WO2019069377A1 - 不揮発性記憶素子およびそれを備えるアナログ回路 - Google Patents

不揮発性記憶素子およびそれを備えるアナログ回路 Download PDF

Info

Publication number
WO2019069377A1
WO2019069377A1 PCT/JP2017/036017 JP2017036017W WO2019069377A1 WO 2019069377 A1 WO2019069377 A1 WO 2019069377A1 JP 2017036017 W JP2017036017 W JP 2017036017W WO 2019069377 A1 WO2019069377 A1 WO 2019069377A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
memory element
nonvolatile memory
charge
reference voltage
Prior art date
Application number
PCT/JP2017/036017
Other languages
English (en)
French (fr)
Inventor
敏郎 坂本
聡 竹原
義郎 山羽
小林 誠
Original Assignee
旭化成エレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成エレクトロニクス株式会社 filed Critical 旭化成エレクトロニクス株式会社
Priority to US16/649,175 priority Critical patent/US11611000B2/en
Priority to PCT/JP2017/036017 priority patent/WO2019069377A1/ja
Priority to EP17928063.1A priority patent/EP3693995A4/en
Publication of WO2019069377A1 publication Critical patent/WO2019069377A1/ja
Priority to US18/108,519 priority patent/US20230197861A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation
    • H01L29/7883Programmable transistors with only two possible levels of programmation charging by tunnelling of carriers, e.g. Fowler-Nordheim tunnelling
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0408Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0408Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors
    • G11C16/0416Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors comprising cells containing a single floating gate transistor and no select transistor, e.g. UV EPROM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40114Multistep manufacturing processes for data storage electrodes the electrodes comprising a conductor-insulator-conductor-insulator-semiconductor structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42324Gate electrodes for transistors with a floating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66825Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a floating gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region

