WO2019066365A1 - Conductive contact portion and anisotropic conductive sheet comprising same - Google Patents

Conductive contact portion and anisotropic conductive sheet comprising same Download PDF

Info

Publication number
WO2019066365A1
WO2019066365A1 PCT/KR2018/011049 KR2018011049W WO2019066365A1 WO 2019066365 A1 WO2019066365 A1 WO 2019066365A1 KR 2018011049 W KR2018011049 W KR 2018011049W WO 2019066365 A1 WO2019066365 A1 WO 2019066365A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
elastic matrix
spring
contact
disposed
Prior art date
Application number
PCT/KR2018/011049
Other languages
French (fr)
Korean (ko)
Inventor
전중수
백병선
김석민
Original Assignee
주식회사 새한마이크로텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=65902494&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2019066365(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 주식회사 새한마이크로텍 filed Critical 주식회사 새한마이크로텍
Priority to CN201880062530.5A priority Critical patent/CN111149003B/en
Publication of WO2019066365A1 publication Critical patent/WO2019066365A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/0735Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card arranged on a flexible frame or film
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0433Sockets for IC's or transistors
    • G01R1/0483Sockets for un-leaded IC's having matrix type contact fields, e.g. BGA or PGA devices; Sockets for unpackaged, naked chips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06716Elastic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06716Elastic
    • G01R1/06722Spring-loaded
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes

Definitions

  • the present invention relates to an anisotropic conductive sheet for use in testing a semiconductor device or the like, and more particularly, to an anisotropic conductive sheet used for inspecting semiconductor devices and the like, and more particularly to an anisotropic conductive sheet having a plurality of contact portions having conductive springs and conductive powder and insulating portions for insulating and supporting adjacent contact portions To an anisotropic conductive sheet.
  • test socket for electrically connecting a contact pad of an inspection apparatus and a terminal of a semiconductor element is required for inspection of a semiconductor element.
  • test socket with the anisotropically conductive sheet having the contact portion in which the conductive powder is arranged in the longitudinal direction of the silicone rubber and the insulating portion which insulates and supports the adjacent contact portions among the test socket is absorbed by the mechanical shock or deformation, And the manufacturing cost is low.
  • the anisotropic conductive sheet 10 of the prior art test socket comprises a contact portion 11 which contacts the terminal 2 of the semiconductor element 1 and an insulating portion 15 which insulates and supports the adjacent contact portions 11 .
  • the upper end portion and the lower end portion of the contact portion 11 come into contact with the terminal 2 of the semiconductor element 1 and the contact pad 4 of the semiconductor inspecting apparatus 3 to electrically connect the terminal 2 and the contact pad 4 electrically Connect.
  • the contact portion 11 is hardened by mixing spherical conductive particles 12 having a small size into a silicone resin, and functions as a conductor through which electricity flows.
  • a metal frame is coupled to the peripheral portion of the anisotropic conductive sheet 10.
  • a guide hole corresponding to a guide pin (not shown) of the inspection apparatus 3 is formed in the metal frame. The guide pin and the guide hole are used to align the test socket with respect to the inspection apparatus 3.
  • the contact portion 11 of the anisotropic conductive sheet 10 is subjected to upward and downward pressures upon contact for inspection of the semiconductor element 1.
  • the conductive particles 12 at both ends of the contact portion 11 are pushed down and the conductive particles 12 at the middle portion are pushed to the side. Therefore, after performing a number of inspections, the spherical conductive particles 12 are separated from the contact portions 11, and the electrical and mechanical characteristics of the anisotropic conductive sheet 10 deteriorate. That is, the conventional anisotropic conductive sheet 10 has a short life.
  • a conductive spring 23 is disposed inside a silicone rubber matrix 21, and a conductive spring 23 is disposed Discloses a semiconductor test socket in which conductive particles 22 are arranged in a space other than a space in which a contact portion 20 is formed and adjacent contact portions 20 are insulated and supported by using a silicone rubber 25.
  • Such a semiconductor test socket has an advantage that the life span is extended by the conductive spring and the current capacity is increased.
  • An object of the present invention is to provide an anisotropic conductive sheet which can reduce the amount of conductive particles and increase the conductivity of the contact portion.
  • the present invention provides an anisotropic conductive sheet which is disposed between an element to be inspected and an inspection apparatus and electrically connects the terminals of the element and the contact pads of the inspection apparatus to each other.
  • the anisotropically conductive sheet includes a plurality of contact portions disposed at positions corresponding to the terminals of the device and the contact pads of the device and having electrical conductivity in the thickness direction, and an insulating portion for insulating adjacent contact portions from each other and supporting the contact portions.
  • the contact portion includes an elastic matrix, a conductive spring disposed in the elastic matrix, and a plurality of conductive particles arranged in the thickness direction of the elastic matrix.
  • the characteristic feature of the present invention is that the conductive particles are arranged at a higher density than the central portion of the elastic matrix at the periphery of the wire forming the conductive spring. With this characteristic construction, the present invention has an advantage that the conductivity of the contact portion can be increased while reducing the amount of conductive particles.
  • the present invention also provides an anisotropic conductive sheet characterized in that the conductive particles are disposed at both ends of the elastic matrix at a higher density than a central portion of the elastic matrix.
  • the conductive spring may be a coil spring.
  • the ratio of the thickness of the insulating portion to the length of the contact portion may be 0.7 or more and less than 0.9. According to this characteristic configuration, since the insulating portion can be prevented from being in contact with the semiconductor element at the time of inspection, there is an advantage that the semiconductor element is prevented from being contaminated or the semiconductor element and the insulating portion are prevented from adhering to each other. Since the contact portion of the present invention includes the conductive spring, it is easy to make the contact portion thicker than the insulating portion.
  • the conductive spring is an hourglass-shaped coil spring having a larger diameter as it goes from the center to the both ends, thereby providing an anisotropic conductive sheet. According to this characteristic configuration, the contact portion can be made more easily in the direction perpendicular to the thickness direction, so that even when misalignment occurs between the terminal and the contact pad, a smooth connection state can be maintained.
  • the present invention further provides an anisotropic conductive sheet, wherein the conductive plate is disposed adjacent to at least one of both ends of the conductive spring in the elastic matrix.
  • the present invention also provides an anisotropic conductive sheet characterized in that a through hole is formed in the central portion of the conductive plate.
  • a method of manufacturing a conductive elastic member including: providing an elastic matrix, a conductive spring disposed in the elastic matrix, and a plurality of conductive particles arranged in the thickness direction of the elastic matrix, A conductive contact disposed at a higher density than the central portion of the elastic matrix is provided.
  • the present invention has the advantage that the conductive particles can be concentrated around the wire material of the conductive spring, thereby reducing the amount of conductive particles and enhancing the conductivity of the contact portion. More specifically, conductive powder concentrated intensively around the wire forming the conductive spring fills the space between the wires of the conductive spring, so that the elongated conductive path by the conductive spring is changed to a short, thick conductive path, The conductivity is improved.
  • FIG. 1 and 2 are views showing an anisotropic conductive sheet of a test socket according to the prior art.
  • FIG. 3 is a view showing an anisotropic conductive sheet according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing a change in the contact portion according to the pressure applied in the thickness direction.
  • FIG. 5 is a view showing an anisotropic conductive sheet according to another embodiment of the present invention.
  • FIG. 6 is a view showing an anisotropic conductive sheet according to another embodiment of the present invention.
  • FIG. 7 is a view showing an anisotropic conductive sheet according to another embodiment of the present invention.
  • FIG. 3 is a view showing an anisotropic conductive sheet according to an embodiment of the present invention.
  • the anisotropic conductive sheet 100 serves to electrically connect the contact pad 4 of the inspection apparatus 3 and the terminal 2 of the semiconductor element 1.
  • the anisotropic conductive sheet 100 has conductivity in a thickness direction at positions corresponding to the contact pads 4 of the inspection apparatus 3 and the terminals 2 of the semiconductor element 1. However, it does not have conductivity in the direction orthogonal to the thickness direction.
  • the anisotropic conductive sheet 100 includes a contact portion 110 and an insulating portion 115.
  • the contact portions 110 are disposed at positions corresponding to the terminals 2 of the semiconductor element 1 and the contact pads 4 of the inspection apparatus 3, respectively.
  • the contact portion 110 has electrical conductivity in the thickness direction.
  • the contact portion 110 includes an elastic matrix 111, a conductive spring 113, and conductive particles 112.
  • the contact portion 110 may be integrally formed with the insulating portion 115 or may be formed to be detachable from the insulating portion 115. In the case of being formed so as to be detachable from the insulating portion 115, there is an advantage that only the contact portion 115 in which a defect has occurred can be replaced.
  • the elastic matrix 111 is generally cylindrical.
  • the elastic matrix 111 serves to support the conductive spring 113 and the conductive particles 112.
  • the contact portion 110 is elastically deformed at the time of measurement to reduce the pressure applied to the terminal 2 and the contact pad 4 and to bring the contact portion 110 into close contact with the terminal 2 and the contact pad 4.
  • the elastic matrix 111 can be formed of various kinds of high molecular materials.
  • a silicone rubber can be obtained by curing the liquid silicone rubber.
  • the hardness of the silicone rubber is suitably from 10 to 40 (shore A), and the elongation is about 300 to 700%. If the hardness exceeds 40, there is a fear that a micro die crack may be generated in the element 1.
  • the elongation is less than 300%, it acts as a restraining force against contraction and expansion of the contact portion 110, which causes a load increase.
  • restoration force may be weakened after restoration after expansion.
  • the conductive spring 113 is made of a material having excellent electrical conductivity.
  • the conductive spring 113 may be made of stainless steel, aluminum, bronze, nickel, gold, silver, palladium, or an alloy thereof. In addition, a plating layer having high conductivity may be provided.
  • the conductive spring 113 may be in the form of a coil spring formed by spirally winding a wire.
  • the conductive spring 113 preferably has an outer diameter equal to or slightly smaller than the diameter of the elastic matrix 111.
  • the length of the conductive spring 113 may be equal to the thickness of the insulating portion 115 or may be longer than the thickness of the insulating portion 115.
  • the outer diameter of the conductive spring 113 is about 10% larger than the size of the terminal 2 of the semiconductor element 1. [ If the outer diameter is smaller than this, there is a problem that the electrical conductivity is lowered and the spring constant is increased, leading to an increase in load. If the outer diameter is larger than this, interference may occur in the adjacent terminal 2.
  • the spring constant is appropriate to be 30 or less. When the spring constant exceeds 30, there is a fear of damage to the measured object.
  • the effective number of turns of the coil spring is about once per 0.128 mm. If it is smaller than this, there is a possibility that the spring constant increases and the load is increased.
  • the conductive particles 112 are arranged in the thickness direction of the elastic matrix 111.
  • the conductive particles 112 together with the conductive springs 113 impart conductivity to the anisotropic conductive sheet 100 in the thickness direction. If pressure is applied in the direction in which the terminals 2 of the semiconductor element 1 and the contact pads 4 of the inspection apparatus 3 are brought close to each other for inspection of the semiconductor element 1, 100) is compressed in the thickness direction. And the conductive particles 112 are brought close to each other, thereby further increasing the electric conductivity.
  • the conductive particles 112 may be embodied as a single conductive metal such as iron, copper, zinc, chromium, nickel, silver, cobalt, aluminum, or the like or alloys of two or more of these metal materials.
  • the conductive particles 112 may be formed by a method of coating the surface of the core metal with a metal such as gold, which is excellent in conductivity.
  • the conductive particles 112 are not evenly distributed in the elastic matrix 111, but are arranged at different densities according to positions. That is, the conductive particles 112 are arranged at a high density around the periphery of the wire member constituting the electrically conductive spring 113, that is, around the wire member, thereby filling the space between the wire members. In addition, the conductive particles 112 are arranged more densely at both ends of the elastic matrix 111 than at the center of the elastic matrix 111. [ As a result, the electrically conductive spring 113 and the conductive particles 112 together form a generally cylindrical shape.
  • the conductive particles 112 when the pressure is applied, the conductive particles 112 are pushed toward the central portion of the elastic matrix 111 having a low density of the conductive particles 112, The conductive particles 112 also contact each other, further increasing the contact area. As a result, the electric conductivity is further increased.
  • the insulating portion 115 serves to insulate adjacent contact portions 110 from each other. It also serves to support the contact portions 110.
  • the insulating portion 115 can be used without any particular limitation if it is an insulating material having elasticity.
  • diene-type rubbers such as silicone, polybutadiene, polyisoprene, SBR, NBR, etc., and their hydrogen compounds. They may also be embodied as block copolymers such as styrene butadiene blocks, copolymers, styrene isoprene block copolymers, etc., and their hydrogen compounds. It may also be embodied with chloroprene, urethane rubber, polyethylene rubber, epichlorohydrin rubber, ethylene-propylene copolymer, ethylene propylene diene copolymer and the like.
  • a metal frame can be coupled to the periphery of the insulating portion 115.
  • the metal frame is formed with a guide hole into which a guide pin provided in the inspection apparatus 3 is inserted.
  • the guide pin and the guide hole are used to align the anisotropic sheet with respect to the inspection apparatus 3.
  • the anisotropic conductive sheet according to the present embodiment includes a contact portion 210 and an insulating portion 215.
  • the contact portion 210 includes an elastic matrix 211, a conductive spring 213, and conductive particles 212.
  • the present embodiment is different from the embodiment shown in FIG. 3 in that the length of the contact portion 210 is longer than the thickness of the insulating portion 215.
  • the ratio of the thickness t of the insulating portion 215 to the length l of the contact portion 210 may be 0.7 or more and less than 0.9.
  • both ends of the contact portion 210 may protrude, and only one of both ends may protrude.
  • the present embodiment having such a characteristic configuration can prevent the insulating portion 215 from contacting the semiconductor element 1 at the time of inspection so that the semiconductor element 1 is contaminated or the semiconductor element 1 and the insulating portion 215) can be prevented. Since the contact portion 210 of the present invention includes the conductive spring 213, it is easy to increase the thickness of the contact portion 210 as compared with the insulating portion 215.
  • the anisotropic conductive sheet according to the present embodiment includes a contact portion 310 and an insulating portion 315.
  • the contact portion 310 includes an elastic matrix 311, a conductive spring 313, and conductive particles 312.
  • an hourglass-shaped coil spring 313 is used unlike the embodiment shown in FIG.
  • the present embodiment is advantageous in that a smooth connection state can be maintained even when misalignment occurs between the terminal 2 and the contact pad 4 because the contact portion 310 can be made more easily in the direction perpendicular to the thickness direction .
  • the anisotropic conductive sheet according to the present embodiment includes a contact portion 410 and an insulating portion 415.
  • the contact portion 410 includes an elastic matrix 411, a conductive spring 413, and conductive particles 412.
  • the present embodiment further includes conductive plates 416 that are provided adjacent to the upper and lower ends of the coil spring 413, unlike the embodiment shown in Fig. Through holes are formed in the conductive plates 416, respectively.
  • the through holes are a passage through which the conductive particles 412 and the elastic matrix 411 can pass.
  • This embodiment has an advantage that the terminal 2 and the contact pad 4 can be prevented from being damaged by the tip portion of the coil spring 413. It is also advantageous that the conductive plates 416 can be in direct contact with the terminals 2 and the contact pads 4 or through the conductive particles 412 disposed therebetween to increase the current capacity.
  • the conductive plates are shown as being disposed at both ends of the coil spring in Fig. 7, they may be disposed only on one of the upper end and the lower end.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Measuring Leads Or Probes (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Connecting Device With Holders (AREA)

