90℃の温度で3分間乾燥した後、ロール状に巻き取って樹脂含浸炭素繊維紙を得た。フェノール樹脂には、レゾール型フェノール樹脂とノボラック型フェノール樹脂とを1:1の質量比で混合したものを用いた。このフェノール樹脂(レゾール型フェノール樹脂とノボラック型フェノール樹脂の混合物)の炭化収率は43%であった。
プレス成型機に熱板が互いに平行になるようにセットし、下熱板上にスペーサーを配置して、熱板温度170℃、面圧0.8MPaでプレスの開閉を繰り返した。上記により得られた樹脂含浸炭素繊維紙を上下から離型紙で挟み込んだものを、該プレス機に間欠的に搬送して、樹脂含浸炭素繊維紙を圧縮処理した後、ロール状に巻き取った。
圧縮処理された炭素繊維紙を前駆体繊維シートとして、以下の炭化工程によりカーボンペーパーを得た。窒素ガス雰囲気に保たれた、最高温度が2400℃の加熱炉に、前駆体繊維シートを導入し、加熱炉内を連続的に走行させながら、約500℃/分(650℃までは400℃/分、650℃を越える温度では550℃/分)の昇温速度で焼成した後、ロール状に巻き取ってカーボンペーパーを得た。得られたカーボンペーパーは、密度0.25g/cm、空隙率85%、平均孔径40μmであった。
(2)比較用に、炭化後の厚みが200μmとなるように炭素繊維の目付け量、圧縮処理の際のスペーサーの厚みを調整した以外は、上記(1)と同様にして、厚み200μm、空隙率85%、平均孔径40μmのカーボンペーパーを得た。
B:導電性微粒子
カーボンブラック1(以下、CB1)(DBP吸油量175cc/100g、BET比表面積67.4m/g、平均粒子径35nm)
カーボンブラック2(以下、CB2)(DBP吸油量140cc/100g、BET比表面積43.1m/g、平均粒子径50nm)
気相法炭素繊維“VGCF”(商標登録)(昭和電工(株)製、線状部分を有する導電性材料、平均繊維径150nm、平均繊維長9μm、比表面積13m/g)。
C:溶媒
精製水
D:界面活性剤
ポリエチレングリコールモノ−p−イソオクチルフェニルエーテル“TRITON X−100”(商標登録)(シグマアルドリッチ(株)製)
E:撥水樹脂
PTFEディスパージョン“ポリフロン D−210C”(商標登録)(ダイキン工業(株)製)
FEPディスパージョン“ポリフロン ND−110”(商標登録)(ダイキン工業(株)製)。
<導電性多孔質基材、微多孔層およびガス拡散電極の厚み測定>
ガス拡散電極および導電性多孔質基材の厚みについては、(株)ニコン製デジタル厚み計“デジマイクロ”を用い、基材に0.15MPaの荷重を加えながら測定を行った。
また、微多孔層の厚みについては、走査型電子顕微鏡(株)日立製作所製S−4800を用い、ガス拡散電極の面直断面(厚み方向の断面)から、導電性多孔質基材と微多孔層との界面(ここでいう界面とは、導電性多孔質基材の最表面と微多孔層が接している部分をいい、微多孔層が導電性多孔質基材に染込んでいる部分は含めない)を求め、当該界面と微多孔層の表面との間の距離を求めて、これを微多孔層の厚みとした。10視野で測定を行い、平均値を求めた。ガス拡散電極の断面の作製に際しては、(株)日立ハイテクノロジーズ製イオンミリング装置IM4000を用いた。測定における走査型電子顕微鏡画像の倍率は、1000倍ないし2000倍で測定行った。
<ガス拡散電極の厚み方向のガス拡散性>
西華産業製ガス拡散・水蒸気拡散・透過性能測定装置(MVDP−200C)を用い、ガス拡散電極の一方の面側(1次側)に酸素ガスを流し、他方の面側(2次側)に窒素ガスを流した。1次側と2次側の差圧を0Pa近傍(0±3Pa)に制御した。即ち、圧力差によるガスの流れはほとんどなく、分子拡散によってのみガスの移動現象が起こる。2次側のガス濃度計により、平衡に達したときの酸素ガスのガス濃度を測定し、この値(%)を厚み方向のガス拡散性の指標とした。
<ガス拡散電極の平面方向のガス拡散性>
