WO2019066210A1 - Ultrasonic sensor module for improving precision of distance measurement - Google Patents

Ultrasonic sensor module for improving precision of distance measurement Download PDF

Info

Publication number
WO2019066210A1
WO2019066210A1 PCT/KR2018/007383 KR2018007383W WO2019066210A1 WO 2019066210 A1 WO2019066210 A1 WO 2019066210A1 KR 2018007383 W KR2018007383 W KR 2018007383W WO 2019066210 A1 WO2019066210 A1 WO 2019066210A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
distance
ultrasonic sensor
vehicle
present
Prior art date
Application number
PCT/KR2018/007383
Other languages
French (fr)
Korean (ko)
Inventor
김홍국
정준용
이형철
이정욱
Original Assignee
센서텍(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 센서텍(주) filed Critical 센서텍(주)
Priority to JP2020539661A priority Critical patent/JP6980925B2/en
Priority to CN201880062132.3A priority patent/CN111149014A/en
Publication of WO2019066210A1 publication Critical patent/WO2019066210A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0134Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to imminent contact with an obstacle, e.g. using radar systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/87Combinations of sonar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • G01S5/26Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/54Audio sensitive means, e.g. ultrasound
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2015/932Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles for parking operations

Definitions

  • the present invention relates to an ultrasonic sensor, and more particularly, to an ultrasonic sensor module that detects an object around a vehicle when the vehicle is traveling and when the vehicle is parked and informs the driver of the object, and more particularly, .
  • an ultrasonic sensor is used for sensing a distance
  • various systems using a distance sensed by an ultrasonic sensor for example, a parking guidance system, have been proposed.
  • the parking guidance system using the ultrasonic sensor receives the reflected wave from the ultrasonic sensor provided at the upper part of the vehicle, measures the delay time according to the reception of the reflected wave, converts the distance, Is applied.
  • a plurality of ultrasonic sensors are located in a bumper portion of a vehicle, and an ultrasonic signal emitted from each ultrasonic sensor is reflected by a reflected object to measure a distance.
  • an ultrasonic signal emitted from each ultrasonic sensor is reflected by a reflected object to measure a distance.
  • the accuracy of the distance measurement is remarkably reduced in the case of an object close to the vehicle within a certain distance.
  • Another object of the present invention is to provide an ultrasonic sensor module capable of performing a complicated mathematical operation with a microcomputer having a relatively low performance computing capability and a low capacity storage device by performing a square root calculation using a lookup table method have.
  • the present invention provides an ultrasonic sensor module for detecting and informing surrounding objects when traveling and parking a vehicle.
  • the ultrasonic sensor module is mounted on a vehicle, transmits an ultrasonic signal,
  • a controller for controlling the overall operation of the ultrasonic sensor module and a driving unit for driving the ultrasonic sensor, and using the ultrasonic signals received from the two ultrasonic sensors, the vertical distance between the object and the vehicle
  • a control unit for calculating the control signal.
  • a first ultrasonic sensor that transmits an ultrasonic signal and receives an ultrasonic signal that is reflected by an object and returns; and a second ultrasonic sensor that is positioned adjacent to the first ultrasonic sensor and is reflected by the object without transmitting an ultrasonic signal,
  • the control unit calculates the direct distance measured using the ultrasonic signal received from the first ultrasonic sensor, the ultrasonic signal received by the second ultrasonic sensor,
  • the vertical distance between the object and the vehicle can be calculated by a triangulation method using an indirect distance measured using a signal.
  • the controller may perform a square root calculation using a predetermined look-up table.
  • the control unit first calculates a direct distance to the object using the ultrasonic signal received from the first ultrasonic sensor, and when the direct distance exceeds the preset reference distance, , And if the direct distance is within the reference distance, the vertical distance between the object and the vehicle can be calculated by the triangulation method using the direct distance and the indirect distance.
  • the distance to an object can be more accurately calculated by using the triangulation method, and the accuracy of the distance measurement can be improved.
  • the present invention can perform complicated mathematical operations with a microcomputer having a relatively low performance computing capability and a storage device with a low capacity by performing a square root calculation using a lookup table method, There is an effect that can be implemented.
  • a technique of implementing a high-performance microcomputer in a separate device occupying a large external space such as a conventional ECU can be applied to a low-performance microcomputer used in an ultrasonic parking assist device in the present invention It is possible to realize a low cost, and it is also possible to reduce the cost by eliminating the need of using a special expensive integrated IC which is integrated with related performance.
  • FIG. 1 is a block diagram showing a configuration of an ultrasonic sensor module according to an embodiment of the present invention.
  • FIG. 2 is a view schematically showing a state where an ultrasonic sensor according to an embodiment of the present invention is provided on a bumper to sense an object.
  • FIG. 3 is a diagram illustrating a case where an object is located between two ultrasonic sensors according to an embodiment of the present invention.
  • FIG. 4 is a view illustrating an example in which an object is positioned on the side of two ultrasonic sensors according to an embodiment of the present invention.
  • FIG. 5 is a table illustrating an index determination table for calculating a square root according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a square value determination table for calculating a square root according to an embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating a method of calculating a square root using a lookup table according to an embodiment of the present invention.
  • An ultrasonic sensor module for detecting and informing surrounding objects when traveling and parking a vehicle of the present invention comprises at least two ultrasonic sensors for receiving ultrasound signals transmitted from an object, A driving unit for driving the ultrasonic sensor, and a controller for controlling the overall operation of the ultrasonic sensor module and calculating a vertical distance between the object and the vehicle using triangular measurement using the ultrasonic signals received from the two ultrasonic sensors.
  • the present invention relates to an ultrasonic sensor module that detects and informs surrounding objects when traveling and parking a vehicle.
  • FIG. 1 is a block diagram showing a configuration of an ultrasonic sensor module according to an embodiment of the present invention.
  • an ultrasonic sensor module includes at least two ultrasonic sensors 110, a driver 120, and a controller 130.
  • the ultrasonic sensor 110 is mounted on a vehicle, transmits an ultrasonic signal, and receives an ultrasonic signal reflected from the object.
  • the number of the ultrasonic sensors 110 is two or more, and is mounted on a bumper or the like of the vehicle, and serves to sense an object around the vehicle.
  • the driving unit 120 drives the ultrasonic sensor 110.
  • the control unit 130 controls the overall operation of the ultrasonic sensor module and controls the driving unit 120 so that the ultrasonic sensor 110 is driven.
  • control unit 130 calculates the vertical distance between the object and the vehicle using the triangular measurement method using the ultrasonic signals received from the two ultrasonic sensors.
  • FIG. 2 is a view schematically showing a state where an ultrasonic sensor according to an embodiment of the present invention is provided on a bumper to sense an object.
  • FIG. 2 is an embodiment in which four ultrasonic sensors 210, 220, 230, and 240 are provided on a bumper of a vehicle.
  • the first ultrasonic sensor 210 transmits an ultrasonic signal and receives an ultrasonic signal reflected by an object 10
  • the second ultrasonic sensor 220 receives the reflected ultrasonic signal from the first ultrasonic sensor 210 And receives an ultrasonic signal reflected from the object 10 and returning without being transmitted an ultrasonic signal.
  • control unit 130 uses the direct distance L 1 measured using the ultrasonic signal received by the first ultrasonic sensor 210 and the ultrasonic signal received by the second ultrasonic sensor 220
  • the vertical distance d between the object and the vehicle can be calculated by the triangulation method using the indirect distance (L 2 ) measured by the above method.
  • the ultrasonic signal emitted from the sensor such as L 1 and L 2
  • a direct distance is used to measure the distance using a signal coming into the sensor. do.
  • the accuracy of the distance measurement is reduced.
  • the vehicle requires a vertical distance from the bumper to the object. As the position of the object moves away from the vertical, the accuracy of the distance decreases.
  • the controller 130 first calculates a direct distance to the object 10 using the ultrasonic signal received by the first ultrasonic sensor 210, , The direct distance is determined as the distance from the object 10.
  • the controller 130 calculates the vertical distance between the object 10 and the vehicle by using the direct distance and the indirect distance. For example, when an object is located in the area of W2 or W3, the vertical distance between the object 10 and the vehicle is calculated by a triangulation method using the direct distance and the indirect distance.
  • FIG. 3 is a diagram illustrating a case where an object is located between two ultrasonic sensors according to an embodiment of the present invention.
  • the perpendicular distance d can be calculated when a foot of a waterline is lowered on a line passing through the first ultrasonic sensor 210 and the second ultrasonic sensor 220.
  • FIG. 4 is a view illustrating an example in which an object is positioned on the side of two ultrasonic sensors according to an embodiment of the present invention.
  • the distance calculation through the triangulation method of the present invention requires complicated calculation such as a square root.
  • such calculations can not be performed in an 8-bit microcomputer and require higher computational power and storage space for such calculations.
  • the controller 130 may perform a square root calculation using a predetermined look-up table. Accordingly, the present invention does not require a large memory capacity and high computation power, and shortens the calculation time and can be easily implemented in an actual product.
  • FIG. 5 is a table illustrating an index determination table for a square root calculation according to an embodiment of the present invention
  • FIG. 6 is a table illustrating a square value determination table for a square root calculation according to an embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating a method of calculating a square root using a lookup table according to an embodiment of the present invention.
  • FIG. 5 The square root calculation method will be described with reference to FIGS. 5 to 7.
  • FIG. 5 The square root calculation method will be described with reference to FIGS. 5 to 7.
  • the index is incremented by 1 (S713), and a square value corresponding to the index is extracted from the square value determination table (S709).

