WO2019066036A1 - 回転電機用コアの製造方法 - Google Patents

回転電機用コアの製造方法 Download PDF

Info

Publication number
WO2019066036A1
WO2019066036A1 PCT/JP2018/036471 JP2018036471W WO2019066036A1 WO 2019066036 A1 WO2019066036 A1 WO 2019066036A1 JP 2018036471 W JP2018036471 W JP 2018036471W WO 2019066036 A1 WO2019066036 A1 WO 2019066036A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
forming
stator
rotor
hole
Prior art date
Application number
PCT/JP2018/036471
Other languages
English (en)
French (fr)
Inventor
正幸 牧
哲也 松原
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to US16/637,913 priority Critical patent/US11482912B2/en
Priority to JP2019545176A priority patent/JP6863468B2/ja
Priority to CN201880060020.4A priority patent/CN111095750B/zh
Publication of WO2019066036A1 publication Critical patent/WO2019066036A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/02Punching blanks or articles with or without obtaining scrap; Notching
    • B21D28/22Notching the peripheries of circular blanks, e.g. laminations for dynamo-electric machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/24Perforating, i.e. punching holes
    • B21D28/26Perforating, i.e. punching holes in sheets or flat parts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/024Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines

Definitions

  • the present invention relates to a method of manufacturing a core for a rotating electrical machine.
  • a method of manufacturing a core for a rotary electric machine which includes a rotor core formed by laminating a plurality of rotor plate members.
  • a method of manufacturing such a core for a rotating electrical machine is disclosed, for example, in Japanese Patent Laid-Open No. 2015-173582.
  • JP-A-2015-173582 discloses a method of manufacturing a laminated core formed by laminating a plurality of core pieces.
  • a bridge is formed between the radially outer end of the magnet insertion hole of the core piece and the outer region of the core piece. Specifically, first, the magnet insertion hole is punched out of the core piece, and the through hole that forms the radially outer contour of the bridge is punched out. Then, the outline of the core piece is removed avoiding the radially outer contour of the bridge, and the core piece on the rotor side is formed. And a laminated core which has a bridge in the perimeter is manufactured by laminating a plurality of core pieces.
  • the through hole for forming the bridge portion on the outer periphery of the rotor core is the outer region of the core piece (region where the rotor core is formed)
  • the through hole is formed in the region where the stator core is formed on the outer side (radially outer side) of the rotor core, since the through hole is formed in the outer region).
  • the area in which the through hole is formed and the area in which the stator core is formed overlap, which makes it difficult to form the stator core (co-installing the rotor core and the stator core).
  • the width (radial width) of the air gap is usually larger than the size punched out in the punching process. It is very small, and the width of the punch needs to be smaller than the width of a general punch. For this reason, when forming a through-hole only in the position corresponding to said air gap, it is thought that it becomes difficult to ensure the intensity
  • the cross-sectional area of the punch is a thin plate, it is considered that it is difficult to secure strength against an eccentric load which acts to bend the punch by acting a bending moment on the punch.
  • the present invention has been made to solve the above-described problems, and one object of the present invention is to jointly manufacture a rotor plate member having a bridge portion on the outer periphery and a stator plate member from the same electromagnetic steel sheet. It is an object of the present invention to provide a method of manufacturing a core for a rotary electric machine capable of securing the strength of the hole forming punch on the radially outer side of the bridge part while making it possible.
  • a method of manufacturing a core for a rotating electrical machine includes: a rotor core formed by laminating a plurality of rotor plate members having holes; and a plurality of stators having slot portions.
  • a method of manufacturing a core for a rotating electrical machine comprising: a stator core formed by laminating plate members, wherein the step of forming a stator side hole in at least a first portion of a portion where a slot of the electromagnetic steel sheet is formed; Forming the bridge portion in at least a part of the portion where the hole portion of the electromagnetic steel sheet is formed, and punching the electromagnetic steel sheet after the step of forming the bridge portion and the step of forming the bridge portion Forming a rotor plate member and a stator plate member.
  • the stator side hole (a through hole on the outside of the bridge portion) in at least a first portion of the portion where the slot of the electromagnetic steel sheet is formed.
  • the stator side hole portion (the hole portion on the radial direction outer side of the bridge portion)
  • the strength of the punch for punching can be secured.
  • the rotor plate member and the stator plate member are formed by punching the electromagnetic steel plate, the rotor plate member and the stator plate member can be co-taken from the same electromagnetic steel plate.
  • stator side hole (the hole on the radially outer side of the bridge portion) while making it possible to jointly take the rotor plate member having the bridge portion on the outer periphery and the stator plate member from the same electromagnetic steel sheet.
  • the strength of the punch can be secured.
  • the bridge portion can be formed with high accuracy.
  • the present invention it is possible to jointly take out the rotor plate member having the bridge portion on the outer periphery and the stator plate member from the same electromagnetic steel sheet, while the strength of the punch for forming the hole portion on the radially outer side of the bridge portion It can be secured.
  • FIG. 5 is a plan view showing the configurations of a rotor core and a stator core (rotating electric machine) according to the first to third embodiments of the present invention.
  • FIG. 7 is a view showing lamination of a rotor plate member and a stator plate member according to the first to third embodiments of the present invention.
  • FIG. 5 is a partial plan view showing a configuration of a rotor core (rotor) according to first to third embodiments of the present invention.
  • FIG. 7 is a view showing how to form a first crushing part, a second crushing part, and a third crushing part according to the first to third embodiments of the present invention.
  • FIG. 5 is a partial plan view showing the configuration of a stator core (stator) according to first to third embodiments of the present invention.
  • FIG. 6 schematically shows a part of the configuration of the pressing device according to the first to third embodiments of the present invention, and is a punch for forming a first outer diameter side escape hole and a second outer diameter side escape hole.
  • FIG. 6A shows the configuration of the punch (FIG. 6B) for forming the first inner diameter side relief portion and the second inner diameter side relief portion (FIG. 6B) and the structure of the punch for removing the rotor plate member (FIG. 6C). is there. It is a figure which shows the process of forming the 1st outer diameter side escape hole by 1st Embodiment of this invention.
  • FIG. 5 illustrates the process of forming a second part according to the first embodiment of the present invention. It is a figure which shows the process of withdrawing the rotor plate member by 1st Embodiment of this invention. It is a figure which shows the process of forming the jump cut hole by 1st Embodiment of this invention.
  • FIG. 5 illustrates the process of forming a slot according to the first embodiment of the present invention.
  • FIG. 14 is a view showing a step of forming a second outer diameter side escape hole according to a first modification of the first to third embodiments of the present invention.
  • FIG. 10 is a view showing a configuration of a rotor according to a second modification of the first to third embodiments of the present invention.
  • the rotating electrical machine 100 includes a rotor 101 and a stator 102.
  • the rotor 101 includes a rotor core 10.
  • the stator 102 also includes a stator core 20.
  • the rotor core 10 is formed by laminating a plurality of rotor plate members 1.
  • the stator core 20 is formed by laminating a plurality of stator plate members 2.
  • the rotor core 10 and the stator core 20 are examples of the "core for a rotating electrical machine" in the claims.
  • the “stacking direction” means the stacking direction of the rotor plate member 1 of the rotor core 10 and the stator plate member 2 of the stator core 20, and means the Z direction.
  • the “axial direction” means a direction along the rotation axis C of the rotor 101 and means the Z direction.
  • the “radial direction” means the radial direction of the rotor 101 (the arrow R1 direction or the arrow R2 direction), and the “circumferential direction” means the circumferential direction of the rotor 101 (the arrow A1 direction or the arrow A2 direction).
  • the rotary electric machine 100 is configured as, for example, a motor, a generator or a motor generator.
  • the rotor 101 is disposed radially inward of the stator 102 so as to radially face the stator 102. That is, the rotary electric machine 100 is configured as an inner rotor type rotary electric machine.
  • a clearance CL air gap
  • an outer peripheral surface 10 a which is an end surface on the radially outer side of the rotor core 10 and an inner peripheral surface 20 a which is an end surface on the radial direction of the stator core 20. It is arranged.
  • the rotor core 10 has a plurality of first magnet holes 11 and a plurality of second magnet holes 12 in which the permanent magnet 30 is disposed. That is, the rotary electric machine 100 of the first embodiment is configured as an embedded permanent magnet type motor (IPM motor: Interior Permanent Magnet Motor).
  • the rotor 101 is configured to transmit a rotational force to the outside of the rotary electric machine 100 via a shaft (not shown) fixed to the radially inner axial hole 19.
  • the first magnet hole 11 and the second magnet hole 12 are examples of the “hole” in the claims.
  • first magnet holes 11 and one second magnet hole 12 are provided for each magnetic pole P (see FIG. 1).
  • the two first magnet hole portions 11 are arranged in a V shape (or a C shape) spreading outward in the radial direction.
  • the second magnet hole 12 is disposed between the circumferential direction of the V-shaped first magnet hole 11 and radially outside.
  • magnetic flux leakage suppression holes 13 are provided in the circumferential direction of the two first magnet holes 11.
  • the 1st crushing part 14 is formed in the part (bridge part) between the hole part 11 for 1st magnets, and the outer peripheral surface 10a.
  • a second crushing portion 15 is formed in a portion (bridge portion) between the second magnet hole portion 12 and the outer peripheral surface 10a.
  • a third crushing portion 16 is formed in a portion (bridge portion) between the first magnet hole portion 11 and the magnetic flux leakage suppression hole portion 13.
  • the 1st crushing part 14, the 2nd crushing part 15, and the 3rd crushing part 16 are examples of the "bridge part" of a claim.
  • the thickness t 1 in the Z direction of the first crush portion 14, the second crush portion 15, and the third crush portion 16 is smaller than the thickness t 2 of the rotor plate member 1.
  • the first crush portion 14, the second crush portion 15, and the third crush portion 16 have larger magnetic resistance than the other portions of the rotor plate member 1, and can reduce the short circuit flux inside the magnetic pole P Become.
  • the jump cut hole 17 and the caulking portion 18 are provided in the rotor core 10, and the caulking portions 18 or the jump cut hole 17 and the caulking portion 18 are engaged with each other.
  • the rotor plate members 1 are fixed (positioned).
  • the stator core 20 has a plurality of teeth 21 projecting radially toward the rotor core 10 (inward in the radial direction), and a slot 22 formed between adjacent teeth 21. And are provided.
  • the slot 22 is provided with a coil (not shown).
  • the circumferential width W1 of the slot portion 22 is set to be substantially constant in the radial direction. As a result, the coil can be inserted into the slot 22 at an inner diameter.
  • stator core 20 a jump cut hole 23 and a caulking portion 24 are provided. And stator plate member 2 comrades are fixed (positioning) by caulking part 24 comrades or jump cut hole 23 and caulking part 24 fitting.
  • the stator core 20 is also provided with ear holes 25 (see FIG. 1).
  • the first crushing portion 14 is disposed at a position facing the slot portion 22 in the radial direction.
  • the second crushing portion 15 is disposed at a position opposed to the teeth portion 21 in the radial direction.
  • the pressing apparatus 200 is configured as a sequential feeding pressing apparatus that performs pressing while sequentially moving the strip-like electromagnetic steel plates 300.
  • the pressing apparatus 200 includes an upper die set 210 and a lower die set 220.
  • the pressing apparatus 200 is configured to transport the electromagnetic steel plate 300 in the direction of arrow X2 by the feeding mechanism in a state where the strip-like electromagnetic steel plate 300 is disposed between the upper die set 210 and the lower die set 220 There is.
  • the upper die set 210 and the lower die set 220 of the press processing apparatus 200 are provided with a plurality of punches 211 and a plurality of dies 221. Then, the pressing apparatus 200 performs punching by sandwiching the electromagnetic steel plate 300 between the punch 211 and the die 221 by moving the upper die set 210 in the vertical direction (Z direction) with respect to the lower die set 220. It is comprised so that crushing, convex part formation (davo formation) processing, etc. may be performed. Although only a part of the punches 211 and dies 221 of the press processing apparatus 200 are shown in FIG. 6, the punches 211 and dies 221 are provided for each of the steps to be described later.
  • the shape of has a shape corresponding to the process.
  • the press processing apparatus 200 forms the first crushing part 14, the second crushing part 15, and the third crushing part 16 by coining by the punch 211 and the die 221. It is configured.
  • the pressing apparatus 200 moves the punch 211 in the direction of the arrow Z2 and punches the electromagnetic steel plate 300 in the direction of the arrow Z2 to shear the electromagnetic steel plate 300 in the direction of the arrow Z2.
  • the first outer diameter side escape hole 41 and the second outer diameter side escape hole 42 are formed.
  • the arrow Z2 direction is an example of the “first direction” in the claims.
  • the pressing apparatus 200 moves the punch 211 in the direction of the arrow Z2 and punches the electromagnetic steel plate 300 in the direction of the arrow Z2 to shear the electromagnetic steel plate 300 in the direction of the arrow Z2.
  • the first inner side escape hole 43 and the second inner side escape hole 44 are formed.
  • the pressing apparatus 200 moves the punch 211 in the direction of arrow Z1 and punches the electromagnetic steel plate 300 in the direction of arrow Z1 to shear the rotor plate member 1 in the direction of arrow Z2.
  • the rotor plate member 1 is formed.
  • the arrow Z1 direction is an example of the “second direction” in the claims.
  • a method of manufacturing the rotor core 10 and the stator core 20 will be described.