Definitions

  • the present invention relates to a non-volatile memory element and an analog circuit comprising the same.
  • the reference voltage Vref assumed at the time of design is a desired value due to manufacturing variations such as threshold voltage Vth of each transistor constituting the reference voltage generation circuit and resistance value of resistance element. In some cases, it will vary widely. For this reason, a highly accurate reference voltage generation circuit is required for a semiconductor device that requires a stable reference voltage Vref.
  • the wiring layer is corrected to incorporate a large number of spare transistors for adjusting the reference voltage, or adjusted with a laser trimmer after production. It is possible to configure.
  • Patent Document 1 describes a general reference voltage generation circuit.
  • the gate region and the drain region are connected by utilizing the constant current property of a depletion type MOSFET (metal-oxide film-semiconductor field effect transistor) connecting gate region G and source region S.
  • MOSFET metal-oxide film-semiconductor field effect transistor
  • FIG. 23 shows a general reference voltage generation circuit 100.
  • the reference voltage generation circuit 100 includes a depletion type MOSFET (hereinafter referred to as “depletion type transistor”) Md and an enhancement type MOSFET (hereinafter referred to as “enhancement type transistor”) Me connected in series.
  • the gate region G and the source region S of the depletion type transistor Md are connected.
  • the gate region G and the drain region D of the enhancement type transistor Me are connected.
  • the gate region G and the source region S of the depletion type transistor Md are connected to the gate region G and the drain region D of the enhancement type transistor Me.
  • a high voltage supply terminal Vdd is provided in the drain region D of the depletion mode transistor Md, and a low voltage supply terminal Vss is provided in the source region S of the enhancement mode transistor Me. Further, a voltage output terminal OUT is provided at a connection point between the depletion type transistor Md and the enhancement type transistor Me.
  • both the depletion mode transistor Md and the enhancement mode transistor Me are N channel types.
  • the depletion type and the enhancement type are classified according to the relationship between the gate voltage and the drain current. In the depletion type, when a gate voltage is not applied to the gate region, a channel exists and a drain current flows. On the other hand, in the enhancement type (enhancement type), when the gate voltage is not applied to the gate region, the channel does not exist and the drain current does not flow.
  • FIG. 24 shows an example of the current / voltage characteristics of the depletion mode transistor Md and the enhancement mode transistor Me provided in the reference voltage generation circuit 100.
  • Patent Document 2 and Patent Document 3 disclose a reference voltage generation circuit using a non-volatile memory element of FET type as a circuit capable of taking out a reference voltage with high accuracy without being affected by manufacturing variations.
  • the reference voltage generation circuits as disclosed in Patent Documents 2 and 3 have substantially the same configuration as the reference voltage generation circuit 100 shown in FIG. 23, and the non-volatile memory is used as the depletion type transistor Md and the enhancement type transistor Me. An element is used.
  • the reference voltage generation circuits disclosed in Patent Documents 2 and 3 use the same type of nonvolatile memory element and adjust the amount of charge injection to the floating gate region included in the nonvolatile memory element to obtain a depletion type MOSFET and an enhancement.
  • Type MOSFET is formed.
  • the nonvolatile memory element has a control gate region and a floating gate region, and can control the threshold voltage Vth by injecting and discharging electrons to the floating gate region. Therefore, this reference voltage generation circuit can trim the threshold voltage Vth later even if manufacturing variations occur. Therefore, in this reference voltage generation circuit, the reference voltage Vref to be taken out is substantially not affected by manufacturing variations.
  • the reference voltage generation circuits disclosed in Patent Documents 2 and 3 use nonvolatile storage elements in an analog manner, they have much higher charge than those used for so-called nonvolatile memories such as EEPROM. Retention characteristics are required. Furthermore, when used in an analog circuit such as a reference voltage generation circuit, it is also required that the layout dimensions (for example, the L dimension and W dimension of the FET) of the nonvolatile memory element be variable according to the application. For this reason, the flexibility of the layout dimension is required compared with the case where it is used for the normal non-volatile memory comprised by a fixed layout.
  • the layout dimensions for example, the L dimension and W dimension of the FET
  • the flexibility of the layout dimension is a very difficult task in securing the charge retention characteristics of the non-volatile storage element from the viewpoint of manufacturing technology, and the non-volatile storage element used in conventional non-volatile memory is analog There is a problem that it is difficult to apply to a circuit.
  • An object of the present invention is to provide a nonvolatile memory element having excellent charge retention characteristics capable of reducing variations in electrical characteristics, and an analog circuit including the same.
  • a nonvolatile memory element includes a charge retaining region and a halogen that surrounds the entire surface of the charge retaining region and is distributed in at least a part of the region surrounding the entire surface. And an insulator having
  • an analog circuit according to a first aspect of the present invention includes the nonvolatile memory element of the present invention.
  • an analog circuit according to a second aspect of the present invention comprises a plurality of nonvolatile memory elements of the present invention, and at least a part of the plurality of nonvolatile memory elements are connected in series and connected in series. A voltage output terminal from which a voltage is output is connected to the connection portion of the nonvolatile memory element.
  • an analog circuit is a gate region including the charge retention region and the insulator of the first nonvolatile memory element which is the nonvolatile memory element of the present invention.
  • a second control gate region electrically connected to the first control gate region provided in the second memory cell, and a first control region electrically connected to the first charge holding region of the first nonvolatile memory element;
  • the charge injection port provided in the first non-volatile memory element includes a second non-volatile memory element having a two charge holding region and a gate insulating film formed in contact with the second charge holding region. It is characterized in that it is formed in a region not in contact with the current path formed in the second nonvolatile memory element.
  • an analog circuit includes the nonvolatile memory element of the present invention, and the area of the element of the nonvolatile memory element is 10 ⁇ m 2 or more, and the nonvolatile The sex memory element is characterized in that it does not have an array structure.
  • FIG. 18 is a cross-sectional view (No. 1) of the manufacturing process of the nonvolatile memory element M according to the first embodiment of the present invention.
  • FIG. 25 is a cross-sectional view (No. 2) of the manufacturing process of the nonvolatile memory element M according to the first embodiment of the present invention.
  • FIG. 25 is a cross-sectional view (No. 3) of the manufacturing process of the nonvolatile memory element M according to the first embodiment of the present invention.
  • FIG. 25 is a cross-sectional view (No. 4) of the manufacturing process of the nonvolatile memory element M according to the first embodiment of the present invention.
  • FIG. 25 is a cross-sectional view (No. 5) of the manufacturing process of the nonvolatile memory element M according to the first embodiment of the present invention.
  • FIG. 8A is a cross-sectional view of a manufacturing process of the nonvolatile memory element M according to the first embodiment of the present invention (part 6), and FIG. 8A is a manufacturing process cross-sectional view of the nonvolatile memory element used as a depletion type transistor;
  • FIG. 8B is a cross-sectional view of the manufacturing process of the nonvolatile memory element used as the enhancement type transistor.
  • FIG. 8A is a cross-sectional view of a manufacturing process of the nonvolatile memory element M according to the first embodiment of the present invention (part 6)
  • FIG. 8A is a manufacturing process cross-sectional view of the nonvolatile memory element used as
  • FIG. 26 is a cross-sectional view (No. 7) of the manufacturing process of the nonvolatile memory element M according to the first embodiment of the present invention.
  • FIG. 21 is a cross-sectional view (No. 8) of the manufacturing process of the nonvolatile memory element M according to the first embodiment of the present invention.
  • FIG. 25 is a cross-sectional view (No. 9) of the manufacturing process of the nonvolatile memory element M according to the first embodiment of the present invention. It is a graph which shows the statistical evaluation result for demonstrating the charge retention characteristic of the reference voltage generation circuit 1 using the non-volatile storage element M by 1st Embodiment of this invention.
  • FIG. 3 is a circuit configuration diagram for explaining a reference voltage generation circuit 2 as an analog circuit according to the first embodiment of the present invention, and a diagram for explaining a state in which the reference voltage generation circuit 2 outputs a reference voltage Vref. It is.
  • FIG. 3 is a circuit configuration diagram for explaining a reference voltage generation circuit 2 as an analog circuit according to the first embodiment of the present invention, and a diagram for explaining a state in which the reference voltage generation circuit 2 outputs a reference voltage Vref. It is.
  • FIG. 8 is a circuit configuration diagram for describing a reference voltage generation circuit 2 as an analog circuit according to the first embodiment of the present invention, in which the non-volatile memory element M1 on the upper side of the reference voltage generation circuit 2 is adjusted to a depletion state. It is a figure for demonstrating.
  • FIG. 6 is a circuit configuration diagram for describing a reference voltage generation circuit 2 as an analog circuit according to the first embodiment of the present invention, in which the lower non-volatile memory element M2 on the lower side of the reference voltage generation circuit 2 is adjusted to an enhancement state It is a figure for demonstrating.
  • FIG. 6 is a circuit configuration diagram for describing a reference voltage generation circuit 2 as an analog circuit according to the first embodiment of the present invention, in which the lower non-volatile memory element M2 on the lower side of the reference voltage generation circuit 2 is adjusted to an enhancement state It is a figure for demonstrating.
  • FIG. 17 is a diagram for describing the nonvolatile memory element M according to the second embodiment of the present invention, and is a cross-sectional view showing a schematic configuration of the nonvolatile memory element Mr having no charge injection port. It is a circuit block diagram of the non-volatile storage element M by 2nd Embodiment of this invention.
  • FIG. 10 is a circuit configuration diagram for explaining a reference voltage generation circuit 3 as an analog circuit according to a second embodiment of the present invention, the view for illustrating a state in which the reference voltage generation circuit 3 is outputting the reference voltage Vref. It is.
  • FIG. 10 is a circuit configuration diagram for explaining a reference voltage generation circuit 3 as an analog circuit according to a second embodiment of the present invention, the view for illustrating a state in which the reference voltage generation circuit 3 is outputting the reference voltage Vref. It is.
  • FIG. 10 is a circuit configuration diagram for explaining a reference voltage generation circuit 3 as an analog circuit according to a second embodiment of the present invention, the view for illustrating
  • FIG. 17 is a circuit configuration diagram for describing a reference voltage generation circuit 3 as an analog circuit according to a second embodiment of the present invention, in which the non-volatile memory element M1 on the upper side of the reference voltage generation circuit 3 is adjusted to a depletion state. It is a figure for demonstrating.
  • FIG. 17 is a circuit configuration diagram for describing a reference voltage generation circuit 3 as an analog circuit according to a second embodiment of the present invention, in which the lower non-volatile memory element M2 on the lower side of the reference voltage generation circuit 3 is adjusted to an enhancement state It is a figure for demonstrating.
  • FIG. 7 is a circuit configuration diagram of a conventional reference voltage generation circuit 100.
  • FIG. 16 is a diagram showing an example of current / voltage characteristics of a depletion mode transistor Md and an enhancement mode transistor Me provided in a conventional reference voltage generation circuit 100.
  • a reference voltage generation circuit using an N-type nonvolatile memory element including a floating gate region having an insulator containing fluorine and a control gate region will be described.
  • the non-volatile memory element is not limited to this structure as long as it is an active element (transistor) having a charge retention region, and is not limited to an N-type MOSFET.
  • the analog circuit to which the nonvolatile memory element is applied is not limited to the reference voltage generation circuit as long as the circuit uses the nonvolatile memory element in an analog manner.
  • the present invention is also effective to an analog circuit such as an operational amplifier circuit or a comparator circuit that requires accuracy in the threshold voltage of the MOSFET.
  • the non-volatile memory element M includes a P well region 10 formed on a semiconductor substrate, a floating gate region FG formed on the P well region 10, and a floating gate region FG. And a control gate region CG formed in
  • the non-volatile memory element M includes a drain region D formed on one side below the floating gate region FG and a source region S formed on the other side below the floating gate region FG. .
  • the drain region D and the source region S are formed in the P well region 10.
  • the non-volatile memory element M is isolated from other non-volatile memory elements (not shown) formed on the same semiconductor substrate by the element isolation regions 41 and 42.
  • the floating gate region FG is configured of the charge retention region 21 and the insulator 20. That is, the non-volatile memory element M includes the charge holding region 21 and the insulator 20 having halogen (for example, fluorine) distributed in at least a part of the region surrounding the entire surface of the charge holding region 21 and surrounding the entire surface. Is equipped.
  • the insulator 20 has halogen distributed in at least a partial region, and is disposed so as to surround the charge retention region 20.
  • the insulator 20 is disposed so as to surround the charge retention region 21 so that the Haronge element is distributed in all directions surrounding the charge retention region 21 and has halogen distributed in the entire region.
  • the halogen is distributed so as to surround the entire surface of the charge retention region 21, and the insulator 20 is disposed so as to surround the charge retention region 21.
  • the halogen is distributed in all directions of the charge retention region 21.
  • the insulator 20 is formed on the gate insulating film 22 formed below the charge holding region 21, the sidewall oxide film 23 formed by oxidizing the side wall of the charge holding region 21, and the charge insulating region 21.
  • Each region of the insulator 20 surrounding the charge retention region 21 does not have to be the same material and does not have to be an insulator formed simultaneously.
  • a sidewall 25 is formed around the gate insulating film 22 and the sidewall oxide film 23.
  • the halogen content in the insulator 20 may be 0.01 (atm%) or more in at least a part of the region in contact with the charge retention region 21.
  • the content of halogen in the insulator 20 may be 0.05 (atm%) or more in at least a part of the region in contact with the charge retention region 21.
  • the halogen content in the insulator 20 may be 0.1 (atm%) or more in at least a part of the region in contact with the charge retention region 21.
  • a tunnel insulating film 221 is formed on the gate insulating film 22.
  • the tunnel insulating film 221 is a portion formed relatively thin in the gate insulating film 22.
  • the region of the charge retention region 21 in which the tunnel insulating film 221 is formed becomes a charge injection port 211 which injects a charge into the charge retention region 21 or discharges a charge from the charge retention region 21. That is, the charge retention region 21 has the charge injection port 211 for injecting a charge and releasing the charge.
  • the control gate region CG has a polysilicon film 31 formed on the upper insulating film 24. Sidewalls 32 formed on the upper insulating film 24 are formed around the polysilicon film 31.
  • the drain region D includes an N-type region 11 and an N-type N + region 12 having a higher concentration of impurities than the N-type region 11.
  • the N + region 12 is provided to make ohmic contact between the drain region D and a plug 52 described later.
  • Source region S includes N-type region 13 and N-type N + region 14 having a higher concentration of impurities than N-type region 13.
  • the N + region 14 is provided to make ohmic contact between the source region S and the plug 53 described later.
  • the drain region D and the source region S are defined by the current flow direction. Therefore, when the direction of current flow is reversed with respect to the current assumed in the nonvolatile memory element M shown in FIG. 1, the drain region D shown in FIG. 1 becomes the source region S and the source region S becomes the source region S. It becomes a drain region D.
  • the nonvolatile memory element M includes a protective film 61 formed on the control gate region CG, the floating gate region FG, the drain region D, and the source region S.
  • a protective film 61 formed on the control gate region CG, the floating gate region FG, the drain region D, and the source region S.
  • an opening for exposing a part of the polysilicon film 31 in the control gate region CG to the bottom surface is formed.
  • a plug 51 is embedded in the opening. As a result, the plug 51 and the polysilicon film 31 in the control gate region CG are electrically connected.
  • an opening for exposing a part of the N + region 12 of the drain region D to the bottom surface is formed.
  • the plug 52 is embedded in the opening.
  • plug 52 and N + region 12 are electrically connected.
  • an opening for exposing a part of the N + region 14 of the source region S to the bottom surface is formed.
  • the plug 53 is embedded in the opening. Thereby, the plug 53 and the N + region 14 are electrically connected.
  • wirings formed on the protective film 61 are connected to the plugs 51, 52 and 53, respectively.
  • a voltage of a predetermined level is applied to the control gate region CG, the drain region D, and the source region S of the nonvolatile memory element M from this wiring.
  • the threshold voltage Vth of the nonvolatile memory element M is controlled by the amount of charge injected into the floating gate region FG.
  • FIG. 2A electrons as charges are injected into the floating gate region FG of the non-volatile memory element M via the charge injection port 211.
  • FIG. 2A hatching is omitted for the cross section of each component of the non-volatile memory element M for easy understanding.
  • FIG. 2B when injecting electrons into the floating gate region FG, for example, the P well region 10 (that is, the back gate B) and the drain region D are fixed at 0 V (0 V is applied), A pulse voltage Vpp of 10 V or more is applied to the control gate region CG.
  • the non-volatile memory element M can perform charge insertion and extraction via the charge injection port 211 by controlling the voltage applied to the control gate region CG, the P well region 10 and the drain region D.
  • the source region S may be fixed at a predetermined voltage (for example, 0 V) or may be in a floating state because the non-volatile memory element M does not use the source region S for charge extraction and extraction.
