WO2019066210A1 - 거리 측정의 정밀도를 향상시키기 위한 초음파 센서 모듈 - Google Patents

거리 측정의 정밀도를 향상시키기 위한 초음파 센서 모듈 Download PDF

Info

Publication number
WO2019066210A1
WO2019066210A1 PCT/KR2018/007383 KR2018007383W WO2019066210A1 WO 2019066210 A1 WO2019066210 A1 WO 2019066210A1 KR 2018007383 W KR2018007383 W KR 2018007383W WO 2019066210 A1 WO2019066210 A1 WO 2019066210A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
distance
ultrasonic sensor
vehicle
present
Prior art date
Application number
PCT/KR2018/007383
Other languages
English (en)
French (fr)
Korean (ko)
Inventor
김홍국
정준용
이형철
이정욱
Original Assignee
센서텍(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 센서텍(주) filed Critical 센서텍(주)
Priority to CN201880062132.3A priority Critical patent/CN111149014A/zh
Priority to JP2020539661A priority patent/JP6980925B2/ja
Publication of WO2019066210A1 publication Critical patent/WO2019066210A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0134Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to imminent contact with an obstacle, e.g. using radar systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/87Combinations of sonar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • G01S5/26Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/54Audio sensitive means, e.g. ultrasound
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2015/932Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles for parking operations