  • a method of manufacturing the stator core 20 formed by laminating the members 2 will be described.
  • step S1 to S12 are performed by the press processing apparatus 200 (see FIG. 6), the electromagnetic steel plate 300 is delivered in one direction, and the electromagnetic steel plate 300 is sandwiched by the punch 211 and the die 221 (pressed Processing).
  • step S1 the first outer diameter side escape hole 41, the jump cut hole 17, and the pilot hole (not shown) are punched out of the electromagnetic steel plate 300 at the same time.
  • the punch 211 is moved in the arrow Z2 direction, and the electromagnetic steel plate 300 is punched in the arrow Z2 direction, whereby the electromagnetic steel plate 300 is moved in the arrow Z2 direction. It shears and the 1st outer diameter side escape hole 41 is formed.
  • step S ⁇ b> 2 the second outer diameter side escape hole 42 and the central bridge one side escape hole 51 are punched out of the magnetic steel sheet 300 at the same time.
  • the punch 211 is moved in the arrow Z2 direction, and the electromagnetic steel plate 300 is punched in the arrow Z2 direction, whereby the electromagnetic steel plate 300 is moved in the arrow Z2 direction.
  • the second outer diameter side escape hole 42 is formed by shearing.
  • the first outer diameter side relief hole 41 and the second outer diameter side relief hole 42 are examples of the “stator side hole portion” in the claims. Further, in FIGS.
  • the hatched portion is shown as a portion to be processed in the illustrated process (step), and the non-hatched portion is shown as an already processed portion. Further, a solid line is shown as a portion after processing, and a dotted line is described as a portion to be processed (a portion to be processed in a later step).
  • the first portion 41 a of the portion of the electromagnetic steel sheet 300 where the slot portion 22 is formed is punched out to form the first outer diameter escape hole 41. It is formed.
  • the connection portion 41b between the portion where the first crush portion 14 is formed and the portion where the slot portion 22 is formed is integrally punched out by punching the first portion 41a integrally.
  • the first outer diameter escape hole 41 having an I shape is punched out.
  • I-shaped means a broad concept including “substantially I-shaped”.
  • integralally punched out means that the punches 211 are punched out integrally.
  • the second outer diameter side escape hole 42 is formed by punching out at least the first portion 42 a of the portion of the electromagnetic steel sheet 300 where the slot portion 22 is formed. Be done.
  • the connection portion 42b and the first portion 42a between the portion in which the second crushing portion 15 is formed and the portion in which two adjacent slot portions 22 are formed are punched integrally.
  • the second radially outer escape hole 42 having a U-shape is punched out in plan view.
  • U-shaped means a broad concept including "substantially U-shaped”.
  • the jump cut hole 17 is a hole in which a convex portion of a caulking portion 18 described later is disposed, and is formed in the rotor plate member 1 constituting an end of the rotor core 10 (block core) in the lamination direction The rotor plate member 1 is not formed. Also, the pilot holes are used as holes for defining the position on the magnetic steel sheet 300.
  • the first outer diameter side escape hole 41 is a hole (for relief for a metal) for releasing the member protruding from the first crushing portion 14. Function as a pilot hole).
  • the second outer diameter side relief hole 42 is a hole portion for releasing the member protruding from the second crushing portion 15 Function as a pilot hole).
  • the central bridge one side escape hole 51 functions as an escape hole when the third crushing portion 16 is formed.
  • the first outer diameter side escape hole 41 is formed by integrally punching the one portion 41a.
  • the width W4 in the circumferential direction of the first portion 42a of the second outer diameter side escape hole 42 being larger than the width W5 in the radial direction of the connection portion 42b.
  • the second outer diameter side escape hole 42 is formed by integrally punching the one portion 42a.
  • the second outer diameter side escape hole 42 is formed such that the width W5 of the connection portion 42b is 0.4 mm or more and 0.7 mm or less. Further, the first outer diameter side escape hole 41 is formed so that the width W3 of the connection portion 41b is also 0.4 mm or more and 0.7 mm or less, similarly to the connection portion 42b.
  • the rotor core 10 and the stator core 20 are formed such that the radial width W7 of the clearance CL is larger than the width W5 and is 0.6 mm or more and 0.9 mm or less. Further, the width W7 is set based on the integration of the accuracy of each component of the rotary electric machine 100.
  • connection portion 42 b is 0.4 mm or more and 0.7 mm or less obtained by subtracting the machining allowance (0.1 mm ⁇ 2) on both sides in the radial direction from 0.9 mm.
  • the rotor core 10 is configured such that the size of the radial distance D1 between the outer peripheral surface 10a of the rotor core 10 and the connection portion 42b is smaller than the width W5 and is 0.1 mm or more and 0.2 mm or less. It is formed.
  • the distance D2 between the inner circumferential surface 20a of the stator core 20 (the tip surface 21a of the teeth 21) and the connecting portion 42b in the radial direction is smaller than the width W5 and 0.1 mm or more.
  • the stator core 20 is formed to be 2 mm or less. That is, according to the relationship between the width W5 and the distances D1 and D2, the second outer diameter side escape hole 42 is formed in a state in which the part of the cutting allowance (the part of the distances D1 and D2) is secured.
  • the distances D1 and D2 are preferably equal to or larger than the thickness t2 of the electromagnetic steel sheet 300.
  • the first outer diameter side escape hole 41 including the first portion 41a having the circumferential width W2 smaller than the circumferential width W1 of the slot 22 is punched or not
  • the second radially outer escape hole 42 including the first portion 42a having a circumferential width W4 smaller than the circumferential width W1 of the slot portion 22 is punched out.
  • step S3 the first inner diameter side escape hole 43, the second inner diameter side escape hole 44, and the other one of the central bridge side escape holes 52 are punched simultaneously from the electromagnetic steel plate 300.
  • the punch 211 is moved in the arrow Z2 direction, and the electromagnetic steel plate 300 is punched in the arrow Z2 direction, whereby the electromagnetic steel plate 300 is moved in the arrow Z2 direction.
  • the first inner side escape hole 43 and the second inner side escape hole 44 are formed by shearing.
  • Each bridge portion is formed by steps S1 to S3.
  • the first inner diameter side escape hole 43 and the second inner diameter side escape hole 44 are examples of the “rotor side escape hole” and the “rotor side hole” in the claims.
  • the first inner diameter side escape hole 43 is a part of the region where the first magnet hole portion 11 is formed, and the second inner diameter escape hole 44 is formed with the second magnet hole portion 12. It is part of the area.
  • the 1st inner diameter side escape hole 43 functions as a hole for releasing the member projected from the 1st crushing part 14.
  • the second inner diameter side escape hole 44 functions as a hole for releasing a member protruding from the second crushing part 15 when the second crushing part 15 provided adjacent to the radially outer side is formed.
  • the central bridge other escape hole 52 functions as an escape hole when the third crushing portion 16 is formed.
  • the first crushing portion 14, the second crushing portion 15, and the third crushing portion 16 are formed in the electromagnetic steel sheet 300.
  • the first crushing portion 14 is an outer peripheral surface of the magnetic steel plate 300 in the radial direction of the rotor core 10 between the first outer diameter side relief hole 41 and the first inner diameter side relief hole 43. It is formed by reducing the thickness of a portion to be a part of 10a from t2 to t1.
  • the second crushing portion 15 is an outer peripheral surface of the magnetic steel plate 300 in the radial direction of the rotor core 10 between the second outer diameter side relief hole 42 and the second inner diameter side relief hole 44. It is formed by reducing the thickness of a portion to be a part of 10a from t2 to t1.
  • the third crushing portion 16 is formed between the central bridge one escape hole 51 and the central bridge other escape hole 52.
  • the first crush portion 14, the second crush portion 15, and the third crush portion 16 are formed by coining with the punch 211 and the die 221.
  • step S ⁇ b> 5 the first magnet hole 11 is punched out of the electromagnetic steel plate 300. Specifically, a region including the first inner diameter side escape hole 43 and the central bridge second escape hole 52 is punched out to form the first magnet hole 11.
  • step S6 the second magnet hole portion 12, the second portion 61, the shaft hole 19 (see FIG. 1), and the magnetic flux leakage suppression hole portion 13 are punched out of the electromagnetic steel plate 300. . Specifically, the region extending over the two second inner diameter escape holes 44 is punched out to form the second magnet hole 12. Further, a region extending to the two central bridge one escape holes 51 is punched out to form the flux leakage suppression hole 13.
  • the first outer diameter side relief hole 41 is included.
  • the second portion 61 which is at least a part of the portion where the portion 22 is formed is punched from the electromagnetic steel plate 300.
  • a second portion 61 which is at least a part of a portion in which a plurality of (for example, two) slot portions 22 are formed, is integrally punched out.
  • the second portion 61 is substantially U-shaped as viewed in the Z direction. Specifically, the second portion 61 includes a portion between the adjacent first outer diameter side relief holes 41 (a portion corresponding to the air gap) and covers the periphery of the first outer diameter side relief holes 41. It is.
  • the circumferential width W6 of the portion of the second portion 61 corresponding to the portion where the slot portion 22 is formed is smaller than the circumferential width W1 of the slot portion 22, and the circumference of the first portion 41a. It is larger than the direction width W1. That is, the meat is left in the slot portion 22 to such an extent that it is possible to prevent the ascent of the slot portion 22 when removing the finish.
  • the second portion 61 includes a part of the outer peripheral surface 10 a of the rotor core 10. Further, by punching out the second portion 61, a part of the outer peripheral surface 10a of the rotor core 10 is formed, but the rotor plate member 1 itself is not punched out in this step. Also in the formation of the second portion 61, the punch 211 is moved in the arrow Z2 direction, and the electromagnetic steel plate 300 is punched in the arrow Z2 direction, whereby the electromagnetic steel plate 300 is sheared in the arrow Z2 direction. Is formed.
  • the second portion 62 is punched from the electromagnetic steel plate 300, and the caulking portion 18 is processed and formed.
  • the second portion 62 including the second outer diameter escape hole 42 and at least a part of the portion of the electromagnetic steel plate 300 in which the slot portion 22 is formed is punched from the electromagnetic steel plate 300.
  • a second portion 62 which is at least a portion of a portion in which a plurality of (for example, two) slot portions 22 arranged at a distance are formed, is integrally punched out.
  • an area in which two slot portions 22 are formed is included between the circumferential direction of the slot portions 22 corresponding to the second portion 62.
  • the punch 211 is moved in the arrow Z2 direction, and the electromagnetic steel plate 300 is punched in the arrow Z2 direction, whereby the electromagnetic steel plate 300 is sheared in the arrow Z2 direction. Is formed.
  • the second portion 62 is substantially U-shaped as viewed in the Z direction. Specifically, the second portion 62 includes portions between the adjacent second outer diameter side relief holes 42 and a radially inner portion (a portion corresponding to the air gap), and the second portion 62 of the second outer diameter side relief holes 42 It is a part of the part covering the circumference.
  • the circumferential width W7 of the portion of the second portion 62 corresponding to the portion where the slot portion 22 is formed is smaller than the circumferential width W1 of the slot portion 22, and the circumference of the first portion 42a. It is larger than the direction width W4.
  • the second portion 62 also includes a part of the outer circumferential surface 10 a of the rotor core 10. By punching out the second portion 62, a part of the outer peripheral surface 10a of the rotor core 10 is formed, while the rotor plate member 1 itself is not punched out in this step.
  • step S8 the rotor plate member 1 is pulled out.
  • the first outer diameter side escape hole 41, the second outer diameter side escape hole 42, and the second portions 61 and 62 in the portion to be the outer peripheral surface 10a are separated portions that are different portions.
  • the rotor plate member 1 is pulled out of the electromagnetic steel plate 300. Specifically, as shown in FIG. 6C, the punch 211 is moved in the arrow Z1 direction, and the electromagnetic steel plate 300 is punched in the arrow Z1 direction, so that the rotor plate member 1 is sheared in the arrow Z2 direction. 1 is formed. A plurality of the removed rotor plate members 1 are stacked to form the rotor core 10.
  • the separating portion 63 is an example of “a portion obtained by separating a portion to be the outer periphery of the rotor core” in the claims.
  • step S9 the jump cut hole 23 is punched out of the electromagnetic steel plate 300.
  • step S ⁇ b> 10 the slot portion 22 is punched out of the electromagnetic steel plate 300.
  • the slot 22 is formed by punching out the plurality of slots 22 and the separating part 63 integrally. For example, the separating portion 63 and the two slot portions 22 circumferentially adjacent to the separating portion 63 are punched out of the electromagnetic steel plate 300 integrally.
  • step S ⁇ b> 11 the caulking portion 24 is processed, and the ear holes 25 (see FIG. 1) are punched out of the electromagnetic steel plate 300. Then, as shown in FIG. 19, the stator plate member 2 is pulled out of the electromagnetic steel plate 300 in step S12. Then, the stator core 20 is formed by laminating the plurality of stator plate members 2.
  • stator 101 permanent magnets 30 are arranged on the rotor core 10 to form the rotor 101.
  • stator 102 is formed.
  • the rotary electric machine 100 is manufactured by assembling the rotor 101 and the stator 102.
  • the rotor core 10 and the stator core 20 manufactured by the manufacturing method according to the second embodiment have the same configuration as the rotor core 10 and the stator core 20 according to the first embodiment. Further, in the manufacturing method according to the second embodiment, steps S101 and S102 are performed instead of steps S1 and S2 in the manufacturing method according to the first embodiment.
  • steps S101 and S102 are performed instead of steps S1 and S2 in the manufacturing method according to the first embodiment.
  • the same components as those of the first embodiment are denoted by the same reference numerals and the description thereof is omitted.
  • step S101 the first outer diameter escape hole 541 is punched out.
  • the connection portion 541 b and the first portion 41 a are punched out integrally as the first outer diameter escape hole 541.