Abstract

The present invention relates to an anisotropic conductive sheet used for a test socket or the like used to inspect a semiconductor element or the like and, more particularly, to an anisotropic conductive sheet comprising: a plurality of contact portions comprising conductive springs and conductive powder; and an insulating portion for supporting adjacent contact portions while insulating the same. The present invention provides an anisotropic conductive sheet arranged between an element (inspection target) and an inspection device so as to electrically connect a terminal of the element and a contact pad of the inspection device to each other. The anisotropic conductive sheet comprises: a plurality of conductive portions which are positioned to correspond to the terminal of the element and to the contact pad of the inspection device, and which have electric conductivity in the thickness direction; and an insulating portion which insulates adjacent contact portions from each other, and which supports the contact portions. Each contact portion comprises an elastic matrix, a conductive spring arranged inside the elastic matrix, and multiple conductive particles arranged in the thickness direction of the elastic matrix. The present invention is characterized in that the conductive particles are arranged on the peripheral portion of a wire member that constitutes the conductive spring at a density higher than in the case of the center portion of the elastic matrix. The present invention is advantageous in that, by arranging the conductive particles on the peripheral portion of the wire member that constitutes the conductive spring in a concentrated manner, the conductivity of the contact portions can be increased while reducing the amount of conductive particles.