Abstract

An ultrasonic sensor module for detecting and reporting a nearby object during the travel or parking of a vehicle according to the present invention comprises: two or more ultrasonic sensors which are mounted on the vehicle and are for transmitting ultrasonic signals and receiving ultrasonic signals that are reflected back from the object; a driving unit for driving the ultrasonic sensors; a control unit which controls the overall operation of the ultrasonic sensor module and uses the ultrasonic signals received by the two ultrasonic sensors to calculate the vertical distance between the object and the vehicle by means of a triangulation method. According to the present invention, there is an effect in that the distance to the object can be more accurately calculated using the triangulation method to improve the accuracy of a distance measurement.

Description

거리 측정의 정밀도를 향상시키기 위한 초음파 센서 모듈Ultrasonic sensor module for improving the accuracy of distance measurement
본 발명은 초음파 센서에 관한 것으로서, 더욱 상세하게는 차량의 주행 및 주차 시에 차량 주변의 물체를 감지하여 운전자에게 알려주는 초음파 센서 모듈에 관한 것으로, 특히 거리 측정의 정확도를 향상시키는 방법에 관한 것이다.The present invention relates to an ultrasonic sensor, and more particularly, to an ultrasonic sensor module that detects an object around a vehicle when the vehicle is traveling and when the vehicle is parked and informs the driver of the object, and more particularly, .
일반적으로, 초음파 센서는 거리를 센싱하는데 사용되며, 초음파 센서가 센싱한 거리를 사용하는 다양한 시스템들, 일 예로, 주차 안내 시스템이 제안된 바 있다.In general, an ultrasonic sensor is used for sensing a distance, and various systems using a distance sensed by an ultrasonic sensor, for example, a parking guidance system, have been proposed.
*초음파 센서를 이용한 주차 안내 시스템은 차량 상단에 구비된 초음파 센서가 발산하여 반사파를 수신하고, 반사파 수신에 따른 지연시간을 측정하여 거리를 환산하며, 환산된 거리 값을 기준으로 초음파 센서 하단에 차량이 존재하는지 여부를 판단하는 방법을 적용하고 있다.The parking guidance system using the ultrasonic sensor receives the reflected wave from the ultrasonic sensor provided at the upper part of the vehicle, measures the delay time according to the reception of the reflected wave, converts the distance, Is applied.
초음파 주차 보조 장치는 차량의 범퍼 부위에 다수의 초음파 센서가 위치하고 있으며, 각 초음파 센서에서 발사된 초음파 신호가 물체를 맞고 반사되어 돌아오는 신호를 이용하여 거리를 측정하게 된다. 하지만, 이러한 경우, 차량과 일정 거리 이내로 근접한 물체의 경우에는 거리 측정의 정확도가 현저하게 떨어지는 문제점이 있다. In the ultrasonic parking assist device, a plurality of ultrasonic sensors are located in a bumper portion of a vehicle, and an ultrasonic signal emitted from each ultrasonic sensor is reflected by a reflected object to measure a distance. However, in such a case, there is a problem that the accuracy of the distance measurement is remarkably reduced in the case of an object close to the vehicle within a certain distance.
또한, 종래 초음파 주차 보조 장치에서 삼각 측정법 등을 이용한 계산을 수행함에 있어서, 제곱근 계산 등 복잡한 수학 연산이 수행되므로, 대용량의 메모리 공간과 고성능의 마이컴이 필요하게 되며, 따라서 현실적으로 마이컴의 연산 능력과 저장공간의 용량의 한계로 인하여, 복잡한 수학 연산을 수행함에 있어서 많은 제약이 따르게 된다. In addition, since complicated mathematical operations such as square root calculations are performed in the conventional ultrasonic parking assist apparatus for performing calculations using the triangulation method or the like, a large-capacity memory space and a high-performance microcomputer are required, Due to space limitations, there are many limitations in performing complex mathematical operations.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 삼각 측정법을 이용하여 물체와의 거리를 보다 정확하게 계산하여, 거리 측정의 정확도를 향상시킬 수 있는 초음파 센서 모듈을 제공하는데 그 목적이 있다.It is an object of the present invention to provide an ultrasonic sensor module capable of more accurately calculating a distance to an object by using triangulation and improving the accuracy of distance measurement.
또한, 본 발명은 룩업 테이블 방식을 이용하여 제곱근 계산을 함으로써, 비교적 낮은 성능의 연산 능력을 갖는 마이컴과 저 용량의 저장장치로 복잡한 수학 연산을 수행할 수 있는 초음파 센서 모듈을 제공하는데 그 다른 목적이 있다. Another object of the present invention is to provide an ultrasonic sensor module capable of performing a complicated mathematical operation with a microcomputer having a relatively low performance computing capability and a low capacity storage device by performing a square root calculation using a lookup table method have.
본 발명의 목적은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned objects, and other objects not mentioned can be clearly understood by those skilled in the art from the following description.
이와 같은 목적을 달성하기 위한 본 발명의 차량의 주행 및 주차 시에 주변의 물체를 감지하여 알려주는 초음파 센서 모듈에서, 차량에 장착되어, 초음파 신호를 송신하고, 물체에 반사되어 돌아오는 초음파 신호를 수신하기 위한 둘 이상의 초음파 센서, 상기 초음파 센서를 구동하기 위한 구동부 및 초음파 센서 모듈의 전반적인 동작을 제어하며, 두 개의 초음파 센서에서 수신한 초음파 신호를 이용하여, 삼각 측정법으로 물체와 차량 간의 수직거리를 계산하는 제어부를 포함한다. In order to accomplish the above object, the present invention provides an ultrasonic sensor module for detecting and informing surrounding objects when traveling and parking a vehicle. The ultrasonic sensor module is mounted on a vehicle, transmits an ultrasonic signal, A controller for controlling the overall operation of the ultrasonic sensor module and a driving unit for driving the ultrasonic sensor, and using the ultrasonic signals received from the two ultrasonic sensors, the vertical distance between the object and the vehicle And a control unit for calculating the control signal.