  • the drain region D and the source region S are defined by the direction of current flow. Therefore, when the direction of current flow is reversed during circuit operation with respect to the current assumed in the nonvolatile memory element M shown in FIG. 2, the drain region D shown in FIG. The region S becomes the drain region D.
  • FIG. 1 and FIGS. 3 to 11 illustrate only the non-volatile memory element M used as a depletion type transistor, using the non-volatile memory element M according to the present embodiment
  • the non-volatile memory element used as an enhancement type transistor and the non-volatile memory element used as a depletion type transistor are simultaneously processed to have the same structure under the same conditions. I will.
  • element isolation regions (LOCOS) 41 and 42 and a P well region 10 are formed on the top of a semiconductor substrate (in this embodiment, a silicon substrate is taken as an example).
  • source region S on top of P well region 10 disposed between element isolation region 41 and element isolation region 42 is formed using photolithography and ion implantation.
  • An N-type region 13 is formed at a portion, and an N-type region 11 is formed at a portion where the drain region D is to be formed.
  • an insulating film 22a to be the gate insulating film 22 finally is formed on the surface of the silicon substrate.
  • a portion of the insulating film 22a in the portion where the charge injection port 211 to the floating gate region FG (see FIG. 1) is provided is removed by photolithography technology and wet etching technology, Forming a thin film region 221a having a thickness (for example, 100 ⁇ ) capable of
  • a phosphorus-doped polysilicon film 21a to be finally used as the charge retention region 21 of the floating gate region FG is formed. Further, an oxide / nitride / oxide (ONO) film 24a which will finally become the upper insulating film 24 is formed on the polysilicon film 21a.
  • the ONO film 24a is configured by combining a silicon oxide film and a silicon nitride film, but the ONO film 24a may be only a pure silicon oxide film or a silicon nitride film.
  • fluorine ions are implanted into the polysilicon film 21a, for example, with a dose of 1 ⁇ 10 15 cm ⁇ 2 and an acceleration energy of 30 keV.
  • a fluorine existing region 21b in which a relatively large amount of fluorine is present is formed.
  • the nonvolatile memory element M is used in the reference voltage generation circuit, the nonvolatile memory element (see FIG. 8A) to be finally used as a depletion type transistor and the nonvolatile memory element (figure in FIG. 8 (b), the same amount of fluorine is implanted into the polysilicon film 21a.
  • FIG. 8A the nonvolatile memory element to be finally used as a depletion type transistor and the nonvolatile memory element
  • the thin film region 221a is formed on the N-type region 13 constituting the drain region D.
  • the thin film region 221a is formed on the N-type region 11 constituting the source region S.
  • the polysilicon film 21a and the ONO film 24a are processed into dimensions according to the circuit application, using photolithography technology and etching technology. At this time, the polysilicon film 21a and the ONO film 24a are etched so that the thin film region 221a is included below the processed polysilicon film 21a and the ONO film 24a.
  • oxidation treatment for example, wet oxidation at 850 ° C.
  • fluorine implanted in polysilicon film 21a are segregated into the insulating film 22a surrounding the polysilicon film 21a, the thin film region 221a, the ONO film 24a, and the oxide film 23a. Since the segregation coefficient of the silicon / silicon oxide film interface is about 5.6 ⁇ 10 ⁇ 8 , fluorine can be rapidly taken into the silicon oxide film and subjected to heat treatment to be segregated in the silicon oxide film. . That is, as indicated by curved arrows in FIG. 10, fluorine can be distributed at high concentration from the fluorine existing region 21b in all directions surrounding the polysilicon film 21a which will be the charge holding region 21 by the oxidation process.
  • the polysilicon film 21a becomes the charge holding region 21, the insulating film 22a becomes the gate insulating film 22, and the thin film region 221a becomes the tunnel insulating film, as shown in FIG.
  • the oxide film 23 a becomes the sidewall oxide film 23, and the ONO film 24 a becomes the upper insulating film 24.
  • the floating gate region FG is formed which has the charge holding region 21 surrounded by the insulator 20 and provided with the charge injection port 211.
  • the entire surface of the silicon substrate is filled with a volume of polysilicon film and doped with phosphorus, and then a polysilicon film 31 is formed on the floating gate region FG using photolithography technology and etching technology.
  • a control gate region CG disposed in contact with a portion of the upper insulating film 24 is formed.
  • a high concentration N + region 12 for forming ohmic contact with metal is formed in the contact portion of N-type region 11, and ohmic contact with metal is made in the contact portion of N-type region 13.
  • Form a high concentration N + region 14 for taking As a result, the drain region D is formed on one of both sides below the control gate region CG and the floating gate region FG, and the source region S is formed on the other of the both sides.
  • an insulating protective film 61 is formed on the entire surface of the silicon substrate.
  • the protective film 61 is formed to cover the control gate region CG, the floating gate region FG, and the drain region D and the source region S.
  • an opening which exposes the polysilicon film 31, the N + region 12 and a part of the N + region 14 on the bottom surface is formed in the protective film 61 by using a photolithography technique and an etching technique.
  • a thin film formation technique is used to form a metal plug 51 in the opening that exposes a portion of polysilicon film 31 and an opening that exposes a portion of N + region 12 to the bottom
  • the content of fluorine in the insulator 20 is optimally 0.1 to 1 atm% (in the case of SiO 2 , the concentration is around 1 ⁇ 10 20 cm ⁇ 3 ), and the content of fluorine in the insulator 20 is If too large, the charge retention characteristic of the nonvolatile memory element M is degraded.
  • the nonvolatile memory element M distributes halogen in the insulator 20 surrounding the charge retention region 21.
  • Halogen has an end of dangling bond existing in the insulator 20 or at the interface between the insulator 20 and another material, relaxation of strain in the insulator 20, gettering effect of mobile ions, dangling bond, Distortions and defects derived from mobile ions can be reduced. That is, the halogen distributed in the insulator 20 has an effect of suppressing the charge that leaks through the defects in the insulator 20.
  • the non-volatile memory element M has excellent charge retention characteristics while securing flexibility in the layout dimension, and an analog circuit such as a reference voltage generation circuit configured by the non-volatile memory element M is stable in electricity. Characteristics can be realized.
  • the threshold voltage Vth of the non-volatile memory element may be determined between 0 and 1, and the threshold voltage Vth of the non-volatile memory element indicating 0 or 1 and the threshold determination There is usually a margin of several volts between the voltage. Therefore, the charge retention characteristic of the non-volatile memory element is somewhat bad. Even when a threshold voltage fluctuation of about several volts occurs, it often does not lead directly to a defect.
  • the region for introducing halogen is at least required to be introduced into the main path from which charge is released from charge retaining region 21, but preferably it is better to be introduced in all directions surrounding charge retaining region 21. .
  • the region for introducing halogen is at least required to be introduced into the main path from which charge is released from charge retaining region 21, but preferably it is better to be introduced in all directions surrounding charge retaining region 21. .
  • (1) to (3) can be mentioned as the main reasons.
  • the layout size of the device differs depending on the application, and a very large size may be used, so that the main path (principal surface) of the charge leakage may change depending on the layout size.
  • the nonvolatile memory element according to the present embodiment is not a defined array structure as in the conventional nonvolatile memory, the environment around the nonvolatile memory element is not the same, and charge leakage is mainly caused by the surrounding environment.
  • the path (main surface) is changed.
  • FIG. 12 shows charge retention characteristics of a reference voltage generation circuit (details will be described later) when fluorine is distributed in all directions of insulator 20 surrounding charge retention region 21 of nonvolatile memory element M, each legend 2000 points As mentioned above, it is the graph statistically represented using cumulative frequency distribution.
  • the horizontal axis of the graph shown in FIG. 12 indicates the variation (V) of the reference voltage Vref output by the reference voltage generation circuit before and after baking, and the vertical axis indicates the cumulative sample number percentage (%).
  • the baking conditions are at 250 ° C. for 10 hours.
  • FIG. 13A is a TEM image obtained by imaging a cross section of the nonvolatile memory element M near the charge injection port 211 with a transmission electron microscope (TEM).
  • FIG. 13 (b) shows the energy dispersive X-ray spectrometry (EDX) mapping of the fluorine used as the halogen in the same place as FIG. 13 (a).
  • EDX energy dispersive X-ray spectrometry
  • a tunnel insulating film 221 having a relatively small thickness is present in the gate insulating film 22 between the charge holding region 21 and the source region S. Further, an upper insulating film 24 is present between the charge retention region 21 and the polysilicon film 31. As shown in FIG. 13B, the tunnel insulating film 221 and the upper insulating film 24 have a white image unlike the charge retaining region 21 and the polysilicon film 31. Thus, it can be seen that the tunnel insulating film 221 and the upper insulating film 24 contain a large amount of fluorine as compared with the charge holding region 21 and the polysilicon film 31.
  • FIG.13 (c) is a graph which shows the fluorine distribution in "A-> B" shown in FIG. 13 (a).
  • the horizontal axis of the graph shown in FIG. 13C indicates the depth (nm), and the positions A to B shown in FIG. 13A are represented from left to right.
  • the vertical axis of the graph shown in FIG. 13C indicates the fluorine content.
  • “Fluorine: high concentration” indicates that the concentration of fluorine contained in the insulator 20 is the same as “fluorine: high concentration” shown in FIG. 12; “fluorine: ultra-high concentration” indicates the insulator 20 It shows that the concentration of fluorine contained therein is the same as "fluorine: ultra-high concentration” shown in FIG.
  • the fluorine content is almost zero. (Atm%).
  • the fluorine content in the tunnel insulating film 221 and the upper insulating film 24 is about 0.01 (atm%) for “fluorine: low concentration”, and 1.7 to 2.3 (“fluorine: very high concentration”). atm%) or so.
  • the nonvolatile memory element M includes the insulator 20 containing halogen, and the charge retention region 21 surrounded by the insulator 20.
  • the nonvolatile memory element M has good charge retention characteristics that can be used in an analog circuit, and can improve the accuracy of electrical characteristics such as current / voltage characteristics when configuring the analog circuit.
  • the reference voltage generation circuit as an analog circuit according to the present embodiment is a circuit that generates a reference voltage using a plurality of nonvolatile storage elements in which, for example, fluorine is distributed as halogen around the floating gate region.
  • the reference voltage generation circuit in this embodiment utilizes that this non-volatile memory element can be put into two states of an enhancement type transistor and a depletion type transistor.
  • the non-volatile memory element used as the enhancement transistor and the non-volatile memory element used as the depletion transistor have the same size and structure as the element, and in particular, the content of halogen in the insulator is formed to be substantially equal. It is done. Since the halogen present in the insulator has the effect of promoting the oxidation of the insulator and the effect of lowering the dielectric constant of the insulator, both transistors need to have approximately the same halogen content. If the concentrations of halogen in the insulators of the two transistors are largely different, a difference in conductance and temperature characteristics will occur between the non-volatile memory element used as the enhancement type transistor and the non-volatile memory element used as the depletion type transistor.
  • the analog circuit according to the present embodiment is a reference voltage generation circuit that eliminates manufacturing variations of the reference voltage generated based on the differences in the characteristics of the respective circuit elements constituting the analog circuit.
  • the reference voltage generation circuit in the present embodiment includes at least one or more depletion type transistors, and at least one or more enhancement type transistors through which the same current as the current flowing through the depletion type transistor or a related current flows.
  • the depletion type transistor and the enhancement type transistor that constitute the reference voltage generation circuit in the present embodiment are nonvolatile memory elements in which halogen (for example, fluorine) is distributed in all directions of the insulator surrounding the charge holding region.
  • halogen for example, fluorine
  • related current means a current that is correlated with the current flowing through the depletion transistor.
  • “related current” is a current that is X times the current flowing through the depletion transistor, or a current obtained by adding the current value Y to the current flowing through the depletion transistor, or more complicated than the two examples. Have a relationship. That is, the “related current” is a current represented by a function having a current value flowing through the depletion type transistor as a parameter.
  • the reference voltage generation circuit 1 in the present embodiment includes a plurality of (two in this example) nonvolatile memory elements M1 and M2. At least a part (in this example, all) of the plurality of nonvolatile memory elements M1 and M2 are connected in series, and the connection portion of the plurality of nonvolatile memory elements M1 and M2 connected in series has the reference voltage Vref.
  • the voltage output terminal OUT to be output is connected.
  • Each of the nonvolatile memory element M1 and the nonvolatile memory element M2 has a configuration of a transistor, and has the same configuration as the nonvolatile memory element M shown in FIG.
  • the nonvolatile memory element M1 and the nonvolatile memory element M2 are connected in series between a high voltage supply terminal Vdd to which a high voltage is supplied and a low voltage supply terminal Vss to which a low voltage is supplied.
  • the code “Vdd” is also used as the code of the high voltage output from the high voltage supply terminal Vdd
  • the code “Vss” is also used as the code of the low voltage output from the low voltage supply terminal Vss.
  • the drain region D of the non-volatile memory element M1 is connected to the high voltage supply terminal Vdd
  • the source region S of the non-volatile memory element M2 is connected to the low voltage supply terminal Vss.
  • Source region S and control gate region CG of nonvolatile memory element M1 are connected to each other, and drain region D and control gate region CG of nonvolatile memory element M2 are connected to each other. Furthermore, the source region S and control gate region CG of the non-volatile memory element M1 and the drain region D and control gate region CG of the non-volatile memory element M2 are connected to each other.
  • the voltage output terminal OUT is connected to the connection between the source region S of the nonvolatile memory element M1 and the drain region D of the nonvolatile memory element M2.
  • the nonvolatile memory element M2 on the lower side is adjusted to be in the enhancement state
  • the nonvolatile memory element M1 on the upper side is adjusted. It is adjusted to be in the depression state.
  • Each of the non-volatile memory elements M1 and M2 has a control gate region CG and a floating gate region FG, and fluorine is distributed as halogen in the insulator 20 (see FIG. 1) around the floating gate region FG.
  • the non-volatile storage elements M1 and M2 can perform write and erase, and can maintain the write state for a long time.
  • the threshold voltage of the depletion mode transistor is negative and the threshold voltage of the enhancement mode transistor is positive.
  • the plurality of nonvolatile memory elements provided in the reference voltage generation circuit 1 as an analog circuit according to the present embodiment have nonvolatile memory elements M1 having at least a negative threshold voltage and nonvolatile memory elements having a positive threshold voltage.
  • the element M2 is included.
  • each of the non-volatile memory elements M1 and M2 provided in the reference voltage generation circuit 1 may be 10 ⁇ m 2 or more, 50 ⁇ m 2 or more, or 100 ⁇ m 2 or more.
  • the non-volatile memory elements M1 and M2 do not have an array structure, regardless of the area of such elements.
  • the reference voltage generation circuit 2 which is an analog circuit according to the present embodiment and capable of writing to the non-volatile memory elements M1 and M2 has one terminal connected to the drain region D of the non-volatile memory element M1. Provided with the switch SW1. One of the other terminals of the switch SW1 is connected to the high voltage supply terminal Vdd, the other one of the other terminals of the switch SW1 is connected to the low voltage supply terminal Vss, and another one of the other terminals of the switch SW1 is It is connected to the application terminal of the pulse voltage Vpp.
  • the reference voltage generation circuit 2 can apply any one of the high voltage Vdd, the low voltage Vss, and the pulse voltage Vpp to the drain region D of the nonvolatile memory element M1 by switching the switch SW1 appropriately.
  • the reference voltage generation circuit 2 includes a switch SW2 of which one terminal is connected to the source region S of the nonvolatile memory element M2. One of the other terminals of the switch SW2 is connected to the low voltage supply terminal Vss, and the other one of the other terminals of the switch SW2 is connected to the application terminal of the pulse voltage Vpp.
  • the reference voltage generation circuit 2 can apply one of the low voltage Vss and the pulse voltage Vpp to the source region S of the nonvolatile memory element M2 by switching the switch SW2 as appropriate.
  • the reference voltage generation circuit 2 includes a switch SW6 and a switch SW8 connected in series between the source region S of the non-volatile memory element M1 and the drain region D of the non-volatile memory element M2.
  • the source region S of the non-volatile memory element M1 is connected to one terminal of the switch SW6, and the drain region D of the non-volatile memory element M2 is connected to one terminal of the switch SW8.
  • the other terminal of the switch SW6 and the other terminal of the switch SW8 are connected.
  • the reference voltage generation circuit 2 includes a switch SW5 and a switch SW7 connected in series between the control gate region CG of the non-volatile memory element M1 and the control gate region CG of the non-volatile memory element M2.
  • the control gate region CG of the non-volatile memory element M1 is connected to one terminal of the switch SW5, and the control gate region CG of the non-volatile memory element M2 is connected to one terminal of the switch SW7.
  • the other terminal of the switch SW5 and the other terminal of the switch SW7 are connected.
  • the other terminals of the switch SW5, the switch SW6, the switch SW7, and the switch SW8 are connected to each other.
  • the reference voltage generation circuit 2 includes a voltage output terminal OUT connected to a connection portion where the other terminals of the switch SW5, the switch SW6, the switch SW7, and the switch SW8 are connected to each other.
  • the reference voltage generation circuit 2 includes a switch SW3 having one terminal connected to the control gate region CG of the nonvolatile memory element M1, and a switch SW9 having one terminal connected to the other terminal of the switch SW3.
  • One of the other terminals of the switch SW9 is connected to the application terminal of the pulse voltage Vpp, and the other one of the other terminals of the switch SW9 is connected to the low voltage supply terminal Vss.
  • the reference voltage generation circuit 2 appropriately switches one of the pulse voltage Vpp and the low voltage Vss to the control gate region CG of the nonvolatile memory element M1 by appropriately switching the switch SW9 when the switch SW3 is in the connection state (short state). It can be applied.