Description

전도성 접촉부 및 이를 포함하는 이방 전도성 시트Conductive contact and anisotropically conductive sheet comprising the same
본 발명은 반도체 소자 등의 검사에 사용되는 테스트용 소켓 등에 사용되는 이방 전도성 시트에 관한 것으로서, 더욱 상세하게는 전도성 스프링 및 전도성 파우더를 구비한 복수의 접촉부와 인접한 접촉부들을 절연시키며 지지하는 절연부를 구비한 이방 전도성 시트에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anisotropic conductive sheet for use in testing a semiconductor device or the like, and more particularly, to an anisotropic conductive sheet used for inspecting semiconductor devices and the like, and more particularly to an anisotropic conductive sheet having a plurality of contact portions having conductive springs and conductive powder and insulating portions for insulating and supporting adjacent contact portions To an anisotropic conductive sheet.
반도체 소자가 제조되면, 제조된 반도체 소자에 대한 성능 검사가 필요하다. 반도체 소자의 검사에는 검사 장치의 접촉 패드와 반도체 소자의 단자를 전기적으로 연결하는 테스트용 소켓이 필요하다.Once a semiconductor device is fabricated, performance testing of the fabricated semiconductor device is needed. A test socket for electrically connecting a contact pad of an inspection apparatus and a terminal of a semiconductor element is required for inspection of a semiconductor element.
테스트용 소켓 중에서 전도성 파우더를 실리콘 고무의 길이 방향으로 배치한 접촉부와 인접한 접촉부들을 절연시키며 지지하는 절연부를 구비한 이방 전도성 시트를 구비한 테스트용 소켓은 기계적인 충격이나 변형을 흡수하여 유연한 접속이 가능하며, 제조 비용이 저렴하다는 장점이 있다.The test socket with the anisotropically conductive sheet having the contact portion in which the conductive powder is arranged in the longitudinal direction of the silicone rubber and the insulating portion which insulates and supports the adjacent contact portions among the test socket is absorbed by the mechanical shock or deformation, And the manufacturing cost is low.
도 1은 종래 기술의 테스트용 소켓의 이방 전도성 시트를 나타내는 도면이다. 종래 기술의 테스트용 소켓의 이방 전도성 시트(10)는 반도체 소자(1)의 단자(2)와 접촉하는 접촉부(11)와 인접한 접촉부(11)들을 절연시키며 지지하는 절연부(15)로 구성된다. 접촉부(11)의 상단부와 하단부는 각각 반도체 소자(1)의 단자(2)와 반도체 검사 장치(3)의 접촉 패드(4)와 접촉하여, 단자(2)와 접촉 패드(4)를 전기적으로 연결한다. 접촉부(11)는 실리콘 수지에 크기가 작은 구형의 전도성 입자(12)들을 혼합하여 굳힌 것으로서 전기가 흐르는 도체로 작용한다.1 is a view showing an anisotropic conductive sheet of a test socket of the prior art. The anisotropic conductive sheet 10 of the prior art test socket comprises a contact portion 11 which contacts the terminal 2 of the semiconductor element 1 and an insulating portion 15 which insulates and supports the adjacent contact portions 11 . The upper end portion and the lower end portion of the contact portion 11 come into contact with the terminal 2 of the semiconductor element 1 and the contact pad 4 of the semiconductor inspecting apparatus 3 to electrically connect the terminal 2 and the contact pad 4 electrically Connect. The contact portion 11 is hardened by mixing spherical conductive particles 12 having a small size into a silicone resin, and functions as a conductor through which electricity flows.
도시하지 않았으나, 이방 전도성 시트(10)의 주변부에는 금속 프레임이 결합된다. 금속 프레임에는 검사 장치(3)의 가이드 핀(미도시)에 대응하는 가이드 홀이 형성되어 있다. 가이드 핀과 가이드 홀은 테스트용 소켓을 검사 장치(3)에 대해서 정렬하는데 사용된다.Although not shown, a metal frame is coupled to the peripheral portion of the anisotropic conductive sheet 10. A guide hole corresponding to a guide pin (not shown) of the inspection apparatus 3 is formed in the metal frame. The guide pin and the guide hole are used to align the test socket with respect to the inspection apparatus 3. [
이방 전도성 시트(10)의 접촉부(11)는 반도체 소자(1)의 검사를 위한 접촉시 상하로 압력을 받는다. 접촉부(11)에 압력이 가해지면, 접촉부(11)의 양단부의 전도성 입자(12)는 아래로 밀려나고 중단부의 전도성 입자(12)는 옆으로 조금씩 밀려난다. 따라서 수많은 검사를 수행한 후에는 구형 전도성 입자(12)가 접촉부(11)에서 이탈하여, 이방 전도성 시트(10)의 전기적, 기계적인 특성이 떨어지는 문제점이 있다. 즉, 종래의 이방 전도성 시트(10)는 수명이 짧다는 문제가 있었다.The contact portion 11 of the anisotropic conductive sheet 10 is subjected to upward and downward pressures upon contact for inspection of the semiconductor element 1. When pressure is applied to the contact portion 11, the conductive particles 12 at both ends of the contact portion 11 are pushed down and the conductive particles 12 at the middle portion are pushed to the side. Therefore, after performing a number of inspections, the spherical conductive particles 12 are separated from the contact portions 11, and the electrical and mechanical characteristics of the anisotropic conductive sheet 10 deteriorate. That is, the conventional anisotropic conductive sheet 10 has a short life.
이러한 문제를 해결하기 위해서, 한국등록특허 제10-1493898호 등에는 도 2에 도시된 바와 같이, 실리콘 고무 매트릭스(21)의 내부에 전도성 스프링(23)을 배치하고, 전도성 스프링(23)이 배치된 공간 이외의 공간에는 전도성 입자(22)들을 배치하여 접촉부(20)를 형성하고, 인접한 접촉부(20)들을 실리콘 고무(25)를 이용하여 절연시키는 동시에 지지하는 반도체 테스트용 소켓이 개시되어 있다. 이러한 반도체 테스트용 소켓은 전도성 스프링에 의해서 수명이 연장되고, 전류용량이 증대된다는 장점이 있다.In order to solve such a problem, Korean Patent Registration No. 10-1493898, etc., as shown in Fig. 2, a conductive spring 23 is disposed inside a silicone rubber matrix 21, and a conductive spring 23 is disposed Discloses a semiconductor test socket in which conductive particles 22 are arranged in a space other than a space in which a contact portion 20 is formed and adjacent contact portions 20 are insulated and supported by using a silicone rubber 25. [ Such a semiconductor test socket has an advantage that the life span is extended by the conductive spring and the current capacity is increased.
[선행기술문헌][Prior Art Literature]
일본등록특허 제04379949호Japanese Patent No. 04379949
한국등록실용신안 제20-0312740호Korean Registered Utility Model No. 20-0312740
한국등록특허 제10-1493898호Korean Patent No. 10-1493898
한국등록특허 제10-1566995호Korean Patent No. 10-1566995
한국등록특허 제10-1493901호Korean Patent No. 10-1493901
그런데 최근에는 반도체 소자의 단자 사이의 간격이 좁아지면서, 이방 전도성 시트에서 접촉부 사이의 간격도 좁아지고, 접촉부의 직경도 작아지고 있다. 접촉부의 직경이 작아지면, 접촉부에 포함되는 전도성 입자들의 크기와 양도 줄어들어야 한다. 따라서 전도성 입자들의 양을 줄이면서도 접촉부의 전도성을 높일 수 있는 방법이 필요하다.In recent years, however, as the distance between the terminals of the semiconductor elements becomes narrower, the distance between the contact portions in the anisotropic conductive sheet becomes narrower, and the diameter of the contact portion becomes smaller. As the diameter of the contact decreases, the size and amount of conductive particles included in the contact must be reduced. Therefore, there is a need for a method that can increase the conductivity of the contact portion while reducing the amount of conductive particles.
본 발명은 이러한 요구에 대응하기 위한 것으로서, 전도성 입자들의 양을 줄이면서도 접촉부의 전도성을 높일 수 있는 이방 전도성 시트를 제공하는 것을 목적으로 한다.An object of the present invention is to provide an anisotropic conductive sheet which can reduce the amount of conductive particles and increase the conductivity of the contact portion.
또한, 본 발명은 이방 전도성 시트 등에 장착되어, 소자의 단자 및 검사 장치의 접촉 패드를 전기적으로 연결하는 접촉부를 제공하는 것을 목적으로 한다.It is also an object of the present invention to provide a contact portion which is mounted on an anisotropically conductive sheet or the like to electrically connect the terminals of the element and the contact pads of the inspection apparatus.
상술한 목적을 달성하기 위해서, 본 발명은 검사 대상인 소자와 검사 장치 사이에 배치되어 상기 소자의 단자와 검사 장치의 접촉 패드를 서로 전기적으로 연결하는 이방 전도성 시트를 제공한다.In order to achieve the above object, the present invention provides an anisotropic conductive sheet which is disposed between an element to be inspected and an inspection apparatus and electrically connects the terminals of the element and the contact pads of the inspection apparatus to each other.
이방 전도성 시트는 상기 소자의 단자 및 검사 장치의 접촉 패드에 대응하는 위치에 배치되며, 두께 방향으로 전기 전도성을 갖는 복수의 접촉부와, 인접한 접촉부들을 서로 절연시키며, 접촉부들을 지지하는 절연부를 포함한다.The anisotropically conductive sheet includes a plurality of contact portions disposed at positions corresponding to the terminals of the device and the contact pads of the device and having electrical conductivity in the thickness direction, and an insulating portion for insulating adjacent contact portions from each other and supporting the contact portions.