상기 초음파 센서 중에서, 초음파 신호를 송신하고 어느 한 물체에 반사되어 돌아오는 초음파 신호를 수신한 제1 초음파 센서와, 상기 제1 초음파 센서에 인접하여 위치하며 초음파 신호를 송신하지 않고 상기 물체에 반사되어 돌아오는 초음파 신호를 수신한 제2 초음파 센서가 있을 때, 상기 제어부는 상기 제1 초음파 센서에서 수신한 초음파 신호를 이용하여 측정한 직접 거리(Direct distance)와, 상기 제2 초음파 센서에서 수신한 초음파 신호를 이용하여 측정한 간접 거리(Indirect distance)를 이용하여 삼각 측정법으로 상기 물체와 차량 간의 수직거리를 계산할 수 있다. A first ultrasonic sensor that transmits an ultrasonic signal and receives an ultrasonic signal that is reflected by an object and returns; and a second ultrasonic sensor that is positioned adjacent to the first ultrasonic sensor and is reflected by the object without transmitting an ultrasonic signal, When there is a second ultrasonic sensor receiving the returning ultrasonic signal, the control unit calculates the direct distance measured using the ultrasonic signal received from the first ultrasonic sensor, the ultrasonic signal received by the second ultrasonic sensor, The vertical distance between the object and the vehicle can be calculated by a triangulation method using an indirect distance measured using a signal.
상기 제어부는 삼각 측정법을 이용하여 수직거리를 계산함에 있어서, 기 설정된 룩업 테이블(Look-up table)을 이용하여 제곱근 계산을 수행할 수 있다. In calculating the vertical distance using the triangulation method, the controller may perform a square root calculation using a predetermined look-up table.
상기 제어부는 먼저 상기 제1 초음파 센서에서 수신한 초음파 신호를 이용하여 상기 물체와의 직접 거리(Direct distance)를 계산하고, 상기 직접 거리가 기 설정된 기준 거리를 초과하면 상기 직접 거리를 물체와의 거리로 판단하고, 상기 직접 거리가 상기 기준 거리 이내이면, 상기 직접 거리와 상기 간접 거리를 이용하여 삼각 측정법으로 상기 물체와 차량 간의 수직거리를 계산할 수 있다. The control unit first calculates a direct distance to the object using the ultrasonic signal received from the first ultrasonic sensor, and when the direct distance exceeds the preset reference distance, , And if the direct distance is within the reference distance, the vertical distance between the object and the vehicle can be calculated by the triangulation method using the direct distance and the indirect distance.
본 발명에 의하면, 삼각 측정법을 이용하여 물체와의 거리를 보다 정확하게 계산하여, 거리 측정의 정확도를 향상시킬 수 있는 효과가 있다. According to the present invention, the distance to an object can be more accurately calculated by using the triangulation method, and the accuracy of the distance measurement can be improved.
또한, 본 발명은 룩업 테이블 방식을 이용하여 제곱근 계산을 함으로써, 비교적 낮은 성능의 연산 능력을 갖는 마이컴과 저 용량의 저장장치로 복잡한 수학 연산을 수행할 수 있으므로, 낮은 비용으로 용이하게 주차 보조 장치를 구현할 수 있는 효과가 있다. 이로써, 종래 ECU 등의 외부의 커다란 공간을 차지하는 별도의 장치에 고 성능의 마이컴(Micom)을 사용하여 구현하는 기술을, 본 발명에서 초음파 주차 보조 장치에 직접 사용되는 저 성능의 마이컴(Micom)에 저굥하여 구현할 수 있게 되며, 또한 관련 성능이 구현되어 집적 되어 있는 별도의 고가의 특수 IC를 활용하지 않아도 되므로, 원가 절감의 효과도 높다고 볼 수 있다.In addition, the present invention can perform complicated mathematical operations with a microcomputer having a relatively low performance computing capability and a storage device with a low capacity by performing a square root calculation using a lookup table method, There is an effect that can be implemented. Thus, a technique of implementing a high-performance microcomputer in a separate device occupying a large external space such as a conventional ECU can be applied to a low-performance microcomputer used in an ultrasonic parking assist device in the present invention It is possible to realize a low cost, and it is also possible to reduce the cost by eliminating the need of using a special expensive integrated IC which is integrated with related performance.
도 1은 본 발명의 일 실시예에 따른 초음파 센서 모듈의 구성을 보여주는 블록도이다. 1 is a block diagram showing a configuration of an ultrasonic sensor module according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 초음파 센서가 범퍼에 구비되어 물체를 감지하는 모습을 개략적으로 도시한 도면이다. FIG. 2 is a view schematically showing a state where an ultrasonic sensor according to an embodiment of the present invention is provided on a bumper to sense an object.
도 3은 본 발명의 일 실시예에 따른 두 초음파 센서 사이에 물체가 위치한 경우를 예시한 도면이다. FIG. 3 is a diagram illustrating a case where an object is located between two ultrasonic sensors according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 두 초음파 센서의 사이드에 물체가 위치한 경우를 예시한 도면이다. 4 is a view illustrating an example in which an object is positioned on the side of two ultrasonic sensors according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 제곱근 계산을 위한 인덱스 판별 테이블을 예시한 도표이다. 5 is a table illustrating an index determination table for calculating a square root according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 제곱근 계산을 위한 제곱 값 판별 테이블을 예시한 도표이다. 6 is a diagram illustrating a square value determination table for calculating a square root according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 룩업 테이블을 이용한 제곱근 계산 방법을 도시한 흐름도이다. 7 is a flowchart illustrating a method of calculating a square root using a lookup table according to an embodiment of the present invention.