  • step S102 the second outer diameter escape holes 542 are punched simultaneously.
  • the connection portion 542 b and the first portion 42 a are punched out integrally as the second outer diameter escape hole 542.
  • the first outer diameter side escape hole 541 and the second outer diameter side escape hole 542 are examples of the “stator side hole portion” in the claims.
  • the second outer diameter side escape hole 542 is formed such that the width W15 of the connection portion 542b is 0.4 mm or more and 0.8 mm or less.
  • the first outer diameter side escape hole 541 is formed so that the width W13 of the connection portion 541b is 0.4 mm or more and 0.8 mm or less. That is, the connection portion 542b is 0.4 mm or more and 0.8 mm or less obtained by subtracting the inner radial allowance (0.1 mm) from 0.9 mm.
  • the rotor core 10 and the stator core 20 are formed such that the radial width of the gap CL is W7 and is 0.6 mm or more and 0.9 mm or less.
  • the rotor core 10 is configured such that the size of the radial distance D11 between the outer peripheral surface 10a of the rotor core 10 and the connection portion 542b is smaller than the width W15 and is 0.1 mm or more and 0.2 mm or less. It is formed.
  • stator core 20 is formed such that the size of distance D12 in the radial direction between inner circumferential surface 20a of stator core 20 (tip surface 21a of tooth 21) and connecting portion 42b is approximately 0 mm. That is, in the second embodiment, at the time of step S102, the tip end face 21a of some teeth 21 of the plurality of teeth 21 is finished.
  • the other manufacturing steps (steps S3 to S12) according to the second embodiment are the same as in the first embodiment.
  • step S203 is performed instead of steps S3 and S5 in the manufacturing method according to the first embodiment.
  • the same components as those of the first and second embodiments are denoted by the same reference numerals and the description thereof will be omitted.
  • step S203 the rotor side hole portion 611 is punched out.
  • the rotor-side hole portion 611 is not simply formed as a relief hole (a lower hole), and constitutes the first magnet hole portion 11 after the crush portion 14 is formed. That is, in step S203 of the third embodiment, as in step S5 of the first embodiment, after the step of forming the first crushed portion 14 (step S4), finish removal of the first magnet hole 11 is performed. In the state where the meat of the first crushing portion 14 escapes to the rotor side hole portion 611, the product shape of the first magnet hole portion 11 is obtained.
  • the other manufacturing steps (steps S1 (S101), S2 (S102), S4 and S6 to S12) according to the third embodiment are the same as in the first or second embodiment.
  • the stator side hole portion (41, 42, 541, 542) is formed in at least the first portion (41a, 42a) of the portion where the slot portion (22) of the magnetic steel plate (300) is formed.
  • the width (W1) of the slot portion (22) is larger than the width of the air gap (CL) between the rotor core (10) and the stator core (20), so only the position corresponding to the air gap (CL)
  • the stator side hole (41, 42, 541, 542) having a larger width can be formed as compared with the case where the stator side hole (41, 42, 541, 542) is formed.
  • the rotor plate member (1) and the stator plate member (2) are formed by punching the electromagnetic steel plate (300), the rotor plate is made of the same electromagnetic steel plate (300). The member (1) and the stator plate member (2) can be co-taken.
  • the step of forming the stator side hole (41, 42, 541, 542) is performed by punching the electromagnetic steel plate (300) in the first direction (the direction of the arrow Z 2).
  • the electromagnetic steel plate (300) is sheared in the first direction (the direction of the arrow Z2) to form the stator side holes (41, 42, 541, 542), and the rotor side holes (43, 44)
  • the electromagnetic steel sheet (300) is sheared in the first direction (arrow Z2 direction) by punching the electromagnetic steel sheet (300) in the first direction (arrow Z2 direction), and the rotor side hole portion ( 43, 44) are formed.
  • the radial direction of the rotor side hole (43, 44), which is the radially inner side is the same direction, so stress is generated in the direction in which the bridge (14, 15) is twisted. Can be prevented, and deformation of the bridge portions (14, 15) can be prevented.
  • the electromagnetic steel sheet in the direction of the arrow Z1) opposite to the first direction (the direction of the arrow Z2) 300) is a step of shearing the rotor plate member (1) in the first direction (the direction of the arrow Z1) by punching out to form the rotor plate member (1).
  • the stator side holes (41, 42) which are the shear direction (direction of arrow Z2) of the outer peripheral surface (10a) of the rotor plate member (1) and the radial direction outer side of the bridge portion (14, 15). Since the shear direction (arrow Z2 direction) on the 541, 542 side is the same direction, it is possible to further prevent stress from being generated in the direction in which the bridge portions (14, 15) are twisted. 14, 15) can be further prevented from being deformed.
  • stator side hole (41, 42, 541, 542) in the step of forming the stator side hole (41, 42, 541, 542), the portion where the bridge portion (14, 15) is formed and the slot portion (22) are formed.
  • the stator side holes (41, 42, 541, 542) by integrally punching out the connection portions (41 b, 42 b, 541 b, 542 b) and the first portions (41 a, 42 a) between the portions to be It is a process of forming.
  • the connection for connecting the separated portion The stator side hole portion (41, 42) while securing the strength of the punch (211) integrally punched out by integrally punching out the portion (41b, 42b, 541b, 542b) with the first portion (41a, 42a) , 541, 542).
  • the process of forming the stator side hole (41, 42, 541, 542) includes the connecting portions (41b, 42b, 541b, 542b) and the first portions (41a, 42a) And the stator side hole (41, 42, 541, 542) by punching out integrally so as to have at least one of a U shape, an L shape, or an I shape in a plan view. It is a process of forming. According to this structure, it is possible to increase the radial length (area of the punching portion) of the stator side hole forming punch (211) by punching it in a U shape, an L shape or an I shape. Since it can be done, the strength to eccentric load can be improved.
  • both sides of the bridge portion (14, 15) in the radial direction can be secured while securing the strength of the punch (211). This makes it possible to prevent the configuration of the hole forming punch (211) from becoming complicated.
  • the circumferential widths (W2, W4) of the first portions (41a, 42a) are connected In a state larger than the radial width (W3, W5) of the part (41b, 42b, 541b, 542b), the connection part (41b, 42b, 541b, 542b) and the first part (41a, 42a) are integrated It is the process of forming stator side hole parts (41, 42, 541, 542) by punching out.
  • the connecting portions (41b, 42b, 541b, 542b) at positions corresponding to the air gap (CL), the radial direction of the connecting portions (41b, 42b, 541b, 542b) can be obtained. Even when the widths (W3, W5) are relatively small, the circumferential widths (W2, W4) of the first portions (41a, 42a) are relatively large, so The strength of the hole forming punch (211) can be further secured.
  • the radial width (W 13, W 15) of the connection portion (541 b, 542 b) is 0.4 mm or more In the step of forming the stator side hole (541, 542) so as to be 0.8 mm or less. According to this structure, the rigidity of the punch (211) can be improved unlike the case where the radial widths (W13, W15) of the connection portions (541b, 542b) are less than 0.4 mm.
  • the bridge portion (14, 14) after the step of forming the bridge portion (14, 15) can be improved. That is, since the machining allowance can be formed between the rotor outer peripheral surface (10a) and the connection portions (541b, 542b), the finish of the rotor outer peripheral surface (10a) is improved while the rigidity of the punch (211) is improved. Punching processability can be improved.
  • the radial width (W3, W5) of the connection portion (41 b, 42 b) is 0.4 mm or more It is a process of forming the stator side hole (41, 42) so as to be 0.7 mm or less. According to this configuration, the rigidity of the punch (211) can be improved, unlike the case where the radial widths (W3, W5) of the connection portions (41b, 42b) are less than 0.4 mm.
  • the bridge portion (14, 14) after the step of forming the bridge portion (14, 15) The punchability of the outer peripheral surface (10a) of the rotor core (10) of 15) and both sides of the tip surface (21a) of the teeth (21) can be improved. That is, by configuring as described above, the clearance (extraction margin) between the connection portion (41b, 42b) and the outer peripheral surface (10a) and between the connection portion (41b, 42b) and the tip end surface (21a) (D1 and D2 portions) can be left, so that punching processability can be improved.
  • the step of forming the stator side hole (41, 42, 541, 542) has a circumferential width smaller than the circumferential width (W 1) of the slot 22.
  • a stator side hole (41, 42, 541, 542) is formed.
  • the circumferential width of the slot portion (22) to be punched out can be secured when the slot portion (22) is punched out after the first portion (41a, 42a) is punched out. Waste rise at the time of punching out the slot portion (22) can be prevented.
  • "sump up” is described as meaning the phenomenon in which the punched out scrap returns upward from the die hole.
  • the stator side further includes the step of punching out a second portion (61, 62) that includes the hole portion (41, 42, 541, 542) and is at least a part of the portion where the slot portion (22) of the electromagnetic steel plate (300) is formed.
  • the width is relatively small after punching the stator side hole portion and the rotor plate member, and it corresponds to the rotor plate member. The second part of the state not supported by the remaining area remains on the magnetic steel sheet.
  • the second portion (61, 62) can be punched out in a state where the portion corresponding to the rotor plate member (1) remains on the electromagnetic steel plate (300).
  • the second portion (61, 62) can be punched out in a state where the second portion (61, 62) is supported by the portion corresponding to the rotor plate member (1), the second portion (61, 62) Can be prevented from rising when punching out.
  • the step of punching out the second portion (61, 62) is performed at the second portion (61, 62) that is at least a part of the portion where the plurality of slot portions (22) are formed. Is a process of punching out integrally.
  • the punch (211) can be enlarged as compared with the case where only the second part of the part where one slot part is formed is punched out, so the diameter of the bridge part (14, 15) The strength of the hole forming punch (211) on both sides in the direction can be further secured.
  • the stator side hole portion (41) is formed after the process of punching out the second portion (61, 62). 42, 541, 542) and the second portion (61, 62) by cutting off the portion that becomes the outer periphery (10a) of the rotor core (10) of the electromagnetic steel plate (300) different from the electromagnetic steel plate (300) In the step of removing the stator plate member (2) from the electromagnetic steel plate (300) after removing the member (1).
  • the rotor plate member (1) and the stator plate member (2) are removed after punching out the second portion (61, 62), the second portion (61, 62) Even when the member (1) is punched out, the rotor plate member (1) and the stator plate member (2) can be removed separately.
  • the step of forming the rotor plate member (1) and the stator plate member (2) is performed in plural after the step of removing the rotor plate member (1) from the electromagnetic steel plate (300).
  • the slot portion (22) is formed by integrally punching out the slot portion (22) and the portion (63) obtained by cutting the portion to be the outer periphery (10a) of the rotor core (10) into one piece. Step of removing the stator plate member (2) from the above. According to this structure, the portion (63) obtained by separating the portion to be the outer periphery (10a) of the rotor core (10) and the slot portion (22) after the first portion (41a, 42a) are punched out are punched out.
  • the bridge portion (14, 14) can be obtained by integrally punching out the plurality of slot portions (22) and the portion (63) in which the portion to be the outer periphery (10a) of the rotor core (10)
  • the strength of the hole forming punches (211) on both sides in the radial direction of 15) can be secured, and the waste ascent can be prevented.
  • the present invention is not limited to this. That is, the rotor core may be disposed radially outward of the stator core, and the rotor may be configured as an outer rotor.
  • the first outer diameter side relief portion is punched into an I shape and the second outer diameter side relief portion is punched into a U shape, but the present invention is not limited to this.
  • the second outer diameter side relief portion 442 may be punched into an L shape in plan view.
  • first inner diameter escape portion and the second inner diameter escape portion are formed in the portions to be the first magnet hole or the second magnet hole, but the present invention It is not restricted to this.
  • first inner diameter side relief portion and the second inner diameter side relief portion may be formed in a portion to be the hole portion for magnetic flux leakage suppression.
  • the slot portion is formed to have a constant width in the circumferential direction, but the present invention is not limited to this.
  • the slot portion may be formed so that the circumferential width gradually widens toward the rotor core side.
  • width W3 (W13) and the width W5 (W15) are shown, but the present invention is not limited to this. That is, in the above-described embodiment, preferable examples are described, and the width W3 (W13), the width W5 (W15), and the like may be set to sizes other than the above numerical example.
  • this invention is not limited to this.
  • the positions corresponding to the first crushing portion 14, the second crushing portion 15, and the third crushing portion 16 in the first embodiment.
  • the first bridge portion 714, the second bridge portion 715, and the third bridge portion 716 which are not coined may be provided.
  • the process of forming the crush portion in step S4 in the manufacturing process of the rotor core 710, the process of forming the crush portion in step S4 (see FIG. 11) is not provided.
  • first outer diameter side relief hole and the second outer diameter side relief hole become the first outer diameter side hole portion and the second outer diameter side hole portion, and the first inner diameter side escape hole and the second inner diameter side relief hole Are the first inner diameter side hole and the second inner diameter side hole.
  • the first inner diameter side escape is performed.
  • the example which forms a hole (1st inside diameter side hole) and a 2nd inside diameter side relief hole (2nd inside diameter side hole) (S3, S203) was shown, the present invention is not limited to this.
  • the first outer diameter side escape hole may be formed, and the first inner diameter side escape hole (first inner diameter side hole portion) and the second inner diameter side escape hole (second inner diameter side hole portion), and the first The radially outer relief hole and the second radially outer relief hole may be simultaneously formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