그리고 상기 접촉부는, 탄성 매트릭스와, 상기 탄성 매트릭스 내에 배치되는 전도성 스프링과, 상기 탄성 매트릭스의 두께방향으로 배열되는 다수의 전도성 입자들을 포함한다.The contact portion includes an elastic matrix, a conductive spring disposed in the elastic matrix, and a plurality of conductive particles arranged in the thickness direction of the elastic matrix.
본 발명의 특징적 구성은, 상기 전도성 입자들이 상기 전도성 스프링을 이루는 선재의 주변부에 상기 탄성 매트릭스의 중심부에 비해 고밀도로 배치되는 것이다. 이러한 특징적인 구성에 의해서, 본 발명은 전도성 입자들의 양을 줄이면서도 접촉부의 전도성을 높일 수 있다는 장점이 있다. The characteristic feature of the present invention is that the conductive particles are arranged at a higher density than the central portion of the elastic matrix at the periphery of the wire forming the conductive spring. With this characteristic construction, the present invention has an advantage that the conductivity of the contact portion can be increased while reducing the amount of conductive particles.
또한, 본 발명은 상기 전도성 입자들이 상기 탄성 매트릭스의 중심부에 비해 상기 탄성 매트릭스의 양단부에 더 고밀도로 배치되는 것을 특징으로 하는 이방 전도성 시트를 제공한다.The present invention also provides an anisotropic conductive sheet characterized in that the conductive particles are disposed at both ends of the elastic matrix at a higher density than a central portion of the elastic matrix.
본 발명에 있어서, 상기 전도성 스프링은 코일 스프링일 수 있다.In the present invention, the conductive spring may be a coil spring.
또한, 추가적인 특징적 구성으로. 상기 절연부의 두께와 상기 접촉부의 길이의 비는 0.7 이상 0.9 미만일 수 있다. 이러한 특징적인 구성에 의해서, 검사시에 절연부가 반도체 소자와 접촉되는 것을 방지할 수 있기 때문에 반도체 소자가 오염되거나 반도체 소자와 절연부가 붙는 현상을 방지할 수 있다는 장점이 있다. 본 발명의 접촉부에는 전도성 스프링이 포함되어 있으므로, 절연부에 비해서 접촉부의 두께를 두껍게 하기가 용이하다.Also, with an additional characteristic configuration. The ratio of the thickness of the insulating portion to the length of the contact portion may be 0.7 or more and less than 0.9. According to this characteristic configuration, since the insulating portion can be prevented from being in contact with the semiconductor element at the time of inspection, there is an advantage that the semiconductor element is prevented from being contaminated or the semiconductor element and the insulating portion are prevented from adhering to each other. Since the contact portion of the present invention includes the conductive spring, it is easy to make the contact portion thicker than the insulating portion.
또한, 상기 전도성 스프링은 중심에서 양단부로 진행할수록 지름이 커지는 모래시계 형태의 코일 스프링인 것을 특징으로 하는 이방 전도성 시트를 제공한다. 이러한 특징적인 구성에 의해서, 접촉부가 두께 방향과 수직인 방향으로 좀 더 용이하게 휠 수 있어서 단자와 접촉 패드 사이에 오정렬이 발생할 경우에도 원활한 접속 상태를 유지할 수 있다는 장점이 있다.Further, the conductive spring is an hourglass-shaped coil spring having a larger diameter as it goes from the center to the both ends, thereby providing an anisotropic conductive sheet. According to this characteristic configuration, the contact portion can be made more easily in the direction perpendicular to the thickness direction, so that even when misalignment occurs between the terminal and the contact pad, a smooth connection state can be maintained.
또한, 본 발명은 상기 탄성 매트릭스 내부에, 상기 전도성 스프링의 양단부 중 적어도 하나에 인접하여 배치되는 전도성 플레이트를 더 포함하는 것을 특징으로 하는 이방 전도성 시트를 제공한다. 이러한 특징적인 구성에 의해서, 전도성 스프링의 상대적으로 날카로운 첨단부에 의해서 소자의 단자 및 검사 장치의 접촉 패드가 손상되는 것을 방지할 수 있다는 장점이 있다.The present invention further provides an anisotropic conductive sheet, wherein the conductive plate is disposed adjacent to at least one of both ends of the conductive spring in the elastic matrix. This characteristic feature has the advantage that the terminals of the device and the contact pads of the testing device can be prevented from being damaged by the relatively sharp tip of the conductive spring.
또한, 상기 전도성 플레이트의 중심부에는 관통구멍이 형성된 것을 특징으로 하는 이방 전도성 시트를 제공한다.The present invention also provides an anisotropic conductive sheet characterized in that a through hole is formed in the central portion of the conductive plate.
또한, 본 발명에 따르면, 탄성 매트릭스와, 상기 탄성 매트릭스 내에 배치되는 전도성 스프링과, 상기 탄성 매트릭스의 두께방향으로 배열되는 다수의 전도성 입자들을 포함하며, 상기 전도성 입자들은 상기 전도성 스프링을 이루는 선재의 주변부에 상기 탄성 매트릭스의 중심부에 비해 고밀도로 배치되는 전도성 접촉부가 제공된다.According to another aspect of the present invention, there is provided a method of manufacturing a conductive elastic member, the method including: providing an elastic matrix, a conductive spring disposed in the elastic matrix, and a plurality of conductive particles arranged in the thickness direction of the elastic matrix, A conductive contact disposed at a higher density than the central portion of the elastic matrix is provided.
본 발명은 전도성 입자들을 전도성 스프링을 이루는 선재의 주변에 집중적으로 배치함으로써, 전도성 입자들의 양을 줄이면서도 접촉부의 전도성을 높일 수 있다는 장점이 있다. 좀 더 자세히 설명하면, 전도성 스프링을 이루는 선재의 주변에 집중적으로 배치된 전도성 파우더가 전도성 스프링의 선재 사이의 공간을 채움으로써, 전도성 스프링에 의한 가늘고 긴 전도성 경로가 짧고 두꺼운 전도성 경로로 변경되어 접촉부의 전도성이 향상된다는 장점이 있다.The present invention has the advantage that the conductive particles can be concentrated around the wire material of the conductive spring, thereby reducing the amount of conductive particles and enhancing the conductivity of the contact portion. More specifically, conductive powder concentrated intensively around the wire forming the conductive spring fills the space between the wires of the conductive spring, so that the elongated conductive path by the conductive spring is changed to a short, thick conductive path, The conductivity is improved.
또한, 전도성 입자들이 집중되어, 접촉부의 단락에 의한 수명저하를 방지할 수 있다는 장점도 있다.In addition, there is an advantage that the conductive particles are concentrated and the service life can be prevented from being shortened due to short-circuiting of the contact portion.
도 1과 2는 종래기술에 따른 테스트용 소켓의 이방 전도성 시트를 나타내는 도면이다.1 and 2 are views showing an anisotropic conductive sheet of a test socket according to the prior art.
도 3은 본 발명의 일 실시예에 따른 이방 전도성 시트를 나타내는 도면이다.3 is a view showing an anisotropic conductive sheet according to an embodiment of the present invention.
도 4는 두께 방향으로 가해지는 압력에 따른 접촉부에 변화를 나타낸 단면도이다.4 is a cross-sectional view showing a change in the contact portion according to the pressure applied in the thickness direction.
도 5는 본 발명의 다른 실시예에 따른 이방 전도성 시트를 나타내는 도면이다.5 is a view showing an anisotropic conductive sheet according to another embodiment of the present invention.
도 6은 본 발명의 또 다른 실시예에 따른 이방 전도성 시트를 나타내는 도면이다.6 is a view showing an anisotropic conductive sheet according to another embodiment of the present invention.
도 7은 본 발명의 또 다른 실시예에 따른 이방 전도성 시트를 나타내는 도면이다.7 is a view showing an anisotropic conductive sheet according to another embodiment of the present invention.
이하, 첨부된 도면들을 참조하여 본 발명의 실시예를 상세히 설명하기로 한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 도면상의 동일 부호는 동일한 요소를 지칭한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. It will be apparent to those skilled in the art that the present invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, It is provided to let you know. Like reference numerals refer to like elements throughout.
도 3은 본 발명의 일 실시예에 따른 이방 전도성 시트를 나타내는 도면이다.3 is a view showing an anisotropic conductive sheet according to an embodiment of the present invention.
이방 전도성 시트(100)는 검사 장치(3)의 접촉 패드(4)와 반도체 소자(1)의 단자(2)를 전기적으로 연결하는 역할을 한다. 이방 전도성 시트(100)는 두께방향으로, 검사 장치(3)의 접촉 패드(4) 및 반도체 소자(1)의 단자(2)에 대응하는 위치에서는 전도성을 가진다. 그러나 두께방향과 직교하는 방향으로는 전도성을 가지지 않는다.The anisotropic conductive sheet 100 serves to electrically connect the contact pad 4 of the inspection apparatus 3 and the terminal 2 of the semiconductor element 1. The anisotropic conductive sheet 100 has conductivity in a thickness direction at positions corresponding to the contact pads 4 of the inspection apparatus 3 and the terminals 2 of the semiconductor element 1. However, it does not have conductivity in the direction orthogonal to the thickness direction.