  • the reference voltage generation circuit 2 includes a switch SW4 having one terminal connected to the control gate region CG of the nonvolatile memory element M2, and a switch SW10 having one terminal connected to the other terminal of the switch SW4.
  • One of the other terminals of the switch SW10 is connected to the application terminal of the pulse voltage Vpp, and the other one of the other terminals of the switch SW10 is connected to the low voltage supply terminal Vss.
  • the reference voltage generation circuit 2 appropriately switches one of the pulse voltage Vpp and the low voltage Vss to the control gate region CG of the nonvolatile memory element M2 by appropriately switching the switch SW10 when the switch SW4 is in the connection state (short state). It can be applied.
  • Switch SW1 high voltage supply terminal Vdd side switch
  • SW2 low voltage supply terminal Vss side switch
  • SW4 open state (open state)
  • Switch SW5 SW6, SW7, SW8: Connection state (short state)
  • Switch SW9, SW10 arbitrary (low voltage Vss side in FIG. 15)
  • reference voltage generation circuit 2 when switches SW1 to SW10 are switched as shown in FIG. 15 when nonvolatile memory element M1 is in the depletion state and nonvolatile memory element M2 is in the enhancement state, reference voltage Vref is generated. . That is, the reference voltage generation circuit 2 includes a switch unit including the switches SW1 to SW10 for setting the terminals of the nonvolatile memory elements M1 and M2 to desired potentials.
  • the reference voltage generation circuit 2 switches the switches SW1 to SW10 to the following state at the time of rewriting for setting the nonvolatile memory element M1 to the depletion state.
  • the case where the threshold voltage before adjustment of the nonvolatile memory element M1 is higher than the threshold voltage after adjustment is taken as an example.
  • Switch SW1 pulse voltage Vpp side switch SW2: low voltage supply terminal Vss side switch SW3: connection state (short state) Switch SW4: open state (open state) Switch SW5, SW6, SW7, SW8: open state (open state) Switch SW9: Low voltage supply terminal Vss side Switch SW10: Optional (in FIG. 16, low voltage supply terminal Vss side)
  • the pulse voltage Vpp is applied to the drain region D of the non-volatile memory element M1 and the low voltage Vss is applied to the control gate region CG. Therefore, from the charge holding region 21 to the drain region D via the charge injection port 211 Electrons are emitted. Thereby, the threshold voltage of the nonvolatile memory element M1 is lowered. Conversely, when the low voltage Vss is applied to the drain region D of the nonvolatile memory element M1 and the pulse voltage Vpp is applied to the control gate region CG, the charge retaining region 21 from the drain region D via the charge injection port 211 is Electrons are injected into the Thereby, the threshold voltage of the nonvolatile memory element M1 is increased.
  • the reference voltage generation circuit 2 switches the switches SW1 to SW10 to the following state at the time of rewriting for setting the nonvolatile memory element M2 to the enhancement state.
  • Switch SW1 high voltage supply terminal Vdd side switch
  • SW2 low voltage supply terminal
  • SW3 open state (open state)
  • Switch SW4 Connection status (short status) Switch SW5, SW6, SW7, SW8: open state (open state)
  • Switch SW9 Optional (in FIG. 17, the low voltage supply terminal Vss side)
  • Switch SW10 Pulse voltage Vpp side
  • the low voltage Vss is applied to the source region S of the non-volatile memory element M2 and the pulse voltage Vpp is applied to the control gate region CG. Therefore, from the source region S to the charge holding region 21 via the charge injection port 211 Electrons are injected. Thereby, the threshold voltage of the nonvolatile memory element M2 is increased. Conversely, when the pulse voltage Vpp is applied to the source region S of the non-volatile memory element M2 and the low voltage Vss is applied to the control gate region CG, the source region S from the charge retaining region 21 through the charge injection port 211 is Electrons are emitted. Thereby, the threshold voltage of the nonvolatile memory element M2 is lowered.
  • the reference voltage generation circuit 2 rewrites the threshold voltage Vth of the specific nonvolatile memory elements M1 and M2 to a desired value by switching the switches SW1 to SW10 appropriately, and the final A desired reference voltage Vref can be generated in the state shown in FIG.
  • the conductance and temperature characteristics can be made the same between the two transistors. The characteristics of two ideal translated transistors as shown in FIG.
  • the characteristics of the two parallel-shifted transistors are the conductance and temperature characteristics when the depletion type transistor Md and the enhancement type transistor Me are different types of transistors as described in Patent Document 1 Is different from one transistor to another and therefore can not be strictly realized. That is, in the reference voltage generation circuit as described in Patent Document 1, the temperature characteristic is also generated in the reference voltage Vref taken out from the voltage output terminal OUT, but the present invention using the same type of nonvolatile memory element In the reference voltage generation circuit, it is possible to obtain the reference voltage Vref having neither manufacturing variations nor temperature characteristics.
  • the reference voltage Vref to be taken out can be set to an arbitrary value by adjusting the threshold voltage Vth_e of the enhancement type transistor, and the amount of current flowing to the reference voltage generation circuit is arbitrary by adjusting the threshold voltage Vth_d of the depletion type transistor. Being able to set to the value of is also an advantage.
  • the non-volatile memory element according to the present embodiment includes the non-volatile memory element M shown in FIG. 1 and the non-volatile memory element Mr shown in FIG. 18 as one set, and each of the non-volatile memory element M and the non-volatile memory element Mr The floating gate regions are connected to each other, and the control gate regions of the nonvolatile memory element M and the nonvolatile memory element Mr are connected to each other.
  • the non-volatile memory element Mr has the same configuration as the non-volatile memory element M, except that it has no charge injection port.
  • the non-volatile memory element Mr includes a charge retention region 71 and an insulator 70 having halogen distributed in at least a partial region and disposed so as to surround the charge retention region 71.
  • the insulator 70 includes an upper insulating film 74 formed above the charge retaining region 71, a sidewall oxide film 73 formed on the sidewall of the charge retaining region 71, and a gate insulating film formed below the charge retaining region 71.
  • And 72 A tunnel insulating film is not formed on the gate insulating film 72, and the film thickness is substantially constant.
  • the non-volatile memory element Mr has the same configuration as the non-volatile memory element M except that the configuration of the insulator 70 is different from the configuration of the insulator 20, and therefore, the component having the same operation and function Are given the same reference numerals, and the description thereof is omitted.
  • the nonvolatile memory element M includes a nonvolatile memory element Mw having the same configuration as the nonvolatile memory element M shown in FIG. 1 and a nonvolatile memory element Mr shown in FIG. 18. Is equipped.
  • the control gate region CG of the non-volatile storage element Mw and the control gate region CG of the non-volatile storage element Mr are connected.
  • the floating gate region FG of the non-volatile memory element Mw and the floating gate region FG of the non-volatile memory element Mr are connected.
  • the reference voltage generation circuit 3 as an analog circuit according to the present embodiment includes the nonvolatile memory element M1 and the nonvolatile memory element M2 connected in series.
  • the non-volatile memory element M1 and the non-volatile memory element M2 each have the same configuration as the non-volatile memory element M according to the present embodiment shown in FIG.
  • the nonvolatile memory element M1 includes nonvolatile memory elements M1w and M1r
  • the nonvolatile memory element M2 includes nonvolatile memory elements M2w and M2r.
  • Nonvolatile memory element M1w and nonvolatile memory element M2w have the same configuration as nonvolatile memory element M shown in FIG.
  • FIG. 1 will be referred to in the description of the configuration of the non-volatile storage elements M1r and M2r, and FIG. 18 will be referred to in the description of the configuration of the non-volatile storage elements M1w and M2w.
  • the reference voltage generation circuit 3 includes nonvolatile memory elements (an example of a first nonvolatile memory element) M1w and M2w, and nonvolatile memory elements (an example of a second nonvolatile memory element) M1r and M2r.
  • the nonvolatile memory element M1 r is electrically connected to a control gate region (an example of a first control gate region) CG provided in the gate region of the nonvolatile memory element M1 w (an example of a second control gate region) ) I have CG.
  • the nonvolatile memory element M1r is a charge holding region (second charge holding region) electrically connected to the charge holding region (an example of a first charge holding region) 21 (see FIG. 1) of the nonvolatile memory element M1w.
  • the charge injection port 211 (see FIG. 1) provided in the nonvolatile memory element M1 w is formed in a region not in contact with the current path formed in the nonvolatile memory element M1 r.
  • the charge injection port 211 provided in the nonvolatile memory element M1w is formed in a current path including the drain region D and the source region S of the nonvolatile memory element M1r and a region not in contact with the current path.
  • the nonvolatile memory element M2r is electrically connected to a control gate region (an example of a first control gate region) CG provided in the gate region of the nonvolatile memory element M2w (an example of a second control gate region) ) I have CG.
  • the nonvolatile memory element M2r is a charge holding region (second charge holding region) electrically connected to the charge holding region (an example of a first charge holding region) 21 (see FIG. 1) of the nonvolatile memory element M2w.
  • An example) 71 (see FIG. 18) and a gate insulating film 72 (see FIG. 18) formed in contact with the charge retention region 71 are included.
  • the charge injection port 211 see FIG.
  • the charge injection port 211 provided in the non-volatile memory element M2w is formed in a current path including the drain region D and the source region S of the non-volatile memory element M2r and a region not in contact with the current path.
  • the control gate region CG of the nonvolatile memory element M1w provided in the nonvolatile memory element M1 and the control gate region CG of the nonvolatile memory element M1r are connected.
  • the floating gate region FG of the non-volatile memory element M1 w and the floating gate region FG of the non-volatile memory element M1 r are connected.
  • the control gate region CG of the nonvolatile memory element M2w provided in the nonvolatile memory element M2 and the control gate region CG of the nonvolatile memory element M2r are connected.
  • the floating gate region FG of the non-volatile memory element M2 w and the floating gate region FG of the non-volatile memory element M2 r are connected.
  • the nonvolatile memory element M1r and the nonvolatile memory element M2r are connected in series between the high voltage supply terminal Vdd and the low voltage supply terminal Vss. More specifically, the drain region D of the non-volatile memory element M1 r is connected to the high voltage supply terminal Vdd. The source region S of the nonvolatile memory element M2r is connected to the low voltage supply terminal Vss. The source region S of the non-volatile memory element M1 r and the drain region D of the non-volatile memory element M2 r are connected.
  • the non-volatile memory element M1 w has a first area A1 provided on one side below the floating gate area FG and a second area A2 provided on the other side of the floating gate area FG.
  • the reference voltage generation circuit 3 includes a switch SW1 having one terminal connected to the first area A1 of the nonvolatile memory element M1w. One of the other terminals of the switch SW1 is connected to the low voltage supply terminal Vss, and the other one of the other terminals of the switch SW1 is connected to the application terminal of the pulse voltage Vpp.
  • the reference voltage generation circuit 2 can apply one of the low voltage Vss and the pulse voltage Vpp to the first region A1 of the nonvolatile memory element M1w by switching the switch SW1 appropriately.
  • the nonvolatile memory element M2w has a first area A1 provided on one side of the lower side of the floating gate area FG, and a second area A2 provided on the other side of the both sides.
  • the reference voltage generation circuit 3 includes a switch SW2 whose one terminal is connected to the first area A1 of the nonvolatile memory element M2w. One of the other terminals of the switch SW2 is connected to the low voltage supply terminal Vss, and the other one of the other terminals of the switch SW2 is connected to the application terminal of the pulse voltage Vpp.
  • the reference voltage generation circuit 3 can apply one of the low voltage Vss and the pulse voltage Vpp to the first area A1 of the nonvolatile memory element M2w by switching the switch SW2 as appropriate.
  • the reference voltage generation circuit 3 includes a switch SW5 and a switch SW7 connected in series between the control gate region CG of the nonvolatile memory element M1w and the control gate region CG of the nonvolatile memory element M2w.
  • the other terminals of the switch SW5 and the switch SW7 are connected to each other.
  • the other terminal of each of the switch SW5 and the switch SW7 is connected to a connection portion in which the source region S of the nonvolatile memory element M1r and the drain region D of the nonvolatile memory element M2r are connected to each other.
  • the reference voltage generation circuit 3 includes a voltage output terminal OUT which is connected to this connection portion and outputs the reference voltage Vref.
  • the reference voltage generation circuit 3 includes a switch SW3 having one terminal connected to the control gate region CG of the nonvolatile memory element M1w, and a switch SW9 having one terminal connected to the other terminal of the switch SW3.
  • One of the other terminals of the switch SW9 is connected to the application terminal of the pulse voltage Vpp, and the other one of the other terminals of the switch SW9 is connected to the low voltage supply terminal Vss.
  • the reference voltage generation circuit 3 appropriately switches one of the pulse voltage Vpp and the low voltage Vss to the control gate region CG of the nonvolatile memory element M1w by appropriately switching the switch SW9 when the switch SW3 is in the connection state (short state). It can be applied.
  • the reference voltage generation circuit 3 includes a switch SW4 having one terminal connected to the control gate area CG of the nonvolatile memory element M2w, and a switch SW10 having one terminal connected to the other terminal of the switch SW4.
  • One of the other terminals of the switch SW10 is connected to the application terminal of the pulse voltage Vpp, and the other one of the other terminals of the switch SW10 is connected to the low voltage supply terminal Vss.
  • the reference voltage generation circuit 3 appropriately switches one of the pulse voltage Vpp and the low voltage Vss to the control gate region CG of the nonvolatile memory element M2w by appropriately switching the switch SW10 when the switch SW4 is in the connection state (short state). It can be applied.
  • the second region A2 of the nonvolatile memory element M1w and the second region A2 of the nonvolatile memory element M2w are like the source region S of the nonvolatile memory element M1 and the drain region D of the nonvolatile memory element M2 in the reference voltage generation circuit 2. It is not connected to and is in a floating state.
  • the nonvolatile memory element M1w and the nonvolatile memory element M2w are regions present for charge injection to the floating gate region FG of the nonvolatile memory element M1r or the floating gate region FG of the nonvolatile memory element M2r, and as a transistor Do not flow current. Therefore, the non-volatile memory element M1w and the non-volatile memory element M2w do not need to have the source region S or the drain region D, and the form is not limited as long as they have a charge injection port.
  • the reference voltage generation circuit 3 charges are injected into the floating gate region FG through the nonvolatile memory elements M1w and M2w at the time of charge injection.
  • the reference voltage generation circuit 3 When the reference voltage generation circuit 3 is operated, current flows through the nonvolatile memory elements M1r and M2r.
  • the non-volatile memory element M1 side ie, non-volatile memory elements M1w, M1r
  • the non-volatile memory element M2 side ie, non-volatile memory elements M2w, M2r
  • the reference voltage generation circuit 3 switches the switches SW1 to SW5, SW7, SW9, and SW10 to the following states.
  • Switch SW1 low voltage supply terminal Vss side switch
  • SW2 low voltage supply terminal Vss side switch
  • SW4 open state (open state)
  • Switch SW5 SW7: Connection status (short status)
  • Switches SW9 and SW10 Any (in FIG. 20, low voltage supply terminal Vss side)
  • the reference voltage generation circuit 3 has the switches SW1 to SW5, SW7, SW9, and SW10 at the time of rewriting for setting the non-volatile memory element M1 side (that is, non-volatile memory elements M1w and M1r) to the depletion state. Switch to the following state.
  • Switch SW1 pulse voltage Vpp side switch SW2: low voltage supply terminal Vss side switch SW3: connection state (short state)
  • Switch SW4 open state (open state)
  • Switch SW9 Low voltage supply terminal Vss side
  • Switch SW10 Optional (in FIG. 21, low voltage supply terminal Vss side)
  • the pulse voltage Vpp is applied to the drain region D of the non-volatile memory element M1w, and the low voltage Vss is applied to the control gate region CG. Therefore, from the charge holding region 21 to the drain region D via the charge injection port 211 Electrons are emitted. Thereby, the threshold voltage of the non-volatile memory element M1w is lowered. Conversely, when the low voltage Vss is applied to the drain region D of the nonvolatile memory element M1 w and the pulse voltage Vpp is applied to the control gate region CG, the charge retaining region 21 from the drain region D via the charge injection port 211 Electrons are injected into the Thereby, the threshold voltage of the nonvolatile memory element M1w is increased.
  • the reference voltage generation circuit 3 performs the switches SW1 to SW5, SW7, SW9, and SW10 at the time of rewriting to put the non-volatile memory element M2 side (that is, non-volatile memory elements M2w and M2r) into the enhancement state. Switch to the following state.
  • the case where the threshold voltage before adjustment of the nonvolatile memory element M2 is lower than the threshold voltage after adjustment is taken as an example.
  • Switch SW1 low voltage supply terminal Vss side switch SW2: low voltage supply terminal Vss side switch SW3: open state (open state)
  • Switch SW4 Connection status (short status) Switch SW5, SW7: open state (open state)
  • Switch SW9 Optional (in FIG. 25, the low voltage supply terminal Vss side)
  • Switch SW10 Pulse voltage Vpp side
  • the low voltage Vss is applied to the source region S of the non-volatile memory element M2w, and the pulse voltage Vpp is applied to the control gate region CG. Therefore, from the source region S to the charge holding region 21 via the charge injection port 211 Electrons are injected. Thus, the threshold voltage of the nonvolatile memory element M2w is increased. Conversely, when the pulse voltage Vpp is applied to the source region S of the non-volatile memory element M2 w and the low voltage Vss is applied to the control gate region CG, the source region S from the charge retaining region 21 via the charge injection port 211 Electrons are emitted. Thereby, the threshold voltage of the nonvolatile memory element M2w is lowered.
  • the reference voltage generation circuit 3 in the present embodiment includes the non-volatile memory element M having the configuration shown in FIG. 19 so that current paths at the time of charge injection and charge discharge and at the time of operation of the reference voltage generation circuit 3. It can be separated from the current path. Thereby, the reference voltage generation circuit 3 can prevent unexpected rewriting of the nonvolatile memory element, and can improve the reliability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