[규칙 제91조에 의한 정정 25.07.2018] 
[Amended by Rule 91, 25.07.2018]
본 발명의 차량의 주행 및 주차 시에 주변의 물체를 감지하여 알려주는 초음파 센서 모듈에서, 차량에 장착되어, 초음파 신호를 송신하고, 물체에 반사되어 돌아오는 초음파 신호를 수신하기 위한 둘 이상의 초음파 센서, 상기 초음파 센서를 구동하기 위한 구동부 및 초음파 센서 모듈의 전반적인 동작을 제어하며, 두 개의 초음파 센서에서 수신한 초음파 신호를 이용하여, 삼각 측정법으로 물체와 차량 간의 수직거리를 계산하는 제어부를 포함한다. An ultrasonic sensor module for detecting and informing surrounding objects when traveling and parking a vehicle of the present invention comprises at least two ultrasonic sensors for receiving ultrasound signals transmitted from an object, A driving unit for driving the ultrasonic sensor, and a controller for controlling the overall operation of the ultrasonic sensor module and calculating a vertical distance between the object and the vehicle using triangular measurement using the ultrasonic signals received from the two ultrasonic sensors.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that the invention is not intended to be limited to the particular embodiments, but includes all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used in this application is used only to describe a specific embodiment and is not intended to limit the invention. The singular expressions include plural expressions unless the context clearly dictates otherwise. In the present application, the terms "comprises" or "having" and the like are used to specify that there is a feature, a number, a step, an operation, an element, a component or a combination thereof described in the specification, But do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, or combinations thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 갖고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 갖는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms such as those defined in commonly used dictionaries are to be interpreted as having a meaning consistent with the contextual meaning of the related art and are to be interpreted in an ideal or overly formal sense unless expressly defined in the present application Do not.
또한, 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성 요소는 동일한 참조 부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.In the following description of the present invention with reference to the accompanying drawings, the same components are denoted by the same reference numerals regardless of the reference numerals, and redundant explanations thereof will be omitted. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the following description, well-known functions or constructions are not described in detail since they would obscure the invention in unnecessary detail.
본 발명은 차량의 주행 및 주차 시에 주변의 물체를 감지하여 알려주는 초음파 센서 모듈에 대한 것이다. The present invention relates to an ultrasonic sensor module that detects and informs surrounding objects when traveling and parking a vehicle.
도 1은 본 발명의 일 실시예에 따른 초음파 센서 모듈의 구성을 보여주는 블록도이다. 1 is a block diagram showing a configuration of an ultrasonic sensor module according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시에에 따른 초음파 센서 모듈은 둘 이상의 초음파 센서(110), 구동부(120), 제어부(130)를 포함한다. Referring to FIG. 1, an ultrasonic sensor module according to an embodiment of the present invention includes at least two ultrasonic sensors 110, a driver 120, and a controller 130.
초음파 센서(110)는 차량에 장착되어, 초음파 신호를 송신하고, 물체에 반사되어 돌아오는 초음파 신호를 수신하는 역할을 한다. 본 발명에서 초음파 센서(110)는 둘 이상의 개수가 구비되어 차량의 범퍼(bumper) 등에 장착되며, 차량 주변의 물체를 감지하는 역할을 한다. The ultrasonic sensor 110 is mounted on a vehicle, transmits an ultrasonic signal, and receives an ultrasonic signal reflected from the object. In the present invention, the number of the ultrasonic sensors 110 is two or more, and is mounted on a bumper or the like of the vehicle, and serves to sense an object around the vehicle.
구동부(120)는 초음파 센서(110)를 구동하는 역할을 한다. The driving unit 120 drives the ultrasonic sensor 110.
제어부(130)는 초음파 센서 모듈의 전반적인 동작을 제어하며, 초음파 센서(110)가 구동되도록 구동부(120)를 제어한다. The control unit 130 controls the overall operation of the ultrasonic sensor module and controls the driving unit 120 so that the ultrasonic sensor 110 is driven.
본 발명에서 제어부(130)는 두 개의 초음파 센서에서 수신한 초음파 신호를 이용하여, 삼각 측정법으로 물체와 차량 간의 수직거리를 계산한다. In the present invention, the control unit 130 calculates the vertical distance between the object and the vehicle using the triangular measurement method using the ultrasonic signals received from the two ultrasonic sensors.
도 2는 본 발명의 일 실시예에 따른 초음파 센서가 범퍼에 구비되어 물체를 감지하는 모습을 개략적으로 도시한 도면이다. FIG. 2 is a view schematically showing a state where an ultrasonic sensor according to an embodiment of the present invention is provided on a bumper to sense an object.