西華産業製ガス拡散・水蒸気拡散・透過性能測定装置(MVDP−200C)を用い、図4に示すような配管系において、最初にバルブA(403)のみ開いて、バルブB(405)を閉じた状態にしておいて、窒素ガス(413)を一次側配管A(402)に流し、マスフローコントローラー(401)に所定量(190cc/分)のガスが流れ、圧力コントローラー(404)にガス圧力が大気圧に対して5kPaかかるように調整する。ガス室A(407)とガス室B(409)の間にあるシール材(412)の上にガス拡散電極試料(408)を図示されたようにセットする。次いで、バルブA(403)を閉じ、バルブB(405)を開いて、配管B(406)に窒素ガスが流れるようにする。ガス室A(407)に流入する窒素ガスは、ガス拡散電極試料(408)を通ってガス室B(409)に移動し、配管C(410)を通過した後、ガス流量計(411)を通過して大気中に放出される。このときのガス流量計(411)を流れるガス流量(cc/分)を測定し、この値を平面方向のガス拡散性とした。
<微多孔層の表面の最大高さRzの測定>
微多孔層の表面の最大高さRzの測定方法は、作製したガス拡散電極の微多孔層の表面を、レーザー顕微鏡“VK−X100”((株)キーエンス社製)を用い、対物レンズ20倍、測定面積0.25mm、カットオフなしで測定を行うことで、最大高さRzを求めた。この時、測定するガス拡散電極が歪まない様、25cmの正方形にカットし、平滑なガラス基板上に、四角をテープで上から貼り付けて固定する。また、レーザーの焦点距離の上限・下限は測定するガス拡散電極の微多孔層の表面の高さ方向の全範囲が測定できるように設定する。そして、これを4000視野について行った。この4000視野における測定は、10cmの面積中から測定した。ここでいう最大高さRzは、レーザー顕微鏡で前記測定面積を測定し、得られる高さ情報の最も高い点(Rp)と最も深い谷の深さ(Rv)の和である。
<微多孔層表面の最大山高さRpの測定>
微多孔層表面の最大山高さRpの測定方法は、まず、平滑なガラス基板の上にアプリケータを用いて微多孔層塗料の塗膜を形成する。アプリケータとガラス基板とのクリアランスは、面圧0.15MPaで加圧した状態で、マイクロメータにて測定した前記塗膜の乾燥後の厚みが40μmとなるように設定する。前記塗膜を23℃で12時間以上乾燥させた後、レーザー顕微鏡“VK−X100”((株)キーエンス社製)を用い、対物レンズ20倍、測定面積0.25mm、カットオフなしで測定を行うことで最大山高さRpを求めた。そして、これを2000視野について行った。この2000視野における測定は、5cmの面積中から測定した。ここでいう最大山高さRpは、レーザー顕微鏡で前記測定面積を測定し、得られる高さ情報の最も高い点である。
<微多孔層の表面のクラックの占有率の測定>
微多孔層の表面のクラックの占有率の測定方法としては、作製したガス拡散電極の微多孔層の表面を、実体顕微鏡“Leica M205C”(ライカ マイクロシステムズ(株)社製)で接眼レンズ10倍、対物レンズ2倍、観察面積25mmにて観察した。光源は“Leica M205C”付属のリングライトを使用し、全発光、最大光量で微多孔層の表面に垂直に照射した。
観察条件は、輝度50%、ガンマ0.60とした。そして観察視野を20視野として、この20視野は、5cmの面積中から選択した。20視野における観察結果を画像で取り込み、フリー画像処理ソフト“JTrim”にて2値化を行った。画像には2値化以外の処理は加えず、しきい値は128で2値化した。黒色部分をクラック、白色部分を非クラック部分と判断して、全画素数における黒色の画素数の割合を、微多孔層の表面のクラックの占有率とした。
<光沢度の測定>
微多孔層塗料の光沢度の測定方法としては、まず、ガラス基板上にアプリケータを用いて微多孔層塗料の塗膜を形成した。アプリケータとガラス基板とのクリアランスは、面圧0.15MPaで加圧した状態で、マイクロメータにて測定した前記塗膜の乾燥後の厚みが40μmとなるように設定した。前記塗膜を23℃で12時間以上乾燥させた後、モバイル型鏡面光沢度測定装置“Gloss Mobile GM−1”(スガ試験機(株)社製)を用いて光沢度を測定した。測定基準はJIS Z8741:1997「鏡面光沢度−測定方法」による。前記アプリケータでの塗布方向と平行に前記グロスメータの光が反射するように設置し、前記塗膜の表面の別々の部分を3カ所測定した。そこで得られた反射角度が85°の時の数値の平均値を光沢度とした。
