WO2019069535A1 - シリコーン被覆フィラー及びその製造方法並びに樹脂組成物 - Google Patents

シリコーン被覆フィラー及びその製造方法並びに樹脂組成物 Download PDF

Info

Publication number
WO2019069535A1
WO2019069535A1 PCT/JP2018/026938 JP2018026938W WO2019069535A1 WO 2019069535 A1 WO2019069535 A1 WO 2019069535A1 JP 2018026938 W JP2018026938 W JP 2018026938W WO 2019069535 A1 WO2019069535 A1 WO 2019069535A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicone
group
coated filler
particulate material
sih groups
Prior art date
Application number
PCT/JP2018/026938
Other languages
English (en)
French (fr)
Inventor
真宜 野口
優 倉木
展歩 中村
富男 井上
Original Assignee
株式会社アドマテックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドマテックス filed Critical 株式会社アドマテックス
Priority to JP2019518577A priority Critical patent/JP6537763B1/ja
Priority to CN201880023045.7A priority patent/CN110536866B/zh
Priority to EP18865065.9A priority patent/EP3640210B1/en
Publication of WO2019069535A1 publication Critical patent/WO2019069535A1/ja
Priority to US16/841,423 priority patent/US11021590B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • C09C1/407Aluminium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium

Definitions

  • the present invention relates to a silicone-coated filler, a method for producing the same, and a resin composition containing the silicone-coated filler.
  • Patent Document 1 discloses a technique of reacting an aluminum oxide powder dispersion and an organosiloxane oligomer in high temperature high pressure water.
  • Patent Document 2 discloses coated metal oxide particles including metal oxide particles and at least one coating (polysiloxane based sunscreen agent). Further, Patent Document 3 discloses silica particles surface-treated with silicone oil in supercritical carbon dioxide.
  • Patent Document 4 discloses surface-treated fine silica particles coated with silicone oil and having an average primary particle diameter of 50 to 200 nm.
  • Patent Document 1 requires a high temperature and high pressure reactor, and since it is a small batch production, the cost is high and sufficient viscosity reduction effect can not be exhibited.
  • the coating layer formed by the surface treatment is thin, and a sufficient viscosity reduction effect can not be exhibited.
  • Patent Document 3 requires a high temperature and high pressure apparatus, and the cost is high. With the technique of Patent Document 4, it is difficult to form a sufficient amount of coating layer, and a sufficient viscosity reduction effect can not be exhibited.
  • the present invention has been completed in view of the above situation, and when dispersed in a silicone resin, a silicone-coated filler capable of exhibiting a sufficient viscosity lowering effect, a method for producing the same, and a resin composition using the silicone-coated filler Providing goods is an issue to be solved.
  • the method for producing a silicone-coated filler according to the present invention which solves the above-mentioned problems, is characterized in that a plurality of predetermined elements are oxidized to form a plurality of particles on the surface of the particle material mainly comprising an inorganic oxide having OH groups on the surface. Reacting a portion of the plurality of SiH groups of a first silicone material having a SiH group of A second step of subjecting an alkenyl group-terminated second silicone material to an addition reaction with at least a portion of the remainder of the plurality of SiH groups derived from the first silicone material; Have.
  • the particulate material contains an inorganic oxide as a main component, OH groups are present on its surface.
  • the SiH group is capable of reacting with the OH group under appropriate conditions, and the first silicone material bearing the SiH group is strongly bonded to the surface of the particulate material in a first step.
  • the SiH groups of the first silicone material since only a part of the SiH groups of the first silicone material is reacted, the SiH groups remain even after the first step is completed. The remaining SiH group reacts with the alkenyl group under appropriate conditions.
  • the second silicone material having an alkenyl group is reacted with the SiH group derived from the first silicone material, the second silicone material is bonded to the first silicone material.
  • the first silicone material and then the second silicone material can be strongly bonded to the surface of the particulate material in this order, and the produced silicone-coated filler has a sufficient amount of silicone material on the surface. Therefore, when dispersed in silicone resin, sufficient viscosity reduction effect can be exhibited.
  • the first step or the second step is a step of reacting all SiH groups present in the particulate material, or After the second step, it is preferable to have an elimination step of causing the SiH groups remaining on the surface to react and disappear.
  • the stability when dispersed in the silicone resin can be improved.
  • a precursor before curing can be adopted. However, since the precursor may react with the SiH group, the smaller the amount of SiH group, the higher the stability.
  • the elimination step can be a step of contacting with monoethanolamine and / or diethanolamine.
  • the silicone-coated filler produced by the above-mentioned production method exhibits high affinity with the silicone resin, and therefore, it can stably exhibit low viscosity even when dispersed in the silicone resin.
  • the silicone-coated filler of the present invention which solves the above-mentioned problems, comprises a particulate material mainly composed of an inorganic oxide formed by oxidizing a predetermined element; A first silicone structure bonded to the surface of the particulate material via a "-predetermined element-OSi-"structure; And a second silicone structure having a crosslinked structure having a carbon-carbon structure directly bonded to a silicon atom of the first silicone structure and a polysiloxane structure bonded to the crosslinked structure.
  • the surface has substantially no SiH group.
  • the stability of the resin composition obtained by dispersing in the precursor of the silicone resin can be improved.
  • the predetermined element is Al.
  • Alumina which is an oxide of Al, exhibits high thermal conductivity, and a resin composition dispersed in a silicone resin can be suitably employed for applications where heat conductivity is required.
  • the resin composition of the present invention for solving the above-mentioned problems is a silicone-coated filler produced by the above-mentioned production method, or the above-mentioned silicone-coated filler, And a silicone resin for dispersing the silicone-coated filler.
  • the method for producing the silicone-coated filler of the present invention is a method that enables effective coating of the silicone material on the surface of the particulate material.
  • the produced silicone-coated filler and the resin composition of the present invention in which the silicone-coated filler of the present invention is dispersed in a silicone resin can effectively suppress the increase in viscosity.
  • the resin composition of the present embodiment can be used as a heat dissipation member, a sealing material for a semiconductor, an electronic substrate material, an adhesive for an electronic component, an adhesive for connecting the electronic component and the heat dissipation member, and the like.
  • the silicone-coated filler of the present embodiment has a particulate material, a first silicone structure bonded to the particulate material, and a second silicone structure bonded to the first silicone structure.