本発明は、電気特性のバラツキを低減できる、優れた電荷保持特性を有する不揮発性記憶素子およびそれを備えるアナログ回路を提供することを目的とする。不揮発性記憶素子Mは、電荷保持領域(21)と、電荷保持領域(21)の全表面を取り囲み、この全表面を取り囲む領域のうち少なくとも一部に分布するハロゲンを有する絶縁体(20)とを備えている。

Description

不揮発性記憶素子およびそれを備えるアナログ回路
 本発明は、不揮発性記憶素子およびそれを備えるアナログ回路に関する。
 一般に、基準電圧生成回路を内蔵する半導体装置は、基準電圧生成回路を構成する各々のトランジスタの閾値電圧Vthや抵抗素子の抵抗値などの製造バラツキにより、設計時に想定した基準電圧Vrefが所望の値にならずに大きくばらついてしまうことがある。このため、安定した基準電圧Vrefを必要とする半導体装置には高精度な基準電圧生成回路が求められる。半導体装置では、製造バラツキに起因する基準電圧生成回路の基準電圧バラツキを補正するために、配線層を修正して基準電圧を調整するための予備トランジスタを多数内蔵したり、製造後にレーザートリマで調整可能に構成したりしている。しかし、このような構成によって基準電圧生成回路の基準電圧バラツキを補正すると、基準電圧生成回路のレイアウト面積の増大や、電圧調整のための工数増加が問題となる。そこで、この種の問題を解決するために、種々の基準電圧生成回路が提案されている。
 特許文献1には、一般的な基準電圧生成回路が記載されている。基準電圧生成回路として、ゲート領域Gとソース領域Sとを接続したディプレッション型のMOSFET(金属-酸化膜-半導体 電界効果トランジスタ)の定電流性を利用して、ゲート領域とドレイン領域とが接続されてその定電流で動作するエンハンスメント型のMOSFETに発生する電圧を基準電圧Vrefとして用いる構成が提案されている。
 図23は、一般的な基準電圧生成回路100を示している。基準電圧生成回路100は、直列に接続されたディプレッション型MOSFET(以下、「ディプレッション型トランジスタ」と称する)Mdおよびエンハンスメント型MOSFET(以下、「エンハンスメント型トランジスタ」と称する)Meを備えている。ディプレッション型トランジスタMdのゲート領域Gとソース領域Sとは接続されている。エンハンスメント型トランジスタMeのゲート領域Gとドレイン領域Dとは接続されている。さらに、ディプレッション型トランジスタMdのゲート領域Gおよびソース領域Sと、エンハンスメント型トランジスタMeのゲート領域Gおよびドレイン領域Dとは接続されている。また、高電圧供給端子Vddがディプレッション型トランジスタMdのドレイン領域Dに設けられ、低電圧供給端子Vssがエンハンスメント型トランジスタMeのソース領域Sに設けられている。また、ディプレッション型トランジスタMdとエンハンスメント型トランジスタMeとの接続点に電圧出力端子OUTが設けられている。基準電圧生成回路100では、ディプレッション型トランジスタMdおよびエンハンスメント型トランジスタMeはいずれもNチャネル型である。なお、ディプレッション型とエンハンスメント型は、ゲート電圧とドレイン電流の関係により分類される。ディプレッション型(depletiontype)は、ゲート領域にゲート電圧を印加しないときにチャネルが存在してドレイン電流が流れる。一方、エンハンスメント型(enhancementtype)は、ゲート領域にゲート電圧を印加しないときはチャネルが存在せずにドレイン電流が流れない。
 図24は、基準電圧生成回路100に備えられたディプレッション型トランジスタMdおよびエンハンスメント型トランジスタMeの電流/電圧特性の一例である。横軸は、ゲート領域Gとソース領域Sとの間のゲートソース間電圧Vgsを示し、縦軸は、ドレイン電流Idsを示している。ディプレッション型トランジスタMdは、ゲートソース間電圧Vgsが0Vで固定されているため、ドレイン領域Dとソース領域Sとの間のドレインソース間電圧が飽和領域である限り、定電流Iconstのドレイン電流を流す。ディプレッション型トランジスタMdに直列に接続されたエンハンスメント型トランジスタMeにも定電流Iconstのドレイン電流が流れる。したがって、Ids=Iconstとなるエンハンスメント型トランジスタMeのゲートソース間電圧Vgsが基準電圧Vrefとして電圧出力端子OUTから取り出せる。
 ディプレッション型トランジスタMdの閾値電圧をVth_d、エンハンスメント型トランジスタMeの閾値電圧をVth_eと表すと、基準電圧Vrefは、閾値電圧Vth_dの絶対値および閾値電圧Vth_eの絶対値の和、すなわち「Vref=|Vth_d|+|Vth_e|」と表すことができる。
 しかしながら、基準電圧生成回路100は、ディプレッション型トランジスタMdの電流/電圧特性とエンハンスメント型トランジスタMeの電流/電圧特性の製造バラツキの影響を受ける。そこで、製造バラツキの影響を受けず、高精度な基準電圧を取り出せる回路として、特許文献2および特許文献3には、FET型の不揮発性記憶素子を用いた基準電圧生成回路が開示されている。特許文献2および3に開示されたような基準電圧生成回路は、図23に示す基準電圧生成回路100と略同様の構成を有しており、ディプレッション型トランジスタMdとエンハンスメント型トランジスタMeに不揮発性記憶素子を用いている。特許文献2及び3に開示された基準電圧生成回路は、同一種類の不揮発性記憶素子を用い、不揮発性記憶素子が備えるフローティングゲート領域への電荷注入量を調整することで、ディプレッション型MOSFETとエンハンスメント型MOSFETを形成している。不揮発性記憶素子は、コントロールゲート領域およびフローティングゲート領域を持ち、フローティングゲート領域に電子を注入放出することで閾値電圧Vthの制御が可能となっている。このため、この基準電圧生成回路は、製造バラツキが発生したとしても、後から閾値電圧Vthのトリミングが可能である。したがって、この基準電圧生成回路は、取り出す基準電圧Vrefは、製造バラツキの影響をほぼ受けない。
特公平4-65546号公報 特開2002-368107号公報 特開2013-246627号公報
 しかしながら、特許文献2および3に開示された基準電圧生成回路は、不揮発性記憶素子をアナログ的に使用されるため、EEPROMなどのいわゆる不揮発性メモリに使用される場合と比べて、非常に高い電荷保持特性が必要となる。さらに、基準電圧生成回路などのアナログ回路に使用する場合は、不揮発性記憶素子のレイアウト寸法(例えば、FETのL寸法やW寸法)は用途に応じて可変であることも求められる。このため、固定のレイアウトで構成される通常の不揮発性メモリに使われる場合と比べて、レイアウト寸法のフレキシブル性が求められる。レイアウト寸法のフレキシブル性は、製造技術の観点から、不揮発性記憶素子の電荷保持特性を確保する上で非常に難しい課題であり、従来の不揮発性メモリに使用されるような不揮発性記憶素子をアナログ回路に適用するのは難しいという問題がある。
 本発明の目的は、電気特性のバラツキを低減できる、優れた電荷保持特性を有する不揮発性記憶素子およびそれを備えるアナログ回路を提供することにある。
 上記目的を達成するために、本発明の一態様による不揮発性記憶素子は、電荷保持領域と、前記電荷保持領域の全表面を取り囲み、前記全表面を取り囲む領域のうち少なくとも一部に分布するハロゲンを有する絶縁体とを備えることを特徴とする。
 また、上記目的を達成するために、本発明の第一態様によるアナログ回路は、上記本発明の不揮発性記憶素子を備えることを特徴とする。
 また、本発明の第二態様によるアナログ回路は、上記本発明の不揮発性記憶素子を複数備え、複数の前記不揮発性記憶素子の少なくとも一部は直列に接続され、直列に接続された複数の前記不揮発性記憶素子の接続部には、電圧が出力される電圧出力端子が接続されていることを特徴とする。
 また、上記目的を達成するために、本発明の第三態様によるアナログ回路は、上記本発明の不揮発性記憶素子である第一不揮発性記憶素子の前記電荷保持領域および前記絶縁体を有するゲート領域に設けられた第一コントロールゲート領域と電気的に接続された第二コントロールゲート領域と、前記第一不揮発性記憶素子の前記電荷保持領域である第一電荷保持領域と電気的に接続された第二電荷保持領域と、前記第二電荷保持領域に接触して形成されたゲート絶縁膜とを有する第二不揮発性記憶素子を備え、前記第一不揮発性記憶素子に設けられた電荷注入口は、前記第二不揮発性記憶素子に形成される電流経路に接していない領域に形成されていることを特徴とする。
 また、上記目的を達成するために、本発明の第四態様によるアナログ回路は、上記本発明の不揮発性記憶素子を備え、前記不揮発性記憶素子の素子の面積は10μm以上であり、前記不揮発性記憶素子はアレイ構造を有していないことを特徴とする。
 本発明の各態様によれば、電気特性のバラツキを低減できる、優れた電荷保持特性を有する不揮発性記憶素子およびそれを備えるアナログ回路を実現できる。
本発明の第1実施形態による不揮発性記憶素子Mの概略構成を示す断面図である。 本発明の第1実施形態による不揮発性記憶素子Mの電荷注入および電荷放出の様子を説明するための図である。 本発明の第1実施形態による不揮発性記憶素子Mの製造工程断面図(その1)である。 本発明の第1実施形態による不揮発性記憶素子Mの製造工程断面図(その2)である。 本発明の第1実施形態による不揮発性記憶素子Mの製造工程断面図(その3)である。 本発明の第1実施形態による不揮発性記憶素子Mの製造工程断面図(その4)である。 本発明の第1実施形態による不揮発性記憶素子Mの製造工程断面図(その5)である。 本発明の第1実施形態による不揮発性記憶素子Mの製造工程断面図(その6)であって、図8(a)は、ディプレッション型トランジスタとして使う不揮発性記憶素子の製造工程断面図であり、図8(b)は、エンハンスメント型トランジスタとして使う不揮発性記憶素子の製造工程断面図である。 本発明の第1実施形態による不揮発性記憶素子Mの製造工程断面図(その7)である。 本発明の第1実施形態による不揮発性記憶素子Mの製造工程断面図(その8)である。 本発明の第1実施形態による不揮発性記憶素子Mの製造工程断面図(その9)である。 本発明の第1実施形態による不揮発性記憶素子Mを用いた基準電圧生成回路1の電荷保持特性を説明するための統計的評価結果を示すグラフである。 本発明の第1実施形態による不揮発性記憶素子Mのフッ素分布の解析結果を示す図である。 本発明の第1実施形態によるアナログ回路としての基準電圧生成回路1を説明するための回路構成図である。 本発明の第1実施形態によるアナログ回路としての基準電圧生成回路2を説明するための回路構成図であって、基準電圧生成回路2が基準電圧Vrefを出力している状態を説明するための図である。 本発明の第1実施形態によるアナログ回路としての基準電圧生成回路2を説明するための回路構成図であって、基準電圧生成回路2の上段側の不揮発性記憶素子M1をディプレッション状態に調整する状態を説明するための図である。 本発明の第1実施形態によるアナログ回路としての基準電圧生成回路2を説明するための回路構成図であって、基準電圧生成回路2の下段側の不揮発性記憶素子M2をエンハンスメント状態に調整する状態を説明するための図である。 本発明の第2実施形態による不揮発性記憶素子Mを説明するための図であって、電荷注入口を持たない不揮発性記憶素子Mrの概略構成を示す断面図である。 本発明の第2実施形態による不揮発性記憶素子Mの回路構成図である。 本発明の第2実施形態によるアナログ回路としての基準電圧生成回路3を説明するための回路構成図であって、基準電圧生成回路3が基準電圧Vrefを出力している状態を説明するための図である。 本発明の第2実施形態によるアナログ回路としての基準電圧生成回路3を説明するための回路構成図であって、基準電圧生成回路3の上段側の不揮発性記憶素子M1をディプレッション状態に調整する状態を説明するための図である。 本発明の第2実施形態によるアナログ回路としての基準電圧生成回路3を説明するための回路構成図であって、基準電圧生成回路3の下段側の不揮発性記憶素子M2をエンハンスメント状態に調整する状態を説明するための図である。 従来の基準電圧生成回路100の回路構成図である。 従来の基準電圧生成回路100に備えられたディプレッション型トランジスタMdおよびエンハンスメント型トランジスタMeの電流/電圧特性の一例を示す図である。
〔第1実施形態〕
 本発明の第1実施形態による不揮発性記憶素子およびそれを備えるアナログ回路について図1から図17を用いて説明する。本実施形態ではアナログ回路の一例として、フッ素を含む絶縁体を周囲に有するフローティングゲート領域と、コントロールゲート領域とを備えたN型不揮発性記憶素子を用いた基準電圧生成回路を説明する。しかしながら、不揮発性記憶素子は、電荷保持領域を持つ能動素子(トランジスタ)であれば、この構造に限られず、またN型のMOSFETに限られない。さらに、不揮発性記憶素子が適用されるアナログ回路は、不揮発性記憶素子をアナログ的に使用する回路であれば、基準電圧生成回路に限られない。例えば、オペアンプ回路やコンパレータ回路等、MOSFETの閾値電圧に精度が必要なアナログ回路にも有効である。
 図1に示すように、本実施形態による不揮発性記憶素子Mは、半導体基板に形成されたPウェル領域10と、Pウェル領域10上に形成されたフローティングゲート領域FGと、フローティングゲート領域FG上に形成されたコントロールゲート領域CGとを備えている。また、不揮発性記憶素子Mは、フローティングゲート領域FGの下方の両側の一方に形成されたドレイン領域Dと、フローティングゲート領域FGの下方の両側の他方に形成されたソース領域Sとを備えている。ドレイン領域Dおよびソース領域Sは、Pウェル領域10に形成されている。不揮発性記憶素子Mは、素子分離領域41,42によって、同一の半導体基板に形成された他の不揮発性記憶素子(不図示)と素子分離されている。
 フローティングゲート領域FGは、電荷保持領域21および絶縁体20で構成されている。すなわち、不揮発性記憶素子Mは、電荷保持領域21と、電荷保持領域21の全表面を取り囲み、この全表面を取り囲む領域のうち少なくとも一部に分布するハロゲン(例えばフッ素)を有する絶縁体20とを備えている。本実施形態による不揮発性記憶素子Mでは、絶縁体20は、少なくとも一部の領域に分布されたハロゲンを有し電荷保持領域20を取り囲んで配置されている。絶縁体20は、電荷保持領域21を取り囲む全方位にハロンゲ元素が分布されるように電荷保持領域21を取り囲んで配置され、全領域に分布されたハロゲンを有している。つまり、ハロゲンは電荷保持領域21の全表面を取り囲むように分布されており、かつ絶縁体20は電荷保持領域21を取り囲んで配置されている。その結果、ハロゲンは電荷保持領域21の全方位に分布される。絶縁体20は、電荷保持領域21の下方に形成されたゲート絶縁膜22と、電荷保持領域21の側壁を酸化させて形成された側壁酸化膜23と、電荷保持領域21の上方に形成された上部絶縁膜24とで構成されており、電荷保持領域21を取り囲む絶縁体20の各領域が同一材料である必要はなく、また同時に形成された絶縁体である必要もない。ゲート絶縁膜22および側壁酸化膜23の周りにはサイドウォール25が形成されている。
 絶縁体20中のハロゲンの含有率は、電荷保持領域21に接する少なくとも一部の領域において0.01(atm%)以上であってもよい。また、絶縁体20中のハロゲンの含有率は、電荷保持領域21に接する少なくとも一部の領域において0.05(atm%)以上であってもよい。さらに、絶縁体20中のハロゲンの含有率は、電荷保持領域21に接する少なくとも一部の領域において0.1(atm%)以上であってもよい。
 ゲート絶縁膜22には、トンネル絶縁膜221が形成されている。トンネル絶縁膜221は、ゲート絶縁膜22において相対的に膜厚が薄く形成された部分である。トンネル絶縁膜221が形成された電荷保持領域21の領域が、電荷保持領域21に電荷を注入したり電荷保持領域21から電荷を放出したりする電荷注入口211となる。つまり、電荷保持領域21は、電荷を注入したり電荷を放出したりするための電荷注入口211を有している。
 コントロールゲート領域CGは、上部絶縁膜24上に形成されたポリシリコン膜31を有している。ポリシリコン膜31の周りには、上部絶縁膜24上に形成されたサイドウォール32が形成されている。
 ドレイン領域Dは、N型領域11と、N型領域11よりも不純物の濃度が高濃度のN型のN+領域12とを有している。N+領域12は、ドレイン領域Dと後述するプラグ52とのオーミック接触を取るために設けられている。
 ソース領域Sは、N型領域13と、N型領域13よりも不純物の濃度が高濃度のN型のN+領域14とを有している。N+領域14は、ソース領域Sと後述するプラグ53とのオーミック接触を取るために設けられている。なお、ドレイン領域Dとソース領域Sは電流の流れる方向によって定義される。このため、図1に示す不揮発性記憶素子Mにおいて想定されている電流に対して電流を流す方向を逆にした場合は、図1中に示すドレイン領域Dがソース領域Sとなり、ソース領域Sがドレイン領域Dとなる。
 不揮発性記憶素子Mは、コントロールゲート領域CG、フローティングゲート領域FG、ドレイン領域Dおよびソース領域S上に形成された保護膜61を備えている。保護膜61には、コントロールゲート領域CGのポリシリコン膜31の一部を底面に露出する開口部が形成されている。この開口部には、プラグ51が埋め込まれて形成されている。これにより、プラグ51とコントロールゲート領域CGのポリシリコン膜31とが電気的に接続される。
 保護膜61には、ドレイン領域DのN+領域12の一部を底面に露出する開口部が形成されている。この開口部には、プラグ52が埋め込まれている。これにより、プラグ52とN+領域12とが電気的に接続される。また、保護膜61には、ソース領域SのN+領域14の一部を底面に露出する開口部が形成されている。この開口部には、プラグ53が埋め込まれている。これにより、プラグ53とN+領域14とが電気的に接続される。
 図示は省略するが、プラグ51,52,53にはそれぞれ、保護膜61上に形成された配線が接続されている。不揮発性記憶素子Mのコントロールゲート領域CG、ドレイン領域Dおよびソース領域Sには、この配線から所定レベルの電圧が印加されるようになっている。
 不揮発性記憶素子Mの閾値電圧Vthはフローティングゲート領域FGに注入した電荷量で制御される。図2(a)に示すように、不揮発性記憶素子Mのフローティングゲート領域FGには、電荷注入口211を介して電荷としての電子が注入される。なお、図2(a)では、理解を容易にするため、不揮発性記憶素子Mの各構成要素の断面に対してハッチングの図示が省略されている。図2(b)に示すように、フローティングゲート領域FGに電子を注入する場合には、例えばPウェル領域10(すなわちバックゲートB)およびドレイン領域Dを0Vに固定し(0Vを印加し)、コントロールゲート領域CGに10V以上のパルス電圧Vppを印加する。これにより、図2(a)中の上向き直線矢印で示すように、ドレイン領域Dから電荷注入口211を通って電荷保持領域21に電子が注入される。一方、図2(c)に示すように、フローティングゲート領域FGから電子を放出する場合には、例えばコントロールゲート領域CGおよびPウェル領域10(すなわちバックゲートB)を0Vに固定し(0Vを印加し)、ドレイン領域Dに10V以上のパルス電圧Vppを印加する。これにより、図2(a)中の下向き直線矢印で示すように、電荷保持領域21から電荷注入口211を通ってドレイン領域Dに電子が放出される。このように、不揮発性記憶素子Mは、コントロールゲート領域CG、Pウェル領域10およびドレイン領域Dに印加する電圧を制御することにより、電荷注入口211を介して電荷の出し入れを行うことができる。不揮発性記憶素子Mは、電荷の出し入れにソース領域Sを使用しないため、ソース領域Sは所定の電圧に固定(例えば0V)してもよいし、フローティング状態としてもよい。なお、繰り返しになるが、ドレイン領域Dとソース領域Sは電流の流れる方向によって定義される。このため、図2に示す不揮発性記憶素子Mにおいて想定されている電流に対して回路動作中に電流を流す方向を逆にした場合は、図2中に示すドレイン領域Dがソース領域となり、ソース領域Sがドレイン領域Dとなる。
 次に、不揮発性記憶素子Mの製造方法について図1および図3から図11を用いて説明する。なお、図1および図3から図11(図8(b)を除く)では、ディプレッション型トランジスタとして使う不揮発性記憶素子Mのみ図示しているが、本実施形態による不揮発性記憶素子Mを用いて基準電圧生成回路(詳細は後述する)を形成する場合には、エンハンスメント型トランジスタとして使う不揮発性記憶素子とディプレッション型トランジスタとして使う不揮発性記憶素子とは、同一条件で同一構造となるように同時に加工していく。
 図3に示すように、半導体基板(本実施形態ではシリコン基板を例とする)の上部に素子分離領域(LOCOS)41,42およびPウェル領域10を形成する。
 次に、図4に示すように、フォトリソグラフィー技術およびイオン注入法を用いて、素子分離領域41および素子分離領域42の間に配置されるPウェル領域10の上部のソース領域Sが形成される箇所にN型領域13を形成し、ドレイン領域Dが形成される箇所にN型領域11を形成する。
 次に、図5に示すように、最終的にゲート絶縁膜22となる絶縁膜22aをシリコン基板の表面に形成する。
 次に、図6に示すように、フローティングゲート領域FG(図1参照)への電荷注入口211が設けられる箇所の絶縁膜22aの一部をフォトリソグラフィー技術とウェットエッチング技術により除去し、電荷注入を行える厚さ(例えば100Å)を持った薄膜領域221aを形成する。
 次に、図7に示すように、最終的にフローティングゲート領域FGの電荷保持領域21となる、リンのドープされたポリシリコン膜21aを形成する。さらに、ポリシリコン膜21aの上層に最終的に上部絶縁膜24となる酸化物/窒化物/酸化物(ONO)膜24aを形成する。ONO膜24aは、シリコン酸化膜とシリコン窒化膜とを組み合わせて構成されているが、ONO膜24aは純粋なシリコン酸化膜やシリコン窒化膜だけでもよい。