<微多孔層塗料の粘度の測定>
ボーリン回転型レオメータ(スペクトリス社製)の粘度測定モードにおいて、直径40mm、傾き2°の円形コーンプレートを用い、プレートの回転数を増加させながら応力を測定していく。このとき、シェアレート17s−1における粘度の値を塗料の粘度とした。
(実施例1)
導電性微粒子としてCB1、撥水樹脂としてD−210C、界面活性剤および溶媒を、表1に示す割合で攪拌混合装置(プラネタリーミキサ)を用いて、湿潤・分散した。得られた塗料を、3本ロールミルに1回通過させることにより粉砕工程を行い、微多孔層塗料を得た。この微多孔層塗料を前記A(1)の工程で得た厚み100μmのカーボンペーパーの表面にダイコーター塗布方式を用いて塗布し、ガス拡散電極を得た。微多孔層塗料の組成、製造条件、および評価結果を表1に示す。
(実施例2)
粉砕工程において、装置のせん断部分の最小ギャップ部分を、微多孔層塗料が通過した回数を4回とした以外は、実施例1と同様にしてガス拡散電極を得た。結果を表1に示す。
(比較例1)
粉砕工程を行わなかった以外は、実施例1と同様にしてガス拡散電極を得た。その結果、実施例1よりも凝集物の数が増加した。微多孔層塗料の組成、製造条件、および評価結果を表1に示す。
(実施例3)
導電性微粒子としてCB1、界面活性剤および溶媒を攪拌混合装置(プラネタリーミキサ)で、湿潤・分散して塗料を得た。粉砕工程は行わなかった。得られた塗料に、さらに撥水樹脂としてD−210C、界面活性剤および溶媒を、表1に示す割合で加えて希釈し、表1の最終塗料組成に示す微多孔層塗料を得た。この微多孔層塗料を厚み100μmの前記A(1)の工程で得たカーボンペーパーの表面にダイコーター塗布方式を用いて塗布し、ガス拡散電極を得た。微多孔層塗料の組成、製造条件、および評価結果を表1に示す。実施例1よりも視野数Rpおよび視野数Rzが増加した。
(比較例2)
希釈材料の組成を表1に示すように変更した以外は実施例3と同様にしてガス拡散電極を得た。微多孔層塗料の組成、製造条件、および評価結果を表1に示す。実施例3よりも微多孔層の厚みが減少し、微多孔層塗料の導電性多孔質基材への染込みが発生したため、平面方向のガス拡散性が低下した。
(実施例4)
導電性微粒子としてCB2、撥水樹脂としてND−110、界面活性剤および溶媒を、表2に示す割合で攪拌混合装置(プラネタリーミキサ)を用いて、湿潤・分散した。得られた塗料を、メディアレスミルに1回通過させることにより粉砕工程を行い、微多孔層塗料を得た。この微多孔層塗料を前記A(1)の工程で得た厚み100μmのカーボンペーパーの表面にダイコーター塗布方式を用いて塗布し、ガス拡散電極を得た。微多孔層塗料の組成、製造条件、および評価結果を表2に示す。
(比較例3)
粉砕工程で用いたメディアレスミルのせん断部分の最小ギャップ部分における塗料の滞留時間を6秒とした以外は実施例4と同様にしてガス拡散電極を得た。微多孔層塗料の組成、製造条件、および評価結果を表2に示す。実施例4よりも微多孔層の厚みが減少し、微多孔層塗料の導電性多孔質基材への染込みが発生したため、平面方向のガス拡散性が低下した。
(実施例5)
導電性微粒子としてCB1およびVGCF、撥水樹脂としてND−110、界面活性剤ならびに溶媒を、表2に示す割合で攪拌混合装置(プラネタリーミキサ)を用いて、湿潤・分散して塗料を得た。得られた塗料を、メディアレスミルに1回通過させることにより粉砕工程を行い、微多孔層塗料を得た。この微多孔層塗料を前記A(1)の工程で得た厚み100μmのカーボンペーパーの表面にダイコーター塗布方式を用いて塗布し、ガス拡散電極を得た。微多孔層塗料の組成、製造条件、および評価結果を表2に示す。
(比較例4)