도 3에 도시된 바와 같이, 본 발명의 일 실시예에 따른 이방 전도성 시트(100)는 접촉부(110)와 절연부(115)를 포함한다. 접촉부(110)는 반도체 소자(1)의 단자(2) 및 검사 장치(3)의 접촉 패드(4)에 대응하는 위치에 각각 배치된다. 접촉부(110)는 두께 방향으로 전기 전도성을 갖는다.As shown in FIG. 3, the anisotropic conductive sheet 100 according to an embodiment of the present invention includes a contact portion 110 and an insulating portion 115. The contact portions 110 are disposed at positions corresponding to the terminals 2 of the semiconductor element 1 and the contact pads 4 of the inspection apparatus 3, respectively. The contact portion 110 has electrical conductivity in the thickness direction.
접촉부(110)는 탄성 매트릭스(111), 전도성 스프링(113), 전도성 입자(112)들을 포함한다. 접촉부(110)는 절연부(115)와 일체로 형성되거나, 절연부(115)로부터 분리 가능하도록 형성할 수 있다. 절연부(115)로부터 분리 가능하도록 형성할 경우에는 불량이 발생한 접촉부(115)만 따로 교체할 수 있다는 장점이 있다.The contact portion 110 includes an elastic matrix 111, a conductive spring 113, and conductive particles 112. The contact portion 110 may be integrally formed with the insulating portion 115 or may be formed to be detachable from the insulating portion 115. In the case of being formed so as to be detachable from the insulating portion 115, there is an advantage that only the contact portion 115 in which a defect has occurred can be replaced.
본 실시예에서, 탄성 매트릭스(111)는 대체로 원기둥 형태이다. 탄성 매트릭스(111)는 전도성 스프링(113) 및 전도성 입자(112)들을 지지하는 역할을 한다. 또한, 측정시에 탄성 변형되면서 단자(2) 및 접촉 패드(4)에 가해지는 압력을 감소시키면서, 접촉부(110)를 단자(2) 및 접촉 패드(4)에 밀착시키는 역할을 한다.In this embodiment, the elastic matrix 111 is generally cylindrical. The elastic matrix 111 serves to support the conductive spring 113 and the conductive particles 112. The contact portion 110 is elastically deformed at the time of measurement to reduce the pressure applied to the terminal 2 and the contact pad 4 and to bring the contact portion 110 into close contact with the terminal 2 and the contact pad 4. [
탄성 매트릭스(111)는 다양한 종류의 고분자 물질로 형성할 수 있다. 예를 들어, 실리콘 고무로 이루어질 수 있다. 실리콘 고무는 액상 실리콘 고무를 경화하여 얻을 수 있다. 실리콘 고무의 경도는 10~40(shore A)가 적당하며, 신율은 300~700% 정도가 적정하다. 경도가 40을 초과할 경우, 소자(1)에 마이크로 다이 크랙(micro die crack)이 발생하게 될 우려가 있다. 또한, 신율이 300% 미만일 경우, 접촉부(110)의 수축 팽창시에 이에 대한 억제력으로 작용하게 되므로 하중 증가의 원인이 되며, 신율이 700% 이상일 경우 팽창 후 복원시 복원력이 약화될 우려가 있다.The elastic matrix 111 can be formed of various kinds of high molecular materials. For example, a silicone rubber. The silicone rubber can be obtained by curing the liquid silicone rubber. The hardness of the silicone rubber is suitably from 10 to 40 (shore A), and the elongation is about 300 to 700%. If the hardness exceeds 40, there is a fear that a micro die crack may be generated in the element 1. [ In addition, when the elongation is less than 300%, it acts as a restraining force against contraction and expansion of the contact portion 110, which causes a load increase. When the elongation is 700% or more, restoration force may be weakened after restoration after expansion.
전도성 스프링(113)은 전기 전도성이 우수한 물질로 이루어진다. 전도성 스프링(113)은 스테인리스 스틸, 알루미늄, 청동, 니켈, 금, 은, 팔라듐 등 또는 이들의 합금으로 이루어질 수 있다. 또한, 전도성이 높은 도금 층을 구비할 수도 있다. 전도성 스프링(113)은 선재를 나선형으로 감아서 만든 원통형의 코일 스프링 형태일 수 있다. 전도성 스프링(113)은 그 외경이 탄성 매트릭스(111)의 지름과 같거나, 약간 작은 것이 바람직하다. 그리고 전도성 스프링(113)의 길이는 절연부(115)의 두께와 같거나, 절연부(115)의 두께에 비해서 길 수 있다.The conductive spring 113 is made of a material having excellent electrical conductivity. The conductive spring 113 may be made of stainless steel, aluminum, bronze, nickel, gold, silver, palladium, or an alloy thereof. In addition, a plating layer having high conductivity may be provided. The conductive spring 113 may be in the form of a coil spring formed by spirally winding a wire. The conductive spring 113 preferably has an outer diameter equal to or slightly smaller than the diameter of the elastic matrix 111. The length of the conductive spring 113 may be equal to the thickness of the insulating portion 115 or may be longer than the thickness of the insulating portion 115.
전도성 스프링(113)의 외경은 반도체 소자(1)의 단자(2)의 크기에 비해 10% 정도 더 큰 것이 바람직하다. 외경이 이보다 작으면, 전기 전도도가 떨어지고 스프링 상수가 증가하여 하중 증가로 이어진다는 문제점이 있다. 외경이 이보다 더 크면, 인접 단자(2)에 간섭이 생길 수 있다.It is preferable that the outer diameter of the conductive spring 113 is about 10% larger than the size of the terminal 2 of the semiconductor element 1. [ If the outer diameter is smaller than this, there is a problem that the electrical conductivity is lowered and the spring constant is increased, leading to an increase in load. If the outer diameter is larger than this, interference may occur in the adjacent terminal 2.
또한, 스프링 상수는 30 이하가 적정한데, 스프링 상수가 30을 초과할 경우, 피측정물에 손상의 우려가 있다.In addition, the spring constant is appropriate to be 30 or less. When the spring constant exceeds 30, there is a fear of damage to the measured object.
또한, 코일 스프링의 유효 권수는 0.128㎜당 1회 정도가 적정하며, 이보다 작은 경우, 스프링 상수가 올라가 하중을 증가시킬 우려가 있으며, 이를 초과하는 경우, 최대 작동범위가 감소하는 문제가 있다.The effective number of turns of the coil spring is about once per 0.128 mm. If it is smaller than this, there is a possibility that the spring constant increases and the load is increased.
전도성 입자(112)들은 탄성 매트릭스(111)의 두께방향으로 배열된다. 전도성 입자(112)들은 전도성 스프링(113)과 함께 이방 전도성 시트(100)에 두께 방향으로 전도성을 부여한다. 반도체 소자(1)의 검사를 위해서 반도체 소자(1)의 단자(2)와 검사 장치(3)의 접촉 패드(4)가 가까워지는 방향으로 압력이 가해지면, 이들 사이에 배치되는 이방 전도성 시트(100)가 두께 방향으로 압축된다. 그리고 전도성 입자(112)들이 서로 가까워지면서 전기 전도도가 더욱 높아진다.The conductive particles 112 are arranged in the thickness direction of the elastic matrix 111. The conductive particles 112 together with the conductive springs 113 impart conductivity to the anisotropic conductive sheet 100 in the thickness direction. If pressure is applied in the direction in which the terminals 2 of the semiconductor element 1 and the contact pads 4 of the inspection apparatus 3 are brought close to each other for inspection of the semiconductor element 1, 100) is compressed in the thickness direction. And the conductive particles 112 are brought close to each other, thereby further increasing the electric conductivity.
전도성 입자(112)들은 철, 구리, 아연, 크롬, 니켈, 은, 코발트, 알루미늄 등과 같은 단일 도전성 금속재 또는 이들 금속재료 둘 이상의 합금재로 구현될 수 있다. 또한, 전도성 입자(112)들은 코어 금속의 표면을 전도성이 뛰어난 금과 같은 금속으로 코팅하는 방법으로 구현할 수도 있다.The conductive particles 112 may be embodied as a single conductive metal such as iron, copper, zinc, chromium, nickel, silver, cobalt, aluminum, or the like or alloys of two or more of these metal materials. In addition, the conductive particles 112 may be formed by a method of coating the surface of the core metal with a metal such as gold, which is excellent in conductivity.
도 4는 두께 방향으로 가해지는 압력에 따른 접촉부에 변화를 나타낸 단면도이다. 도 3과 4에 도시된 바와 같이, 본 발명에서, 전도성 입자(112)들은 탄성 매트릭스(111)에 골고루 배치되지 않으며, 위치별로 다른 밀도로 배치된다. 즉, 전기 전도성 스프링(113)을 이루는 선재의 주변부 즉, 선재의 둘레에 전도성 입자(112)들이 고밀도로 배치되어, 선재 사이의 공간을 채운다. 또한, 전도성 입자(112)들은 탄성 매트릭스(111)의 중심부에 비해 탄성 매트릭스(111)의 양단부에 더 고밀도로 배치된다. 결국, 전기 전도성 스프링(113)과 전도성 입자(112)들이 함께 대체로 원통 형태를 이루게 된다.4 is a cross-sectional view showing a change in the contact portion according to the pressure applied in the thickness direction. 3 and 4, in the present invention, the conductive particles 112 are not evenly distributed in the elastic matrix 111, but are arranged at different densities according to positions. That is, the conductive particles 112 are arranged at a high density around the periphery of the wire member constituting the electrically conductive spring 113, that is, around the wire member, thereby filling the space between the wire members. In addition, the conductive particles 112 are arranged more densely at both ends of the elastic matrix 111 than at the center of the elastic matrix 111. [ As a result, the electrically conductive spring 113 and the conductive particles 112 together form a generally cylindrical shape.