この回転電機用コアの製造方法は、電磁鋼板のスロット部が形成される部分の少なくとも第1部分にステータ側穴部を形成する工程と、電磁鋼板の孔部が形成される部分の少なくとも一部にロータ側穴部を形成する工程と、を備えるブリッジ部を形成する工程と、電磁鋼板を打ち抜くことにより、ロータ板部材およびステータ板部材を形成する工程とを備える。

Description

回転電機用コアの製造方法
 本発明は、回転電機用コアの製造方法に関する。
 従来、複数のロータ板部材が積層されて形成されたロータコアを備えた回転電機用コアの製造方法が知られている。このような回転電機用コアの製造方法は、たとえば、特開2015-173582号公報に開示されている。
 上記特開2015-173582号公報には、複数の鉄心片が積層されて形成された積層鉄心の製造方法が開示されている。この積層鉄心の製造方法では、鉄心片の磁石挿入孔の半径方向外側端と鉄心片の外側領域との間にブリッジが形成される。具体的には、まず、鉄心片から磁石挿入孔が打ち抜かれ、ブリッジの径方向外側輪郭を形成する貫通孔が打ち抜かれる。そして、ブリッジの半径方向外側輪郭を避けて鉄心片の外形抜きが行われ、回転子側の鉄心片が形成される。そして、複数の鉄心片が積層されることにより、外周にブリッジを有する積層鉄心が製造される。
特開2015-173582号公報
 ここで、製造工程の簡素化および材料増大の防止のために、同一の電磁鋼板(鉄心片)から、ロータコアを構成するロータ板部材と、ステータコアを構成するステータ板部材とを共取りすることが考えられる。そして、上記特開2015-173582号公報の積層鉄心(ロータコア)の製造方法に、ロータ板部材とステータ板部材とを共取りする製造方法を適用することが考えられる。しかしながら、上記特開2015-173582号公報の製造方法に共取りする方法を適用した場合、ブリッジ部をロータコアの外周に形成するための貫通孔が、鉄心片の外側領域(ロータコアが形成される領域よりも外側の領域)に形成されるので、ロータコアの外側(径方向外側)のステータコアが形成される領域に、貫通孔が形成されてしまう。このため、貫通孔が形成される領域とステータコアが形成される領域とが重なってしまい、ステータコアを形成する(ロータコアとステータコアとを共取りする)ことが困難になるという不都合がある。
 そこで、ロータコアとステータコアとの間のエアギャップに対応する位置のみに、貫通孔を形成することが考えられるが、エアギャップの幅(径方向の幅)は、通常打ち抜き工程で打ち抜かれる大きさよりも極めて小さく、パンチの幅を一般的なパンチの幅よりも小さく構成する必要がある。このため、上記のエアギャップに対応する位置のみに貫通孔を形成する場合に、貫通孔形成用のパンチの強度を確保することが困難になると考えられる。特に、この場合、パンチの断面積が薄板状となるため、パンチに曲げモーメントが作用してパンチが折れるように作用する偏心荷重に対する強度を確保することが困難になると考えられる。したがって、従来の回転電機用コアの製造方法では、外周にブリッジ部を有するロータ板部材とステータ板部材とを同一の電磁鋼板から共取りすることを可能にしながら、プレス加工用パンチの強度を確保することが困難であるという問題点がある。
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、外周にブリッジ部を有するロータ板部材とステータ板部材とを同一の電磁鋼板から共取りすることを可能にしながら、ブリッジ部の径方向外側の穴部形成用パンチの強度を確保することが可能な回転電機用コアの製造方法を提供することである。
 上記目的を達成するために、この発明の一の局面における回転電機用コアの製造方法は、孔部を有する複数のロータ板部材が積層されて形成されたロータコアと、スロット部を有する複数のステータ板部材が積層されて形成されたステータコアとを備える回転電機用コアの製造方法であって、電磁鋼板のスロット部が形成される部分の少なくとも第1部分にステータ側穴部を形成する工程と、電磁鋼板の孔部が形成される部分の少なくとも一部にロータ側穴部を形成するする工程と、を備えるブリッジ部を形成する工程と、ブリッジ部を形成する工程の後、電磁鋼板を打ち抜くことにより、ロータ板部材およびステータ板部材を形成する工程とを備える。
 この発明の一の局面における回転電機用コアの製造方法では、上記のように、電磁鋼板のスロット部が形成される部分の少なくとも第1部分にステータ側穴部(ブリッジ部の外側の貫通孔)を形成する。これにより、スロット部の周方向の幅は、ロータコアとステータコアとの間のエアギャップの幅(径方向の幅)よりも大きいので、エアギャップに対応する位置のみに逃がし穴を形成する場合に比べて、幅が大きい(断面積が大きい)ステータ側穴部を形成することができる。これにより、パンチの強度(特に、偏心荷重に対する強度)を確保することができる。この結果、ロータ板部材の外周にブリッジ部を形成する場合で、かつ、ステータ板部材と同一の電磁鋼板から共取りする場合でも、ステータ側穴部(ブリッジ部の径方向外側の穴部)を打ち抜くためのパンチの強度を確保することができる。また、本発明では、電磁鋼板を打ち抜くことにより、ロータ板部材およびステータ板部材を形成するので、同一の電磁鋼板から、ロータ板部材およびステータ板部材を共取りすることができる。これらの結果、外周にブリッジ部を有するロータ板部材とステータ板部材とを同一の電磁鋼板から共取りすることを可能にしながら、ステータ側穴部(ブリッジ部の径方向外側の穴部)形成用パンチの強度を確保することができる。また、ブリッジ部の径方向両側に穴部を設けることにより、精度良くブリッジ部を形成することができる。
 本発明によれば、外周にブリッジ部を有するロータ板部材とステータ板部材とを同一の電磁鋼板から共取りすることを可能にしながら、ブリッジ部の径方向外側の穴部形成用パンチの強度を確保することができる。
本発明の第1~第3実施形態によるロータコアおよびステータコア(回転電機)の構成を示す平面図である。 本発明の第1~第3実施形態によるロータ板部材およびステータ板部材の積層を示す図である。 本発明の第1~第3実施形態によるロータコア(ロータ)の構成を示す部分平面図である。 本発明の第1~第3実施形態による第1潰し部、第2潰し部および第3潰し部を形成する様子を示す図である。 本発明の第1~第3実施形態によるステータコア(ステータ)の構成を示す部分平面図である。 本発明の第1~第3実施形態によるプレス加工装置の構成の一部を模式的に示した図であり、第1外径側逃がし穴および第2外径側逃がし穴を形成するためパンチの構成(図6A)、第1内径側逃がし部および第2内径側逃がし部を形成するためパンチの構成(図6B)、ロータ板部材を抜き落とすためのパンチの構成(図6C)を示す図である。 本発明の第1実施形態による第1外径側逃がし穴を形成する工程を示す図である。 本発明の第1実施形態による第2外径側逃がし穴を形成する工程を示す図である。 本発明の第1実施形態による第1外径側逃がし穴(図9A)および第2外径側逃がし穴(図9B)の構成を示す図である。 本発明の第1実施形態による第1内径側逃がし部および第2内径側逃がし部を形成する工程を示す図である。 本発明の第1実施形態による第1潰し部、第2潰し部および第3潰し部を形成する工程を示す図である。 本発明の第1実施形態による第1磁石用孔部を形成する工程を示す図である。 本発明の第1実施形態による第2部分および第2磁石用孔部を形成する工程を示す図である。 本発明の第1実施形態による第2部分を形成する工程を示す図である。 本発明の第1実施形態によるロータ板部材を抜き落とす工程を示す図である。 本発明の第1実施形態によるジャンプカット孔を形成する工程を示す図である。 本発明の第1実施形態によるスロット部を形成する工程を示す図である。 本発明の第1実施形態によるカシメ部を形成する工程を示す図である。 本発明の第1実施形態によるステータ板部材を抜き落とす工程を示す図である。 本発明の第2実施形態による第1外径側逃がし穴(図20A)および第2外径側逃がし穴(図20B)の構成を示す図である。 本発明の第3実施形態によるロータ側穴部を形成する工程を示す図である。 本発明の第1~第3実施形態の第1変形例による第2外径側逃がし穴を形成する工程を示す図である。 本発明の第1~第3実施形態の第2変形例によるロータの構成を示す図である。
 以下、本発明の実施形態を図面に基づいて説明する。
 [第1実施形態]
 (回転電機の構造)
 図1~図5を参照して、第1実施形態による回転電機100の構造について説明する。
 図1に示すように、回転電機100は、ロータ101とステータ102とを備える。ロータ101は、ロータコア10を含む。また、ステータ102は、ステータコア20を含む。図2に示すように、ロータコア10は、複数のロータ板部材1が積層されて形成されている。また、ステータコア20は、複数のステータ板部材2が積層されて形成されている。なお、ロータコア10およびステータコア20は、請求の範囲の「回転電機用コア」の一例である。
 ここで、本願明細書では、「積層方向」とは、ロータコア10のロータ板部材1およびステータコア20のステータ板部材2の積層方向を意味し、Z方向を意味する。また、「軸方向」とは、ロータ101の回転軸線Cに沿った方向を意味し、Z方向を意味する。また、「径方向」は、ロータ101の径方向(矢印R1方向または矢印R2方向)を意味し、「周方向」は、ロータ101の周方向(矢印A1方向または矢印A2方向)を意味する。
 回転電機100は、たとえば、モータ、ジェネレータまたはモータ・ジェネレータとして構成されている。そして、ロータ101は、ステータ102の径方向内側において、ステータ102と径方向に対向するように配置されている。すなわち、回転電機100は、インナーロータ型の回転電機として構成されている。また、図2に示すように、ロータコア10の径方向外側の端面である外周面10aと、ステータコア20の径方向内側の端面である内周面20aとは、隙間CL(エアギャップ)を隔てて配置されている。
 ロータコア10は、図3に示すように、永久磁石30が内部に配置される複数の第1磁石用孔部11および複数の第2磁石用孔部12を有する。すなわち、第1実施形態の回転電機100は、埋込永久磁石型モータ(IPMモータ:Interior Permanent Magnet Motor)として構成している。ロータ101は、径方向内側の軸孔19に固定されたシャフト(図示せず)を介して、回転電機100の外部に回転力を伝達させるように構成されている。なお、第1磁石用孔部11および第2磁石用孔部12は、請求の範囲の「孔部」の一例である。
 たとえば、1つの磁極P(図1参照)毎に、2つの第1磁石用孔部11と1つの第2磁石用孔部12とが設けられている。そして、Z方向に見て、2つの第1磁石用孔部11は、径方向外側に広がるV字状(またはハの字状)に配置されている。また、第2磁石用孔部12は、V字状の第1磁石用孔部11の周方向の間でかつ径方向外側に配置されている。また、ロータコア10には、2つの第1磁石用孔部11の周方向の間に、磁束漏れ抑制孔部13が設けられている。
 そして、第1磁石用孔部11と外周面10aとの間の部分(ブリッジ部分)には、第1潰し部14が形成されている。また、第2磁石用孔部12と外周面10aとの間の部分(ブリッジ部分)には、第2潰し部15が形成されている。また、第1磁石用孔部11と磁束漏れ抑制孔部13との間の部分(ブリッジ部分)には、第3潰し部16が形成されている。なお、第1潰し部14、第2潰し部15、および、第3潰し部16は、請求の範囲の「ブリッジ部」の一例である。
 図4に示すように、第1潰し部14と第2潰し部15と第3潰し部16とのZ方向の厚みt1は、ロータ板部材1の厚みt2よりも小さい。そして、第1潰し部14と第2潰し部15と第3潰し部16では、ロータ板部材1の他の部分よりも磁気抵抗が大きく、磁極Pの内部における短絡磁束を減少させることが可能になる。
 また、図3に示すように、ロータコア10には、ジャンプカット孔17と、カシメ部18が設けられており、カシメ部18同士、または、ジャンプカット孔17とカシメ部18とが嵌合することにより、ロータ板部材1同士が固定(位置決め)されている。
 ステータコア20には、図5に示すように、ロータコア10側(径方向内側)に向かって径方向に突出する複数のティース部21と、隣り合うティース部21同士の間に形成されるスロット部22とが設けられている。スロット部22は、コイル(図示せず)が配置される。たとえば、スロット部22の周方向の幅W1は、径方向に渡って略一定に設定されている。これにより、スロット部22には、コイルを内径挿入することが可能である。
 また、ステータコア20には、ジャンプカット孔23と、カシメ部24とが設けられている。そして、カシメ部24同士、または、ジャンプカット孔23とカシメ部24とが嵌合することにより、ステータ板部材2同士が固定(位置決め)されている。また、ステータコア20には、耳穴25(図1参照)が設けられている。