粉砕工程で用いたメディアレスミルのせん断部分における最小ギャップを600μmとした以外は実施例5と同様にしてガス拡散電極を得た。微多孔層塗料の組成、製造条件、および評価結果を表2に示す。実施例5よりも凝集物の数が増加した。
(比較例5)
実施例1と同様にして微多孔層塗料を得た。この微多孔層塗料を前記A(2)の工程で得た厚み200μmのカーボンペーパーの表面にダイコーター塗布方式を用いて塗布し、ガス拡散電極を得た。微多孔層塗料の組成、製造条件、および評価結果を表2に示す。実施例1よりも厚み方向のガス拡散性が低下した。
(比較例6)
実施例1と同様にして微多孔層塗料を得た。この微多孔層塗料を前記A(1)の工程で得た厚み100μmのカーボンペーパーの表面に、微多孔層の厚みが120μmとなるようにダイコーター塗布方式を用いて塗布し、ガス拡散電極を得た。微多孔層塗料の組成、製造条件、および評価結果を表2に示す。実施例1よりも厚み方向のガス拡散性が低下した。
(実施例6)
微多孔層を、導電性多孔質基材に接する第1の微多孔層、および、第1の微多孔層に接し、ガス拡散電極の最表面に位置する第2の微多孔層を有する態様とした。
導電性微粒子としてCB1、撥水樹脂としてD−210C、界面活性剤および溶媒を、表3に示す割合で攪拌混合装置(プラネタリーミキサ)を用いて、湿潤・分散して塗料を得た。得られた塗料を、3本ロールミルに1回通過させることにより粉砕工程を行い、第1の微多孔層塗料を得た。第1の微多孔層塗料を前記A(1)の工程で得た厚み100μmのカーボンペーパーの表面にダイコーター塗布方式を用いて35μmの厚さで塗布し、第1の微多孔層を形成した。
第1の微多孔層塗料と同じ塗液を第2の微多孔層塗料として用い、第1の微多孔層の表面に5μmの厚さで塗工し、第2の微多孔層を形成してガス拡散電極を得た。微多孔層塗料の組成、製造条件、および評価結果を表3に示す。
(実施例7)
実施例6と同様にして、前記A(1)の工程で得た厚み100μmのカーボンペーパーの表面に35μmの厚さの第1の微多孔層を形成した。
導電性微粒子としてCB1、界面活性剤および溶媒を、表3に示す割合で攪拌混合装置(プラネタリーミキサ)を用いて、湿潤・分散して塗料を得た。粉砕工程は行わなかった。この塗料に、撥水樹脂としてD−210C、界面活性剤および溶媒を表3に示す割合で加えて希釈し、表3の最終塗料組成に示す第2の微多孔層塗料を得た。希釈後の固形分比率を実施例4と同じとした。第2の微多孔層塗料を第1の微多孔層の表面に5μmの厚さで塗工してガス拡散電極を得た。微多孔層塗料の組成、製造条件、および評価結果を表3に示す。
(実施例8)
実施例6と同じ第1の微多孔層塗料を調整し、第1の微多孔層の厚さを20μmにした以外は実施例6と同様にして、厚み100μmのカーボンペーパーの表面に第1の微多孔層を形成した。
実施例7と同じ第2の微多孔層塗料を調整し、それを第1の微多孔層の表面に20μmの厚さで塗工してガス拡散電極を得た。微多孔層塗料の組成、製造条件、および評価結果を表3に示す。実施例7よりもクラックの占有率が増加した。
(実施例9)
実施例6と同じ第1の微多孔層塗料を調整し、第1の微多孔層の厚さを5μmにした以外は実施例6と同様にして、厚み100μmのカーボンペーパーの表面に第1の微多孔層を形成した。
実施例7と同じ第2の微多孔層塗料を調整し、それを第1の微多孔層の表面に35μmの厚さで塗工してガス拡散電極を得た。微多孔層塗料の組成、製造条件、および評価結果を表3に示す。実施例7よりもクラックの占有率が増加した。
(実施例10)
実施例6と同様にして、前記A(1)の工程で得た厚み100μmのカーボンペーパーの表面に35μmの厚さの第1の微多孔層を形成した。
導電性微粒子としてCB1、界面活性剤および溶媒を、表3に示す割合で攪拌混合装置(プラネタリーミキサ)を用いて、湿潤・分散して塗料を得た。粉砕工程は行わなかった。この塗料に、撥水樹脂としてD−210C、界面活性剤および溶媒を表3に示す割合で加えて希釈し、表3の最終塗料組成に示す第2の微多孔層塗料を得た。希釈後の固形分比率を比較例2と同じとした。第2の微多孔層塗料を第1の微多孔層の表面に5μmの厚さで塗工してガス拡散電極を得た。微多孔層塗料の組成、製造条件、および評価結果を表3に示す。