또한, 도 4에 도시된 바와 같이, 압력이 가해지면, 전도성 입자(112)들은 전도성 입자(112)들의 밀도가 낮은 탄성 매트릭스(111)의 중심부 방향으로 밀리면서, 압력이 낮을 때에는 서로 접촉하지 않던 전도성 입자(112)도 서로 접촉하여, 접촉면적이 더욱 증가한다. 그 결과 전기 전도도가 더욱 높아진다.4, when the pressure is applied, the conductive particles 112 are pushed toward the central portion of the elastic matrix 111 having a low density of the conductive particles 112, The conductive particles 112 also contact each other, further increasing the contact area. As a result, the electric conductivity is further increased.
절연부(115)는 인접한 접촉부(110)들을 서로 절연시키는 역할을 한다. 또한, 접촉부(110)들을 지지하는 역할도 한다. 절연부(115)는 탄성력이 있는 절연 재료라면 특별한 제한 없이 사용할 수 있다. 예를 들어, 실리콘, 폴리부타디엔, 폴리이소프렌, SBR, NBR 등 및 그들의 수소화합물과 같은 디엔형 고무로 구현될 수 있다. 또한, 스티렌부타디엔블럭, 코폴리머, 스티렌이소프렌블럭코폴리머 등 및 그들의 수소 화합물과 같은 블럭코 폴리머로 구현될 수도 있다. 또한, 클로로프렌, 우레탄 고무, 폴리에틸렌형 고무, 에피클로로히드린 고무, 에틸렌-프로필렌코폴리머, 에틸렌프로필렌디엔코폴리머 등으로 구현될 수도 있다.The insulating portion 115 serves to insulate adjacent contact portions 110 from each other. It also serves to support the contact portions 110. The insulating portion 115 can be used without any particular limitation if it is an insulating material having elasticity. For example, diene-type rubbers such as silicone, polybutadiene, polyisoprene, SBR, NBR, etc., and their hydrogen compounds. They may also be embodied as block copolymers such as styrene butadiene blocks, copolymers, styrene isoprene block copolymers, etc., and their hydrogen compounds. It may also be embodied with chloroprene, urethane rubber, polyethylene rubber, epichlorohydrin rubber, ethylene-propylene copolymer, ethylene propylene diene copolymer and the like.
도시하지 않았으나, 절연부(115)의 주변에는 금속 프레임이 결합될 수 있다. 금속 프레임은 검사 장치(3)에 설치된 가이드 핀이 삽입되는 가이드 홀이 형성되어 있다. 가이드 핀과 가이드 홀은 이방성 시트를 검사 장치(3)에 대해서 정렬하는데 사용된다.Although not shown, a metal frame can be coupled to the periphery of the insulating portion 115. The metal frame is formed with a guide hole into which a guide pin provided in the inspection apparatus 3 is inserted. The guide pin and the guide hole are used to align the anisotropic sheet with respect to the inspection apparatus 3. [
도 5는 본 발명의 다른 실시예에 따른 이방 전도성 시트를 나타내는 도면이다. 본 실시예에 따른 이방 전도성 시트는 접촉부(210)와 절연부(215)를 포함한다. 접촉부(210)는 탄성 매트릭스(211), 전도성 스프링(213), 전도성 입자(212)들을 포함한다.5 is a view showing an anisotropic conductive sheet according to another embodiment of the present invention. The anisotropic conductive sheet according to the present embodiment includes a contact portion 210 and an insulating portion 215. The contact portion 210 includes an elastic matrix 211, a conductive spring 213, and conductive particles 212.
본 실시예는 도 3에 도시된 실시예와 달리 절연부(215)의 두께에 비해서 접촉부(210)의 길이가 길다. 절연부(215)의 두께(t)와 접촉부(210)의 길이(l)의 비는 0.7 이상 0.9 미만일 수 있다. 도 5에 도시된 바와 같이, 접촉부(210)의 양단 모두 돌출될 수도 있으며, 양단 중 하나만 돌출될 수도 있다. 이러한 특징적인 구성을 가진 본 실시예는 검사시에 절연부(215)가 반도체 소자(1)와 접촉되는 것을 방지할 수 있기 때문에 반도체 소자(1)가 오염되거나 반도체 소자(1)와 절연부(215)가 붙는 현상을 방지할 수 있다는 장점이 있다. 본 발명의 접촉부(210)에는 전도성 스프링(213)이 포함되어 있으므로, 절연부(215)에 비해서 접촉부(210)의 두께를 두껍게 하기가 용이하다.The present embodiment is different from the embodiment shown in FIG. 3 in that the length of the contact portion 210 is longer than the thickness of the insulating portion 215. The ratio of the thickness t of the insulating portion 215 to the length l of the contact portion 210 may be 0.7 or more and less than 0.9. As shown in Fig. 5, both ends of the contact portion 210 may protrude, and only one of both ends may protrude. The present embodiment having such a characteristic configuration can prevent the insulating portion 215 from contacting the semiconductor element 1 at the time of inspection so that the semiconductor element 1 is contaminated or the semiconductor element 1 and the insulating portion 215) can be prevented. Since the contact portion 210 of the present invention includes the conductive spring 213, it is easy to increase the thickness of the contact portion 210 as compared with the insulating portion 215.
도 6은 본 발명의 또 다른 실시예에 따른 이방 전도성 시트를 나타내는 도면이다. 본 실시예에 따른 이방 전도성 시트는 접촉부(310)와 절연부(315)를 포함한다. 접촉부(310)는 탄성 매트릭스(311), 전도성 스프링(313), 전도성 입자(312)들을 포함한다.6 is a view showing an anisotropic conductive sheet according to another embodiment of the present invention. The anisotropic conductive sheet according to the present embodiment includes a contact portion 310 and an insulating portion 315. The contact portion 310 includes an elastic matrix 311, a conductive spring 313, and conductive particles 312.
본 실시예는 도 3에 도시된 실시예와 달리 모래시계 형태의 코일 스프링(313)을 사용한다. 본 실시예는 접촉부(310)가 두께 방향과 수직인 방향으로 좀 더 용이하게 휠 수 있어서 단자(2)와 접촉 패드(4) 사이에 오정렬이 발생할 경우에도 원활한 접속 상태를 유지할 수 있다는 장점이 있다.In this embodiment, an hourglass-shaped coil spring 313 is used unlike the embodiment shown in FIG. The present embodiment is advantageous in that a smooth connection state can be maintained even when misalignment occurs between the terminal 2 and the contact pad 4 because the contact portion 310 can be made more easily in the direction perpendicular to the thickness direction .
도 7은 본 발명의 또 다른 실시예에 따른 이방 전도성 시트를 나타내는 도면이다. 본 실시예에 따른 이방 전도성 시트는 접촉부(410)와 절연부(415)를 포함한다. 접촉부(410)는 탄성 매트릭스(411), 전도성 스프링(413), 전도성 입자(412)들을 포함한다.7 is a view showing an anisotropic conductive sheet according to another embodiment of the present invention. The anisotropic conductive sheet according to the present embodiment includes a contact portion 410 and an insulating portion 415. The contact portion 410 includes an elastic matrix 411, a conductive spring 413, and conductive particles 412.
본 실시예는 도 3에 도시된 실시예와 달리 코일 스프링(413)의 상단과 하단에 인접하여 설치되는 전도성 플레이트(416)들을 더 포함한다. 전도성 플레이트(416)들에는 관통구멍들이 각각 형성되어 있다. 관통구멍들은 전도성 입자(412)들과 탄성 매트릭스(411)가 통과할 수 있는 통로가 된다.The present embodiment further includes conductive plates 416 that are provided adjacent to the upper and lower ends of the coil spring 413, unlike the embodiment shown in Fig. Through holes are formed in the conductive plates 416, respectively. The through holes are a passage through which the conductive particles 412 and the elastic matrix 411 can pass.
본 실시예는 코일 스프링(413)의 첨단부에 의해서 단자(2)와 접촉 패드(4)가 손상되는 것을 방지할 수 있다는 장점이 있다. 또한, 전도성 플레이트(416)들과 단자(2) 및 접촉 패드(4)가 직접 접촉하거나, 사이에 배치된 전도성 입자(412)들을 통해서 접촉하여 전류용량이 증대될 수 있다는 장점도 있다.This embodiment has an advantage that the terminal 2 and the contact pad 4 can be prevented from being damaged by the tip portion of the coil spring 413. It is also advantageous that the conductive plates 416 can be in direct contact with the terminals 2 and the contact pads 4 or through the conductive particles 412 disposed therebetween to increase the current capacity.
이상에서는 도면 및 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허청구범위에 기재된 본 발명의 기술적 사상으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit and scope of the invention as defined in the appended claims. You will understand.
예를 들어, 도 7에는 전도성 플레이트들이 코일 스프링의 양단에 모두 배치되는 것으로 도시되어 있으나, 상단 또는 하단 중 한쪽에만 배치될 수도 있다.For example, although the conductive plates are shown as being disposed at both ends of the coil spring in Fig. 7, they may be disposed only on one of the upper end and the lower end.