 また、図1に示すように、第1潰し部14は、スロット部22に径方向に対向する位置に配置されている。第2潰し部15は、ティース部21に径方向に対向する位置に配置されている。
 (ロータコアおよびステータコアを製造するための装置の構成)
 次に、第1実施形態によるロータコア10およびステータコア20を製造するためのプレス加工装置200(製造装置)について説明する。
 図6に示すように、プレス加工装置200は、帯状の電磁鋼板300を順次移動させながらプレス加工する順送プレス加工装置として構成されている。
 具体的には、プレス加工装置200は、上ダイセット210と、下ダイセット220とを含む。プレス加工装置200は、上ダイセット210と下ダイセット220との間に、帯状の電磁鋼板300が配置された状態で、送り機構により電磁鋼板300を矢印X2方向に搬送するように構成されている。
 プレス加工装置200の上ダイセット210および下ダイセット220には、複数のパンチ211と、複数のダイス221とが設けられている。そして、プレス加工装置200は、上ダイセット210を下ダイセット220に対して上下方向(Z方向)に移動させることにより、パンチ211とダイス221との間に電磁鋼板300を挟んで、打ち抜き加工、潰し加工、凸部形成(ダボ成形)加工等を行うように構成されている。なお、図6では、プレス加工装置200の一部のパンチ211およびダイス221のみを図示しているが、後述する工程毎に、パンチ211およびダイス221が設けられているとともに、パンチ211およびダイス221の形状は、工程に対応させた形状を有する。
 たとえば、図4に示すように、プレス加工装置200は、パンチ211およびダイス221により、第1潰し部14、第2潰し部15、および、第3潰し部16を、コイニング加工により形成するように構成されている。
 また、図6Aに示すように、プレス加工装置200は、パンチ211を矢印Z2方向に移動させて、矢印Z2方向に電磁鋼板300を打ち抜くことにより、矢印Z2方向に、電磁鋼板300をせん断して、第1外径側逃がし穴41および第2外径側逃がし穴42を形成するように構成されている。なお、矢印Z2方向は、請求の範囲の「第1の方向」の一例である。
 また、図6Bに示すように、プレス加工装置200は、パンチ211を矢印Z2方向に移動させて、矢印Z2方向に電磁鋼板300を打ち抜くことにより、矢印Z2方向に、電磁鋼板300をせん断して、第1内径側逃がし穴43および第2内径側逃がし穴44を形成するように構成されている。
 また、図6Cに示すように、プレス加工装置200は、パンチ211を矢印Z1方向に移動させて、矢印Z1方向に電磁鋼板300を打ち抜くことにより、矢印Z2方向にロータ板部材1をせん断して、ロータ板部材1を形成するように構成されている。なお、矢印Z1方向は、請求の範囲の「第2の方向」の一例である。
 (ロータコアおよびステータコアの製造方法)
 次に、ロータコア10およびステータコア20の製造方法について説明する。第1実施形態では、第1磁石用孔部11および第2磁石用孔部12を有する複数のロータ板部材1が積層されて形成されたロータコア10、および、スロット部22を有する複数のステータ板部材2が積層されて形成されたステータコア20の製造方法について説明する。
 以下の製造工程(ステップS1~S12)は、プレス加工装置200(図6参照)により実施され、電磁鋼板300が一方向に送出され、電磁鋼板300がパンチ211およびダイス221により挟み込まれる(プレスされる)ことにより、加工される。
 まず、図7に示すように、ステップS1において、電磁鋼板300から、第1外径側逃がし穴41と、ジャンプカット孔17と、パイロット穴(図示せず)とが同時に打ち抜かれる。具体的には、第1実施形態では、図6Aに示すように、パンチ211が矢印Z2方向に移動され、矢印Z2方向に電磁鋼板300が打ち抜かれることにより、矢印Z2方向に、電磁鋼板300がせん断され、第1外径側逃がし穴41が形成される。
 また、図8に示すように、ステップS2において、電磁鋼板300から、第2外径側逃がし穴42と、中央ブリッジ一方逃がし穴51とが同時に打ち抜かれる。具体的には、第1実施形態では、図6Aに示すように、パンチ211が矢印Z2方向に移動され、矢印Z2方向に電磁鋼板300が打ち抜かれることにより、矢印Z2方向に、電磁鋼板300がせん断され、第2外径側逃がし穴42が形成される。なお、第1外径側逃がし穴41および第2外径側逃がし穴42は、請求の範囲の「ステータ側穴部」の一例である。また、図7~図22では、ハッチング加工した部分を、図示した工程(ステップ)内で加工する部分として示し、ハッチング加工しない部分を、既に加工した部分として図示している。また、実線を加工後の部分として示し、点線を加工予定の部分(後の工程で加工される部分)として記載している。
 ここで、図7に示すように、第1実施形態では、電磁鋼板300のうちのスロット部22が形成される部分の少なくとも第1部分41aが打ち抜かれることにより第1外径側逃がし穴41が形成される。たとえば、図9Aに示すように、第1潰し部14が形成される部分とスロット部22が形成される部分との間の接続部分41bと第1部分41aとを一体的に打ち抜くことにより、平面視において、I字状を有する第1外径側逃がし穴41が打ち抜かれる。なお、「I字状」とは、「略I字形状」を含む広い概念を意味している。また、「一体的に打ち抜く」とは、一体的に形成されたパンチ211により打ち抜くことを意味している。
 また、図8に示すように、第1実施形態では、電磁鋼板300のうちのスロット部22が形成される部分の少なくとも第1部分42aが打ち抜かれることにより第2外径側逃がし穴42が形成される。たとえば、図9Bに示すように、第2潰し部15が形成される部分と2つの隣り合うスロット部22が形成される部分との間の接続部分42bと第1部分42aとを一体的に打ち抜くことにより、平面視において、U字状を有する第2外径側逃がし穴42が打ち抜かれる。なお、「U字状」とは、「略U字形状」を含む広い概念を意味している。
 ここで、ジャンプカット孔17は、後述するカシメ部18の凸部が配置される孔であり、ロータコア10(ブロックコア)の積層方向の端部を構成するロータ板部材1に形成され、他のロータ板部材1には、形成されない。また、パイロット穴は、電磁鋼板300上の位置を規定するための穴として用いられる。
 第1外径側逃がし穴41は、径方向内側に隣接して設けられる第1潰し部14が形成される際に、第1潰し部14からはみ出す部材を逃がすための孔部(肉逃がし用の下穴)として機能する。また、第2外径側逃がし穴42は、径方向内側に隣接して設けられる第2潰し部15が形成される際に、第2潰し部15からはみ出す部材を逃がすための孔部(肉逃がし用の下穴)として機能する。また、中央ブリッジ一方逃がし穴51は、第3潰し部16が形成される際の逃がし穴として機能する。
 また、図9Aに示すように、第1外径側逃がし穴41の第1部分41aの周方向の幅W2が、接続部分41bの径方向の幅W3よりも大きい状態で、接続部分41bと第1部分41aとを一体的に打ち抜くことにより、第1外径側逃がし穴41が形成される。また、図9Bに示すように、第2外径側逃がし穴42の第1部分42aの周方向の幅W4が、接続部分42bの径方向の幅W5よりも大きい状態で、接続部分42bと第1部分42aとを一体的に打ち抜くことにより、第2外径側逃がし穴42が形成される。
 また、第1実施形態では、接続部分42bの幅W5が0.4mm以上でかつ0.7mm以下となるように、第2外径側逃がし穴42が形成される。また、接続部分41bの幅W3も、接続部分42bと同様に、0.4mm以上でかつ0.7mm以下となるように、第1外径側逃がし穴41が形成される。また、ロータコア10およびステータコア20は、隙間CLの径方向の幅W7が、幅W5よりも大きく、かつ、0.6mm以上でかつ0.9mm以下となるように形成される。また、幅W7は、回転電機100の各構成部品の精度の積算に基づき設定される。すなわち、接続部分42bは、0.4mm以上でかつ0.9mmから径方向両側の取り代分(0.1mm×2)を差分した0.7mm以下である。また、ロータコア10の外周面10aと接続部分42bとの径方向の距離D1の大きさが、幅W5よりも小さく、かつ、0.1mm以上でかつ0.2mm以下となるように、ロータコア10が形成される。また、ステータコア20の内周面20a(ティース部21の先端面21a)と、接続部分42bとの径方向の距離D2の大きさが幅W5よりも小さく、かつ、0.1mm以上でかつ0.2mm以下になるようにステータコア20が形成される。すなわち、幅W5と距離D1およびD2との関係により、抜き代の部分(距離D1およびD2の部分)が確保される状態で、第2外径側逃がし穴42が形成される。また、距離D1およびD2は、好ましくは、電磁鋼板300の厚みt2以上の大きさである。
 また、第1実施形態では、図9に示すように、スロット部22の周方向の幅W1よりも小さい周方向の幅W2を有する第1部分41aを含む第1外径側逃がし穴41が打ち抜かれるとともに、スロット部22の周方向の幅W1よりも小さい周方向の幅W4を有する第1部分42aを含む第2外径側逃がし穴42が打ち抜かれる。
 図10に示すように、ステップS3において、電磁鋼板300から、第1内径側逃がし穴43と、第2内径側逃がし穴44と、中央ブリッジ他方逃がし穴52とが同時に打ち抜かれる。具体的には、第1実施形態では、図6Bに示すように、パンチ211が矢印Z2方向に移動され、矢印Z2方向に電磁鋼板300が打ち抜かれることにより、矢印Z2方向に、電磁鋼板300がせん断され、第1内径側逃がし穴43および第2内径側逃がし穴44が形成される。ステップS1~S3により、各ブリッジ部分が形成される。なお、第1内径側逃がし穴43および第2内径側逃がし穴44は、請求の範囲の「ロータ側逃がし穴」および「ロータ側穴部」の一例である。
 ここで、第1内径側逃がし穴43は、第1磁石用孔部11が形成される領域の一部であり、第2内径側逃がし穴44は、第2磁石用孔部12が形成される領域の一部である。そして、第1内径側逃がし穴43は、径方向外側に隣接して設けられる第1潰し部14が形成される際に、第1潰し部14からはみ出す部材を逃がすための孔部として機能する。また、第2内径側逃がし穴44は、径方向外側に隣接して設けられる第2潰し部15が形成される際に、第2潰し部15からはみ出す部材を逃がすための孔部として機能する。また、中央ブリッジ他方逃がし穴52は、第3潰し部16が形成される際の逃がし穴として機能する。
 図11に示すように、ステップS4において、電磁鋼板300において、第1潰し部14、第2潰し部15、および、第3潰し部16が形成される。また、第1実施形態では、第1潰し部14は、第1外径側逃がし穴41と第1内径側逃がし穴43との間で、かつ、電磁鋼板300のロータコア10の径方向の外周面10aの一部となる部分の厚みをt2からt1に小さくされることにより形成される。また、第1実施形態では、第2潰し部15は、第2外径側逃がし穴42と第2内径側逃がし穴44との間で、かつ、電磁鋼板300のロータコア10の径方向の外周面10aの一部となる部分の厚みをt2からt1に小さくされることにより形成される。第3潰し部16は、中央ブリッジ一方逃がし穴51と中央ブリッジ他方逃がし穴52との間に形成される。
 具体的には、図4に示すように、第1潰し部14、第2潰し部15、および、第3潰し部16は、パンチ211とダイス221とによりコイニング加工されることにより形成される。
 図12に示すように、ステップS5において、電磁鋼板300から第1磁石用孔部11が打ち抜かれる。具体的には、第1内径側逃がし穴43と中央ブリッジ他方逃がし穴52とが含まれている領域が打ち抜かれて、第1磁石用孔部11が形成される。
 図13に示すように、ステップS6において、電磁鋼板300から第2磁石用孔部12と、第2部分61と、軸孔19(図1参照)と、磁束漏れ抑制孔部13とが打ち抜かれる。具体的には、2つの第2内径側逃がし穴44に渡る領域が打ち抜かれて、第2磁石用孔部12が形成される。また、2つの中央ブリッジ一方逃がし穴51に渡る領域が打ち抜かれて、磁束漏れ抑制孔部13が形成される。
 ここで、第1実施形態では、後述するロータコア10の外径(外周面10a)を打ち抜く工程(ステップS8)に先立って行われ、第1外径側逃がし穴41を含み、電磁鋼板300のスロット部22が形成される部分の少なくとも一部である第2部分61が、電磁鋼板300から打ち抜かれる。好ましくは、図13に示すように、複数(たとえば、2つ)のスロット部22が形成される部分の少なくとも一部である第2部分61が一体的に打ち抜かれる。