도 2는 차량의 범퍼에 네 개의 초음파 센서(210, 220, 230, 240)가 구비된 실시예이다. 2 is an embodiment in which four ultrasonic sensors 210, 220, 230, and 240 are provided on a bumper of a vehicle.
도 2에서, 제1 초음파 센서(210)는 초음파 신호를 송신하고 어느 한 물체(10)에 반사되어 돌아오는 초음파 신호를 수신하고, 제2 초음파 센서(220)는 제1 초음파 센서(210)에 인접하여 위치하며 초음파 신호를 송신하지 않고 물체(10)에 반사되어 돌아오는 초음파 신호를 수신하는 경우를 예시하고 있다.2, the first ultrasonic sensor 210 transmits an ultrasonic signal and receives an ultrasonic signal reflected by an object 10, and the second ultrasonic sensor 220 receives the reflected ultrasonic signal from the first ultrasonic sensor 210 And receives an ultrasonic signal reflected from the object 10 and returning without being transmitted an ultrasonic signal.
이때, 제어부(130)는 제1 초음파 센서(210)에서 수신한 초음파 신호를 이용하여 측정한 직접 거리(Direct distance)(L1)와, 제2 초음파 센서(220)에서 수신한 초음파 신호를 이용하여 측정한 간접 거리(Indirect distance)(L2)를 이용하여 삼각 측정법으로 물체와 차량 간의 수직거리(d)를 계산할 수 있다. At this time, the control unit 130 uses the direct distance L 1 measured using the ultrasonic signal received by the first ultrasonic sensor 210 and the ultrasonic signal received by the second ultrasonic sensor 220 The vertical distance d between the object and the vehicle can be calculated by the triangulation method using the indirect distance (L 2 ) measured by the above method.
일반적으로 주차 보조 장치에서 거리를 측정하기 위하여 L1과 L2와 같이 센서에서 발사된 초음파 신호가 물체를 맞고 반사되어 센서로 들어오는 신호를 이용하여 거리를 측정하는 직접거리 (Direct distance)를 사용하게 된다.Generally, in order to measure the distance from the parking assist device, the ultrasonic signal emitted from the sensor, such as L 1 and L 2 , is reflected by the object, and a direct distance is used to measure the distance using a signal coming into the sensor. do.
그러나, 도 2에서와 같이 물체(10)가 차량으로부터 일정 거리 이내로 근접하여 있는 경우, 거리 측정의 정확도가 떨어지게 된다. 실제로 차량에서는 범퍼(Bumper)에서 물체까지의 수직 거리를 필요로 하게 되는데, 물체의 위치가 수직에서 멀어 질수록 거리의 정확도는 낮아지게 된다.However, when the object 10 is located within a certain distance from the vehicle as shown in FIG. 2, the accuracy of the distance measurement is reduced. In reality, the vehicle requires a vertical distance from the bumper to the object. As the position of the object moves away from the vertical, the accuracy of the distance decreases.
본 발명의 일 실시예에서 제어부(130)는 먼저 제1 초음파 센서(210)에서 수신한 초음파 신호를 이용하여 물체(10)와의 직접 거리(Direct distance)를 계산하고, 직접 거리가 기 설정된 기준 거리를 초과하면 직접 거리를 물체(10)와의 거리로 판단한다. In one embodiment of the present invention, the controller 130 first calculates a direct distance to the object 10 using the ultrasonic signal received by the first ultrasonic sensor 210, , The direct distance is determined as the distance from the object 10.
반면, 직접 거리가 기준 거리 이내이면, 제어부(130)는 직접 거리와 간접 거리를 이용하여 삼각 측정법으로 물체(10)와 차량 간의 수직거리를 계산한다. 예를 들어, 물체가 W2나 W3의 영역에 위치하는 경우, 직접 거리와 간접 거리를 이용한 삼각 측정법으로 물체(10)와 차량 간의 수직거리를 계산하게 된다. On the other hand, if the direct distance is within the reference distance, the controller 130 calculates the vertical distance between the object 10 and the vehicle by using the direct distance and the indirect distance. For example, when an object is located in the area of W2 or W3, the vertical distance between the object 10 and the vehicle is calculated by a triangulation method using the direct distance and the indirect distance.
도 3은 본 발명의 일 실시예에 따른 두 초음파 센서 사이에 물체가 위치한 경우를 예시한 도면이다. FIG. 3 is a diagram illustrating a case where an object is located between two ultrasonic sensors according to an embodiment of the present invention.
도 3을 참조하면, 제1 초음파 센서(210)와 제2 초음파 센서(220)를 지나는 선분에, 물체(10)에서 수선의 발을 내렸을 때, 수직거리(d)를 계산할 수 있다. 여기서 제1 초음파 센서(210)와 수선의 발 사이의 거리를 X1이라 하고, 제2 초음파 센서(220)와 수선의 발 사이의 거리를 X2라 하면, 제1 초음파 센서(210)와 제2 초음파 센서(220) 간의 거리 X=X1+X2이다. 그리고, 제1 초음파 센서(210)와 물체(10) 간의 거리를 l1으로 표시하고, 제2 초음파 센서(220)와 물체(10) 간의 거리를 l2로 표시할 수 있다. 3, the perpendicular distance d can be calculated when a foot of a waterline is lowered on a line passing through the first ultrasonic sensor 210 and the second ultrasonic sensor 220. [ If the distance between the first ultrasonic sensor 210 and the water's foot is X 1 and the distance between the second ultrasonic sensor 220 and the water's foot is X 2 , 2 is a distance X = X 1 + X 2 between the ultrasonic sensor 220. The distance between the first ultrasonic sensor 210 and the object 10 is denoted by l 1 and the distance between the second ultrasonic sensor 220 and the object 10 is denoted by l 2 .
도 4는 본 발명의 일 실시예에 따른 두 초음파 센서의 사이드에 물체가 위치한 경우를 예시한 도면이다. 4 is a view illustrating an example in which an object is positioned on the side of two ultrasonic sensors according to an embodiment of the present invention.