  • the surface preferably has substantially no SiH group. It can be confirmed by IR spectrum that it has substantially no SiH group. Equivalent to the strength of the peak intensities of the peaks as a method of confirming by IR spectrum observed in the vicinity of 2100cm -1 ⁇ 2200cm -1 are observed in the vicinity of 1900cm -1 ⁇ 2000cm -1 (degree 2 times or less in area ratio) In this case, it can be determined that the amount of SiH groups is sufficiently small and not substantially contained.
  • the particulate material is mainly composed of an inorganic oxide formed by oxidizing a predetermined element.
  • a metal element is illustrated as a predetermined element.
  • predetermined elements include Al, Si, Ti, Zr, and Fe.
  • As the predetermined element only one element may be contained, or two or more elements may be contained.
  • Al As the predetermined element, the thermal conductivity of the silicone-coated filler can be made excellent.
  • the particulate material may form secondary particles in which a plurality of particles are aggregated.
  • As an upper limit of the volume average particle diameter of the particulate material 200 ⁇ m, 100 ⁇ m, 50 ⁇ m, and 10 ⁇ m can be adopted.
  • the lower limit of the volume average particle diameter may be 0.1 ⁇ m, 0.5 ⁇ m, 1.0 ⁇ m, or 2.0 ⁇ m. These upper limit value and lower limit value can be arbitrarily combined.
  • the shape of the particle material is not limited, such as Ein spheres and crushed products, but the sphericity is preferably 0.9 or more, more preferably 0.95 or more, and 0.99 or more. More preferable.
  • the first silicone structure and the second silicone structure be combined in an amount capable of covering one or more layers of the surface of the particulate material, and more preferably in an amount capable of covering two or more layers.
  • the combined amount of the first silicone structure and the second silicone structure can be determined based on the surface area. Specifically, the amount of the first silicone structure and the second silicone structure necessary to coat one or more layers from the surface area of the particulate material and the areas of the first silicone structure and the second silicone structure may be calculated. it can.
  • the lower limit is 0.00001 g / m 2 , 0.0001 g / m 2 , 0. it can be about 001g / m 2, the upper limit 0.1g / m 2, 0.01g / m 2, can be about 0.005 g / m 2.
  • the first silicone structure is bonded to the surface of the particulate material via the "-predetermined element-OSi-" structure.
  • the first silicone structure is a structure having an organic group on the side chain of a siloxane structure having a siloxane bond as a main chain. Although it does not specifically limit as a site
  • the organic group of the first silicone structure is not particularly limited, and examples thereof include an alkyl group (such as a methyl group and an ethyl group), a phenyl group, an epoxy group, an amino group, a carboxy group, an aralkyl group, an alkoxy group and a fluoroalkyl group. , An alkyl group and a phenyl group are preferable.
  • the number of repeating units (Si-O) of the siloxane bond of the first silicone structure is not particularly limited, but the lower limit is 1, 20, 50, 100, 200, 500, 800, 1000 Can be illustrated.
  • As the upper limit value 1000000, 100000, 50000, 20000, 10000 can be exemplified. These upper limit value and lower limit value can be arbitrarily combined.
  • the second silicone structure has a crosslinked structure and a siloxane structure.
  • the siloxane structure is a structure similar to the first silicone structure described above, and from similar options the structure can be determined independently of the first silicone structure.
  • the crosslinked structure is bonded to the silicon atom that constitutes the first silicone structure at one of the carbon-carbon bonds, and the other is bonded to the second silicone structure.
  • the position at which the crosslinked structure is bonded to the first silicone structure can be at the end of the first silicone structure, or in the middle of the main chain of the first silicone structure.
  • two or more second silicone structures can be bonded from one main chain of the first silicone structure.
  • the crosslinked structure and the second silicone structure may be directly bonded to each other, or may be interposed by any spacer. As a spacer, an alkylene group, an ether bond, etc. are mentioned.
  • the method for producing a silicone-coated filler of the present embodiment has a first step and a second step.
  • the first step is a step of reacting the first silicone material on the surface of the particulate material.
  • the particulate material is an inorganic oxide formed by oxidizing a predetermined element.
  • the surface has an OH group.
  • This H group is a (predetermined element) -OH, and is an aluminol group if the predetermined element is Al, and a silanol group if the predetermined element is silicon.
  • the amount of OH groups present on the surface is not particularly limited, but is preferably about 1 / nm 2 to 50 / nm 2 .
  • the lower limit may be about 2 / nm 2 , 5 / nm 2 or 10 / nm 2
  • the upper limit may be 20 / nm 2 , 30 / nm 2 or 40 / nm 2 .
  • the first silicone material has a plurality of SiH groups. Some of the plurality of SiH groups possessed by the first silicone material react with OH groups present on the surface of the particulate material. The remainder of the SiH groups of the first silicone material remain.
  • the first silicone material is a structure having an organic group on the side chain of a siloxane structure having a siloxane bond as a main chain.
  • the organic group is not particularly limited, and examples thereof include an alkyl group (such as a methyl group or an ethyl group), a phenyl group, an epoxy group, an amino group, a carboxy group, an aralkyl group, an alkoxy group or a fluoroalkyl group. Is preferred.
  • bonds does not specifically limit, It couple
  • the number of repeating units (Si-O) of the siloxane bond of the first silicone material is not particularly limited, but the lower limit is 1, 20, 50, 100, 200, 500, 800, 1000 Can be illustrated.
  • As the upper limit value 1000000, 100000, 50000, 20000, 10000 can be exemplified. These upper limit value and lower limit value can be arbitrarily combined.
  • the reaction can be advanced by dispersing the particulate material.
  • reaction conditions it is preferable to carry out by heating in the range of 100 ° C. to 200 ° C. In particular, reaction at about 160 ° C. is preferable.
  • the reaction time is preferably about 1 hour to 24 hours, and more preferably about 2 hours. It is preferable to carry out in air
  • the second step can also be performed by causing the second silicone material to coexist.
  • a suitable solvent one having low reactivity with SiH group and alkene is preferable, and heptane and toluene can be exemplified.
  • the second step is a step of reacting the SiH group remaining in the first silicone material bonded to the surface of the particulate material with the second silicone material.
  • the second silicone material has one or more alkenyl groups, and the alkenyl groups combine by causing an addition reaction with the SiH groups remaining in the first silicone material.
  • a vinyl group is illustrated as an alkenyl group.
  • the second silicone material is a structure having an organic group on the side chain of the siloxane structure having a siloxane bond as the main chain.
  • the organic group is not particularly limited, and examples thereof include an alkyl group (such as a methyl group or an ethyl group), a phenyl group, an epoxy group, an amino group, a carboxy group, an aralkyl group, an alkoxy group or a fluoroalkyl group. Is preferred.
  • bonds is not specifically limited, It is preferable to couple