Definitions

  • the present invention relates to an ultrasonic sensor, and more particularly, to an ultrasonic sensor module that detects an object around a vehicle when the vehicle is traveling and when the vehicle is parked and informs the driver of the object, and more particularly, .
  • an ultrasonic sensor is used for sensing a distance
  • various systems using a distance sensed by an ultrasonic sensor for example, a parking guidance system, have been proposed.
  • the parking guidance system using the ultrasonic sensor receives the reflected wave from the ultrasonic sensor provided at the upper part of the vehicle, measures the delay time according to the reception of the reflected wave, converts the distance, Is applied.
  • a plurality of ultrasonic sensors are located in a bumper portion of a vehicle, and an ultrasonic signal emitted from each ultrasonic sensor is reflected by a reflected object to measure a distance.
  • an ultrasonic signal emitted from each ultrasonic sensor is reflected by a reflected object to measure a distance.
  • the accuracy of the distance measurement is remarkably reduced in the case of an object close to the vehicle within a certain distance.
  • Another object of the present invention is to provide an ultrasonic sensor module capable of performing a complicated mathematical operation with a microcomputer having a relatively low performance computing capability and a low capacity storage device by performing a square root calculation using a lookup table method have.
  • the present invention provides an ultrasonic sensor module for detecting and informing surrounding objects when traveling and parking a vehicle.
  • the ultrasonic sensor module is mounted on a vehicle, transmits an ultrasonic signal,
  • a controller for controlling the overall operation of the ultrasonic sensor module and a driving unit for driving the ultrasonic sensor, and using the ultrasonic signals received from the two ultrasonic sensors, the vertical distance between the object and the vehicle
  • a control unit for calculating the control signal.
  • a first ultrasonic sensor that transmits an ultrasonic signal and receives an ultrasonic signal that is reflected by an object and returns; and a second ultrasonic sensor that is positioned adjacent to the first ultrasonic sensor and is reflected by the object without transmitting an ultrasonic signal,
  • the control unit calculates the direct distance measured using the ultrasonic signal received from the first ultrasonic sensor, the ultrasonic signal received by the second ultrasonic sensor,
  • the vertical distance between the object and the vehicle can be calculated by a triangulation method using an indirect distance measured using a signal.
  • the controller may perform a square root calculation using a predetermined look-up table.
  • the control unit first calculates a direct distance to the object using the ultrasonic signal received from the first ultrasonic sensor, and when the direct distance exceeds the preset reference distance, , And if the direct distance is within the reference distance, the vertical distance between the object and the vehicle can be calculated by the triangulation method using the direct distance and the indirect distance.
  • the distance to an object can be more accurately calculated by using the triangulation method, and the accuracy of the distance measurement can be improved.
  • the present invention can perform complicated mathematical operations with a microcomputer having a relatively low performance computing capability and a storage device with a low capacity by performing a square root calculation using a lookup table method, There is an effect that can be implemented.
  • a technique of implementing a high-performance microcomputer in a separate device occupying a large external space such as a conventional ECU can be applied to a low-performance microcomputer used in an ultrasonic parking assist device in the present invention It is possible to realize a low cost, and it is also possible to reduce the cost by eliminating the need of using a special expensive integrated IC which is integrated with related performance.
  • FIG. 1 is a block diagram showing a configuration of an ultrasonic sensor module according to an embodiment of the present invention.
  • FIG. 2 is a view schematically showing a state where an ultrasonic sensor according to an embodiment of the present invention is provided on a bumper to sense an object.
  • FIG. 3 is a diagram illustrating a case where an object is located between two ultrasonic sensors according to an embodiment of the present invention.
  • FIG. 4 is a view illustrating an example in which an object is positioned on the side of two ultrasonic sensors according to an embodiment of the present invention.
  • FIG. 5 is a table illustrating an index determination table for calculating a square root according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a square value determination table for calculating a square root according to an embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating a method of calculating a square root using a lookup table according to an embodiment of the present invention.