도 4를 참조하면, 제1 초음파 센서(210)와 제2 초음파 센서(220)를 지나는 직선에, 물체(10)에서 수선의 발을 내렸을 때, 수직거리(d)를 계산할 수 있다. 여기서 제1 초음파 센서(210)와 수선의 발 사이의 거리를 X1이라 하고, 제2 초음파 센서(220)와 수선의 발 사이의 거리를 X2라 하면, 제1 초음파 센서(210)와 제2 초음파 센서(220) 간의 거리 X=X2-X1이다. 그리고, 제1 초음파 센서(210)와 물체(10) 간의 거리를 l1으로 표시하고, 제2 초음파 센서(220)와 물체(10) 간의 거리를 l2로 표시할 수 있다. Referring to FIG. 4, the perpendicular distance d can be calculated when a foot of a waterline is lowered on a straight line passing through the first ultrasonic sensor 210 and the second ultrasonic sensor 220. If the distance between the first ultrasonic sensor 210 and the water's foot is X 1 and the distance between the second ultrasonic sensor 220 and the water's foot is X 2 , 2 ultrasonic sensors 220 is X = X 2 -X 1 . The distance between the first ultrasonic sensor 210 and the object 10 is denoted by l 1 and the distance between the second ultrasonic sensor 220 and the object 10 is denoted by l 2 .
도 3에서 보는 바와 같이, 두 초음파 센서 사이에 물체가 위치한 경우, 물체의 수직거리를 계산하는 과정을 수식으로 나타내면 다음과 같다. As shown in FIG. 3, the process of calculating the vertical distance of an object when an object is located between two ultrasonic sensors is expressed as follows.
Figure PCTKR2018007383-appb-M000001
Figure PCTKR2018007383-appb-M000001
이처럼, 본 발명의 삼각 측정법을 통한 거리 계산에는 제곱근 등의 복잡한 계산을 필요로 하게 된다. 예를 들어, 이러한 계산은 8 비트(bit) 마이컴(micom)에서는 연산이 불가능할 정도이며, 이러한 계산을 위해서는 보다 높은 연산능력과 저장공간을 필요로 한다. As described above, the distance calculation through the triangulation method of the present invention requires complicated calculation such as a square root. For example, such calculations can not be performed in an 8-bit microcomputer and require higher computational power and storage space for such calculations.
이를 위하여, 본 발명에서 제어부(130)는 삼각 측정법을 이용하여 수직거리를 계산함에 있어서, 기 설정된 룩업 테이블(Look-up table)을 이용하여 제곱근 계산을 수행할 수 있다. 이를 통해, 본 발명에서는 많은 메모리 용량과 높은 연산 능력을 필요로 하지 않으며, 계산 시간을 단축하여, 실제 제품에 용이하게 구현할 수 있다. To this end, in calculating the vertical distance using the triangulation method, the controller 130 may perform a square root calculation using a predetermined look-up table. Accordingly, the present invention does not require a large memory capacity and high computation power, and shortens the calculation time and can be easily implemented in an actual product.
본 발명에서 기 설정된 룩업 테이블을 이용한 제곱근 계산 방법을 예시하여 설명하면 다음과 같다. In the present invention, a method of calculating a square root using a predetermined look-up table will be described as an example.
도 5는 본 발명의 일 실시예에 따른 제곱근 계산을 위한 인덱스 판별 테이블을 예시한 도표이고, 도 6은 본 발명의 일 실시예에 따른 제곱근 계산을 위한 제곱 값 판별 테이블을 예시한 도표이다. FIG. 5 is a table illustrating an index determination table for a square root calculation according to an embodiment of the present invention, and FIG. 6 is a table illustrating a square value determination table for a square root calculation according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 룩업 테이블을 이용한 제곱근 계산 방법을 도시한 흐름도이다. 7 is a flowchart illustrating a method of calculating a square root using a lookup table according to an embodiment of the present invention.
도 5 내지 도 7을 참조하여 제곱근 계산 방법을 예시하면 다음과 같다. The square root calculation method will be described with reference to FIGS. 5 to 7. FIG.
먼저, 제곱근을 구하려는 수를 X라고 하면(S701), 도 5의 인덱스 판별 테이블에서 비교에 사용할 제곱 값을 추출한다(S7030. First, if the number of square roots is X (S701), a square value to be used for comparison is extracted from the index determination table of FIG. 5 (S7030.
그리고, 추출한 제곱 값과 X를 비교한다(S705). Then, the extracted square value is compared with X (S705).
비교 결과, 제곱 값이 X보다 크면, 제곱 값 판별 테이블의 시작 인덱스를 확보한다(S707).If the squared value is greater than X, the start index of the squared value determination table is secured (S707).
그리고, 도 6의 제곱 값 판별 테이블에서 인덱스에 해당하는 제곱 값을 추출한다.Then, a square value corresponding to the index is extracted from the square value discrimination table of FIG.
그리고, 추출한 제곱 값과 X를 비교한다(S711). Then, the extracted square value is compared with X (S711).
비교 결과, 제곱 값이 X보다 크면, 인덱스에 1을 더하여 증가시키고(S713), 제곱 값 판별 테이블에서 해당 인덱스에 해당하는 제곱 값을 추출한다(S709). If the square value is greater than X, the index is incremented by 1 (S713), and a square value corresponding to the index is extracted from the square value determination table (S709).
S709 내지 S713 과정을 반복하는 중에, 제곱 값이 X보다 크게 되면, 그 때의 인덱스에 1을 뺀 값을 X의 제곱근으로 산출한다(S715). If the squared value becomes larger than X during the repetition of steps S709 to S713, a value obtained by subtracting 1 from the index at that time is calculated as the square root of X (S715).
[규칙 제91조에 의한 정정 25.07.2018] 
이러한 본 발명에서의 제곱근 계산 방법을 실제 프로그래밍으로 구현할 수 있다.
[Amended by Rule 91, 25.07.2018]
The square root calculation method in the present invention can be implemented by actual programming.
이상 본 발명을 몇 가지 바람직한 실시예를 사용하여 설명하였으나, 이들 실시예는 예시적인 것이며 한정적인 것이 아니다. 본 발명이 속하는 기술분야에서 통상의 지식을 지닌 자라면 본 발명의 사상과 첨부된 특허청구범위에 제시된 권리범위에서 벗어나지 않으면서 다양한 변화와 수정을 가할 수 있음을 이해할 것이다.While the present invention has been described with reference to several preferred embodiments, these embodiments are illustrative and not restrictive. It will be understood by those skilled in the art that various changes and modifications may be made therein without departing from the spirit of the invention and the scope of the appended claims.