  • the number of repeating units (Si-O) of the siloxane bond of the second silicone material is not particularly limited, but the lower limit is 1, 20, 50, 100, 200, 500, 800, 1000 Can be illustrated.
  • As the upper limit value 1000000, 100000, 50000, 20000, 10000 can be exemplified. These upper limit value and lower limit value can be arbitrarily combined.
  • the method of reacting the alkenyl group of the second silicone material with the SiH group present on the surface of the particulate material is not particularly limited.
  • the second silicone material is brought into direct contact with the particulate material in which the first silicone material is reacted, or after the particulate material in which the first silicone material is reacted is dispersed in an appropriate solvent, the second silicone material is The reaction can be advanced by adding.
  • a suitable solvent one having low reactivity with SiH group and alkene is preferable, and heptane and toluene can be exemplified.
  • As preferable reaction conditions it is preferable to carry out by heating in the range of 100 ° C. to 200 ° C. In particular, reaction at about 160 ° C. is preferable.
  • the reaction time is preferably about 1 hour to 24 hours, and more preferably about 2 hours. It is preferable to carry out in air
  • the second step may be followed by a quenching step.
  • the elimination step is a step of eliminating the SiH group when the SiH group of the first silicone material remains.
  • the elimination step can be a step of contacting with an elimination agent consisting of monoethanolamine and / or diethanolamine.
  • an elimination agent consisting of monoethanolamine and / or diethanolamine.
  • it is preferable to make it react at about 5 to 40 degreeC.
  • it is more preferable to carry out at normal temperature (25 ° C.).
  • the amount of the quenching agent to be reacted be a sufficient amount necessary to quench the SiH group.
  • the elimination step can be carried out by contacting the elimination agent as it is (by spraying or mixing with stirring) or as a solution using any solvent.
  • the amount of the quenching agent to be reacted may be 0.1%, 0.5%, 0.75%, 1.0%, 1.5% or the like based on the weight of the silicone-coated filler.
  • the resin composition of the present embodiment has the above-described silicone-coated filler, or the silicone-coated filler produced by the above-described production method, and a silicone resin.
  • the mixing ratio of the silicone-coated filler to the silicone resin is not particularly limited, but the silicone-coated filler can be 55% or more based on the total mass. Furthermore, it can be 60% or more, 65% or more, 70% or more.
  • the upper limit is not particularly limited, but may be 90% or less, 85% or less, 80% or less, 75% or less, or 70% or less.
  • the method for dispersing the silicone-coated filler in the silicone resin is not particularly limited, but it can be dispersed by kneading using a kneader or the like.
  • the silicone-coated filler to be added is selected appropriately depending on the application of the resin composition.
  • alumina is preferably employed as the inorganic oxide.
  • the form and particle size of the silicone-coated filler are properly selected according to the application to which the resin composition is applied. For example, if it is necessary that the flowability be high, it is preferable that the sphericity of the silicone-coated filler be high, and if it is used by filling it in any gap, the size is large enough to enter the gap (size of gap It is preferable to reduce the size of
  • the silicone resin is not particularly limited, and examples thereof include silicone rubber, silicone gel, silicone oil and the like. Further, as the silicone resin, a precursor which is polymerized by reaction can also be adopted.
  • the first silicone material SiH group-containing silicone: methyl hydrogen polysiloxane: KF 9901: part of the side chains of the polysiloxane is hydrogen
  • alumina particles volume average particle diameter 10.0 ⁇ m, sphericity 0.99
  • the compound substituted by: react with Shin-Etsu Chemical Co., Ltd. in the amount shown in Table 1 (Step 1), and then a second silicone material (silicone containing a vinyl group as an alkenyl group: VF10000: Shin-Etsu Chemical Co., Ltd.) was treated with the amount shown in Table 1 (second step).
  • the obtained sample was used as a test sample of each test example.
  • silicone resin A manufactured by Shin-Etsu Chemical Co., Ltd., X-21-5841
  • silicone resin B manufactured by Shin-Etsu Chemical Co., Ltd., KF9701, molecular weight 2000
  • the silicone resin used was KF-96-500 cs manufactured by Shin-Etsu Chemical Co., Ltd., which was a straight silicone type.
  • the shear viscosity was measured for each test sample.
  • the shear viscosity was measured using ARES G2 manufactured by TA Instrument, and was measured in a shear rate range of 0.001 (1 / s) to 1000 (1 / s).
  • the measurement results are shown in FIG. 1 (Test Examples 1 to 6) and FIG. 2 (Test Examples 7 to 10).
  • the shear of the resin composition (hereinafter referred to as “resin composition 3 to 5”) prepared using Test Examples 3 to 5 treated with both SiH group-containing silicone and vinyl group-containing silicone It was revealed that the viscosity is much lower than the shear viscosity of the resin composition 1 in which the test sample which is the untreated alumina particle itself is dispersed, and the effect of the viscosity reduction is high.
  • all of the resin compositions 3 to 5 exhibited very low viscosities and were contained in the lower part of the graph (in the range of a shear viscosity of 100 Pa / s or less).
  • resin composition 2 treated with only vinyl group-containing silicone has a viscosity lower than that of resin composition 1, but resin composition 3 treated with both SiH group-containing silicone and vinyl group-containing silicone It was found that the viscosity was higher than that of the above 5, and the effect of the sufficient viscosity reduction could not be exhibited. This seems to be due to the fact that the viscosity reducing action can be sufficiently exhibited by the fact that sufficient bonding of the second silicone material to the surface of the particulate material can be achieved by treatment with the SiH group-containing silicone.
  • the resin composition 2 in which only the second silicone material (vinyl group-containing silicone) is reacted is better than the resin composition 1
  • the test sample 4 When the test sample 4 is charged into the addition-curable silicone, the remaining active functional group (SiH group) derived from the surface treatment agent and the addition-curable silicone exhibit a polymerization reaction, and the addition-curable silicone When the test sample 4 is kneaded, it becomes a cured resin. Details will be described later (examination of reaction characteristics with a silicone resin precursor).
  • dimethyldimethoxysilane (DMS: 3.64% by mass), hexamethyldisilazane (HMDS: 3.64% by mass), diethylamine (2.0% by mass, 1.0% by mass) %, Diethanolamine (DEA: 2.0% by mass, 1.0% by mass), and monoethanolamine (MEA: 3.64% by mass) were respectively examined. After contact, the reaction was left at 80 ° C. for 240 minutes to complete the reaction. The IR spectrum of the resulting reaction product was measured. The results are shown in FIGS.
  • test sample treated with MEA was able to reduce the amount of SiH groups compared with the untreated, HMDS, and DMS treated ones.
  • test sample treated with DEA was able to reduce the amount of SiH groups compared to the one treated with DMA. It was found that both MEA and DEA can sufficiently reduce the amount of SiH groups.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