  • An ultrasonic sensor module for detecting and informing surrounding objects when traveling and parking a vehicle of the present invention comprises at least two ultrasonic sensors for receiving ultrasound signals transmitted from an object, A driving unit for driving the ultrasonic sensor, and a controller for controlling the overall operation of the ultrasonic sensor module and calculating a vertical distance between the object and the vehicle using triangular measurement using the ultrasonic signals received from the two ultrasonic sensors.
  • the present invention relates to an ultrasonic sensor module that detects and informs surrounding objects when traveling and parking a vehicle.
  • FIG. 1 is a block diagram showing a configuration of an ultrasonic sensor module according to an embodiment of the present invention.
  • an ultrasonic sensor module includes at least two ultrasonic sensors 110, a driver 120, and a controller 130.
  • the ultrasonic sensor 110 is mounted on a vehicle, transmits an ultrasonic signal, and receives an ultrasonic signal reflected from the object.
  • the number of the ultrasonic sensors 110 is two or more, and is mounted on a bumper or the like of the vehicle, and serves to sense an object around the vehicle.
  • the driving unit 120 drives the ultrasonic sensor 110.
  • the control unit 130 controls the overall operation of the ultrasonic sensor module and controls the driving unit 120 so that the ultrasonic sensor 110 is driven.
  • control unit 130 calculates the vertical distance between the object and the vehicle using the triangular measurement method using the ultrasonic signals received from the two ultrasonic sensors.
  • FIG. 2 is a view schematically showing a state where an ultrasonic sensor according to an embodiment of the present invention is provided on a bumper to sense an object.
  • FIG. 2 is an embodiment in which four ultrasonic sensors 210, 220, 230, and 240 are provided on a bumper of a vehicle.
  • the first ultrasonic sensor 210 transmits an ultrasonic signal and receives an ultrasonic signal reflected by an object 10
  • the second ultrasonic sensor 220 receives the reflected ultrasonic signal from the first ultrasonic sensor 210 And receives an ultrasonic signal reflected from the object 10 and returning without being transmitted an ultrasonic signal.
  • control unit 130 uses the direct distance L 1 measured using the ultrasonic signal received by the first ultrasonic sensor 210 and the ultrasonic signal received by the second ultrasonic sensor 220
  • the vertical distance d between the object and the vehicle can be calculated by the triangulation method using the indirect distance (L 2 ) measured by the above method.
  • the ultrasonic signal emitted from the sensor such as L 1 and L 2
  • a direct distance is used to measure the distance using a signal coming into the sensor. do.
  • the accuracy of the distance measurement is reduced.
  • the vehicle requires a vertical distance from the bumper to the object. As the position of the object moves away from the vertical, the accuracy of the distance decreases.
  • the controller 130 first calculates a direct distance to the object 10 using the ultrasonic signal received by the first ultrasonic sensor 210, , The direct distance is determined as the distance from the object 10.
  • the controller 130 calculates the vertical distance between the object 10 and the vehicle by using the direct distance and the indirect distance. For example, when an object is located in the area of W2 or W3, the vertical distance between the object 10 and the vehicle is calculated by a triangulation method using the direct distance and the indirect distance.
  • FIG. 3 is a diagram illustrating a case where an object is located between two ultrasonic sensors according to an embodiment of the present invention.
  • the perpendicular distance d can be calculated when a foot of a waterline is lowered on a line passing through the first ultrasonic sensor 210 and the second ultrasonic sensor 220.
  • FIG. 4 is a view illustrating an example in which an object is positioned on the side of two ultrasonic sensors according to an embodiment of the present invention.
  • the distance calculation through the triangulation method of the present invention requires complicated calculation such as a square root.
  • such calculations can not be performed in an 8-bit microcomputer and require higher computational power and storage space for such calculations.
  • the controller 130 may perform a square root calculation using a predetermined look-up table. Accordingly, the present invention does not require a large memory capacity and high computation power, and shortens the calculation time and can be easily implemented in an actual product.
  • FIG. 5 is a table illustrating an index determination table for a square root calculation according to an embodiment of the present invention
  • FIG. 6 is a table illustrating a square value determination table for a square root calculation according to an embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating a method of calculating a square root using a lookup table according to an embodiment of the present invention.
  • FIG. 5 The square root calculation method will be described with reference to FIGS. 5 to 7.
  • FIG. 5 The square root calculation method will be described with reference to FIGS. 5 to 7.
  • the index is incremented by 1 (S713), and a square value corresponding to the index is extracted from the square value determination table (S709).