 具体的には、第2部分61は、Z方向に見て、略U字状である。詳細には、第2部分61は、隣り合う第1外径側逃がし穴41同士の間の部分(エアギャップに対応する部分)を含むとともに、第1外径側逃がし穴41の周囲を覆う部分である。また、第2部分61のうちのスロット部22が形成される部分に対応する部分の周方向の幅W6は、スロット部22の周方向の幅W1よりも小さく、かつ、第1部分41aの周方向の幅W1よりも大きい。すなわち、スロット部22を仕上げ抜きの際にカス上がりを防止することが可能な程度に、スロット部22に肉が残された状態になっている。
 また、第2部分61は、ロータコア10の外周面10aの一部を含む。また、第2部分61が打ち抜かれることにより、ロータコア10の外周面10aの一部が形成される一方、ロータ板部材1自体は、この工程では打ち抜かれない。なお、第2部分61の形成においても、パンチ211が矢印Z2方向に移動され、矢印Z2方向に電磁鋼板300が打ち抜かれることにより、矢印Z2方向に、電磁鋼板300がせん断され、第2部分61が形成される。
 図14に示すように、ステップS7において、電磁鋼板300から第2部分62が打ち抜かれ、カシメ部18が加工されて形成される。詳細には、第2外径側逃がし穴42を含み、電磁鋼板300のスロット部22が形成される部分の少なくとも一部である第2部分62が、電磁鋼板300から打ち抜かれる。好ましくは、離間して配置された複数(たとえば、2つ)のスロット部22が形成される部分の少なくとも一部である第2部分62が一体的に打ち抜かれる。たとえば、第2部分62に対応するスロット部22同士の周方向の間に、2つのスロット部22が形成される領域が含まれる。なお、第2部分62の形成においても、パンチ211が矢印Z2方向に移動され、矢印Z2方向に電磁鋼板300が打ち抜かれることにより、矢印Z2方向に、電磁鋼板300がせん断され、第2部分62が形成される。
 また、第2部分62は、Z方向に見て、略U字状である。詳細には、第2部分62は、隣り合う第2外径側逃がし穴42同士の間および径方向内側の部分(エアギャップに対応する部分)を含むとともに、第2外径側逃がし穴42の周囲を覆う部分のうちの一部である。また、第2部分62のうちのスロット部22が形成される部分に対応する部分の周方向の幅W7は、スロット部22の周方向の幅W1よりも小さく、かつ、第1部分42aの周方向の幅W4よりも大きい。
 また、第2部分62は、ロータコア10の外周面10aの一部を含む。第2部分62が打ち抜かれることにより、ロータコア10の外周面10aの一部が形成される一方、ロータ板部材1自体は、この工程では打ち抜かれない。
 図15に示すように、ステップS8において、ロータ板部材1が抜き落とされる。第1実施形態では、外周面10aとなる部分のうち、第1外径側逃がし穴41および第2外径側逃がし穴42、および、第2部分61および62とは、異なる部分である切り離し部63を切り離すことにより、電磁鋼板300からロータ板部材1が抜き落とされる。具体的には、図6Cに示すように、パンチ211が矢印Z1方向に移動され、矢印Z1方向に電磁鋼板300が打ち抜かれることにより、矢印Z2方向にロータ板部材1がせん断され、ロータ板部材1が形成される。そして、抜き落とされた複数のロータ板部材1が積層することにより、ロータコア10が形成される。なお、切り離し部63は、請求の範囲の「ロータコアの外周となる部分を切り離した部分」の一例である。
 図16に示すように、ステップS9において、電磁鋼板300からジャンプカット孔23が打ち抜かれる。そして、図17に示すように、ステップS10において、電磁鋼板300からスロット部22が打ち抜かれる。第1実施形態では、電磁鋼板300からロータ板部材1を抜き落とす工程の後、複数のスロット部22と切り離し部63とを一体的に打ち抜くことにより、スロット部22が形成される。たとえば、電磁鋼板300から、切り離し部63と、切り離し部63に周方向に隣接する2つのスロット部22とが一体的に打ち抜かれる。
 図18に示すように、ステップS11において、カシメ部24が加工され、電磁鋼板300から耳穴25(図1参照)が打ち抜かれる。そして、図19に示すように、ステップS12において、電磁鋼板300からステータ板部材2が抜き落とされる。そして、複数のステータ板部材2が積層されることにより、ステータコア20が形成される。
 その後、図3に示すように、ロータコア10に、永久磁石30が配置されることにより、ロータ101が形成される。ステータコア20に、コイルが配置されることにより、ステータ102が形成される。そして、図1に示すように、ロータ101とステータ102とが組み立てられることにより、回転電機100が製造される。
 [第2実施形態]
 次に、図20を参照して、第2実施形態によるロータコア10およびステータコア20の製造方法について説明する。なお、第2実施形態による製造方法によって製造されたロータコア10およびステータコア20は、第1実施形態によるロータコア10およびステータコア20と同様の構成となる。また、第2実施形態による製造方法では、第1実施形態による製造方法におけるステップS1およびS2に換えてステップS101およびS102が実施される。なお、第1実施形態と同一の構成については、同一の符号を付して説明を省略する。
 図20Aに示すように、ステップS101において、第1外径側逃がし穴541が打ち抜かれる。第1外径側逃がし穴541として、接続部分541bと第1部分41aとが一体的に打ち抜かれる。また、図20Bに示すように、ステップS102において、第2外径側逃がし穴542が同時に打ち抜かれる。第2外径側逃がし穴542として、接続部分542bと第1部分42aとが一体的に打ち抜かれる。なお、第1外径側逃がし穴541および第2外径側逃がし穴542は、請求の範囲の「ステータ側穴部」の一例である。
 第2実施形態では、図20Bに示すように、接続部分542bの幅W15が0.4mm以上でかつ0.8mm以下となるように、第2外径側逃がし穴542が形成される。また、接続部分541bの幅W13も、接続部分542bと同様に、0.4mm以上でかつ0.8mm以下となるように、第1外径側逃がし穴541が形成される。すなわち、接続部分542bは、0.4mm以上でかつ0.9mmから径方向内側の取り代分(0.1mm)を差分した0.8mm以下である。また、ロータコア10およびステータコア20は、隙間CLの径方向の幅はW7であり、かつ、0.6mm以上でかつ0.9mm以下となるように形成される。また、ロータコア10の外周面10aと接続部分542bとの径方向の距離D11の大きさが、幅W15よりも小さく、かつ、0.1mm以上でかつ0.2mm以下となるように、ロータコア10が形成される。また、ステータコア20の内周面20a(ティース21の先端面21a)と、接続部分42bとの径方向の距離D12の大きさが、略0mmになるようにステータコア20が形成される。すなわち、第2実施形態では、ステップS102の時点で、複数のティース21のうちの一部のティース21の先端面21aが仕上げ抜きされる。なお、第2実施形態によるその他の製造工程(ステップS3~S12)は、第1実施形態と同様である。
 [第3実施形態]
 次に、図21を参照して、第3実施形態によるロータコア10およびステータコア20の製造方法について説明する。なお、第3実施形態による製造方法によって製造されたロータコア10およびステータコア20は、第1実施形態によるロータコア10およびステータコア20と同様の構成となる。また、第3実施形態による製造方法では、第1実施形態による製造方法におけるステップS3およびS5に換えてステップS203が実施される。なお、第1および第2実施形態と同一の構成については、同一の符号を付して説明を省略する。
 図21に示すように、ステップS203において、ロータ側穴部611が打ち抜かれる。ここで、ロータ側穴部611は、単に逃がし穴(下穴)として形成するものではなく、潰し部14が形成された後に、第1磁石用孔部11を構成するものである。すなわち、第3実施形態のステップS203では、第1実施形態のステップS5のように、第1潰し部14を形成する工程(ステップS4)の後、第1磁石用孔部11の仕上げ抜きが実施されずに、第1潰し部14の肉がロータ側穴部611に逃げた状態で、第1磁石用孔部11の製品形状となる。なお、第3実施形態によるその他の製造工程(ステップS1(S101)、S2(S102)、S4、および、S6~S12)は、第1または第2実施形態と同様である。
 [第1~第3実施形態の効果]
 第1~第3実施形態では、以下のような効果を得ることができる。
 第1~第3実施形態では、電磁鋼板(300)のスロット部(22)が形成される部分の少なくとも第1部分(41a、42a)にステータ側穴部(41、42、541、542)を形成する。これにより、スロット部(22)の幅(W1)は、ロータコア(10)とステータコア(20)との間のエアギャップ(CL)の幅よりも大きいので、エアギャップ(CL)に対応する位置のみにステータ側穴部(41、42、541、542)を形成する場合に比べて、幅が大きいステータ側穴部(41、42、541、542)を形成することができる。この結果、ロータ板部材(1)の外周にブリッジ部(14、15)を形成する場合でも、ステータ側穴部(41、42、541、542)を打ち抜くためのパンチ(211)の強度を確保することができる。また、第1~第3実施形態では、電磁鋼板(300)を打ち抜くことにより、ロータ板部材(1)およびステータ板部材(2)を形成するので、同一の電磁鋼板(300)から、ロータ板部材(1)およびステータ板部材(2)を共取りすることができる。これらの結果、外周(10a)にブリッジ部(14、15)を有するロータ板部材(1)とステータ板部材(2)とを同一の電磁鋼板(300)から共取りすることを可能にしながら、ブリッジ部の径方向両側の穴部形成用パンチ(211)の強度を確保することができる。また、ブリッジ部(14、15)の径方向両側に穴部(41、42、43、44、541、542)を設けることにより、精度良くブリッジ部(14、15)を形成することができる。
 また、第1~第3実施形態では、ステータ側穴部(41、42、541、542)を形成する工程は、第1の方向(矢印Z2方向)に電磁鋼板(300)を打ち抜くことにより、第1の方向(矢印Z2方向)に電磁鋼板(300)をせん断して、ステータ側穴部(41、42、541、542)を形成する工程であり、ロータ側穴部(43、44)を形成する工程は、第1の方向(矢印Z2方向)に電磁鋼板(300)を打ち抜くことにより、第1の方向(矢印Z2方向)に電磁鋼板(300)をせん断して、ロータ側穴部(43、44)を形成する工程である。このように構成すれば、ブリッジ部(14、15)の径方向外側であるステータ側穴部(41、42、541、542)側のせん断方向(矢印Z2方向)と、ブリッジ部(14、15)の径方向内側であるロータ側穴部(43、44)側のせん断方向(矢印Z2方向)とが同一の方向となるので、ブリッジ部(14、15)が捻じれる方向に応力が生じるのを防止することができ、ブリッジ部(14、15)が変形することを防止することができる。
 また、第1~第3実施形態では、ロータ板部材(1)を形成する工程は、第1の方向(矢印Z2方向)とは反対方向の第2の方向(矢印Z1方向)に電磁鋼板(300)を打ち抜くことにより、第1の方向(矢印Z1方向)にロータ板部材(1)をせん断して、ロータ板部材(1)を形成する工程である。このように構成すれば、ロータ板部材(1)の外周面(10a)のせん断方向(矢印Z2方向)とブリッジ部(14、15)の径方向外側であるステータ側穴部(41、42、541、542)側のせん断方向(矢印Z2方向)とが同一の方向となるので、ブリッジ部(14、15)が捻じれる方向に応力が生じるのをより一層防止することができ、ブリッジ部(14、15)が変形することをより一層防止することができる。
 また、第1~第3実施形態では、ステータ側穴部(41、42、541、542)を形成する工程は、ブリッジ部(14、15)が形成される部分とスロット部(22)が形成される部分との間の接続部分(41b、42b、541b、542b)と第1部分(41a、42a)とを一体的に打ち抜くことにより、ステータ側穴部(41、42、541、542)を形成する工程である。このように構成すれば、ブリッジ部(14、15)が形成される部分が、スロット部(22)が形成される部分から離間する位置に設けられている場合でも、離間する部分を接続する接続部分(41b、42b、541b、542b)を、第1部分(41a、42a)と一体的に打ち抜くことにより、一体的に打ち抜くパンチ(211)の強度を確保しながらステータ側穴部(41、42、541、542)を形成することができる。