シリコーン樹脂中に分散させたときに充分な粘度低下効果が発揮できるシリコーン被覆フィラーを製造できる方法を提供することを解決すべき課題とする。 アルミナからなる粒子材料の表面に、複数のSiH基を有する第1シリコーン材料を反応させる第1工程と、その後、ビニル基を末端にもつ第2シリコーン材料を付加反応させる第2工程とを有する。SiH基はアルミナ表面のOH基と反応可能であり、粒子材料の表面に強固に結合される。第2工程では、第2シリコーン材料が第1シリコーン材料に結合される。このように粒子材料の表面に第1シリコーン材料、そして第2シリコーン材料の順で強固に結合でき、製造されたシリコーン被覆フィラーはシリコーン樹脂中に分散させたときに充分な粘度低下効果が発揮できる(対照:試験例1、本発明:試験例3~5、比較例:試験例2及び6)。

Description

シリコーン被覆フィラー及びその製造方法並びに樹脂組成物
 本発明は、シリコーン被覆フィラー及びその製造方法、並びに、そのシリコーン被覆フィラーを含有する樹脂組成物に関する。
 シリコーン樹脂に無機酸化物からなる粒子材料を分散させた樹脂組成物が知られている。得られた樹脂組成物は、粘度が高くなり粒子材料を高い充填率で含有させることは困難であった。
 樹脂組成物の粘度を低下することを目的として粒子材料とシリコーン樹脂との親和性を向上するために粒子材料の表面にシリコーン樹脂を被覆する試みが行われている。
 粒子材料の表面にシリコーン樹脂を被覆する技術としては、特許文献1に酸化アルミニウム粉末分散液とオルガノシロキサンオリゴマーとを高温高圧水中で反応させる技術が開示されている。
 また、特許文献2には金属酸化物粒子と少なくとも1種のコーティング(ポリシロキサンベースの日焼け止め剤)とを含む被覆金属酸化物粒子が開示されている。
 更に、特許文献3には超臨界二酸化炭素中でシリコーンオイルによって表面処理されたシリカ粒子が開示されている。
 そして、特許文献4にはシリコーンオイルにてコーティングされた平均一次粒子径が50~200nmである表面処理シリカ微粒子が開示されている。
特開2015-86092号公報 特表2014-537532号公報 特開2014-185069号公報 特開2006-206413号公報
 しかしながら特許文献1の技術では高温高圧反応装置が必要で有り少量バッチ生産となるためコストが高い上に充分な粘度低下効果が発揮できなかった。
 特許文献2の技術では表面処理により形成されたコーティング層が薄く充分な粘度低下効果が発揮できなかった。
 特許文献3の技術では高温高圧装置が必要で有りコストが高くなった。
 特許文献4の技術では充分な量のコーティング層を形成することが困難で充分な粘度低下効果が発揮できなかった。
 本発明は上記実情に鑑み完成したものであり、シリコーン樹脂中に分散させたときに、充分な粘度低下効果が発揮できるシリコーン被覆フィラー及びその製造方法、並びにそれらのシリコーン被覆フィラーを用いた樹脂組成物を提供することを解決すべき課題とする。
 上記課題を解決する目的で本発明者らは鋭意検討を行った結果、粒子材料の表面に2段階でシリコーン構造を導入することにより粘度低下効果が充分に発揮出来るようになることを発見して以下の発明を完成した。
 (1)上記課題を解決する本発明のシリコーン被覆フィラーの製造方法は、所定の元素が酸化されて形成され且つ表面にOH基を有する無機酸化物を主成分とする粒子材料の表面に、複数のSiH基を有する第1シリコーン材料の前記複数のSiH基の一部を反応させる第1工程と、
 前記第1シリコーン材料由来の前記複数のSiH基の残部のうちの少なくとも一部に対し、アルケニル基を末端にもつ第2シリコーン材料を付加反応させる第2工程と、
 を有する。
 粒子材料は無機酸化物を主成分としているので、その表面にはOH基が存在する。SiH基は適正な条件下でOH基と反応可能であり、SiH基をもつ第1シリコーン材料は第1工程により粒子材料の表面に対して強固に結合される。第1工程では第1シリコーン材料がもつSiH基のうちの一部しか反応させないために第1工程が終了した後でもSiH基が残存する。残存しているSiH基は適正な条件下でアルケニル基と反応する。第2工程では、アルケニル基をもつ第2シリコーン材料を第1シリコーン材料由来のSiH基に反応させているので第1シリコーン材料に第2シリコーン材料が結合される。
 このように粒子材料の表面に第1シリコーン材料、そして第2シリコーン材料の順で強固に結合させることが可能となり、製造されたシリコーン被覆フィラーは表面に充分な量のシリコーン材料が存在することになるのでシリコーン樹脂中に分散させたときに充分な粘度低下効果が発揮できる。
 そして、上記発明において、前記第1工程又は前記第2工程は前記粒子材料に存するSiH基を全て反応させる工程であるか、又は、
 前記第2工程後に、表面に残存するSiH基を反応させて消失させる消失工程を有することが好ましい。
 SiH基を消失させることによりシリコーン樹脂中に分散させたときの安定性を向上することができる。混合するシリコーン樹脂としては硬化前の前駆体を採用することができるが、その前駆体はSiH基と反応するおそれがあるためSiH基の量が少ない方が安定性が高くできる。
 前記消失工程としては、モノエタノールアミン及び/又はジエタノールアミンに接触させる工程とすることができる。
 (2)上述した製造方法にて製造されたシリコーン被覆フィラーはシリコーン樹脂との間で高い親和性を示すので、シリコーン樹脂中に分散させても安定的に低い粘度を示すことができる。
 すなわち、上記課題を解決する本発明のシリコーン被覆フィラーは、所定の元素が酸化されて形成される無機酸化物を主成分とする粒子材料と、
 前記粒子材料の表面に「-所定元素-OSi-」構造を介して結合している第1シリコーン構造と、
 前記第1シリコーン構造のケイ素原子に直接結合した炭素-炭素構造をもつ架橋構造と前記架橋構造に結合したポリシロキサン構造とをもつ第2シリコーン構造と、を有する。
 そして、表面にはSiH基を実質的に有さないことが好ましい。SiH基が存在しないことによりシリコーン樹脂の前駆体中に分散させて得られる樹脂組成物の安定性を向上できる。
 また、前記所定元素がAlであることが好ましい。Alの酸化物であるアルミナは高い熱伝導性を示し、シリコーン樹脂中に分散させた樹脂組成物は伝熱性が要求される用途に好適に採用可能である。
 (3)上記課題を解決する本発明の樹脂組成物は、上述の製造方法にて製造されたシリコーン被覆フィラーであるか、又は上述のシリコーン被覆フィラーと、
 前記シリコーン被覆フィラーを分散するシリコーン樹脂と、を有する。
 本発明のシリコーン被覆フィラーの製造方法は、粒子材料の表面にシリコーン材料を効果的に被覆することが可能になる方法である。その結果、製造されたシリコーン被覆フィラーや本発明のシリコーン被覆フィラーをシリコーン樹脂中に分散させた本発明の樹脂組成物は粘度上昇を効果的に抑制することができる。
実施例において製造した樹脂組成物のせん断粘度の第1シリコーン材料及び第2シリコーン材料の存在比依存性を示したグラフである。 実施例において製造したOH基含有シリコーンにて処理したシリコーン被覆フィラーを用いた樹脂組成物のせん断粘度を示したグラフである。 実施例においてシリコーン被覆フィラーの表面に残存するSiH基を評価するために測定したIRスペクトルである。 実施例においてシリコーン被覆フィラーの表面に残存するSiH基を評価するために測定したIRスペクトルである。 実施例においてシリコーン被覆フィラーの表面に残存するSiH基を評価するために測定したIRスペクトルである。 実施例においてシリコーン被覆フィラーの表面に残存するSiH基の量と製造した樹脂組成物のせん断粘度との関係を評価するために測定したせん断粘度を示すグラフである。 実施例においてシリコーン被覆フィラーの表面に残存するSiH基の量と製造した樹脂組成物のせん断粘度との関係を評価するために測定したせん断粘度を示すグラフである。 実施例において表面処理剤由来の残存する活性のある官能基が残存する樹脂組成物が硬化することを例示する実験例を示した図である。
 以下に本発明のシリコーン被覆フィラー及びその製造方法並びに樹脂組成物について実施形態に基づいて詳細に説明する。本実施形態の樹脂組成物は、放熱部材、半導体の封止材、電子基板材料、電子部品の接着剤、電子部品と放熱部材とを接続する接着剤などに用いることができる。 
(シリコーン被覆フィラー)
 本実施形態のシリコーン被覆フィラーは、粒子材料とその粒子材料に結合している第1シリコーン構造とその第1シリコーン構造に結合した第2シリコーン構造とを有する。特に表面にはSiH基を実質的に有していないことが好ましい。SiH基を実質的に有していないことはIRスペクトルによって確認できる。