Claims (4)

  1. 차량의 주행 및 주차 시에 주변의 물체를 감지하여 알려주는 초음파 센서 모듈에서, In an ultrasonic sensor module for detecting and informing surrounding objects when the vehicle is traveling and parking,
    차량에 장착되어, 초음파 신호를 송신하고, 물체에 반사되어 돌아오는 초음파 신호를 수신하기 위한 둘 이상의 초음파 센서;At least two ultrasonic sensors mounted on a vehicle for transmitting ultrasonic signals and receiving ultrasonic signals reflected by objects;
    상기 초음파 센서를 구동하기 위한 구동부; 및A driving unit for driving the ultrasonic sensor; And
    초음파 센서 모듈의 전반적인 동작을 제어하며, 두 개의 초음파 센서에서 수신한 초음파 신호를 이용하여, 삼각 측정법으로 물체와 차량 간의 수직거리를 계산하는 제어부를 포함하는 초음파 센서 모듈.And a controller for controlling an overall operation of the ultrasonic sensor module and calculating a vertical distance between the object and the vehicle using triangular measurement using the ultrasonic signals received from the two ultrasonic sensors.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 초음파 센서 중에서, 초음파 신호를 송신하고 어느 한 물체에 반사되어 돌아오는 초음파 신호를 수신한 제1 초음파 센서와, 상기 제1 초음파 센서에 인접하여 위치하며 초음파 신호를 송신하지 않고 상기 물체에 반사되어 돌아오는 초음파 신호를 수신한 제2 초음파 센서가 있을 때, A first ultrasonic sensor that transmits an ultrasonic signal and receives an ultrasonic signal that is reflected by an object and returns; and a second ultrasonic sensor that is positioned adjacent to the first ultrasonic sensor and is reflected by the object without transmitting an ultrasonic signal, When there is a second ultrasonic sensor that receives the returned ultrasonic signal,
    상기 제어부는 상기 제1 초음파 센서에서 수신한 초음파 신호를 이용하여 측정한 직접 거리(Direct distance)와, 상기 제2 초음파 센서에서 수신한 초음파 신호를 이용하여 측정한 간접 거리(Indirect distance)를 이용하여 삼각 측정법으로 상기 물체와 차량 간의 수직거리를 계산하는 것을 특징으로 하는 초음파 센서 모듈.Wherein the control unit calculates a direct distance using an indirect distance measured using the ultrasonic signal received from the first ultrasonic sensor and an indirect distance measured using the ultrasonic signal received from the second ultrasonic sensor, Wherein the vertical distance between the object and the vehicle is calculated by a triangulation method.
  3. 청구항 2에 있어서, The method of claim 2,
    상기 제어부는 삼각 측정법을 이용하여 수직거리를 계산함에 있어서, 기 설정된 룩업 테이블(Look-up table)을 이용하여 제곱근 계산을 수행하는 것을 특징으로 하는 초음파 센서 모듈. Wherein the controller performs a square root calculation using a predetermined look-up table when calculating the vertical distance using the triangulation method.
  4. 청구항 2에 있어서, The method of claim 2,
    상기 제어부는 먼저 상기 제1 초음파 센서에서 수신한 초음파 신호를 이용하여 상기 물체와의 직접 거리(Direct distance)를 계산하고, 상기 직접 거리가 기 설정된 기준 거리를 초과하면 상기 직접 거리를 물체와의 거리로 판단하고, 상기 직접 거리가 상기 기준 거리 이내이면, 상기 직접 거리와 상기 간접 거리를 이용하여 삼각 측정법으로 상기 물체와 차량 간의 수직거리를 계산하는 것을 특징으로 하는 초음파 센서 모듈.The control unit first calculates a direct distance to the object using the ultrasonic signal received from the first ultrasonic sensor, and when the direct distance exceeds the preset reference distance, And calculates a vertical distance between the object and the vehicle by using a triangulation method using the direct distance and the indirect distance when the direct distance is within the reference distance.
PCT/KR2018/007383 2017-09-29 2018-06-29 Ultrasonic sensor module for improving precision of distance measurement WO2019066210A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020539661A JP6980925B2 (en) 2017-09-29 2018-06-29 Ultrasonic sensor module to improve the accuracy of distance measurement
CN201880062132.3A CN111149014A (en) 2017-09-29 2018-06-29 Ultrasonic sensor module for improving distance measurement precision