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Acoustics & Sound (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Traffic Control Systems (AREA)
PCT/KR2018/007383 2017-09-29 2018-06-29 거리 측정의 정밀도를 향상시키기 위한 초음파 센서 모듈 WO2019066210A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880062132.3A CN111149014A (zh) 2017-09-29 2018-06-29 用于提高测距精度的超声波传感器模块
JP2020539661A JP6980925B2 (ja) 2017-09-29 2018-06-29 距離測定の精度を向上するための超音波センサーモジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0127686 2017-09-29
KR1020170127686A KR102015074B1 (ko) 2017-09-29 2017-09-29 거리 측정의 정밀도를 향상시키기 위한 초음파 센서 모듈

Publications (1)

Publication Number Publication Date
WO2019066210A1 true WO2019066210A1 (ko) 2019-04-04

Family

ID=65903608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/007383 WO2019066210A1 (ko) 2017-09-29 2018-06-29 거리 측정의 정밀도를 향상시키기 위한 초음파 센서 모듈

Country Status (4)

Country Link
JP (1) JP6980925B2 (zh)
KR (1) KR102015074B1 (zh)
CN (1) CN111149014A (zh)
WO (1) WO2019066210A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102143538B1 (ko) 2019-05-31 2020-08-11 주식회사 웰텍 초음파 센서의 측정 거리 보정 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130046129A (ko) * 2011-10-27 2013-05-07 한국단자공업 주식회사 차량의 물체 감지방법
KR101302832B1 (ko) * 2009-09-01 2013-09-02 주식회사 만도 주차시 장애물인식 시스템 및 그 방법
KR101521842B1 (ko) * 2014-08-27 2015-05-20 현대모비스 주식회사 주차 공간 탐색 장치 및 그 탐색 방법
JP2015175633A (ja) * 2014-03-13 2015-10-05 富士通株式会社 立体抽出方法および立体抽出装置
JP2016080642A (ja) * 2014-10-22 2016-05-16 株式会社デンソー 物体検知装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950008250A (ko) * 1993-09-02 1995-04-17 김주용 초음파를 이용한 차량 충돌 방지 장치 및 그 방법
CN101303410B (zh) * 2007-05-08 2011-08-24 李世雄 单方发射暨多方接收的障碍物检测方法及其装置
WO2010058521A1 (ja) * 2008-11-19 2010-05-27 日本電気株式会社 平方根演算装置及び方法、並びに平方根演算プログラム
KR101818536B1 (ko) * 2011-07-19 2018-01-15 현대모비스 주식회사 간접신호를 이용한 근접물체 위치 판별 장치 및 방법
KR101892763B1 (ko) * 2013-10-08 2018-08-28 주식회사 만도 장애물 위치를 판단하는 방법과 장애물 위치 판단장치 및 주차 보조 방법과 주차 보조 시스템
JP6557958B2 (ja) * 2014-10-22 2019-08-14 株式会社Soken 車両用障害物検出装置
KR101692809B1 (ko) 2014-12-02 2017-01-05 주식회사 유라코퍼레이션 차량용 카메라 장치 및 이를 이용한 장애물 거리 측정방법
KR20160066757A (ko) * 2014-12-03 2016-06-13 현대모비스 주식회사 위치 좌표 확인 장치 및 방법
KR101757067B1 (ko) * 2015-11-19 2017-07-12 (주)스마트시스텍 이중 센서를 이용한 이동거리 및 속도 측정 장치 및 그 방법
JP6697281B2 (ja) * 2016-02-10 2020-05-20 株式会社Soken 物体検知装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101302832B1 (ko) * 2009-09-01 2013-09-02 주식회사 만도 주차시 장애물인식 시스템 및 그 방법
KR20130046129A (ko) * 2011-10-27 2013-05-07 한국단자공업 주식회사 차량의 물체 감지방법
JP2015175633A (ja) * 2014-03-13 2015-10-05 富士通株式会社 立体抽出方法および立体抽出装置
KR101521842B1 (ko) * 2014-08-27 2015-05-20 현대모비스 주식회사 주차 공간 탐색 장치 및 그 탐색 방법
JP2016080642A (ja) * 2014-10-22 2016-05-16 株式会社デンソー 物体検知装置

Also Published As

Publication number Publication date
JP6980925B2 (ja) 2021-12-15
KR102015074B1 (ko) 2019-08-27
KR20190037890A (ko) 2019-04-08
CN111149014A (zh) 2020-05-12
JP2020535450A (ja) 2020-12-03

Similar Documents

Publication Publication Date Title
WO2020045978A1 (ko) 초음파 신호를 이용한 노면 종류 추정 방법 및 장치
WO2011046403A2 (en) Autonomous driving apparatus and method of on-line electric vehicle
CN109421711A (zh) 跟车速度控制方法、装置、系统、计算机设备及存储介质
WO2018101709A1 (ko) 자율 주행 제어 장치 및 방법
WO2010101393A2 (en) Apparatus and the method for distinguishing ground and obstacles for autonomous mobile vehicle
US10286902B2 (en) Driving assistance device and driving assistance method using the same
CN104169697A (zh) 用于确定车辆的涉水深度的方法和系统
CN101570167A (zh) 车用超声波障碍检测系统
CN110155047A (zh) 一种防碰撞控制方法、装置、系统及车辆
WO2019066210A1 (ko) 거리 측정의 정밀도를 향상시키기 위한 초음파 센서 모듈
KR20170112309A (ko) 물체충돌 방지 기능을 구비한 무인비행체
CN112119330A (zh) 物体检测装置及物体检测方法
US20210103053A1 (en) Hostless parking radar system
WO2020085692A1 (en) Apparatus of straight driving recognition for autonomous vehicle dead-reckoning performance improvement, and method thereof
EP3736534A1 (en) Circuit board and unmanned aerial vehicle using circuit board
JP2022119727A (ja) ミスアラインメントセンサを使用した車両デバイスへの無線車両電力伝達のためのシステム及び方法
CN106872983A (zh) 一种测距方法、装置及系统
JPH01267462A (ja) 車両スリップ角測定装置
CN112356815B (zh) 一种基于单目相机的行人主动避撞系统及方法
CN102812326A (zh) 用于控制测量系统的方法和用于实施所述方法的测量系统
CN205486864U (zh) 船舶无线数据采集监控系统
WO2020130479A1 (ko) 조향 제어 장치와 조향 제어 방법, 및 조향 장치
JPS57108778A (en) Position detector
EP0841295B1 (en) Suspended load steadying/positioning control device
US10241517B2 (en) Method for correcting a trajectory in a personal movement assistance device equipped with sensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861424

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020539661

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18861424

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18861424

Country of ref document: EP

Kind code of ref document: A1