 IRスペクトルにより確認する方法としては2100cm-1~2200cm-1付近に観測されるピークの強度が1900cm-1~2000cm-1付近に観測されるピークの強度と同等(面積比で2倍以下程度)である場合にSiH基の量が充分に少なく実質的に有していない判断できる。
 粒子材料は所定の元素が酸化されて形成される無機酸化物を主成分とする。所定の元素としては金属元素が例示される。所定の元素としてはAl、Si、Ti、Zr、Feが例示される。所定の元素としては1つの元素だけでも良いし、2以上の元素を含んでいても良い。所定の元素としてはAlを採用することによりシリコーン被覆フィラーの熱伝導性を優れたものにできる。
 粒子材料は複数の粒子が凝集した2次粒子を形成してもよい。粒子材料の体積平均粒径の上限としては200μm、100μm、50μm、10μmが採用できる。体積平均粒径の下限としては0.1μm、0.5μm、1.0μm、2.0μmが採用できる。これらの上限値と下限値とは任意に組み合わせることができる。粒子材料はアイン球状のもの、破砕品などその形状は限定しないが、球形度が0.9以上であることが好ましく、0.95以上であることがより好ましく、0.99以上であることが更に好ましい。
 第1シリコーン構造と第2シリコーン構造とは合わせて粒子材料の表面を1層以上被覆できる量にすることが好ましく、2層以上被覆できる量にすることが更に好ましい。第1シリコーン構造及び第2シリコーン構造を合わせた量としては、表面積を基準として決定することができる。具体的には粒子材料の表面積と、第1シリコーン構造及び第2シリコーン構造との面積とから1層以上被覆する際に必要な第1シリコーン構造と第2シリコーン構造との量を算出することができる。また、粒子材料の表面積を基準として、第1シリコーン構造と第2シリコーン構造とを合わせた量の好ましい範囲としては、下限値としては0.00001g/m、0.0001g/m、0.001g/m程度にすることができ、上限値としては0.1g/m、0.01g/m、0.005g/m程度にすることができる。これらの上限値と下限値とは任意に組み合わせることができる。
 第1シリコーン構造は、粒子材料の表面に「-所定元素-OSi-」構造を介して結合している。第1シリコーン構造はシロキサン結合を主鎖とするシロキサン構造の側鎖に有機基をもつ構造である。第1シリコーン構造のうち、粒子材料の表面に結合する部位としては特に限定しないが、第1シリコーン構造のシロキサン構造の側鎖部分や末端部分にて結合する。第1シリコーン構造がもつ有機基としては特に限定されないが、アルキル基(メチル基、エチル基など)、フェニル基、エポキシ基、アミノ基、カルボキシ基、アラルキル基、アルコキシ基、フルオロアルキル基が例示でき、アルキル基、フェニル基が好ましい。
 第1シリコーン構造がもつシロキサン結合の繰り返し単位(Si-O)の数は特に限定しないが、下限値としては1個、20個、50個、100個、200個、500個、800個、1000個が例示できる。上限値としては、1000000個、100000個、50000個、20000個、10000個が例示できる。これらの上限値と下限値とは任意に組み合わせることができる。
 第2シリコーン構造は、架橋構造とシロキサン構造とをもつ。シロキサン構造は、前述の第1シリコーン構造と同様の構造で有り、同様の選択肢から第1シリコーン構造とは独立して構造を決定することが出来る。架橋構造は炭素-炭素結合の一方にて第1シリコーン構造を構成するケイ素原子に結合されており、他方が第2シリコーン構造に結合されている。架橋構造が第1シリコーン構造に結合する位置としては第1シリコーン構造の末端部分、第1シリコーン構造の主鎖の途中とすることができる。また、第2シリコーン構造は第1シリコーン構造の1つの主鎖から2つ以上結合させることもできる。架橋構造と第2シリコーン構造とは直接結合していても良いし、間に何からのスペーサを介していても良い。スペーサとしてはアルキレン基、エーテル結合などが挙げられる。 
(シリコーン被覆フィラーの製造方法)
 本実施形態のシリコーン被覆フィラーの製造方法は、第1工程と第2工程とを有する。
 第1工程は粒子材料の表面に第1シリコーン材料を反応させる工程である。粒子材料は所定の元素が酸化されて形成された無機酸化物である。表面にはOH基を有する。このおH基は(所定の元素)-OHであり、所定の元素がAlであればアルミノール基、所定の元素がケイ素であればシラノール基である。表面に存在するOH基の量は特に限定しないが、1個/nm~50個/nm程度にすることが好ましい。更に下限値として2個/nm、5個/nm、10個/nm程度が例示でき、上限値として20個/nm、30個/nm、40個/nmが例示できる。
 第1シリコーン材料は複数のSiH基をもつ。第1シリコーン材料がもつ複数のSiH基のうちの一部が粒子材料の表面に存在するOH基と反応する。第1シリコーン材料がもつSiH基の残部は残存する。
 第1シリコーン材料は、シロキサン結合を主鎖とするシロキサン構造の側鎖に有機基をもつ構造である。有機基としては特に限定されないが、アルキル基(メチル基、エチル基など)、フェニル基、エポキシ基、アミノ基、カルボキシ基、アラルキル基、アルコキシ基、フルオロアルキル基が例示でき、アルキル基、フェニル基が好ましい。SiH基が結合する部位は特に限定しないが、側鎖や末端に結合される。
 第1シリコーン材料がもつシロキサン結合の繰り返し単位(Si-O)の数は特に限定しないが、下限値としては1個、20個、50個、100個、200個、500個、800個、1000個が例示できる。上限値としては、1000000個、100000個、50000個、20000個、10000個が例示できる。これらの上限値と下限値とは任意に組み合わせることができる。
 粒子材料の表面に存在するOH基に対して第1シリコーン材料がもつSiH基を反応させる方法は特に限定しない。例えば、適正な溶媒中に第1シリコーン材料を溶解乃至分散させた後、粒子材料を分散させることで反応を進行させることができる。好ましい反応条件としては、100℃から200℃の範囲で加熱して行うことが好ましい。特に160℃程度で反応させることが好ましい。反応時間としては1時間から24時間程度とすることが好ましく、特に2時間程度にすることがより好ましい。反応雰囲気としては大気中で行うことが好ましい。特に防爆装置中にて行うことが好ましい。
 このときに第2シリコーン材料を共存させることで第2工程を行うこともできる。適正な溶媒としてはSiH基やアルケンとの反応性が低いものが好ましく、ヘプタンやトルエンが例示できる。
 第2工程は粒子材料の表面に結合した第1シリコーン材料に残存するSiH基と第2シリコーン材料とを反応させる工程である。
 第2シリコーン材料は1又は2以上のアルケニル基をもち、そのアルケニル基が第1シリコーン材料に残存するSiH基との間で付加反応を生起することで結合する。アルケニル基としてはビニル基が例示される。第2シリコーン材料は、第1シリコーン材料と同様に、シロキサン結合を主鎖とするシロキサン構造の側鎖に有機基をもつ構造である。有機基としては特に限定されないが、アルキル基(メチル基、エチル基など)、フェニル基、エポキシ基、アミノ基、カルボキシ基、アラルキル基、アルコキシ基、フルオロアルキル基が例示でき、アルキル基、フェニル基が好ましい。アルケニル基が結合する部位は特に限定しないが、末端に結合されることが好ましい。
 第2シリコーン材料がもつシロキサン結合の繰り返し単位(Si-O)の数は特に限定しないが、下限値としては1個、20個、50個、100個、200個、500個、800個、1000個が例示できる。上限値としては、1000000個、100000個、50000個、20000個、10000個が例示できる。これらの上限値と下限値とは任意に組み合わせることができる。
 粒子材料の表面に存在するSiH基に対して第2シリコーン材料がもつアルケニル基を反応させる方法は特に限定しない。例えば、第1シリコーン材料を反応させた粒子材料に対して第2シリコーン材料を直接接触させたり、適正な溶媒中に第1シリコーン材料を反応させた粒子材料を分散させた後、第2シリコーン材料を添加することで反応を進行させたりすることができる。適正な溶媒としてはSiH基やアルケンとの反応性が低いものが好ましく、ヘプタンやトルエンが例示できる。好ましい反応条件としては、100℃から200℃の範囲で加熱して行うことが好ましい。特に160℃程度で反応させることが好ましい。反応時間としては1時間から24時間程度とすることが好ましく、特に2時間程度にすることがより好ましい。反応雰囲気としては大気中で行うことが好ましい。特に防爆装置中にて行うことが好ましい。