(実施例11)
実施例6と同様にして、前記A(1)の工程で得た厚み100μmのカーボンペーパーの表面に35μmの厚さの第1の微多孔層を形成した。
導電性微粒子としてCB2、撥水樹脂としてND−110、界面活性剤および溶媒を、表4に示す割合で攪拌混合装置(プラネタリーミキサ)を用いて、湿潤・分散して塗料を得た。この塗料を、メディアレスミルに1回通過させることにより粉砕工程を行い、第2の微多孔層塗料を得た。粉砕工程で用いた装置のせん断部分の最小ギャップ部分における塗料の滞留時間を6秒とした。第2の微多孔層塗料を第1の微多孔層の表面に5μmの厚さで塗工してガス拡散電極を得た。微多孔層塗料の組成、製造条件、および評価結果を表4に示す。
(実施例12)
粉砕工程を行わなかった以外は実施例6と同様にして、第1の微多孔層塗料を得た。第1の微多孔層塗料を前記A(1)の工程で得た厚み100μmのカーボンペーパーの表面にダイコーター塗布方式を用いて35μmの厚さで塗布し、第1の微多孔層を形成した。
実施例6と同じ第2の微多孔層塗料を調整し、それを第1の微多孔層の表面に5μmの厚さで塗工してガス拡散電極を得た。微多孔層塗料の組成、製造条件、および評価結果を表4に示す。
(実施例13)
実施例12と同様にして、前記A(1)の工程で得た厚み100μmのカーボンペーパーの表面に35μmの厚さの第1の微多孔層を形成した。
実施例7と同じ第2の微多孔層塗料を調整し、それを第1の微多孔層の表面に5μmの厚さで塗工してガス拡散電極を得た。微多孔層塗料の組成、製造条件、および評価結果を表4に示す。
(実施例14)
実施例12と同様にして、前記A(1)の工程で得た厚み100μmのカーボンペーパーの表面に35μmの厚さの第1の微多孔層を形成した。
実施例10と同じ第2の微多孔層塗料を調整し、それを第1の微多孔層の表面に5μmの厚さで塗工してガス拡散電極を得た。微多孔層塗料の組成、製造条件、および評価結果を表4に示す。
(実施例15)
実施例12と同様にして、前記A(1)の工程で得た厚み100μmのカーボンペーパーの表面に35μmの厚さの第1の微多孔層を形成した。
実施例11と同じ第2の微多孔層塗料を調整し、それを第1の微多孔層の表面に5μmの厚さで塗工してガス拡散電極を得た。微多孔層塗料の組成、製造条件、および評価結果を表4に示す。
Figure 0006915535
Figure 0006915535
Figure 0006915535
Figure 0006915535
Figure 0006915535
Figure 0006915535
表において「最小ギャップ」とは、粉砕工程で用いた装置のせん断部分における最小ギャップを意味する。
表において「滞留時間」とは、粉砕工程で用いた装置のせん断部分の最小ギャップ部分における塗料の滞留時間を意味する。
表において「通過回数」とは、粉砕工程で用いた装置のせん断部分の最小ギャップ部分を、塗料が通過した回数を意味する。
表において「視野数Rp」とは、微多孔層の表面を、0.25mmの面積で2000視野観察したときに、該2000視野のうち、最大山高さRpが10μm以上の視野の数を意味する。
表において「視野数Rz」とは、微多孔層の表面を、0.25mmの面積で4000視野観察したときに、該4000視野のうち、最大高さRzが50μm以上の視野の数を意味する。
1 クラック
201 塗料
202 せん断部分
203 ロール回転方向
204 最小ギャップ
205 ロール
301 装置正面
302 装置側面
303 ロータ回転方向
304 塗料
305 せん断部分
306 ロータ
307 ステータ
401 マスフローコントローラー
402 配管A
403 バルブ1
404 圧力コントローラー
405 バルブ2
406 配管B
407 ガス室A
408 ガス拡散電極試料
409 ガス室B
410 配管C
411 ガス流量計
412 シール材
413 窒素ガス