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170127686A KR102015074B1 (en) 2017-09-29 2017-09-29 Ultrasonic sensor module for improving distance accuracy
KR10-2017-0127686 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019066210A1 true WO2019066210A1 (en) 2019-04-04

Family

ID=65903608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/007383 WO2019066210A1 (en) 2017-09-29 2018-06-29 Ultrasonic sensor module for improving precision of distance measurement

Country Status (4)

Country Link
JP (1) JP6980925B2 (en)
KR (1) KR102015074B1 (en)
CN (1) CN111149014A (en)
WO (1) WO2019066210A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102143538B1 (en) 2019-05-31 2020-08-11 주식회사 웰텍 Method for correcting measuring distance of ultrasonic sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130046129A (en) * 2011-10-27 2013-05-07 한국단자공업 주식회사 Method for detecting object of automobile
KR101302832B1 (en) * 2009-09-01 2013-09-02 주식회사 만도 Method and System for Recognizing Obstacle for Parking
KR101521842B1 (en) * 2014-08-27 2015-05-20 현대모비스 주식회사 Device for detecting the parking space and method thereof
JP2015175633A (en) * 2014-03-13 2015-10-05 富士通株式会社 Stereoscopic extraction method and stereoscopic extraction device
JP2016080642A (en) * 2014-10-22 2016-05-16 株式会社デンソー Object detector

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950008250A (en) * 1993-09-02 1995-04-17 김주용 Vehicle collision prevention device using ultrasonic wave and its method
CN101303410B (en) * 2007-05-08 2011-08-24 李世雄 Method and apparatus for detecting single-sent and multi-received barrier
WO2010058521A1 (en) * 2008-11-19 2010-05-27 日本電気株式会社 Square root calculation device and method and square root calculation program
KR101818536B1 (en) * 2011-07-19 2018-01-15 현대모비스 주식회사 Apparatus Recognizing Object Using Side Signal And Method Thereof
KR101892763B1 (en) * 2013-10-08 2018-08-28 주식회사 만도 Method for detecting obstacle, apparatus for detecting obstacle and method and system for parking assistant
JP6557958B2 (en) * 2014-10-22 2019-08-14 株式会社Soken Obstacle detection device for vehicle
KR101692809B1 (en) * 2014-12-02 2017-01-05 주식회사 유라코퍼레이션 Camera apparatus for vehicle and method for measuring obstacle distance using the same
KR20160066757A (en) * 2014-12-03 2016-06-13 현대모비스 주식회사 Apparatus and Method for Identifing Position Coordinate
KR101757067B1 (en) * 2015-11-19 2017-07-12 (주)스마트시스텍 Apparatus and method for mesuring speed and distance using two sensor
JP6697281B2 (en) * 2016-02-10 2020-05-20 株式会社Soken Object detection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101302832B1 (en) * 2009-09-01 2013-09-02 주식회사 만도 Method and System for Recognizing Obstacle for Parking
KR20130046129A (en) * 2011-10-27 2013-05-07 한국단자공업 주식회사 Method for detecting object of automobile
JP2015175633A (en) * 2014-03-13 2015-10-05 富士通株式会社 Stereoscopic extraction method and stereoscopic extraction device
KR101521842B1 (en) * 2014-08-27 2015-05-20 현대모비스 주식회사 Device for detecting the parking space and method thereof
JP2016080642A (en) * 2014-10-22 2016-05-16 株式会社デンソー Object detector

Also Published As

Publication number Publication date
KR102015074B1 (en) 2019-08-27
KR20190037890A (en) 2019-04-08
JP6980925B2 (en) 2021-12-15
JP2020535450A (en) 2020-12-03
CN111149014A (en) 2020-05-12

Similar Documents

Publication Publication Date Title
WO2011046403A2 (en) Autonomous driving apparatus and method of on-line electric vehicle
CN109421711A (en) Follow the bus method for control speed, device, system, computer equipment and storage medium
WO2018101709A1 (en) Autonomous driving control apparatus and method
CN105008955A (en) Vehicular obstacle detection device, and vehicular obstacle detection system
WO2020045978A1 (en) Method and apparatus for estimating road surface type by using ultrasonic signal
US10286902B2 (en) Driving assistance device and driving assistance method using the same
CN104169697A (en) Method and system for determining a wading depth of a vehicle
CN101570167A (en) Ultrasonic obstacle detection system for vehicles
US11304292B2 (en) Circuit board and unmanned aerial vehicle including the same
WO2019066210A1 (en) Ultrasonic sensor module for improving precision of distance measurement
KR20170112309A (en) A Drone having a collision prevention capability with an object
KR20220044045A (en) Road entry system and method for vehicle
US20210103053A1 (en) Hostless parking radar system
JP2022119727A (en) System and method for wireless vehicle power transfer to vehicle device using misalignment sensor
JPH01267462A (en) Apparatus for measuring slip angle of vehicle
CN112356815B (en) Pedestrian active collision avoidance system and method based on monocular camera
KR20120119420A (en) Apparatus and method for intelligently controlling moving object
CN102812326A (en) Method for controlling a measuring system and measuring system for carrying out the method
WO2020085692A1 (en) Apparatus of straight driving recognition for autonomous vehicle dead-reckoning performance improvement, and method thereof
CN108162860A (en) A kind of vehicle guiding aided management system and vehicle guidance method
JPS57108778A (en) Position detector
EP0841295B1 (en) Suspended load steadying/positioning control device
CN108725578B (en) Method and device for controlling driving direction of intelligent automobile
US10241517B2 (en) Method for correcting a trajectory in a personal movement assistance device equipped with sensors
CN114348811A (en) Robot, robot elevator taking method, device and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861424

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020539661

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18861424

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18861424

Country of ref document: EP

Kind code of ref document: A1