Claims (13)

  1. 검사 대상인 소자와 검사 장치 사이에 배치되어 상기 소자의 단자와 검사 장치의 접촉 패드를 서로 전기적으로 연결하는 이방 전도성 시트로서, 상기 소자의 단자 및 검사 장치의 접촉 패드에 대응하는 위치에 배치되며, 두께 방향으로 전기 전도성을 갖는 복수의 접촉부와, 인접한 접촉부들을 서로 절연시키며, 접촉부들을 지지하는 절연부를 포함하는 이방 전도성 시트에 있어서,An anisotropically conductive sheet disposed between an element to be inspected and an inspection apparatus and electrically connecting the terminals of the element and the contact pads of the inspection apparatus, the anisotropic conductive sheet being disposed at a position corresponding to the terminals of the element and the contact pads of the inspection apparatus, A method of manufacturing an anisotropic conductive sheet comprising a plurality of contact portions having electrical conductivity in a direction perpendicular to a surface of a substrate and insulating portions for supporting adjacent contact portions,
    상기 접촉부는,The contact portion
    탄성 매트릭스와, 상기 탄성 매트릭스 내에 배치되는 전도성 스프링과, 상기 탄성 매트릭스의 두께방향으로 배열되는 다수의 전도성 입자들을 포함하며,An elastic matrix, a conductive spring disposed in the elastic matrix, and a plurality of conductive particles arranged in the thickness direction of the elastic matrix,
    상기 전도성 입자들은 상기 전도성 스프링을 이루는 선재의 주변부에 상기 탄성 매트릭스의 중심부에 비해 고밀도로 배치되는 것을 특징으로 하는 이방 전도성 시트.Wherein the conductive particles are disposed at a peripheral portion of the wire member forming the conductive spring at a higher density than the central portion of the elastic matrix.
  2. 제1항에 있어서,The method according to claim 1,
    상기 전도성 입자들은 상기 탄성 매트릭스의 중심부에 비해 상기 탄성 매트릭스의 양단부에 더 고밀도로 배치되는 것을 특징으로 하는 이방 전도성 시트.Wherein the conductive particles are disposed more densely at both ends of the elastic matrix than at the central portion of the elastic matrix.
  3. 제1항에 있어서,The method according to claim 1,
    상기 전도성 스프링은 코일 스프링인 것을 특징으로 하는 이방 전도성 시트.Wherein the conductive spring is a coil spring.
  4. 제1항에 있어서,The method according to claim 1,
    상기 절연부의 두께와 상기 접촉부의 길이의 비는 0.7 이상 0.9 미만인 것을 특징으로 하는 이방 전도성 시트.Wherein the ratio of the thickness of the insulating portion to the length of the contact portion is 0.7 or more and less than 0.9.
  5. 제1항에 있어서,The method according to claim 1,
    상기 전도성 스프링은 중심에서 양단부로 진행할수록 지름이 커지는 모래시계 형태의 코일 스프링인 것을 특징으로 하는 이방 전도성 시트.Wherein the conductive spring is an hourglass shaped coil spring having a larger diameter as it goes from the center to both ends.
  6. 제1항에 있어서,The method according to claim 1,
    상기 탄성 매트릭스 내부에, 상기 전도성 스프링의 양단부 중 적어도 하나에 인접하여 배치되는 전도성 플레이트를 더 포함하는 것을 특징으로 하는 이방 전도성 시트.Further comprising a conductive plate disposed adjacent to at least one of both ends of the conductive spring inside the elastic matrix.
  7. 제6항에 있어서,The method according to claim 6,
    상기 전도성 플레이트의 중심부에는 관통구멍이 형성된 것을 특징으로 하는 이방 전도성 시트.And the through hole is formed in the central portion of the conductive plate.
  8. 탄성 매트릭스와, 상기 탄성 매트릭스 내에 배치되는 전도성 스프링과, 상기 탄성 매트릭스의 두께방향으로 배열되는 다수의 전도성 입자들을 포함하며,An elastic matrix, a conductive spring disposed in the elastic matrix, and a plurality of conductive particles arranged in the thickness direction of the elastic matrix,
    상기 전도성 입자들은 상기 전도성 스프링을 이루는 선재의 주변부에 상기 탄성 매트릭스의 중심부에 비해 고밀도로 배치되는 전도성 접촉부.Wherein the conductive particles are disposed at a high density relative to a central portion of the elastic matrix at a peripheral portion of a wire member constituting the conductive spring.
  9. 제8항에 있어서,9. The method of claim 8,
    상기 전도성 입자들은 상기 탄성 매트릭스의 중심부에 비해 상기 탄성 매트릭스의 양단부에 더 고밀도로 배치되는 전도성 접촉부.Wherein the conductive particles are disposed more densely at both ends of the elastic matrix than at the center of the elastic matrix.
  10. 제8항에 있어서,9. The method of claim 8,
    상기 전도성 스프링은 코일 스프링인 전도성 접촉부.Wherein the conductive spring is a coil spring.
  11. 제8항에 있어서,9. The method of claim 8,
    상기 전도성 스프링은 중심에서 양단부를 진행할수록 지름이 커지는 모래시계 형태의 코일 스프링인 전도성 접촉부.The conductive spring is an hourglass-shaped coil spring having a larger diameter as it goes from the center to both ends.
  12. 제8항에 있어서,9. The method of claim 8,
    상기 탄성 매트릭스 내부에, 상기 전도성 스프링의 양단부 중 적어도 하나에 인접하여 배치되는 전도성 플레이트를 더 포함하는 전도성 접촉부.And a conductive plate disposed within the elastic matrix, the conductive plate being disposed adjacent to at least one of the opposite ends of the conductive spring.
  13. 제12항에 있어서,13. The method of claim 12,
    상기 전도성 플레이트의 중심부에는 관통구멍이 형성된 전도성 접촉부.Wherein a conductive hole is formed in a central portion of the conductive plate.
PCT/KR2018/011049 2017-09-29 2018-09-19 Conductive contact portion and anisotropic conductive sheet comprising same WO2019066365A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880062530.5A CN111149003B (en) 2017-09-29 2018-09-19 Conductive contact and anisotropic conductive sheet having the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0127164 2017-09-29
KR1020170127164A KR102002694B1 (en) 2017-09-29 2017-09-29 Conductive contact and anisotropic conductive sheet with the same