Claims (11)

  1. 導電性多孔質基材の少なくとも片面に微多孔層を有する、ガス拡散電極であって、
    前記ガス拡散電極の厚みが30μm以上180μm以下であり、
    前記微多孔層の厚みが10μm以上100μm以下であり、かつ、
    前記微多孔層の表面を、0.25mmの面積で4000視野観察したときに、該4000視野のうち、最大高さRzが50μm以上である視野の数が0視野以上5視野以下であり、
    前記微多孔層の表面のクラックの占有率が0%以上0.072%以下であるガス拡散電極。
  2. 前記微多孔層は、導電性多孔質基材に接する第1の微多孔層、および、第1の微多孔層に接し、ガス拡散電極の最表面に位置する第2の微多孔層からなる請求項1に記載のガス拡散電極。
  3. 前記第1の微多孔層の厚みが9.9μm以上100μm未満であり、前記第2の微多孔層の厚みが0.1μm以上10μm未満である請求項2に記載のガス拡散電極。
  4. 厚み方向のガス拡散性が30%以上である請求項1〜3のいずれかに記載のガス拡散電極。
  5. x(μm)をガス拡散電極の厚み、eをネイピア数とすると、平面方向のガス拡散性が0.7e0.025x(cc/min)以上ある請求項1〜4のいずれかに記載のガス拡散電極。
  6. 前記微多孔層が、導電性微粒子と撥水樹脂を含む請求項1〜5のいずれかに記載のガス拡散電極。
  7. 前記導電性微粒子が、線状部分を有する導電性材料を含む請求項6に記載のガス拡散電極。
  8. 導電性微粒子を溶媒で湿潤・分散する湿潤・分散工程と、該湿潤・分散工程で得られた塗料中の凝集物を粉砕する粉砕工程とを有する微多孔層塗料の製造方法であって、
    前記粉砕工程において、粉砕に用いる装置のせん断部分における最小ギャップが10μm以上500μm以下である、微多孔層塗料の製造方法。
  9. 前記湿潤・分散工程後で、前記粉砕工程前の塗料の粘度が、5Pa・s以上300Pa・s以下である、請求項に記載の微多孔層塗料の製造方法。
  10. 前記粉砕工程において、粉砕に用いる装置のせん断部分の最小ギャップ部分における塗料の滞留時間が0秒よりも長く5秒以下である、請求項8または9に記載の微多孔層塗料の製造方法。
  11. 前記粉砕工程において、粉砕に用いる装置が1パスである請求項8〜10のいずれかに記載の微多孔層塗料の製造方法。
JP2017504196A 2016-01-27 2017-01-11 ガス拡散電極、微多孔層塗料およびその製造方法 Active JP6915535B2 (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2016013133 2016-01-27
JP2016013134 2016-01-27
JP2016013134 2016-01-27
JP2016013133 2016-01-27
JP2016112415 2016-06-06
JP2016112415 2016-06-06
PCT/JP2017/000617 WO2017130694A1 (ja) 2016-01-27 2017-01-11 ガス拡散電極、微多孔層塗料およびその製造方法