 次に、図8(a)および図8(b)に示すように、ポリシリコン膜21aにフッ素イオンを、例えばドーズ量1×1015cm-2、加速エネルギー30keVで注入する。これにより、ポリシリコン膜21aには、フッ素が相対的に多く存在するフッ素存在領域21bが形成される。不揮発性記憶素子Mを基準電圧生成回路に用いる場合は、最終的にディプレッション型トランジスタとして使う不揮発性記憶素子(図8(a)参照)と最終的にエンハンスメント型トランジスタとして使う不揮発性記憶素子(図8(b)参照)は、ポリシリコン膜21aに同量のフッ素が注入される。図8(a)に示すように、最終的にディプレッション型トランジスタとして使う不揮発性記憶素子では、ドレイン領域Dを構成するN型領域13上に薄膜領域221aが形成されている。一方、図8(b)に示すように、最終的にエンハンスメント型トランジスタとして使う不揮発性記憶素子では、ソース領域Sを構成するN型領域11上に薄膜領域221aが形成されている。
 次に、図9に示すように、フォトリソグラフィー技術およびエッチング技術を用いて、絶縁膜22aの一部、ポリシリコン膜21aおよびONO膜24aを回路用途に応じた寸法に加工する。このとき、加工後のポリシリコン膜21aおよびONO膜24aの下方に薄膜領域221aが含まれるようにポリシリコン膜21aおよびONO膜24aをエッチングする。
 次に、図10に示すように、酸化処理(例えば850℃のウェット酸化)を実施してポリシリコン膜21aの側壁を酸化して酸化膜23aを形成するとともに、ポリシリコン膜21aに注入したフッ素を、ポリシリコン膜21aを取り囲む絶縁膜22a、薄膜領域221a、ONO膜24aおよび酸化膜23aに偏析させる。フッ素は、シリコン/シリコン酸化膜界面の偏析係数が5.6×10-8程度であるため、熱処理を施すと急速にシリコン酸化膜中に取り込まれて、シリコン酸化膜中に偏析させることができる。すなわち、図10中に曲線矢印で示すように、酸化処理によって電荷保持領域21となるポリシリコン膜21aを取り囲む全方位にフッ素存在領域21bからフッ素を高濃度で分布させることができる。
 所定形状にエッチングされ、かつフッ素が偏析されることにより、図11に示すように、ポリシリコン膜21aは電荷保持領域21となり、絶縁膜22aはゲート絶縁膜22となり、薄膜領域221aはトンネル絶縁膜221となり、酸化膜23aは側壁酸化膜23となり、ONO膜24aは上部絶縁膜24となる。こうして、絶縁体20で囲まれ、電荷注入口211が設けられた電荷保持領域21を有するフローティングゲート領域FGが形成される。
 次に、シリコン基板の全面にポリシリコン膜を体積してリンをドープし、その後フォトリソグラフィー技術とエッチング技術を用いて、フローティングゲート領域FG上にポリシリコン膜31を形成する。これにより、上部絶縁膜24上の一部に接触して配置されたコントロールゲート領域CGが形成される。
 次に、図1に示すように、N型領域11およびN型領域13上の絶縁膜22aを除去した後、側壁酸化膜23およびゲート絶縁膜22のそれぞれの側部に絶縁膜のサイドウォール25を形成し、ポリシリコン膜31の側部に絶縁膜のサイドウォール32を形成する。
 次に、図1に示すように、N型領域11のコンタクト部に金属とのオーミック接触を取るための高濃度のN+領域12を形成し、N型領域13のコンタクト部に金属とのオーミック接触を取るための高濃度のN+領域14を形成する。これにより、コントロールゲート領域CGおよびフローティングゲート領域FGの下方の両側の一方にドレイン領域Dが形成され、この両側の他方にソース領域Sが形成される。
 次に、図1に示すように、シリコン基板の全面に絶縁性の保護膜61を形成する。保護膜61は、コントロールゲート領域CGおよびフローティングゲート領域FG並びにドレイン領域Dおよびソース領域Sを覆うように形成される。
 次に、フォトグラフィー技術およびエッチング技術を用いて、ポリシリコン膜31、N+領域12およびN+領域14の一部を底面に露出する開口部を保護膜61に形成する。次いで、図1に示すように、薄膜形成技術を用いて、ポリシリコン膜31の一部を露出する開口部に金属のプラグ51を形成し、N+領域12の一部を底面に露出する開口部に金属のプラグ52を形成し、N+領域14の一部を底面に露出する開口部に金属のプラグ53を形成する。
 図示は省略するが、次に、一般的な配線形成工程を経て、プラグ51,52,53に電気的に接続される配線を形成する。以上の工程を経て図1に示すように、電荷保持領域21を取り囲む絶縁体20の全方位にフッ素を分布させた不揮発性記憶素子Mが完成する。なお、コントロールゲート領域CG、ソース領域Sおよびドレイン領域Dのコンタクト部には、コンタクト抵抗を下げるためにシリサイドを形成してもよい。また、絶縁体20中のフッ素の含有率は、0.1~1atm%(SiOの場合、濃度が1×1020cm-3前後)が最適であり、絶縁体20中のフッ素の含有率が多すぎると、不揮発性記憶素子Mの電荷保持特性が劣化する。
 次に、不揮発性記憶素子Mの電荷保持特性について図1を参照しつつ図12を用いて説明する。不揮発性記憶素子Mは、電荷保持領域21を取り囲む絶縁体20中にハロゲンを分布させている。ハロゲンは、絶縁体20中や絶縁体20と別材料体との界面に存在するダングリングボンドの終端、絶縁体20内の歪の緩和、可動イオンのゲッタリング効果を有し、ダングリングボンド、歪、可動イオンに由来する欠陥を低減させることができる。つまり、絶縁体20中に分布されたハロゲンは、絶縁体20中の欠陥を介して漏れ出る電荷を抑止する効果がある。その結果、不揮発性記憶素子Mは、レイアウト寸法にフレキシブル性を確保しながら優れた電荷保持特性を有し、不揮発性記憶素子Mによって構成される基準電圧生成回路等のアナログ回路は、安定した電気特性を実現することができる。
 ここで不揮発性記憶素子の電荷保持特性について求められる特性を説明する。不揮発性メモリに使用される不揮発性記憶素子の場合は、不揮発性記憶素子の閾値電圧Vthは、0と1を判定すればよく、0または1を示す不揮発性記憶素子の閾値電圧Vthと閾値判定電圧との間には、通常は数V程度の余裕がある。したがって、不揮発性記憶素子の電荷保持特性が多少悪く、0.数V程度の閾値電圧変動が起こった場合でも不具合に直結しないことが多い。しかしながら、不揮発性記憶素子をアナログ回路に使用する場合は、例えば高精度な基準電圧Vrefが必要な回路では、0.1Vの閾値電圧変動が起きた場合でも即不具合となる。このため、不揮発性記憶素子を基準電圧生成回路等のアナログ的に使用することを目的とする場合には、レイアウト寸法に対してフレキシブル性を確保した上で、0.1V未満の閾値変動を実現できるほどの優れた電荷保持特性を備えた不揮発性記憶素子が必要となる。
 次にハロゲンの導入する領域について説明する。ハロゲンを導入する領域は、電荷保持領域21から電荷が抜ける主経路に導入されていることが最低限必要であるが、好ましくは、電荷保持領域21を取り囲む全方位に導入されている方が良い。その理由は種々あるが、主な理由として、次の(1)から(3)があげられる。
(1)本実施形態による不揮発性記憶素子はアナログ特性を重要視する回路で用いるため、従来の不揮発性メモリに使用される不揮発性記憶素子と比べて特性変動に対してより厳格であること。
(2)アナログ回路では用途毎に素子のレイアウト寸法が異なり、非常に大きいサイズを使用する場合があるため、電荷漏れの主経路(主面)はレイアウト寸法によって変わってしまうこと。
(3)本実施形態による不揮発性記憶素子は従来の不揮発性メモリのような規定されたアレイ構造ではないため、不揮発性記憶素子の周囲の環境が同じではなく、周囲の環境によって電荷漏れの主経路(主面)が変わってしまうこと。
 図12は、不揮発性記憶素子Mの電荷保持領域21を取り囲む絶縁体20の全方位にフッ素を分布させた場合の基準電圧生成回路(詳細は後述する)の電荷保持特性を、各凡例2000点以上、統計的に累積度数分布を用いて表したグラフである。図12に示すグラフの横軸は、ベーク前後における基準電圧生成回路が出力する基準電圧Vrefの変動量(V)を示し、縦軸は累積サンプル数百分率(%)を示している。ベーク条件は250℃で10時間である。図12中の◇印で結ぶ曲線は、フッ素の注入量が最も少ないドーズ量:1×1013cm-2以下の場合(フッ素:超低濃度)の特性を表し、□印で結ぶ曲線は、フッ素の注入量が2番目に少ないドーズ量:5×1013cm-2の場合(フッ素:低濃度)の特性を表している。図12中の△印で結ぶ曲線は、フッ素の注入量が3番目に少ないドーズ量:1×1014cm-2の場合(フッ素:中濃度)の特性を表し、○印で結ぶ曲線は、フッ素の注入量が4番目に少ないドーズ量:5×1014cm-2の場合(フッ素:高濃度)の特性を表し、×印で結ぶ曲線は、フッ素の注入量が最も多いドーズ量:5×1015cm-2の場合(フッ素:超高濃度)の特性を表している。
 特許文献2および3に開示されたような一般的な不揮発性記憶素子を基準電圧生成回路の構成素子としてアナログ的に使用したときの電荷保持特性は、「フッ素:超低濃度」と同様の傾向を示す。「フッ素:超低濃度」の不揮発性記憶素子を用いた基準電圧生成回路は、電荷保持特性がやや悪いために異常値を示す割合が高くなる。なお、ここで取り上げている「やや悪い異常値」というのは、統計的な評価で見つかるものであり、一般的な電荷保持特性の評価で見つかる真性劣化ではない。このため、検出および効果の検証が難しく、図12に示すような統計的評価が必要になる。また、前述したとおり、0.数Vの変動というやや悪い異常値は、通常の不揮発性メモリとして使用している範囲では問題にはならず、アナログ回路を構成する素子として使用された時に初めて問題になるものである。
 0.数Vの変動というやや悪い異常値は、図12に示すように、絶縁体20に注入されるフッ素の注入量に応じて、無くなっていくことが分かる。また、絶縁体20に注入されるフッ素は、適正な濃度を選ぶことにより、電荷保持特性がやや悪い不揮発性記憶素子Mに対して有効に働き、電荷保持特性を向上させる効果を奏する。一方、絶縁体20に注入されるフッ素は、もともと正常な電荷保持特性を示す不揮発性記憶素子Mには電荷保持特性の大きな変化を生まない。ただし、絶縁体20にフッ素を注入し過ぎると、図12中の「フッ素:超高濃度」で示すように、例えば「フッ素:高濃度」のような最適なフッ素の注入量のときと比べて電荷保持特性が悪化する。
 図13(a)は、電荷注入口211近傍の不揮発性記憶素子Mの断面を透過型電子顕微鏡(Transmission Electron Microscope:TEM)で撮像したTEM像である。図13(b)は、図13(a)と同じ場所におけるハロゲンとして用いられたフッ素のエネルギー分散型X線分析(Energy dispersive X-ray spectrometry:EDX)マッピングを示している。
 図13(a)に示すように、電荷保持領域21とソース領域Sとの間には、ゲート絶縁膜22の中で相対的に膜厚の薄いトンネル絶縁膜221が存在している。また、電荷保持領域21とポリシリコン膜31との間には、上部絶縁膜24が存在している。図13(b)に示すように、トンネル絶縁膜221および上部絶縁膜24は、電荷保持領域21やポリシリコン膜31と異なり白色の像となっている。このように、トンネル絶縁膜221および上部絶縁膜24には、電荷保持領域21やポリシリコン膜31と比較して多量のフッ素が含まれていることがわかる。
 図13(c)は、図13(a)中に示す「A→B」におけるフッ素分布を示すグラフである。図13(c)に示すグラフの横軸は、深さ(nm)を示し、左から右に向かって図13(a)中に示すAからBの位置が表されている。図13(c)に示すグラフの縦軸は、フッ素含有率を示している。「フッ素:高濃度」は、絶縁体20中に含有するフッ素の濃度が図12中に示す「フッ素:高濃度」と同様であることを示し、「フッ素:超高濃度」は、絶縁体20中に含有するフッ素の濃度が図12中に示す「フッ素:超高濃度」と同様であることを示している。
 図13(c)に示すように、ポリシリコン膜31が存在する深さD1、電荷保持領域21が存在する深さD3およびドレイン領域Dが存在する深さD5では、フッ素の含有率はほぼ0(atm%)である。これに対し、上部絶縁膜24が存在する深さD2およびトンネル絶縁膜221が存在する深さD4では、フッ素含有率が相対的に高くなっている。トンネル絶縁膜221および上部絶縁膜24におけるフッ素の含有率は、「フッ素:低濃度」では0.01 (atm%)程度であり、「フッ素:超高濃度」では1.7~2.3(atm%)程度である。図12の「フッ素:低濃度」サンプルに相当する含有率以上で効果が表れ、0.1~1 (atm%)が最適濃度となる。
 以上説明したように、本実施形態による不揮発性記憶素子Mは、ハロゲンを含有する絶縁体20と、絶縁体20に囲まれた電荷保持領域21とを備えている。これにより、不揮発性記憶素子Mは、アナログ回路で使用できるほどの良好な電荷保持特性を有し、アナログ回路を構成した時の電流/電圧特性などの電気特性の精度を向上させることができる。
 次に、本実施形態によるアナログ回路について、本実施形態による不揮発性記憶素子を用いた基準電圧生成回路を例にとって説明する。本実施形態によるアナログ回路としての基準電圧生成回路は、フローティングゲート領域の周囲にハロゲンとして例えばフッ素が分布している不揮発性記憶素子を複数個用いて基準電圧を生成する回路である。本実施形態における基準電圧生成回路は、この不揮発性記憶素子をエンハンスメント型トランジスタとディプレッション型トランジスタの2つの状態にすることができることが利用されている。エンハンスメント型トランジスタとして使う不揮発性記憶素子とディプレッション型トランジスタとして使う不揮発性記憶素子は、素子として同一の寸法および構造を有しており、特に絶縁体中のハロゲンの含有率は略等しくなるように形成されている。絶縁体中に存在するハロゲンは、絶縁体の酸化を促進させる効果と絶縁体の誘電率を下げる効果があるので、両トランジスタが略同じハロゲンの含有率を有する必要がある。両トランジスタの絶縁体中のハロゲンの濃度が大きく異なると、エンハンスメント型トランジスタとして使う不揮発性記憶素子と、ディプレッション型トランジスタとして使う不揮発性記憶素子とで、コンダクタンスや温度特性のずれが発生してしまう。すなわち、基準電圧生成回路が生成した基準電圧に温度特性が発生し、基準電圧の電圧値が所望の値からずれてしまうという問題が生じる。両トランジスタの絶縁体中のハロゲンの濃度を略等しくしておけば、この問題は回避できる。ここで、「略等しい」とは、エンハンスメント型トランジスタの絶縁体中のハロゲンの濃度と、ディプレッション型トランジスタの絶縁体中のハロゲンの濃度との差が1桁以内であることをいう。
 本実施形態によるアナログ回路は、アナログ回路を構成する各々の回路素子の特性の相違に基づいて発生する基準電圧の製造バラツキを無くすようにした基準電圧生成回路である。本実施形態における基準電圧生成回路は、少なくとも1個以上のディプレッション型トランジスタと、このディプレッション型トランジスタに流れる電流と同じ電流または関連する電流が流れる少なくとも1個以上のエンハンスメント型トランジスタとを備えている。本実施形態における基準電圧生成回路を構成するディプレッション型トランジスタおよびエンハンスメント型トランジスタは、電荷保持領域を取り囲む絶縁体の全方位にハロゲン(例えばフッ素)が分布している不揮発性記憶素子である。ここで、「関連する電流」とは、ディプレッション型トランジスタに流れる電流と相関がある電流を意味する。例えば、「関連する電流」は、ディプレッション型トランジスタに流れる電流のX倍の電流であったり、ディプレッション型トランジスタに流れる電流に電流値Yを加算した電流であったり、この2つの例よりも複雑な関係を有していたりする。つまり、「関連する電流」は、ディプレッション型トランジスタに流れる電流値を1つのパラメータとした関数で表される電流である。
 図14に示すように、本実施形態における基準電圧生成回路1は、複数(本例では2つ)の不揮発性記憶素子M1,M2を備えている。複数の不揮発性記憶素子M1,M2の少なくとも一部(本例では全部)は、直列に接続され、直列に接続された複数の不揮発性記憶素子M1,M2の接続部には、基準電圧Vrefが出力される電圧出力端子OUTが接続されている。不揮発性記憶素子M1および不揮発性記憶素子M2はいずれも、トランジスタの構成を有し、図1に示す不揮発性記憶素子Mと同一の構成を有している。
 不揮発性記憶素子M1および不揮発性記憶素子M2は、高電圧が供給される高電圧供給端子Vddと低電圧が供給される低電圧供給端子Vssとの間で直列接続されている。以下、符号「Vdd」は、高電圧供給端子Vddから出力される高電圧の符号としても使用し、符号「Vss」は、低電圧供給端子Vssから出力される低電圧の符号としても使用する。不揮発性記憶素子M1のドレイン領域Dは高電圧供給端子Vddに接続され、不揮発性記憶素子M2のソース領域Sは低電圧供給端子Vssに接続されている。不揮発性記憶素子M1のソース領域Sおよびコントロールゲート領域CGは互いに接続され、また、不揮発性記憶素子M2のドレイン領域Dおよびコントロールゲート領域CGは互いに接続されている。さらに、不揮発性記憶素子M1のソース領域Sおよびコントロールゲート領域CGと、不揮発性記憶素子M2のドレイン領域Dおよびコントロールゲート領域CGとは互いに接続されている。不揮発性記憶素子M1のソース領域Sと不揮発性記憶素子M2のドレイン領域Dとの接続部に電圧出力端子OUTが接続されている。
 基準電圧生成回路1では、下段側(低電圧供給端子Vss側)の不揮発性記憶素子M2がエンハンスメント状態になるように調整され、上段側(高電圧供給端子Vdd側)の不揮発性記憶素子M1がディプレッション状態になるように調整される。不揮発性記憶素子M1,M2はいずれも、コントロールゲート領域CGおよびフローティングゲート領域FGを有し、フローティングゲート領域FGの周囲の絶縁体20(図1参照)にハロゲンとしてフッ素が分布している。これにより、不揮発性記憶素子M1,M2は、書き込み消去ができ、書き込み状態を長期間にわたって保持できる。ディプレッション型トランジスタの閾値電圧は負となり、エンハンスメント型トランジスタの閾値電圧は正となる。このため、本実施形態によるアナログ回路としての基準電圧生成回路1に設けられた複数の不揮発性記憶素子は、少なくとも負の閾値電圧を有する不揮発性記憶素子M1と正の閾値電圧を有する不揮発性記憶素子M2を含んでいる。
 基準電圧生成回路1に設けられた不揮発性記憶素子M1,M2のそれぞれの素子の面積は10μm以上であっても、50μm以上であっても、100μm以上であってもよい。不揮発性記憶素子M1,M2は、このようないずれの素子面積を有する場合でも、アレイ構造を有していない。
 図15に示すように、本実施形態によるアナログ回路であって不揮発性記憶素子M1,M2への書き込みが可能な基準電圧生成回路2は、不揮発性記憶素子M1のドレイン領域Dに一端子が接続されたスイッチSW1を備えている。スイッチSW1の他端子の1つは高電圧供給端子Vddに接続され、スイッチSW1の他端子の他の1つは低電圧供給端子Vssに接続され、スイッチSW1の他端子のさらに他の1つはパルス電圧Vppの印加端子に接続されている。基準電圧生成回路2は、スイッチSW1を適宜切り替えることにより、高電圧Vdd、低電圧Vssおよびパルス電圧Vppのいずれか1つを不揮発性記憶素子M1のドレイン領域Dに印加できるようになっている。
 基準電圧生成回路2は、不揮発性記憶素子M2のソース領域Sに一端子が接続されたスイッチSW2を備えている。スイッチSW2の他端子の1つは低電圧供給端子Vssに接続され、スイッチSW2の他端子の他の1つはパルス電圧Vppの印加端子に接続されている。基準電圧生成回路2は、スイッチSW2を適宜切り替えることにより、低電圧Vssおよびパルス電圧Vppのいずれか一方を不揮発性記憶素子M2のソース領域Sに印加できるようになっている。
 基準電圧生成回路2は、不揮発性記憶素子M1のソース領域Sと不揮発性記憶素子M2のドレイン領域Dとの間に直列接続されたスイッチSW6およびスイッチSW8を備えている。不揮発性記憶素子M1のソース領域SはスイッチSW6の一端子に接続され、不揮発性記憶素子M2のドレイン領域DはスイッチSW8の一端子に接続されている。スイッチSW6の他端子およびスイッチSW8の他端子は接続されている。
 基準電圧生成回路2は、不揮発性記憶素子M1のコントロールゲート領域CGと不揮発性記憶素子M2のコントロールゲート領域CGとの間に直列接続されたスイッチSW5およびスイッチSW7を備えている。不揮発性記憶素子M1のコントロールゲート領域CGはスイッチSW5の一端子に接続され、不揮発性記憶素子M2のコントロールゲート領域CGはスイッチSW7の一端子に接続されている。スイッチSW5の他端子およびスイッチSW7の他端子は接続されている。
 スイッチSW5、スイッチSW6、スイッチSW7およびスイッチSW8のそれぞれの他端子は互いに接続されている。基準電圧生成回路2は、スイッチSW5、スイッチSW6、スイッチSW7およびスイッチSW8のそれぞれの他端子が互いに接続された接続部に接続された電圧出力端子OUTを備えている。
 基準電圧生成回路2は、不揮発性記憶素子M1のコントロールゲート領域CGに接続された一端子を有するスイッチSW3と、スイッチSW3の他端子に一端子が接続されたスイッチSW9とを備えている。スイッチSW9の他端子の1つはパルス電圧Vppの印加端子に接続され、スイッチSW9の他端子の他の1つは低電圧供給端子Vssに接続されている。基準電圧生成回路2は、スイッチSW3が接続状態(ショート状態)のときにスイッチSW9を適宜切り替えることにより、パルス電圧Vppおよび低電圧Vssのいずれか一方を不揮発性記憶素子M1のコントロールゲート領域CGに印加できるようになっている。