Publications (1)

Publication Number Publication Date
WO2019066365A1 true WO2019066365A1 (en) 2019-04-04

Family

ID=65902494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/011049 WO2019066365A1 (en) 2017-09-29 2018-09-19 Conductive contact portion and anisotropic conductive sheet comprising same

Country Status (4)

Country Link
KR (1) KR102002694B1 (en)
CN (1) CN111149003B (en)
TW (1) TWI692642B (en)
WO (1) WO2019066365A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102046283B1 (en) * 2019-07-29 2019-11-18 주식회사 새한마이크로텍 Anisotropic conductive sheet
KR102153221B1 (en) * 2019-05-21 2020-09-07 주식회사 새한마이크로텍 Anisotropic conductive sheet
KR102133675B1 (en) * 2019-07-03 2020-07-13 주식회사 새한마이크로텍 Test socket
KR102270276B1 (en) * 2020-04-10 2021-06-28 주식회사 오킨스전자 Test rubber socket and method for manufacturing thereof
CN111555068A (en) * 2020-04-15 2020-08-18 东莞立讯技术有限公司 Electric connector assembly and interconnection device
KR102615617B1 (en) * 2021-01-08 2023-12-20 리노공업주식회사 Test socket and method for manufacturing the same
KR102357723B1 (en) * 2021-09-15 2022-02-08 (주)새한마이크로텍 Signal Loss Prevented Test Socket

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100926777B1 (en) * 2008-06-13 2009-11-16 주식회사 아이에스시테크놀러지 Test socket with conductive pad having conductive protrusions
KR101471116B1 (en) * 2014-02-13 2014-12-12 주식회사 아이에스시 Test socket with high density conduction section
KR20150008264A (en) * 2013-07-11 2015-01-22 (주)이니큐브 Semiconductor test device contactor
US20150153387A1 (en) * 2012-06-18 2015-06-04 Isc Co., Ltd. Test socket including conductive particles in which through-holes are formed and method for manufacturing same
KR101566995B1 (en) * 2014-05-30 2015-11-06 (주)인아에스시 Socket for inspecting semiconductor package and circuit board, flexible contact pin used therein, and method for producing flexible contact pin

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2558947A1 (en) * 1975-12-29 1977-07-14 Max Planck Gesellschaft MULTILAYER METAL ELECTRODES
US6703640B1 (en) * 1998-01-20 2004-03-09 Micron Technology, Inc. Spring element for use in an apparatus for attaching to a semiconductor and a method of attaching
JP4379949B2 (en) 1999-05-13 2009-12-09 Jsr株式会社 Anisotropic conductive sheet, method for manufacturing the same, electrical inspection apparatus for circuit device, and electrical inspection method
JP4149196B2 (en) * 2002-05-23 2008-09-10 株式会社ヨコオ Spring contact probe
KR200312740Y1 (en) 2003-01-27 2003-05-13 주식회사 아이에스시테크놀러지 Integrated silicone contactor with an electric spring
CN100582798C (en) * 2004-06-03 2010-01-20 国际整流器公司 Test arrangement including anisotropic conductive film for testing power module
JP4767147B2 (en) * 2005-11-16 2011-09-07 パナソニック株式会社 Inspection apparatus and inspection method
CN1967261A (en) * 2005-11-16 2007-05-23 松下电器产业株式会社 Inspection device and inspection method
CN101105507A (en) * 2006-07-10 2008-01-16 东京毅力科创株式会社 Probe card
CN200947107Y (en) * 2006-08-04 2007-09-12 宏亿国际股份有限公司 Wafer measuring card
KR101004297B1 (en) * 2008-07-18 2011-01-03 주식회사 아이에스시테크놀러지 Spring structure and test socket using thereof
IT1395336B1 (en) * 2009-01-20 2012-09-14 Rise Technology S R L ELASTIC CONTACT DEVICE FOR ELECTRONIC COMPONENTS WITH COLLASSANT COLUMNS
CN201464508U (en) * 2009-03-18 2010-05-12 旺矽科技股份有限公司 Spring needle contact pad and probe card applying same
BR112013018278A2 (en) * 2011-01-21 2016-11-16 Sealy Technology Llc encapsulated hourglass spirals and mattress cores
KR101266123B1 (en) * 2012-03-16 2013-05-27 주식회사 아이에스시 Rubber socket for test with spring member
TWM458658U (en) * 2013-02-04 2013-08-01 Cheng Yun Technology Co Ltd Detection probe
KR101490501B1 (en) * 2013-11-12 2015-02-06 주식회사 아이에스시 Electrical test socket
JP6119718B2 (en) * 2013-11-19 2017-04-26 デクセリアルズ株式会社 Anisotropic conductive film and connection structure
KR101499128B1 (en) * 2014-01-23 2015-03-05 몰렉스 인코포레이티드 Shield type connector
KR20150126226A (en) * 2014-05-02 2015-11-11 몰렉스 엘엘씨 Flexible cable connector
KR101606866B1 (en) * 2014-08-26 2016-04-11 주식회사 아이에스시 Test connector
KR101706331B1 (en) * 2014-10-17 2017-02-15 주식회사 아이에스시 Test socket
KR101493901B1 (en) 2014-10-28 2015-02-17 (주)인아에스시 Flexible silicone bushing socket for test of semiconductor
KR101976701B1 (en) * 2015-05-15 2019-05-09 주식회사 아이에스시 anisotropic conductive sheet
KR101682230B1 (en) * 2015-08-04 2016-12-02 주식회사 아이에스시 Socket for electrical test
CN107076781A (en) * 2015-10-01 2017-08-18 株式会社Isc Test connector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100926777B1 (en) * 2008-06-13 2009-11-16 주식회사 아이에스시테크놀러지 Test socket with conductive pad having conductive protrusions
US20150153387A1 (en) * 2012-06-18 2015-06-04 Isc Co., Ltd. Test socket including conductive particles in which through-holes are formed and method for manufacturing same
KR20150008264A (en) * 2013-07-11 2015-01-22 (주)이니큐브 Semiconductor test device contactor
KR101471116B1 (en) * 2014-02-13 2014-12-12 주식회사 아이에스시 Test socket with high density conduction section
KR101566995B1 (en) * 2014-05-30 2015-11-06 (주)인아에스시 Socket for inspecting semiconductor package and circuit board, flexible contact pin used therein, and method for producing flexible contact pin

Also Published As

Publication number Publication date
CN111149003B (en) 2022-06-03
CN111149003A (en) 2020-05-12
TWI692642B (en) 2020-05-01
KR20190037621A (en) 2019-04-08
KR102002694B1 (en) 2019-07-23
TW201932847A (en) 2019-08-16

Similar Documents

Publication Publication Date Title
WO2019066365A1 (en) Conductive contact portion and anisotropic conductive sheet comprising same
KR101781161B1 (en) Test Socket
WO2013191432A1 (en) Test socket including conductive particles in which through-holes are formed and method for manufacturing same
WO2015182885A1 (en) Socket for inspecting semiconductor package and substrate, flexible contact pin used therein, and method for manufacturing flexible contact pin
WO2017175984A1 (en) Anisotropic conductive sheet comprising conductive particles including different kinds of particles mixed therein
KR101718865B1 (en) Test Socket
KR101606866B1 (en) Test connector
WO2018194276A1 (en) Probe socket
KR102133675B1 (en) Test socket
KR20160117049A (en) Silicon rubber socket
WO2023128428A1 (en) Test socket for signal loss protection
WO2014104782A1 (en) Test socket and socket body
WO2019031826A1 (en) Test device
KR102153221B1 (en) Anisotropic conductive sheet
WO2017119676A1 (en) Semiconductor test contactor
WO2022186679A1 (en) Contactor and method for manufacturing same
WO2018128361A1 (en) Vertical ultra low leakage probe card for dc parameter test
WO2017188595A1 (en) Bipartite probing device
WO2011162430A1 (en) Insert for handler
WO2013100560A1 (en) Electrical contactor and method for manufacturing electrical contactor
WO2018208117A1 (en) Inspection socket
KR102004501B1 (en) Anisotropic conductive sheet
WO2015186932A1 (en) Contact sheet and socket structure
KR102173427B1 (en) Anisotropic conductive sheet
WO2015182996A1 (en) Connection connector and connection connector manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18860376

Country of ref document: EP

Kind code of ref document: A1