Publications (2)

Publication Number Publication Date
JPWO2017130694A1 JPWO2017130694A1 (ja) 2018-11-15
JP6915535B2 true JP6915535B2 (ja) 2021-08-04

Family

ID=59397690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017504196A Active JP6915535B2 (ja) 2016-01-27 2017-01-11 ガス拡散電極、微多孔層塗料およびその製造方法

Country Status (8)

Country Link
US (2) US20190020040A1 (ja)
EP (1) EP3410521A4 (ja)
JP (1) JP6915535B2 (ja)
KR (1) KR102624894B1 (ja)
CN (1) CN108475792B (ja)
CA (1) CA3008223C (ja)
TW (1) TWI703765B (ja)
WO (1) WO2017130694A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109817994B (zh) * 2019-01-23 2021-02-26 成都新柯力化工科技有限公司 一种多层挤出制备燃料电池梯度气体扩散层碳膜的方法
JP7207025B2 (ja) * 2019-03-07 2023-01-18 株式会社豊田中央研究所 マイクロポーラス層用ペースト及びその製造方法
FR3097689B1 (fr) * 2019-06-19 2021-06-25 Commissariat Energie Atomique Procédé de formation d’une couche microporeuse électroconductrice hydrophobe utile à titre de couche de diffusion de gaz
CN115315835A (zh) * 2020-03-30 2022-11-08 东丽株式会社 气体扩散电极基材的制造方法
JP2022136641A (ja) 2021-03-08 2022-09-21 本田技研工業株式会社 粘度測定システム及び粘度測定方法
CN114551920A (zh) * 2022-02-21 2022-05-27 一汽解放汽车有限公司 一种气体扩散层浆液及其制备方法与应用