 基準電圧生成回路2は、不揮発性記憶素子M2のコントロールゲート領域CGに接続された一端子を有するスイッチSW4と、スイッチSW4の他端子に一端子が接続されたスイッチSW10とを備えている。スイッチSW10の他端子の1つはパルス電圧Vppの印加端子に接続され、スイッチSW10の他端子の他の1つは低電圧供給端子Vssに接続されている。基準電圧生成回路2は、スイッチSW4が接続状態(ショート状態)のときにスイッチSW10を適宜切り替えることにより、パルス電圧Vppおよび低電圧Vssのいずれか一方を不揮発性記憶素子M2のコントロールゲート領域CGに印加できるようになっている。
 図15に示すように、基準電圧生成回路2は、電圧出力端子OUTから基準電圧Vrefを出力する場合には、スイッチSW1~SW10を次のような状態に切り替える。
 スイッチSW1:高電圧供給端子Vdd側
 スイッチSW2:低電圧供給端子Vss側
 スイッチSW3,SW4:開放状態(オープン状態)
 スイッチSW5,SW6,SW7,SW8:接続状態(ショート状態)
 スイッチSW9,SW10:任意(図15では低電圧Vss側)
 基準電圧生成回路2は、不揮発性記憶素子M1がディプレッション状態であり、不揮発性記憶素子M2がエンハンスメント状態のときにスイッチSW1~SW10を図15に示す切り替え状態とすると、基準電圧Vrefが生成される。つまり、基準電圧生成回路2は、不揮発性記憶素子M1,M2の各端子を所望の電位に設定するスイッチSW1~SW10を含むスイッチ部を備えている。
 図16に示すように、基準電圧生成回路2は、不揮発性記憶素子M1をディプレッション状態にするための書き換え時には、スイッチSW1~SW10を次のような状態に切り替える。ここでは、不揮発性記憶素子M1の調整前の閾値電圧が調整後の閾値電圧よりも高い場合を例に取っている。
 スイッチSW1:パルス電圧Vpp側
 スイッチSW2:低電圧供給端子Vss側
 スイッチSW3:接続状態(ショート状態)
 スイッチSW4:開放状態(オープン状態)
 スイッチSW5,SW6,SW7,SW8:開放状態(オープン状態)
 スイッチSW9:低電圧供給端子Vss側
 スイッチSW10:任意(図16では低電圧供給端子Vss側)
 このため、不揮発性記憶素子M1のドレイン領域Dにパルス電圧Vppが印加され、コントロールゲート領域CGに低電圧Vssが印加されるので、電荷注入口211を介して電荷保持領域21からドレイン領域Dに電子が放出される。これにより、不揮発性記憶素子M1の閾値電圧が低くなる。逆に、不揮発性記憶素子M1のドレイン領域Dに低電圧Vssが印加され、コントロールゲート領域CGにパルス電圧Vppが印加された場合は、電荷注入口211を介してドレイン領域Dから電荷保持領域21に電子が注入される。これにより、不揮発性記憶素子M1の閾値電圧が高くなる。
 図17に示すように、基準電圧生成回路2は、不揮発性記憶素子M2をエンハンスメント状態にするための書き換え時には、スイッチSW1~SW10を次のような状態に切り替える。ここでは、不揮発性記憶素子M2の調整前の閾値電圧が調整後の閾値電圧よりも低い場合を例に取っている。
 スイッチSW1:高電圧供給端子Vdd側
 スイッチSW2:低電圧供給端子Vss側
 スイッチSW3:開放状態(オープン状態)
 スイッチSW4:接続状態(ショート状態)
 スイッチSW5,SW6,SW7,SW8:開放状態(オープン状態)
 スイッチSW9:任意(図17では低電圧供給端子Vss側)
 スイッチSW10:パルス電圧Vpp側
 このため、不揮発性記憶素子M2のソース領域Sに低電圧Vssが印加され、コントロールゲート領域CGにパルス電圧Vppが印加されるので、電荷注入口211を介してソース領域Sから電荷保持領域21に電子が注入される。これにより、不揮発性記憶素子M2の閾値電圧が高くなる。逆に、不揮発性記憶素子M2のソース領域Sにパルス電圧Vppが印加され、コントロールゲート領域CGに低電圧Vssが印加された場合は、電荷注入口211を介して電荷保持領域21からソース領域Sに電子が放出される。これにより、不揮発性記憶素子M2の閾値電圧が低くなる。
 図15から図17に示すように、基準電圧生成回路2は、スイッチSW1~SW10を適切に切り替えることにより、特定の不揮発性記憶素子M1,M2の閾値電圧Vthを所望の値に書き換え、最終的に図15に示す状態で所望の基準電圧Vrefを発生させることができる。なお当然であるが、本発明では基準電圧生成回路を構成するトランジスタとして、同一種類の不揮発性記憶素子を用いているため、2つのトランジスタでコンダクタンスや温度特性を同一にすることができ、図24に示す様な理想的な平行移動した2つのトランジスタの特性を得ることができる。平行移動した2つのトランジスタの特性は、特許文献1で挙げたような、ディプレッション型トランジスタMdおよびエンハンスメント型トランジスタMeに別の種類のトランジスタを使用して構成されている場合には、コンダクタンスや温度特性がトランジスタごとに異なるため、厳密に実現できるものではない。すなわち、特許文献1で挙げたような基準電圧生成回路では、電圧出力端子OUTから取り出される基準電圧Vrefにも温度特性が発生してしまうが、同一種類の不揮発性記憶素子を用いた本発明の基準電圧生成回路では、製造バラツキも温度特性もない基準電圧Vrefを得ることができる。さらに、取り出す基準電圧Vrefは、エンハンスメント型トランジスタの閾値電圧Vth_eを調整することによって任意の値に設定でき、また基準電圧生成回路に流す電流量はディプレッション型トランジスタの閾値電圧Vth_dを調整することによって任意の値に設定できることも利点の1つとなる。
 以上説明したように、本実施形態によれば、素子のレイアウトにフレキシブル性を持たせながら、高い電荷保持特性を有する不揮発性記憶素子を実現できる。このため、電気特性の劣化が効果的に抑制され、かつ製造バラツキの影響が極めて小さい高精度なアナログ回路を実現できる。また、本実施形態によれば、電気特性のバラツキを低減できる。優れた電荷保持特性を有する不揮発性記憶素子およびそれを備えるアナログ回路を実現できる。
〔第2実施形態〕
 本発明の第2実施形態による不揮発性記憶素子およびそれを備えるアナログ回路について図18から図22を用いて説明する。本実施形態による不揮発性記憶素子は、図1に示す不揮発性記憶素子Mと、図18に示す不揮発性記憶素子Mrとを一組とし、不揮発性記憶素子Mおよび不揮発性記憶素子Mrのそれぞれのフローティングゲート領域同士が接続され、不揮発性記憶素子Mおよび不揮発性記憶素子Mrのそれぞれのコントロールゲート領域同士が接続された構成を有している。
 図18に示すように、不揮発性記憶素子Mrは、電荷注入口を有していない点を除いて、不揮発性記憶素子Mと同様の構成を有している。不揮発性記憶素子Mrは、電荷保持領域71と、少なくとも一部の領域に分布されたハロゲンを有し電荷保持領域71を取り囲んで配置された絶縁体70を備えている。絶縁体70は、電荷保持領域71の上方に形成された上部絶縁膜74と、電荷保持領域71の側壁に形成された側壁酸化膜73と、電荷保持領域71の下方に形成されたゲート絶縁膜72とを有している。ゲート絶縁膜72には、トンネル絶縁膜が形成されておらず、膜厚が略一定である。すなわち、ゲート絶縁膜72には、上記第1実施形態におけるゲート絶縁膜22のように意図的に形成されたトンネル絶縁膜221のような膜厚が異なる領域が形成されていない。不揮発性記憶素子Mrは、絶縁体70の構成が絶縁体20の構成と異なる点を除いて、不揮発性記憶素子Mと同様の構成を有しているため、同一の作用・機能を奏する構成要素には同一の符号を付して、その説明は省略する。
 図19に示すように、本実施形態による不揮発性記憶素子Mは、図1に示す不揮発性記憶素子Mと同一の構成を有する不揮発性記憶素子Mwと、図18に示す不揮発性記憶素子Mrとを備えている。不揮発性記憶素子Mwのコントロールゲート領域CGと、不揮発性記憶素子Mrのコントロールゲート領域CGとは接続されている。不揮発性記憶素子Mwのフローティングゲート領域FGと、不揮発性記憶素子Mrのフローティングゲート領域FGとは接続されている。
 図20に示すように、本実施形態によるアナログ回路としての基準電圧生成回路3は、直列に接続された不揮発性記憶素子M1および不揮発性記憶素子M2を備えている。不揮発性記憶素子M1および不揮発性記憶素子M2はそれぞれ、図19に示す本実施形態による不揮発性記憶素子Mと同一の構成を有している。不揮発性記憶素子M1は、不揮発性記憶素子M1w,M1rを備え、不揮発性記憶素子M2は、不揮発性記憶素子M2w,M2rを備えている。不揮発性記憶素子M1wおよび不揮発性記憶素子M2wは、図1に示す不揮発性記憶素子Mと同一の構成を有し、不揮発性記憶素子M1rおよび不揮発性記憶素子M2rは、図18に示す不揮発性記憶素子Mrと同一の構成を有している。したがって、以下、必要に応じて、不揮発性記憶素子M1r,M2rの構成の説明において図1を参照し、不揮発性記憶素子M1w,M2wの構成の説明において図18を参照する。
 基準電圧生成回路3は、不揮発性記憶素子(第一不揮発性記憶素子の一例)M1w,M2wと、不揮発性記憶素子(第二不揮発性記憶素子の一例)M1r,M2rとを備えている。不揮発性記憶素子M1rは、不揮発性記憶素子M1wのゲート領域に設けられたコントロールゲート領域(第一コントロールゲート領域の一例)CGと電気的に接続されたコントロールゲート領域(第二コントロールゲート領域の一例)CGを有している。また、不揮発性記憶素子M1rは、不揮発性記憶素子M1wの電荷保持領域(第一電荷保持領域の一例)21(図1参照)と電気的に接続された電荷保持領域(第二電荷保持領域の一例)71(図18参照)と、電荷保持領域71に接触して形成されたゲート絶縁膜72(図18参照)とを有している。不揮発性記憶素子M1wに設けられた電荷注入口211(図1参照)は、不揮発性記憶素子M1rに形成される電流経路に接していない領域に形成されている。不揮発性記憶素子M1wに設けられた電荷注入口211は、不揮発性記憶素子M1rのドレイン領域Dおよびソース領域Sを含む電流パスと、その電流パスとは接していない領域に形成されている。
 不揮発性記憶素子M2rは、不揮発性記憶素子M2wのゲート領域に設けられたコントロールゲート領域(第一コントロールゲート領域の一例)CGと電気的に接続されたコントロールゲート領域(第二コントロールゲート領域の一例)CGを有している。また、不揮発性記憶素子M2rは、不揮発性記憶素子M2wの電荷保持領域(第一電荷保持領域の一例)21(図1参照)と電気的に接続された電荷保持領域(第二電荷保持領域の一例)71(図18参照)と、電荷保持領域71に接触して形成されたゲート絶縁膜72(図18参照)とを有している。不揮発性記憶素子M2wに設けられた電荷注入口211(図1参照)は、不揮発性記憶素子M2rに形成される電流経路に接していない領域に形成されている。不揮発性記憶素子M2wに設けられた電荷注入口211は、不揮発性記憶素子M2rのドレイン領域Dおよびソース領域Sを含む電流パスと、その電流パスとは接していない領域に形成されている。
 不揮発性記憶素子M1に備えられた不揮発性記憶素子M1wのコントロールゲート領域CGと、不揮発性記憶素子M1rのコントロールゲート領域CGとは接続されている。不揮発性記憶素子M1wのフローティングゲート領域FGと、不揮発性記憶素子M1rのフローティングゲート領域FGとは接続されている。また、不揮発性記憶素子M2に備えられた不揮発性記憶素子M2wのコントロールゲート領域CGと、不揮発性記憶素子M2rのコントロールゲート領域CGとは接続されている。不揮発性記憶素子M2wのフローティングゲート領域FGと、不揮発性記憶素子M2rのフローティングゲート領域FGとは接続されている。
 不揮発性記憶素子M1rと不揮発性記憶素子M2rとは、高電圧供給端子Vddと低電圧供給端子Vssとの間で直列に接続されている。より具体的には、不揮発性記憶素子M1rのドレイン領域Dは高電圧供給端子Vddに接続されている。不揮発性記憶素子M2rのソース領域Sは低電圧供給端子Vssに接続されている。不揮発性記憶素子M1rのソース領域Sと不揮発性記憶素子M2rのドレイン領域Dとは接続されている。
 不揮発性記憶素子M1wは、フローティングゲート領域FGの下方の両側の一方に設けられた第一領域A1と、この両側の他方に設けられた第二領域A2とを有している。基準電圧生成回路3は、不揮発性記憶素子M1wの第一領域A1に一端子が接続されたスイッチSW1を備えている。スイッチSW1の他端子の1つは低電圧供給端子Vssに接続され、スイッチSW1の他端子の他の1つはパルス電圧Vppの印加端子に接続されている。基準電圧生成回路2は、スイッチSW1を適宜切り替えることにより、低電圧Vssおよびパルス電圧Vppのいずれか一方を不揮発性記憶素子M1wの第一領域A1に印加できるようになっている。
 不揮発性記憶素子M2wは、フローティングゲート領域FGの下方の両側の一方に設けられた第一領域A1と、この両側の他方に設けれた第二領域A2とを有している。基準電圧生成回路3は、不揮発性記憶素子M2wの第一領域A1に一端子が接続されたスイッチSW2を備えている。スイッチSW2の他端子の1つは低電圧供給端子Vssに接続され、スイッチSW2の他端子の他の1つはパルス電圧Vppの印加端子に接続されている。基準電圧生成回路3は、スイッチSW2を適宜切り替えることにより、低電圧Vssおよびパルス電圧Vppのいずれか一方を不揮発性記憶素子M2wの第一領域A1に印加できるようになっている。
 基準電圧生成回路3は、不揮発性記憶素子M1wのコントロールゲート領域CGと不揮発性記憶素子M2wのコントロールゲート領域CGとの間に直列接続されたスイッチSW5およびスイッチSW7を備えている。スイッチSW5およびスイッチSW7のそれぞれの他端子は互いに接続されている。スイッチSW5およびスイッチSW7のそれぞれの他端子は、不揮発性記憶素子M1rのソース領域Sおよび不揮発性記憶素子M2rのドレイン領域Dが互いに接続された接続部に接続されている。基準電圧生成回路3は、この接続部に接続され基準電圧Vrefが出力される電圧出力端子OUTを備えている。
 基準電圧生成回路3は、不揮発性記憶素子M1wのコントロールゲート領域CGに接続された一端子を有するスイッチSW3と、スイッチSW3の他端子に一端子が接続されたスイッチSW9とを備えている。スイッチSW9の他端子の1つはパルス電圧Vppの印加端子に接続され、スイッチSW9の他端子の他の1つは低電圧供給端子Vssに接続されている。基準電圧生成回路3は、スイッチSW3が接続状態(ショート状態)のときにスイッチSW9を適宜切り替えることにより、パルス電圧Vppおよび低電圧Vssのいずれか一方を不揮発性記憶素子M1wのコントロールゲート領域CGに印加できるようになっている。
 基準電圧生成回路3は、不揮発性記憶素子M2wのコントロールゲート領域CGに接続された一端子を有するスイッチSW4と、スイッチSW4の他端子に一端子が接続されたスイッチSW10とを備えている。スイッチSW10の他端子の1つはパルス電圧Vppの印加端子に接続され、スイッチSW10の他端子の他の1つは低電圧供給端子Vssに接続されている。基準電圧生成回路3は、スイッチSW4が接続状態(ショート状態)のときにスイッチSW10を適宜切り替えることにより、パルス電圧Vppおよび低電圧Vssのいずれか一方を不揮発性記憶素子M2wのコントロールゲート領域CGに印加できるようになっている。
 不揮発性記憶素子M1wの第二領域A2および不揮発性記憶素子M2wの第二領域A2は、基準電圧生成回路2における不揮発性記憶素子M1のソース領域Sおよび不揮発性記憶素子M2のドレイン領域Dのように接続されておらず、フローティング状態となっている。なお、不揮発性記憶素子M1wおよび不揮発性記憶素子M2wは不揮発性記憶素子M1rのフローティングゲート領域FGまたは不揮発性記憶素子M2rのフローティングゲート領域FGへの電荷注入のために存在する領域であり、トランジスタとして電流を流さない。そのため、不揮発性記憶素子M1wおよび不揮発性記憶素子M2wは、ソース領域Sやドレイン領域Dを有している必要はなく、電荷注入口をもった構造であればその形態は問わない。
 図20に示すように、基準電圧生成回路3では、電荷注入時には、不揮発性記憶素子M1w,M2wを通ってフローティングゲート領域FGに電荷が注入される。基準電圧生成回路3を動作させる時には不揮発性記憶素子M1r、M2rを通って電流が流れる。基準電圧生成回路3では、不揮発性記憶素子M1側(すわなち不揮発性記憶素子M1w,M1r)がディプレッション状態、不揮発性記憶素子M2側(すなわち不揮発性記憶素子M2w,M2r)がエンハンスメント状態である。
 図20に示すように、基準電圧生成回路3は、基準電圧Vrefを生成するときには、スイッチSW1~SW5,SW7,SW9,SW10を次のような状態に切り替える。
 スイッチSW1:低電圧供給端子Vss側
 スイッチSW2:低電圧供給端子Vss側
 スイッチSW3,SW4:開放状態(オープン状態)
 スイッチSW5,SW7:接続状態(ショート状態)
 スイッチSW9,SW10:任意(図20では低電圧供給端子Vss側)
 図21に示すように、基準電圧生成回路3は、不揮発性記憶素子M1側(すなわち不揮発性記憶素子M1w,M1r)をディプレッション状態にするための書き換え時には、スイッチSW1~SW5,SW7,SW9,SW10を次のような状態に切り替える。ここでは、不揮発性記憶素子M1側の調整前の閾値電圧が調整後の閾値電圧よりも高い場合を例に取っている。
 スイッチSW1:パルス電圧Vpp側
 スイッチSW2:低電圧供給端子Vss側
 スイッチSW3:接続状態(ショート状態)
 スイッチSW4:開放状態(オープン状態)
 スイッチSW5,SW7:開放状態(オープン状態)
 スイッチSW9:低電圧供給端子Vss側
 スイッチSW10:任意(図21では低電圧供給端子Vss側)
 このため、不揮発性記憶素子M1wのドレイン領域Dにパルス電圧Vppが印加され、コントロールゲート領域CGに低電圧Vssが印加されるので、電荷注入口211を介して電荷保持領域21からドレイン領域Dに電子が放出される。これにより、不揮発性記憶素子M1wの閾値電圧が低くなる。逆に、不揮発性記憶素子M1wのドレイン領域Dに低電圧Vssが印加され、コントロールゲート領域CGにパルス電圧Vppが印加された場合は、電荷注入口211を介してドレイン領域Dから電荷保持領域21に電子が注入される。これにより、不揮発性記憶素子M1wの閾値電圧が高くなる。
 図22に示すように、基準電圧生成回路3は、不揮発性記憶素子M2側(すなわち不揮発性記憶素子M2w,M2r)をエンハンスメント状態にするための書き換え時には、スイッチSW1~SW5,SW7,SW9,SW10を次のような状態に切り替える。ここでは、不揮発性記憶素子M2側の調整前の閾値電圧が調整後の閾値電圧よりも低い場合を例に取っている。
 スイッチSW1:低電圧供給端子Vss側
 スイッチSW2:低電圧供給端子Vss側
 スイッチSW3:開放状態(オープン状態)
 スイッチSW4:接続状態(ショート状態)
 スイッチSW5,SW7:開放状態(オープン状態)
 スイッチSW9:任意(図25では低電圧供給端子Vss側)
 スイッチSW10: パルス電圧Vpp側
 このため、不揮発性記憶素子M2wのソース領域Sに低電圧Vssが印加され、コントロールゲート領域CGにパルス電圧Vppが印加されるので、電荷注入口211を介してソース領域Sから電荷保持領域21に電子が注入される。これにより、不揮発性記憶素子M2wの閾値電圧が高くなる。逆に、不揮発性記憶素子M2wのソース領域Sにパルス電圧Vppが印加され、コントロールゲート領域CGに低電圧Vssが印加された場合は、電荷注入口211を介して電荷保持領域21からソース領域Sに電子が放出される。これにより、不揮発性記憶素子M2wの閾値電圧が低くなる。
 以上説明したように、本実施形態によれば、素子のレイアウトにフレキシブル性を持たせながら、高い電荷保持特性を有する不揮発性記憶素子を実現できる。このため、電気特性の劣化が効果的に抑制され、かつ製造バラツキの影響が極めて小さい高精度なアナログ回路を実現できる。また、本実施形態によれば、電気特性のバラツキを低減できる。優れた電荷保持特性を有する不揮発性記憶素子およびそれを備えるアナログ回路を実現できる。
 また、本実施形態による不揮発性記憶素子およびそれを備えるアナログ回路は、不揮発性記憶素子M1w,M2wのフローティングゲート領域FGの電荷量を調整して閾値電圧を調整できるので、上記第1実施形態による不揮発性記憶素子およびそれを備えるアナログ回路と同様の効果が得られる。
 また、本実施形態における基準電圧生成回路3は、図19に示す構成の不揮発性記憶素子Mを備えることにより、電荷注入時および電荷放出時の電流経路と、基準電圧生成回路3の動作時の電流経路とを分離できる。これにより、基準電圧生成回路3は、不揮発性記憶素子の予期せぬ書き換えを防止し、信頼性の向上を図ることができる。
1,2,3,100 基準電圧生成回路
10 ウェル領域
11,13 N型領域
12,14 N+領域
20,70 絶縁体
21,71 電荷保持領域
21a,31 ポリシリコン膜
21b フッ素存在領域
22,72 ゲート絶縁膜
22a 絶縁膜
23 側壁酸化膜
23a 酸化膜
24 上部絶縁膜
24a ONO膜
25,32 サイドウォール
41,42 素子分離領域
51,52,53 プラグ
61 保護膜
73 側壁酸化膜
74 上部絶縁膜
211 電荷注入口
221 トンネル絶縁膜
221a 薄膜領域
A1 第一領域
A2 第二領域
B バックゲート
CG コントロールゲート領域
D ドレイン領域
FG フローティングゲート領域
G ゲート領域
M,M1,M1r,M1w,M2,M2r,M2w,Mr,Mw 不揮発性記憶素子
Md ディプレッション型トランジスタ
Me エンハンスメント型トランジスタ
S ソース領域