 また、第1~第3実施形態では、ステータ側穴部(41、42、541、542)を形成する工程は、接続部分(41b、42b、541b、542b)と第1部分(41a、42a)とを、平面視において、U字状、L字状またはI字状のうちの少なくとも1つの形状を有するように一体的に打ち抜くことにより、ステータ側穴部(41、42、541、542)を形成する工程である。このように構成すれば、U字状、L字状またはI字状に打ち抜くことにより、ステータ側穴部形成用パンチ(211)の径方向の長さ(打ち抜き部分の面積)を大きくすることができるので、偏心荷重に対する強度を向上させることができる。また、I字状に打ち抜くことにより、比較的複雑な形状にパンチ(211)を構成する必要がなくなるので、パンチ(211)の強度を確保しながら、ブリッジ部(14、15)の径方向両側の穴部形成用パンチ(211)の構成が複雑になるのを防止することができる。
 また、第1~第3実施形態では、ステータ側穴部(41、42、541、542)を形成する工程は、第1部分(41a、42a)の周方向の幅(W2、W4)が接続部分(41b、42b、541b、542b)の径方向の幅(W3、W5)よりも大きい状態で、接続部分(41b、42b、541b、542b)と第1部分(41a、42a)とを一体的に打ち抜くことにより、ステータ側穴部(41、42、541、542)を形成する工程である。このように構成すれば、たとえば、接続部分(41b、42b、541b、542b)をエアギャップ(CL)に対応する位置に設けることにより、接続部分(41b、42b、541b、542b)の径方向の幅(W3、W5)が比較的小さい場合でも、第1部分(41a、42a)の周方向の幅(W2、W4)が比較的大きいことにより、ブリッジ部(14、15)の径方向両側の穴部形成用パンチ(211)の強度をより一層確保することができる。
 また、第2および第3実施形態では、ステータ側穴部(541、542)を形成する工程は、接続部分(541b、542b)の径方向の幅(W13、W15)が0.4mm以上でかつ0.8mm以下となるように、ステータ側穴部(541、542)を形成する工程である。このように構成すれば、接続部分(541b、542b)の径方向の幅(W13、W15)を0.4mm未満とする場合と異なり、パンチ(211)の剛性を向上させることができる。そして、接続部分(541b、542b)の径方向の幅(W13、W15)を0.8mmよりも大きくする場合と異なり、ブリッジ部(14、15)を形成する工程の後におけるブリッジ部(14、15)のロータ外周面(10a)の仕上げ打ち抜き加工性を向上させることができる。すなわち、ロータ外周面(10a)と接続部分(541b、542b)との間に、取り代を形成することができるので、パンチ(211)の剛性を向上させながら、ロータ外周面(10a)の仕上げ打ち抜き加工性を向上させることができる。
 また、第1および第3実施形態では、ステータ側穴部(41、42)を形成する工程は、接続部分(41b、42b)の径方向の幅(W3、W5)が0.4mm以上でかつ0.7mm以下となるように、ステータ側穴部(41、42)を形成する工程である。このように構成すれば、接続部分(41b、42b)の径方向の幅(W3、W5)を0.4mm未満とする場合と異なり、パンチ(211)の剛性を向上させることができる。そして、接続部分(41b、42b)の径方向の幅(W3、W5)を0.7mmよりも大きくする場合と異なり、ブリッジ部(14、15)を形成する工程の後におけるブリッジ部(14、15)のロータコア(10)の外周面(10a)と、ティース(21)の先端面(21a)の両側との打ち抜き加工性を向上させることができる。すなわち、上記のように構成することにより、接続部分(41b、42b)と外周面(10a)との間および接続部分(41b、42b)と先端面(21a)との間に取り代(抜き代)(D1、D2の部分)を残存させることができるので、打ち抜き加工性を向上させることができる。この結果、パンチ(211)の剛性を向上させながら、ロータコア(10)の外周面(10a)と、ティース(21)の先端面(21a)との径方向両側における仕上げ打ち抜き加工性を向上させることができる。
 また、第1~第3実施形態では、ステータ側穴部(41、42、541、542)を形成する工程は、スロット部(22)の周方向の幅(W1)よりも小さい周方向の幅(W2、W4)を有する第1部分(41a、42a)に、ステータ側穴部(41、42、541、542)を形成する工程である。このように構成すれば、第1部分(41a、42a)を打ち抜いた後に、スロット部(22)を打ち抜く際に、打ち抜かれるスロット部(22)の周方向の幅を確保することができるので、スロット部(22)を打ち抜く際のカス上がりを防止することができる。なお、「カス上がり」とは、打ち抜かれた抜きカスが、ダイ穴から上方向に戻ってしまう現象を意味するものとして記載している。
 また、第1~第3実施形態では、ステータ側穴部(41、42、541、542)を形成する工程の後で、かつ、ロータ板部材(1)を形成する工程の前に、ステータ側穴部(41、42、541、542)を含み、電磁鋼板(300)のスロット部(22)が形成される部分の少なくとも一部である第2部分(61、62)を打ち抜く工程をさらに備える。ここで、ロータ板部材を形成する工程の後に、第2部分を打ち抜くように構成した場合には、ステータ側穴部およびロータ板部材を打ち抜いた後に、比較的幅が小さく、ロータ板部材に対応する領域に支持されない状態の第2部分が電磁鋼板に残存する。この状態で第2部分を打ち抜けば、カス上がりが発生しやすくなると考えられる。これに対して、第1~第3実施形態では、ステータ側穴部(41、42、541、542)を形成する工程の後で、かつ、ロータ板部材(1)を形成する工程の前に、第2部分(61、62)が打ち抜かれるので、ロータ板部材(1)に対応する部分が電磁鋼板(300)に残存する状態で、第2部分(61、62)を打ち抜くことができる。この結果、ロータ板部材(1)に対応する部分により第2部分(61、62)を支持した状態で、第2部分(61、62)を打ち抜くことができるので、第2部分(61、62)を打ち抜く際のカス上がりを防止することができる。
 また、第1~第3実施形態では、第2部分(61、62)を打ち抜く工程は、複数のスロット部(22)が形成される部分の少なくとも一部である第2部分(61、62)を一体的に打ち抜く工程である。このように構成すれば、1つのスロット部が形成される部分の第2部分のみを打ち抜く場合に比べて、パンチ(211)を大型化することができるので、ブリッジ部(14、15)の径方向両側の穴部形成用パンチ(211)の強度をより一層確保することができる。
 また、第1~第3実施形態では、ロータ板部材(1)およびステータ板部材(2)を形成する工程は、第2部分(61、62)を打ち抜く工程の後、ステータ側穴部(41、42、541、542)および第2部分(61、62)とは異なる電磁鋼板(300)のロータコア(10)の外周(10a)となる部分を切り離すことにより、電磁鋼板(300)からロータ板部材(1)を抜き落とした後、電磁鋼板(300)からステータ板部材(2)を抜き落とす工程である。このように構成すれば、第2部分(61、62)を打ち抜いた後に、ロータ板部材(1)およびステータ板部材(2)を抜き落とすので、第2部分(61、62)を、ロータ板部材(1)を打ち抜く前に打ち抜いた場合でも、ロータ板部材(1)とステータ板部材(2)とを個別に抜き落とすことができる。
 また、第1~第3実施形態では、ロータ板部材(1)およびステータ板部材(2)を形成する工程は、電磁鋼板(300)からロータ板部材(1)を抜き落とす工程の後、複数のスロット部(22)とロータコア(10)の外周(10a)となる部分を切り離した部分(63)とを一体的に打ち抜くことにより、スロット部(22)を形成した後、電磁鋼板(300)からステータ板部材(2)を抜き落とす工程である。このように構成すれば、ロータコア(10)の外周(10a)となる部分を切り離した部分(63)および第1部分(41a、42a)が打ち抜かれた後のスロット部(22)では、打ち抜かれる部分の幅が比較的小さくなるので、複数のスロット部(22)とロータコア(10)の外周(10a)となる部分を切り離した部分(63)とを一体的に打ち抜くことによりブリッジ部(14、15)の径方向両側の穴部形成用パンチ(211)の強度を確保するとともに、カス上がりを防止することができる。
 [変形例]
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく請求の範囲によって示され、さらに請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
 たとえば、上記実施形態では、ロータコアをステータコアの径方向内側に配置するいわゆるインナーロータとして構成する例を示したが、本発明はこれに限られない。すなわち、ロータコアをステータコアの径方向外側に配置して、ロータをアウターロータとして構成してもよい。
 また、上記実施形態では、第1外径側逃がし部をI字状に打ち抜き、第2外径側逃がし部をU字状に打ち抜く例を示したが、本発明はこれに限られない。たとえば、図22に示す第1変形例の製造方法のように、第2外径側逃がし部442を、平面視おいて、L字状に打ち抜いてもよい。第2外径側逃がし部(442)をL字状に形成することにより、第2ブリッジ部(15)の周方向位置とスロット部(22)の周方向位置とが異なる位置に設けられている場合でも、パンチ(221)の強度を確保することができる。
 また、上記実施形態では、第1内径側逃がし部および第2内径側逃がし部を、第1磁石用孔部または第2磁石用孔部となる部分に形成する例を示したが、本発明はこれに限られない。たとえば、磁束漏れ抑制用の孔部となる部分に、第1内径側逃がし部および第2内径側逃がし部を形成してもよい。
 また、上記実施形態では、スロット部を周方向に一定の幅を有するように形成する例を示したが、本発明はこれに限られない。たとえば、スロット部を、ロータコア側に向かって徐々に周方向の幅が広がるように形成してもよい。
 また、上記実施形態では、幅W3(W13)、および、幅W5(W15)等、数値例を示したが、本発明はこれに限られない。すなわち、上記実施形態では、好ましい例を記載したものであり、幅W3(W13)、および、幅W5(W15)等を上記数値例以外の大きさに構成してもよい。
 また、上記実施形態では、ブリッジ部を第1潰し部または第2潰し部として構成する例をしましたが、本発明はこれに限られない。たとえば、図23に示す第2変形例のロータコア710のように、第1実施形態における第1潰し部14、第2潰し部15、および、第3潰し部16(図3参照)に対応する位置に、コイニング加工されていない、第1ブリッジ部714、第2ブリッジ部715、および、第3ブリッジ部716を設けてもよい。この場合、ロータコア710の製造工程では、ステップS4(図11参照)の潰し部を形成する工程は設けられていない。この場合、第1外径側逃がし穴および第2外径側逃がし穴は、第1外径側穴部および第2外径側穴部となり、第1内径側逃がし穴よび第2内径側逃がし穴は、第1内径側穴部および第2内径側穴部となる。
 また、上記実施形態では、ブリッジ部を形成する工程として、第1外径側逃がし穴(S1、S101)および第2外径側逃がし穴(S2、S102)を形成した後、第1内径側逃がし穴(第1内径側穴部)および第2内径側逃がし穴(第2内径側穴部)(S3、S203)を形成する例を示したが、本発明はこれに限られない。すなわち、ブリッジ部を形成する工程として、第1内径側逃がし穴(第1内径側穴部)および第2内径側逃がし穴(第2内径側穴部)を形成した後に、第1外径側逃がし穴および第2外径側逃がし穴を形成してもよいし、第1内径側逃がし穴(第1内径側穴部)および第2内径側逃がし穴(第2内径側穴部)と、第1外径側逃がし穴および第2外径側逃がし穴とを同時に形成してもよい。
 1 ロータ板部材       2 ステータ板部材
 10、710 ロータコア(回転電機用コア)
 10a 外周面(ロータの径方向の外周)
 11 第1磁石用孔部(孔部) 12 第2磁石用孔部(孔部)
 14 第1潰し部(ブリッジ部)   15 第2潰し部(ブリッジ部)
 20 ステータコア(回転電機用コア) 22 スロット部
 41、541 第1外径側逃がし穴(ステータ側穴部)
 41a、42a 第1部分
 41b、42b、541b、542b 接続部分
 42、442、542 第2外径側逃がし穴(ステータ側穴部)
 43 第1内径側逃がし穴(ロータ側逃がし穴、ロータ側穴部)
 44 第2内径側逃がし穴(ロータ側逃がし穴、ロータ側穴部)
 61、62 第2部分     63 切り離し部(切り離した部分)
 100 回転電機       300 電磁鋼板
 611 ロータ側穴部     714 第1ブリッジ部
 715 第2ブリッジ部    716 第3ブリッジ部