 第2工程の後には消失工程を有することができる。消失工程は第1シリコーン材料がもつSiH基が残存している場合に、そのSiH基を消失させる工程である。消失工程としては、モノエタノールアミン及び/又はジエタノールアミンからなる消失剤に接触させる工程とすることができる。好ましい反応条件としては、5℃から40℃程度で反応させることが好ましい。特に常温(25℃)で行うことがより好ましい。そして、大気中で操作することが可能であり、混合機にて混合して均一化する操作を行うことが好ましい。
 消失剤を反応させる量としてはSiH基を消失させるのに必要十分な量にすることが望ましい。消失工程は消失剤をそのまま(噴霧したり、撹拌しながら混合したりする)、又は何らかの溶媒を用いた溶液として接触させることで行うことができる。消失剤を反応させる量としては、シリコーン被覆フィラーの質量基準で0.1%、0.5%、0.75%、1.0%、1.5%などを採用することが出来る。 
(樹脂組成物)
 本実施形態の樹脂組成物は、上述のシリコーン被覆フィラーか、又は、上述の製造方法にて製造されたシリコーン被覆フィラーと、シリコーン樹脂とを有する。シリコーン被覆フィラーとシリコーン樹脂との混合比は特に限定しないが全体の質量を基準として、シリコーン被覆フィラーが55%以上とすることができる。更には60%以上、65%以上、70%以上とすることもできる。上限としては特に限定しないが90%以下、85%以下、80%以下、75%以下、70%以下とすることも出来る。シリコーン樹脂中にシリコーン被覆フィラーを分散させる方法としては特に限定しないが、混練機などを用いて混練することで分散させることができる。
 添加されるシリコーン被覆フィラーは樹脂組成物の用途に応じて適正なものを選択する。例えば、放熱用途に用いる場合には無機酸化物としてアルミナを採用することが好ましい。また、シリコーン被覆フィラーの形態、粒径は樹脂組成物が適用される用途に応じて適正に選択される。例えば流動性が高いことが必要であればシリコーン被覆フィラーの球形度が高いことが好ましく、何らかの隙間の中に充填して用いる場合にはその隙間に入ることができる程の大きさ(隙間の大きさと比べて小さくする)とすることが好ましい。
 シリコーン樹脂としては特に限定されず、シリコーンゴム、シリコーンゲル、シリコーンオイルなどが挙げられる。また、シリコーン樹脂としては反応により高分子化する前駆体を採用することも出来る。
(シリコーン被覆フィラー及び樹脂組成物の製造)
 粒子材料としてのアルミナ粒子(体積平均粒径10.0μm、球形度0.99)に対して第1シリコーン材料(SiH基含有シリコーン:メチルハイドロジェンポリシロキサン:KF9901:ポリシロキサンの側鎖の一部が水素で置換された化合物:信越化学工業製)を表1に示す量で反応させ(第1工程)、その後、第2シリコーン材料(アルケニル基としてビニル基を含有するシリコーン:VF10000:信越化学工業製)を表1に示す量で処理した(第2工程)。得られた試料を各試験例の試験試料とした。
 更に粒子材料としてのアルミナ粒子(体積平均粒径3.0μm、球形度0.98)に対して、両末端にOH基が導入されているシリコーン樹脂A(信越化学工業製、X-21-5841、分子量2000)とシリコーン樹脂B(信越化学工業製、KF9701、分子量2000)とについて表1に示す量で接触させて各試験例の試験試料とした。
 得られた試験試料について全体の体積を基準として55%となるようにシリコーン樹脂中に分散させた。用いたシリコーン樹脂は信越化学工業製のKF-96-500csであってストレートシリコーンタイプであった。 
Figure JPOXMLDOC01-appb-T000001
(粘度特性の測定)
 各試験試料についてせん断粘度を測定した。せん断粘度の測定はTA Instrument製のARES G2を用いて行い、せん断速度0.001(1/s)~1000(1/s)までの範囲で測定した。測定結果を図1(試験例1~6)及び図2(試験例7~10)に示す。
 図より明らかなように、SiH基含有シリコーンとビニル基含有シリコーンとの双方で処理した試験例3~5を用いて調製した樹脂組成物(以下「樹脂組成物3~5」と称する)のせん断粘度は、未処理のアルミナ粒子そのものである試験試料を分散させた樹脂組成物1のせん断粘度よりも非常に低く粘度低下の効果が高いことが明らかになった。なお、図1では樹脂組成物3~5は全て非常に低い粘度を示しておりグラフの下の方(せん断粘度100Pa/s以下の範囲)に収まっていた。それに対してビニル基含有シリコーンのみで処理を行った樹脂組成物2では樹脂組成物1よりは低粘度ではあるもののSiH基含有シリコーン及びビニル基含有シリコーンの双方にて処理を行った樹脂組成物3~5と比べて高い粘度を示しており、充分な粘度低下の効果は発揮できないことが分かった。これはSiH基含有シリコーンにて処理することにより粒子材料の表面への第2シリコーン材料の充分な結合が達成できたことで粘度低下作用が充分に発揮できたものと思われる。
 このことは図2において粘度が高いことからも推察できる。OH基含有シリコーンは粒子材料の表面に物理吸着しただけであるから、図2に示した樹脂組成物7~10の結果のように粘度低下効果が充分に発揮できないものと思われる。
 更に、第1シリコーン材料(SiH基含有シリコーン)のみを反応させた樹脂組成物6の粘度も、第2シリコーン材料(ビニル基含有シリコーン)のみを反応させた樹脂組成物2が樹脂組成物1よりも高くなっていることから粒子材料の表面に第1シリコーン材料のみでなく第2シリコーン材料も追加で反応させることにより高い粘度低下効果が発揮されることが明らかになった。湿気硬化型シリコーンや過酸化物硬化型シリコーンに対してフィラーであるアルミナの充填量を大幅に向上させることが可能となる。付加硬化型のシリコーンに対して試験試料4を充填させた場合,表面処理剤由来の残存する活性のある官能基(SiH基)と付加硬化型シリコーンとが重合反応を示し、付加硬化型シリコーンと試験試料4を混練させた際に樹脂硬化物となってしまう。詳細は後述する(シリコーン樹脂の前駆体との反応特性の検討)にて述べる。 
(SiH基を消失させる工程の検討)
 試験試料4に対して種々の化合物を反応させたときの表面のSiH基の存否及びシリコーン樹脂の前駆体への影響を検討した。反応は試験試料に直接化合物を接触させて行った。
 種々の化合物の種類及び添加量としては、ジメチルジメトキシシラン(DMS:3.64質量%)、ヘキサメチルジシラザン(HMDS:3.64質量%)、ジエチルアミン(2.0質量%、1.0質量%)、ジエタノールアミン(DEA:2.0質量%、1.0質量%)、及びモノエタノールアミン(MEA:3.64質量%)をそれぞれ検討した。接触させた後に80℃で240分間放置して反応を完了させた。得られた反応物についてIRスペクトルを測定した。結果を図3及び4に示す。
 図3より明らかなように、MEAにて処理した試験試料は、未処理、HMDS、DMSで処理した物と比べてSiH基の量を減らすことができた。また、図4より明らかなように、DEAにて処理した試験試料は、DMAで処理した物と比べてSiH基の量を減らすことができた。MEA、DEA共にSiH基の量を充分に減らすことができることが分かった。
 MEAについて反応量を変化させたときのSiH基の量を検討するために試験試料4に対して質量基準で0.5%、1.0%、3.64%の割合で反応させた後の表面に存在するSiH基の量をIRスペクトルから検討した(図5)。その結果、添加量が0.5%でもSiH基の量は充分に減少させることが出来ていることが分かった。 
・シリコーン樹脂の前駆体との反応特性の検討
 株式会社アドマテックス製 粒径10μm 真球状アルミナ(試験試料11:表面処理無し)および,試験試料4について、そのまま(試験試料12:表面にSiH基が残存している)とMEA0.5%で処理したもの(試験試料13:表面のSiH基が概ね消失している)の3種についてシリコーン前駆体(二液型RTVゴム:KE1031-AB:信越化学工業製)中に全体の質量を基準として55%、60%、65%、70%となるように混合したときのせん断粘度を測定した。結果を図6(試験試料11)及び図7(試験試料13)に示す。
 図6より明らかなように、表面処理をしていない試験試料11ではどの添加量でも粘度の上昇が著しいことが分かる。当該表面処理をした試験試料12(表面にSiH基が残存している)では、表面処理剤由来の残存する活性のある官能基(SiH基)と付加硬化型シリコーンとが重合反応を示し、付加硬化型シリコーンと試験試料4を混練させた際に樹脂硬化物となってしまう(硬化した様子を図8に示す)。図7より、SiH基が残存しない試験試料13では、試験試料11(表面処理をしていない)と比較し,どの添加量でも粘度の上昇が効果的に抑制されることが分かった。
 なお、詳細は示さないが、アルミナの他、シリカ、ジルコニア、チタニア、酸化鉄についても表面に存在するOH基に対して第1シリコーン材料が反応でき、更には第2シリコーン材料が反応できることを確認している。