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6103077A (en) 1998-01-02 2000-08-15 De Nora S.P.A. Structures and methods of manufacture for gas diffusion electrodes and electrode components
JP5148036B2 (ja) * 2001-09-19 2013-02-20 パナソニック株式会社 燃料電池用電極および燃料電池用電極ペーストの製造方法
JP2005081339A (ja) * 2003-09-04 2005-03-31 Hisashi Suzuki 有用微生物製剤を活用するグリーストラップ装置
JP4051080B2 (ja) * 2004-02-23 2008-02-20 松下電器産業株式会社 ガス拡散層およびこれを用いた燃料電池
JP4691914B2 (ja) * 2004-06-21 2011-06-01 日産自動車株式会社 ガス拡散電極及び固体高分子電解質型燃料電池
JP2008277093A (ja) * 2007-04-27 2008-11-13 Equos Research Co Ltd 燃料電池用拡散層、燃料電池及び燃料電池の製造方法。
JP5195286B2 (ja) * 2008-10-28 2013-05-08 旭硝子株式会社 固体高分子形燃料電池用膜電極接合体の製造方法
JP2010129310A (ja) * 2008-11-26 2010-06-10 Nissan Motor Co Ltd 燃料電池用ガス拡散層及びその製造方法
JP2011009147A (ja) * 2009-06-29 2011-01-13 Tokai Carbon Co Ltd 燃料電池用セパレータの製造方法
WO2014005598A1 (en) * 2012-07-06 2014-01-09 Teknologisk Institut Method of preparing a catalytic structure
JP5673655B2 (ja) * 2012-11-19 2015-02-18 トヨタ自動車株式会社 多孔質層部材の製造方法、及び多孔質層部材を含む膜電極ガス拡散層接合体の製造方法
JP6143299B2 (ja) 2014-01-22 2017-06-07 アイシン化工株式会社 マイクロポーラス層形成用ペースト組成物及びその製造方法
JP6142963B2 (ja) * 2014-03-24 2017-06-14 日産自動車株式会社 ガス拡散層、その製造方法ならびにこれを用いる膜電極接合体および燃料電池
KR102224340B1 (ko) * 2014-03-28 2021-03-08 도레이 카부시키가이샤 가스 확산 전극 및 그의 제조 방법
CN107078308B (zh) * 2014-11-11 2021-06-01 东丽株式会社 气体扩散电极基材及气体扩散电极基材的制造方法
JP7000855B2 (ja) * 2015-12-24 2022-02-04 東レ株式会社 ガス拡散電極および燃料電池

Also Published As

Publication number Publication date
US20210202954A1 (en) 2021-07-01
JPWO2017130694A1 (ja) 2018-11-15
KR102624894B1 (ko) 2024-01-16
EP3410521A1 (en) 2018-12-05
CN108475792A (zh) 2018-08-31
CN108475792B (zh) 2022-05-13
CA3008223A1 (en) 2017-08-03
KR20180104613A (ko) 2018-09-21
WO2017130694A1 (ja) 2017-08-03
TW201731148A (zh) 2017-09-01
TWI703765B (zh) 2020-09-01
EP3410521A4 (en) 2020-02-12
CA3008223C (en) 2024-04-16
US20190020040A1 (en) 2019-01-17

Similar Documents

Publication Publication Date Title
JP6915535B2 (ja) ガス拡散電極、微多孔層塗料およびその製造方法
TWI705608B (zh) 氣體擴散電極
TWI706591B (zh) 氣體擴散電極及燃料電池
CA2988934C (en) Gas diffusion electrode
TW201543746A (zh) 氣體擴散電極及其製造方法
TWI693737B (zh) 氣體擴散電極及其製造方法
JP6863536B2 (ja) ガス拡散電極、ガス拡散電極の製造方法、膜電極接合体、燃料電池
JP6969547B2 (ja) ガス拡散電極、および、燃料電池
JPWO2019107241A1 (ja) マイクロポーラス層およびその製造方法、ガス拡散電極基材、燃料電池
TWI705609B (zh) 氣體擴散電極及燃料電池
KR20210063327A (ko) 가스 확산 전극 기재 및 그의 제조 방법, 고체 고분자형 연료 전지

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210628

R151 Written notification of patent or utility model registration

Ref document number: 6915535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151