Claims (16)

  1.  電荷保持領域と、
     前記電荷保持領域の全表面を取り囲み、前記全表面を取り囲む領域のうち少なくとも一部に分布するハロゲンを有する絶縁体と
     を備える不揮発性記憶素子。
  2.  前記ハロゲンは、前記全表面を取り囲むように分布する
     請求項1に記載の不揮発性記憶素子。
  3.  前記電荷保持領域は、電荷を注入するための電荷注入口を有する
     請求項1又は2に記載の不揮発性記憶素子。
  4.  前記ハロゲンは、フッ素である
     請求項1から3までのいずれか一項に記載の不揮発性記憶素子。
  5.  前記絶縁体中の前記ハロゲンの含有率は、前記電荷保持領域に接する少なくとも一部の領域において0.01atm%以上である
     請求項1から4までのいずれか一項に記載の不揮発性記憶素子。
  6.  前記絶縁体中の前記ハロゲンの含有率は、前記電荷保持領域に接する少なくとも一部の領域において0.05atm%以上である
     請求項1から5までのいずれか一項に記載の不揮発性記憶素子。
  7.  前記絶縁体中の前記ハロゲンの含有率は、前記電荷保持領域に接する少なくとも一部の領域において0.1atm%以上である
     請求項1から6までのいずれか一項に記載の不揮発性記憶素子。
  8.  前記電荷保持領域および前記絶縁体を有するゲート領域と、
     前記ゲート領域の下方の両側の一方に形成されたドレイン領域と、
     前記両側の他方に形成されたソース領域と
     を備える請求項1から7までのいずれか一項に記載の不揮発性記憶素子。
  9.  請求項1から8までのいずれか一項に記載の不揮発性記憶素子を備える
     アナログ回路。
  10.  請求項8に記載の不揮発性記憶素子を複数備え、
     複数の前記不揮発性記憶素子の少なくとも一部は直列に接続され、
     直列に接続された複数の前記不揮発性記憶素子の接続部には、電圧が出力される電圧出力端子が接続されているアナログ回路。
  11.  複数の前記不揮発性記憶素子は、
     少なくとも負の閾値電圧を有する不揮発性記憶素子と正の閾値電圧を有する不揮発性記憶素子を含む
     請求項10記載のアナログ回路。
  12.  直列に接続された複数の前記不揮発性記憶素子の前記ハロゲンの含有率は、互いに略等しい
     請求項10又は11に記載のアナログ回路。
  13.  請求項1から7までのいずれか一項に記載の不揮発性記憶素子である第一不揮発性記憶素子の前記電荷保持領域および前記絶縁体を有するゲート領域に設けられた第一コントロールゲート領域と電気的に接続された第二コントロールゲート領域と、
     前記第一不揮発性記憶素子の前記電荷保持領域である第一電荷保持領域と電気的に接続された第二電荷保持領域と、
     前記第二電荷保持領域に接触して形成されたゲート絶縁膜と
     を有する第二不揮発性記憶素子を備え、
     前記第一不揮発性記憶素子に設けられた電荷注入口は、前記第二不揮発性記憶素子に形成される電流経路に接していない領域に形成されているアナログ回路。
  14.  請求項1又は2に記載の不揮発性記憶素子を備え、
     前記不揮発性記憶素子の素子の面積は10μm以上であり、
     前記不揮発性記憶素子はアレイ構造を有していないアナログ回路。
  15.  前記不揮発性記憶素子の素子の面積は50μm以上である
     請求項14に記載のアナログ回路。
  16.  前記不揮発性記憶素子の素子の面積は100μm以上である
     請求項15に記載のアナログ回路。
PCT/JP2017/036017 2017-10-03 2017-10-03 不揮発性記憶素子およびそれを備えるアナログ回路 WO2019069377A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/649,175 US11611000B2 (en) 2017-10-03 2017-10-03 Nonvolatile storage element and analog circuit provided with same
PCT/JP2017/036017 WO2019069377A1 (ja) 2017-10-03 2017-10-03 不揮発性記憶素子およびそれを備えるアナログ回路
EP17928063.1A EP3693995A4 (en) 2017-10-03 2017-10-03 NON-VOLATILE MEMORY ELEMENT AND ANALOG CIRCUIT PROVIDED WITH IT
US18/108,519 US20230197861A1 (en) 2017-10-03 2023-02-10 Nonvolatile storage element and analog circuit provided with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/036017 WO2019069377A1 (ja) 2017-10-03 2017-10-03 不揮発性記憶素子およびそれを備えるアナログ回路

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/649,175 A-371-Of-International US11611000B2 (en) 2017-10-03 2017-10-03 Nonvolatile storage element and analog circuit provided with same
US18/108,519 Continuation US20230197861A1 (en) 2017-10-03 2023-02-10 Nonvolatile storage element and analog circuit provided with same

Publications (1)

Publication Number Publication Date
WO2019069377A1 true WO2019069377A1 (ja) 2019-04-11

Family

ID=65994206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036017 WO2019069377A1 (ja) 2017-10-03 2017-10-03 不揮発性記憶素子およびそれを備えるアナログ回路

Country Status (3)

Country Link
US (2) US11611000B2 (ja)
EP (1) EP3693995A4 (ja)
WO (1) WO2019069377A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11611000B2 (en) * 2017-10-03 2023-03-21 Asahi Kasei Microdevices Corporation Nonvolatile storage element and analog circuit provided with same
US11302827B2 (en) * 2020-01-23 2022-04-12 Nanya Technology Corp. Semiconductor device with sidewall oxidized dielectric and method for fabricating the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465546B2 (ja) 1980-02-01 1992-10-20 Seiko Instr & Electronics
JPH05206412A (ja) * 1991-10-29 1993-08-13 Semiconductor Energy Lab Co Ltd 半導体メモリー装置およびその作製方法
JP2002368107A (ja) 2001-06-07 2002-12-20 Ricoh Co Ltd 基準電圧発生回路とそれを用いた電源装置
JP2007142450A (ja) * 2000-03-22 2007-06-07 Matsushita Electric Ind Co Ltd 不揮発性半導体記憶装置の製造方法
JP2007294846A (ja) * 2006-03-31 2007-11-08 Ricoh Co Ltd 基準電圧発生回路及びそれを用いた電源装置
JP2013246627A (ja) 2012-05-25 2013-12-09 Asahi Kasei Electronics Co Ltd 基準電圧発生回路及び基準電圧発生方法
JP2016129293A (ja) * 2015-01-09 2016-07-14 旭化成エレクトロニクス株式会社 電圧検出器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5449941A (en) 1991-10-29 1995-09-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
US6093607A (en) 1998-01-09 2000-07-25 Taiwan Semiconductor Manufacturing Company Method of forming sharp beak of poly by oxygen/fluorine implant to improve erase speed for split-gate flash
US6597047B2 (en) 2000-03-22 2003-07-22 Matsushita Electric Industrial Co., Ltd. Method for fabricating a nonvolatile semiconductor device
JP2002100688A (ja) 2000-09-22 2002-04-05 Oki Electric Ind Co Ltd 不揮発性半導体メモリの製造方法
US6747896B2 (en) * 2002-05-06 2004-06-08 Multi Level Memory Technology Bi-directional floating gate nonvolatile memory
KR100539158B1 (ko) * 2004-04-20 2005-12-26 주식회사 하이닉스반도체 플래쉬 메모리 소자의 게이트간 유전막 형성 방법
US20050287740A1 (en) * 2004-06-24 2005-12-29 Taiwan Semiconductor Manufacturing Company, Ltd. System and method of forming a split-gate flash memory cell
US7485528B2 (en) * 2006-07-14 2009-02-03 Micron Technology, Inc. Method of forming memory devices by performing halogen ion implantation and diffusion processes
KR100897288B1 (ko) 2006-10-20 2009-05-14 삼성전자주식회사 비휘발성 메모리 소자 및 그 형성방법
KR101842507B1 (ko) * 2011-10-06 2018-03-28 삼성전자주식회사 불휘발성 메모리의 동작 방법 및 불휘발성 메모리를 제어하는 방법
CN104425226B (zh) * 2013-08-20 2017-12-29 中芯国际集成电路制造(上海)有限公司 浮栅及其形成方法、闪存单元及其形成方法
US9670377B2 (en) * 2014-03-04 2017-06-06 Namics Corporation Underfill composition for encapsulating a bond line
US11611000B2 (en) * 2017-10-03 2023-03-21 Asahi Kasei Microdevices Corporation Nonvolatile storage element and analog circuit provided with same
US10586705B2 (en) * 2017-11-28 2020-03-10 Taiwan Semiconductor Manufacturing Co., Ltd. Fluorine doped non-volatile memory cells and methods for forming the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465546B2 (ja) 1980-02-01 1992-10-20 Seiko Instr & Electronics
JPH05206412A (ja) * 1991-10-29 1993-08-13 Semiconductor Energy Lab Co Ltd 半導体メモリー装置およびその作製方法
JP2007142450A (ja) * 2000-03-22 2007-06-07 Matsushita Electric Ind Co Ltd 不揮発性半導体記憶装置の製造方法
JP2002368107A (ja) 2001-06-07 2002-12-20 Ricoh Co Ltd 基準電圧発生回路とそれを用いた電源装置
JP2007294846A (ja) * 2006-03-31 2007-11-08 Ricoh Co Ltd 基準電圧発生回路及びそれを用いた電源装置
JP2013246627A (ja) 2012-05-25 2013-12-09 Asahi Kasei Electronics Co Ltd 基準電圧発生回路及び基準電圧発生方法
JP2016129293A (ja) * 2015-01-09 2016-07-14 旭化成エレクトロニクス株式会社 電圧検出器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3693995A4

Also Published As

Publication number Publication date
EP3693995A1 (en) 2020-08-12
US20230197861A1 (en) 2023-06-22
US20200295197A1 (en) 2020-09-17
US11611000B2 (en) 2023-03-21
EP3693995A4 (en) 2020-10-14

Similar Documents

Publication Publication Date Title
US20230197861A1 (en) Nonvolatile storage element and analog circuit provided with same
US7417897B2 (en) Method for reading a single-poly single-transistor non-volatile memory cell
JP2007305711A (ja) 半導体装置およびその製造方法
US5691560A (en) Nonvolatile semiconductor memory device and method of manufacturing the same
CN105321954B (zh) 制造半导体器件的方法
US8546222B1 (en) Electrically erasable programmable non-volatile memory
US7429514B2 (en) Use of selective oxidation to form asymmetrical oxide features during the manufacture of a semiconductor device
JP6757625B2 (ja) 不揮発性記憶素子およびそれを備えるアナログ回路
US6306737B1 (en) Method to reduce source-line resistance in flash memory with sti
US7808054B2 (en) OTP memory cell, OTP memory, and method of manufacturing OTP memory cell
US6388922B1 (en) Semiconductor memory and method of operating semiconductor memory
KR100366599B1 (ko) 플래시이피롬어레이에저저항피-웰을제공하는고에너지매몰층임플란트
US11296096B2 (en) Antifuse OTP structure with hybrid junctions
KR100673205B1 (ko) 플래쉬 메모리소자의 제조방법
US8765550B2 (en) N-channel erasable programmable non-volatile memory
US6906391B2 (en) Semiconductor device having silicon oxide film
US7034360B2 (en) High voltage transistor and method of manufacturing the same
JP4854375B2 (ja) 半導体記憶装置及びその製造方法、並びに携帯電子機器
US10593772B2 (en) Double-gate MOS transistor with increased breakdown voltage
JP4224243B2 (ja) 半導体記憶装置
US6348370B1 (en) Method to fabricate a self aligned source resistor in embedded flash memory applications
US11004947B2 (en) Nonvolatile storage element
US6846713B1 (en) Method for manufacturing a nonvolatile memory transistor
JP7372047B2 (ja) 不揮発性記憶素子
JPH05226665A (ja) 半導体記憶装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017928063

Country of ref document: EP

Effective date: 20200504

NENP Non-entry into the national phase

Ref country code: JP