Claims (6)

  1.  所定の元素が酸化されて形成される無機酸化物を主成分とする粒子材料と、
     前記粒子材料の表面に「-所定元素-OSi-」構造を介して結合している第1シリコーン構造と、
     前記第1シリコーン構造のケイ素原子に直接結合した炭素-炭素構造をもつ架橋構造と前記架橋構造に結合したポリシロキサン構造とをもつ第2シリコーン構造と、
     を有するシリコーン被覆フィラー。
  2.  表面にはSiH基を実質的に有さない請求項1に記載のシリコーン被覆フィラー。
  3.  所定の元素が酸化されて形成され且つ表面にOH基を有する無機酸化物を主成分とする粒子材料の表面に、複数のSiH基を有する第1シリコーン材料の前記複数のSiH基の一部を反応させる第1工程と、
     前記第1シリコーン材料由来の前記複数のSiH基の残部のうちの少なくとも一部に対し、アルケニル基を末端にもつ第2シリコーン材料を付加反応させる第2工程と、
     を有するシリコーン被覆フィラーの製造方法。
  4.  前記第1工程又は前記第2工程は前記粒子材料に存するSiH基を全て反応させる工程であるか、又は、
     前記第2工程後に、表面に残存するSiH基を反応させて消失させる消失工程を有する、
     請求項3に記載のシリコーン被覆フィラーの製造方法。
  5.  前記消失工程はモノエタノールアミン及び/又はジエタノールアミンに接触させる工程である請求項4に記載のシリコーン被覆フィラーの製造方法。
  6.  請求項1又は2に記載のシリコーン被覆フィラーと、
     前記シリコーン被覆フィラーを分散するシリコーン樹脂と、
     を有する樹脂組成物。
PCT/JP2018/026938 2017-10-04 2018-07-18 シリコーン被覆フィラー及びその製造方法並びに樹脂組成物 WO2019069535A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019518577A JP6537763B1 (ja) 2017-10-04 2018-07-18 シリコーン被覆フィラー及びその製造方法並びに樹脂組成物
CN201880023045.7A CN110536866B (zh) 2017-10-04 2018-07-18 有机硅被覆填料和其制造方法以及树脂组合物
EP18865065.9A EP3640210B1 (en) 2017-10-04 2018-07-18 Silicone-coated filler and production process for the same as well as resinous composition
US16/841,423 US11021590B2 (en) 2017-10-04 2020-04-06 Silicone-coated filler and production process for the same as well as resinous composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-194446 2017-10-04
JP2017194446 2017-10-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/841,423 Continuation US11021590B2 (en) 2017-10-04 2020-04-06 Silicone-coated filler and production process for the same as well as resinous composition