Claims (13)

  1.  孔部を有する複数のロータ板部材が積層されて形成されたロータコアと、スロット部を有する複数のステータ板部材が積層されて形成されたステータコアとを備える回転電機用コアの製造方法であって、
     電磁鋼板の前記スロット部が形成される部分の少なくとも第1部分にステータ側穴部を形成する工程と、前記電磁鋼板の前記孔部が形成される部分の少なくとも一部にロータ側穴部を形成する工程と、を備えるブリッジ部を形成する工程と、
     前記ブリッジ部を形成する工程の後、前記電磁鋼板を打ち抜くことにより、前記ロータ板部材および前記ステータ板部材を形成する工程とを備える、回転電機用コアの製造方法。
  2.  前記ステータ側穴部を形成する工程は、第1の方向に前記電磁鋼板を打ち抜くことにより、前記第1の方向に前記電磁鋼板をせん断して、前記ステータ側穴部を形成する工程であり、
     前記ロータ側穴部を形成する工程は、前記第1の方向に前記電磁鋼板を打ち抜くことにより、前記第1の方向に前記電磁鋼板をせん断して、前記ロータ側穴部を形成する工程である、請求項1に記載の回転電機用コアの製造方法。
  3.  前記ロータ板部材を形成する工程は、前記第1の方向とは反対方向の第2の方向に前記電磁鋼板を打ち抜くことにより、前記第1の方向に前記ロータ板部材をせん断して、前記ロータ板部材を形成する工程である、請求項2に記載の回転電機用コアの製造方法。
  4.  前記ステータ側穴部を形成する工程は、前記ブリッジ部が形成される部分と前記スロット部が形成される部分との間の接続部分と前記第1部分とを一体的に打ち抜くことにより、前記ステータ側穴部を形成する工程である、請求項1~3のいずれか1項に記載の回転電機用コアの製造方法。
  5.  前記ステータ側穴部を形成する工程は、前記接続部分と前記第1部分とを、平面視において、U字状、L字状またはI字状のうちの少なくとも1つの形状を有するように一体的に打ち抜くことにより、前記ステータ側穴部を形成する工程である、請求項4に記載の回転電機用コアの製造方法。
  6.  前記ステータ側穴部を形成する工程は、前記第1部分の周方向の幅が前記接続部分の径方向の幅よりも大きい状態で、前記接続部分と前記第1部分とを一体的に打ち抜くことにより、前記ステータ側穴部を形成する工程である、請求項5に記載の回転電機用コアの製造方法。
  7.  前記ステータ側穴部を形成する工程は、前記接続部分の径方向の幅が0.4mm以上でかつ0.8mm以下となるように、前記ステータ側穴部を形成する工程である、請求項4~6のいずれか1項に記載の回転電機用コアの製造方法。
  8.  前記ステータ側穴部を形成する工程は、前記接続部分の径方向の幅が0.4mm以上でかつ0.7mm以下となるように、前記ステータ側穴部を形成する工程である、請求項7に記載の回転電機用コアの製造方法。
  9.  前記ステータ側穴部を形成する工程は、前記スロット部の周方向の幅よりも小さい周方向の幅を有する前記第1部分に、前記ステータ側穴部を形成する工程である、請求項1~8のいずれか1項に記載の回転電機用コアの製造方法。
  10.  前記ステータ側穴部を形成する工程の後で、かつ、前記ロータ板部材を形成する工程の前に、前記ステータ側穴部を含み、前記電磁鋼板の前記スロット部が形成される部分の少なくとも一部である第2部分を打ち抜く工程をさらに備える、請求項1~9のいずれか1項に記載の回転電機用コアの製造方法。
  11.  前記第2部分を打ち抜く工程は、複数の前記スロット部が形成される部分の少なくとも一部である前記第2部分を一体的に打ち抜く工程である、請求項10に記載の回転電機用コアの製造方法。
  12.  前記ロータ板部材および前記ステータ板部材を形成する工程は、前記第2部分を打ち抜く工程の後、前記ステータ側穴部および前記第2部分とは異なる前記電磁鋼板の前記ロータコアの外周となる部分を切り離すことにより、前記電磁鋼板から前記ロータ板部材を抜き落とした後、前記電磁鋼板から前記ステータ板部材を抜き落とす工程である、請求項10または11に記載の回転電機用コアの製造方法。
  13.  前記ロータ板部材および前記ステータ板部材を形成する工程は、前記電磁鋼板から前記ロータ板部材を抜き落とす工程の後、複数の前記スロット部と前記ロータコアの外周となる部分を切り離した部分とを一体的に打ち抜くことにより、前記スロット部を形成した後、前記電磁鋼板から前記ステータ板部材を抜き落とす工程である、請求項12に記載の回転電機用コアの製造方法。
PCT/JP2018/036471 2017-09-29 2018-09-28 回転電機用コアの製造方法 WO2019066036A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/637,913 US11482912B2 (en) 2017-09-29 2018-09-28 Manufacturing method of core for rotary electric machine
JP2019545176A JP6863468B2 (ja) 2017-09-29 2018-09-28 回転電機用コアの製造方法
CN201880060020.4A CN111095750B (zh) 2017-09-29 2018-09-28 旋转电机用铁芯的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-190987 2017-09-29
JP2017190987 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019066036A1 true WO2019066036A1 (ja) 2019-04-04

Family

ID=65902294

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/036459 WO2019066032A1 (ja) 2017-09-29 2018-09-28 回転電機用コアの製造方法
PCT/JP2018/036471 WO2019066036A1 (ja) 2017-09-29 2018-09-28 回転電機用コアの製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036459 WO2019066032A1 (ja) 2017-09-29 2018-09-28 回転電機用コアの製造方法

Country Status (4)

Country Link
US (2) US11309776B2 (ja)
JP (2) JP6863467B2 (ja)
CN (2) CN111213306B (ja)
WO (2) WO2019066032A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6848135B1 (ja) * 2020-09-18 2021-03-24 株式会社東芝 ロータ
CN113452217A (zh) * 2020-03-26 2021-09-28 日本电产株式会社 Ipm马达用转子的制造方法
WO2022210610A1 (ja) * 2021-03-31 2022-10-06 日本製鉄株式会社 ロータコア、ロータ、および回転電機

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111213306B (zh) * 2017-09-29 2022-08-02 株式会社爱信 旋转电机用铁芯的制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003088012A (ja) * 2001-09-05 2003-03-20 Asmo Co Ltd コアシート、コアシートの製造方法及びステータ並びに電動機
JP2013115969A (ja) * 2011-11-30 2013-06-10 Toshiba Industrial Products Manufacturing Corp 積層鉄心及びその製造方法
JP2016005400A (ja) * 2014-06-18 2016-01-12 株式会社三井ハイテック 積層鉄心の製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100568675C (zh) * 2007-11-08 2009-12-09 常州市威普电子科技有限公司 电机定子铁心与转子铁心的制造方法
EP2372885B1 (en) * 2008-12-15 2017-07-05 Kabushiki Kaisha Toshiba Permanent magnet type rotary electrical machine
AT508600B1 (de) * 2009-07-16 2011-05-15 Andritz Tech & Asset Man Gmbh Verfahren zum herstellen von rotor- und statorblechen
JP5352445B2 (ja) * 2009-12-28 2013-11-27 株式会社三井ハイテック 積層鉄心の製造方法
JP5734153B2 (ja) * 2011-10-05 2015-06-10 株式会社ユタカ技研 積層鉄心の製造方法
JP5910036B2 (ja) * 2011-11-30 2016-04-27 株式会社ジェイテクト 回転機用ロータの製造方法
JP6169505B2 (ja) * 2013-02-19 2017-07-26 株式会社三井ハイテック 回転子積層鉄心の製造方法
CN105027391B (zh) * 2013-03-25 2019-02-01 松下知识产权经营株式会社 永久磁铁埋入型电动机及其制造方法
JP6406788B2 (ja) * 2014-01-10 2018-10-17 株式会社三井ハイテック 積層鉄心の製造方法
JP6301822B2 (ja) 2014-02-24 2018-03-28 株式会社三井ハイテック 鉄心片の打ち抜き方法
JP2015220935A (ja) * 2014-05-20 2015-12-07 アイシン・エィ・ダブリュ株式会社 ロータコアの製造方法及び製造装置
JP6320857B2 (ja) * 2014-06-18 2018-05-09 株式会社三井ハイテック 積層鉄心の製造方法
PL2999100T3 (pl) * 2014-09-18 2018-04-30 Bombardier Transportation Gmbh Sposób wytwarzania wirnika klatkowego
JP5802818B1 (ja) 2014-10-29 2015-11-04 東芝産業機器システム株式会社 順送加工方法
JP6098614B2 (ja) * 2014-11-05 2017-03-22 トヨタ自動車株式会社 ロータの製造方法
JP2016111895A (ja) * 2014-12-10 2016-06-20 トヨタ自動車株式会社 ロータコアの製造方法
CN111213306B (zh) * 2017-09-29 2022-08-02 株式会社爱信 旋转电机用铁芯的制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003088012A (ja) * 2001-09-05 2003-03-20 Asmo Co Ltd コアシート、コアシートの製造方法及びステータ並びに電動機
JP2013115969A (ja) * 2011-11-30 2013-06-10 Toshiba Industrial Products Manufacturing Corp 積層鉄心及びその製造方法
JP2016005400A (ja) * 2014-06-18 2016-01-12 株式会社三井ハイテック 積層鉄心の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113452217A (zh) * 2020-03-26 2021-09-28 日本电产株式会社 Ipm马达用转子的制造方法
EP3886302A1 (en) * 2020-03-26 2021-09-29 Nidec Corporation Method of manufacturing rotor for ipm motor
JP6848135B1 (ja) * 2020-09-18 2021-03-24 株式会社東芝 ロータ
WO2022059199A1 (ja) * 2020-09-18 2022-03-24 株式会社 東芝 ロータ
WO2022210610A1 (ja) * 2021-03-31 2022-10-06 日本製鉄株式会社 ロータコア、ロータ、および回転電機

Also Published As

Publication number Publication date
CN111095750A (zh) 2020-05-01
WO2019066032A1 (ja) 2019-04-04
JP6863468B2 (ja) 2021-04-21
CN111213306A (zh) 2020-05-29
JPWO2019066036A1 (ja) 2020-07-02
US20200220437A1 (en) 2020-07-09
JPWO2019066032A1 (ja) 2020-07-02
CN111095750B (zh) 2022-06-28
CN111213306B (zh) 2022-08-02
US11309776B2 (en) 2022-04-19
US11482912B2 (en) 2022-10-25
US20200186015A1 (en) 2020-06-11
JP6863467B2 (ja) 2021-04-21

Similar Documents

Publication Publication Date Title
JP6863468B2 (ja) 回転電機用コアの製造方法
JP6343556B2 (ja) 積層鉄心用積層体及びその製造方法並びに積層鉄心の製造方法
JP4886375B2 (ja) 積層鉄心製造方法
JP6400833B2 (ja) 積層鉄心の製造方法および積層鉄心の製造装置
JP4898240B2 (ja) 鉄心片の製造方法
JP2016005400A (ja) 積層鉄心の製造方法
JP5688919B2 (ja) 積層鉄心の製造方法
JP2010178487A (ja) 積層鉄心の製造方法および順送り金型装置
JP5248972B2 (ja) 積層鉄心の製造方法及び金型装置
JPWO2019049486A1 (ja) 固定子コア製造方法、固定子コア製造方法によって製造された固定子コアを備えたモータ、固定子コア製造装置及び積層部材の製造方法
JP3326127B2 (ja) 積層鉄心の製造方法
JPWO2017104403A1 (ja) コアシート、分割積層コアおよび固定子並びに分割積層コアの製造方法
JP5697640B2 (ja) 積層鉄心の製造方法および積層鉄心製造装置
JP5486350B2 (ja) 固定子積層鉄心及びその製造方法
CN111742472A (zh) 铁芯部件制造方法以及铁芯部件
JP3544114B2 (ja) ステッピングモータの製造方法
CN111033982B (zh) 定子铁芯制造方法
EP3950162A1 (en) Method for producing stator core plate, stator core plate, stator core, and die
JP6708360B1 (ja) ステータコアの分割コア及びこれを備えたステータ、ステータコアの分割コアの製造方法及び製造装置
JP7357811B2 (ja) 分割コア、回転電機、分割コアの製造方法、および、回転電機の製造方法
CN111758208B (zh) 转子铁芯部件制造方法以及转子铁芯部件
WO2023182257A1 (ja) 固定子コアの製造方法、固定子コア及びモータ
JP6568969B2 (ja) 積層鉄心
JP2019165521A (ja) 回転電機用コアの製造方法および回転電機用コアの製造装置
JP2016077046A (ja) 積層鉄心の製造方法及び積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860009

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019545176

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18860009

Country of ref document: EP

Kind code of ref document: A1