Publications (1)

Publication Number Publication Date
WO2019069535A1 true WO2019069535A1 (ja) 2019-04-11

Family

ID=65994481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026938 WO2019069535A1 (ja) 2017-10-04 2018-07-18 シリコーン被覆フィラー及びその製造方法並びに樹脂組成物

Country Status (5)

Country Link
US (1) US11021590B2 (ja)
EP (1) EP3640210B1 (ja)
JP (1) JP6537763B1 (ja)
CN (1) CN110536866B (ja)
WO (1) WO2019069535A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206413A (ja) 2005-01-31 2006-08-10 Tokuyama Corp 表面処理シリカ微粒子
JP2010090008A (ja) * 2008-10-09 2010-04-22 Asahi Kasei Corp 表面改質された無機化合物微粒子及びその製法並びに該微粒子を含む分散体
JP2010090007A (ja) * 2008-10-09 2010-04-22 Asahi Kasei Corp 表面改質された無機化合物微粒子及びその分散体
JP2014185069A (ja) 2013-03-25 2014-10-02 Fuji Xerox Co Ltd シリカ粒子の製造方法、及びシリカ粒子
JP2015086092A (ja) 2013-10-29 2015-05-07 信越化学工業株式会社 表面処理された酸化アルミニウム粉末及びその製造方法、熱伝導性材料

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004323652A (ja) * 2003-04-24 2004-11-18 Shin Etsu Chem Co Ltd 感圧導電性シリコーンゴム組成物
EP1861063B1 (en) 2005-03-23 2012-01-18 DSM IP Assets B.V. Polysiloxane coated metal oxide particles
JP5265434B2 (ja) * 2009-03-30 2013-08-14 株式会社アドマテックス シリカ含有有機組成物及びその製造方法
JP5273744B2 (ja) * 2010-07-16 2013-08-28 住友大阪セメント株式会社 無機酸化物粒子とシリコーン樹脂との複合組成物の製造方法
EP2559727B1 (de) * 2011-08-16 2014-05-14 Nexans Kältefeste Chloropren-Mantelmischung
WO2014088115A1 (ja) * 2012-12-07 2014-06-12 東レ・ダウコーニング株式会社 硬化性シリコーン組成物および光半導体装置
EP3473675A1 (en) * 2015-12-22 2019-04-24 Shin-Etsu Chemical Co., Ltd. Addition-curable silicone resin composition and a semiconductor device
KR101986062B1 (ko) * 2016-04-28 2019-06-04 가부시키가이샤 아도마텍쿠스 결정 실리카 입자 재료 및 그 제조 방법 그리고 결정 실리카 입자 재료 함유 슬러리 조성물, 결정 실리카 입자 재료 함유 수지 조성물
WO2018211626A1 (ja) * 2017-05-17 2018-11-22 株式会社アドマテックス 複合粒子材料及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206413A (ja) 2005-01-31 2006-08-10 Tokuyama Corp 表面処理シリカ微粒子
JP2010090008A (ja) * 2008-10-09 2010-04-22 Asahi Kasei Corp 表面改質された無機化合物微粒子及びその製法並びに該微粒子を含む分散体
JP2010090007A (ja) * 2008-10-09 2010-04-22 Asahi Kasei Corp 表面改質された無機化合物微粒子及びその分散体
JP2014185069A (ja) 2013-03-25 2014-10-02 Fuji Xerox Co Ltd シリカ粒子の製造方法、及びシリカ粒子
JP2015086092A (ja) 2013-10-29 2015-05-07 信越化学工業株式会社 表面処理された酸化アルミニウム粉末及びその製造方法、熱伝導性材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3640210A4

Also Published As

Publication number Publication date
CN110536866B (zh) 2020-10-30
EP3640210A1 (en) 2020-04-22
CN110536866A (zh) 2019-12-03
US11021590B2 (en) 2021-06-01
JP6537763B1 (ja) 2019-07-03
EP3640210A4 (en) 2020-06-03
JPWO2019069535A1 (ja) 2019-11-14
US20200239668A1 (en) 2020-07-30
EP3640210B1 (en) 2022-11-16

Similar Documents

Publication Publication Date Title
JP5002075B2 (ja) 硬化性ポリオルガノシロキサン組成物
JP6183319B2 (ja) 熱伝導性シリコーン組成物及び熱伝導性シート
KR20190100209A (ko) 표면 처리 실리카 필러 및 표면 처리 실리카 필러를 함유하는 수지 조성물
TW201609549A (zh) 球狀氧化鋁粉末以及使用球狀氧化鋁粉末的樹脂組成物
KR20090086425A (ko) 실리콘 접착제 조성물 및 그 제조 방법
JPWO2016060223A1 (ja) 表面修飾金属酸化物粒子分散液及びその製造方法、表面修飾金属酸化物粒子−シリコーン樹脂複合組成物、表面修飾金属酸化物粒子−シリコーン樹脂複合体、光学部材、及び発光装置
JP2024023255A (ja) 放熱組成物、放熱部材、及び放熱部材用フィラー集合体
JP6778662B2 (ja) 造粒処理シリカの製造方法
JP7055255B1 (ja) 熱伝導性シリコーン組成物の製造方法
CN110709474A (zh) 导热性聚有机硅氧烷组合物
TW202231574A (zh) 疏水性氮化鋁粉末及其製造方法
Soares et al. Epoxy modified with urea-based ORMOSIL and isocyanate-functionalized polybutadiene: Viscoelastic and adhesion properties
JP7055254B1 (ja) 熱伝導性シリコーン組成物の製造方法
JP6537763B1 (ja) シリコーン被覆フィラー及びその製造方法並びに樹脂組成物
JP7285238B2 (ja) シリコーン接着剤組成物、及びシリコーンゴム硬化物
JP2017193631A (ja) 表面修飾無機粒子含有分散液、シリコーン樹脂組成物、硬化体、光学部材、発光装置、及び表示装置
CN106753210B (zh) 一种导热粘接硅胶
TWI796457B (zh) 矽酮組成物
JP4553562B2 (ja) 接着性ポリオルガノシロキサン組成物
JP2009138038A (ja) 耐溶剤性シリコーンゴム組成物
JP6830879B2 (ja) シリコーンゴム組成物及びシリコーンゴム
JP7336146B2 (ja) 表面処理シリカフィラーおよびその製造方法、ならびに表面処理シリカフィラーを含有する樹脂組成物
JP2005171209A (ja) フィラー含有樹脂組成物及びその製造方法
JP2015013949A (ja) 樹脂組成物及びその製造方法、高熱伝導性樹脂成型体
JP5589960B2 (ja) 液状フッ素エラストマー用ベースコンパウンドの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019518577

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18865065

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018865065

Country of ref document: EP

Effective date: 20200117

NENP Non-entry into the national phase

Ref country code: DE