WO2019065883A1 - 電気化学素子用バインダー - Google Patents

電気化学素子用バインダー Download PDF

Info

Publication number
WO2019065883A1
WO2019065883A1 PCT/JP2018/036047 JP2018036047W WO2019065883A1 WO 2019065883 A1 WO2019065883 A1 WO 2019065883A1 JP 2018036047 W JP2018036047 W JP 2018036047W WO 2019065883 A1 WO2019065883 A1 WO 2019065883A1
Authority
WO
WIPO (PCT)
Prior art keywords
binder
polyamide
electrochemical device
active material
electrode
Prior art date
Application number
PCT/JP2018/036047
Other languages
English (en)
French (fr)
Inventor
悠 石原
津野 利章
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2019065883A1 publication Critical patent/WO2019065883A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder for an electrochemical device.
  • Secondary batteries are batteries that can be repeatedly charged and discharged, and their use is progressing not only in electronic devices such as mobile phones and laptop computers, but also in fields such as automobiles and aircraft. Research is also being actively conducted in response to the growing demand for such secondary batteries.
  • lithium ion batteries which are light in weight, small in size, and high in energy density, are attracting attention from various industries and are actively developed.
  • a lithium ion battery mainly includes a positive electrode, an electrolyte, a negative electrode, and a separator.
  • the electrode is usually produced by applying an electrode composition on a current collector and drying.
  • the positive electrode composition used to form the positive electrode mainly comprises a positive electrode active material, a conductive additive, a binder and a solvent, and the binder includes N-methyl polyvinylidene fluoride (PVDF) Those dissolved in -2-pyrrolidone (NMP) are generally used. This is because PVDF is chemically and electrically stable, and NMP is a time-stable solvent in which PVDF is dissolved.
  • PVDF N-methyl polyvinylidene fluoride
  • water soluble poly- ⁇ -glutamate sodium or the like is used as a binder for the negative electrode composition, and the cycle characteristic is obtained by the negative electrode manufactured by mixing poly- ⁇ -glutamate sodium with graphite and silicon. It is disclosed that it improves (nonpatent literature 1).
  • the viscosity of the composition is not sufficient, and as much as 10 wt% of binder is required in the composition, which is insufficient for practical application to batteries.
  • the capacity per unit area of the disclosed battery was about 1 mAh / cm 2 and did not reach the practical level. In a battery having a small capacity per unit area, relatively good cycle characteristics tend to be obtained even if the binding property of the binder is weak.
  • Non-Patent Document 2 reports changes in battery characteristics due to changes in molecular weight of polyacrylic acid.
  • polyacrylic acid it is known that a larger molecular weight is not preferable, and an optimum value is found. From this fact, it can be inferred that the other resins have optimum values inherent to the resins. Therefore, it has been unclear, for example, what properties the polymer of sodium poly- ⁇ -glutamate disclosed in Non-Patent Document 1 exhibits.
  • Patent Document 1 discloses high molecular weight polyacrylic acid and high molecular weight polyvinyl alcohol.
  • a water-soluble polymer is added to water at one time, an insoluble portion called a powder may be produced.
  • the formation of the insoluble portion requires time for dissolution, which increases the cost, and may cause problems in the battery manufacturing process.
  • CMCNa Carboxymethyl cellulose sodium salt
  • CMCNa Carboxymethyl cellulose sodium salt
  • the present invention provides a binder for an electrochemical device which can achieve high binding even with a small amount.
  • a binder for an electrochemical device comprising a polyamide having at least one functional group selected from a carboxyl group and a salt of a carboxyl group, A binder for an electrochemical device, wherein the weight average molecular weight of the polyamide obtained by gel permeation chromatography is 400,000 to 9,000,000 in terms of polyethylene glycol.
  • the binder for an electrochemical device according to any one of 1 to 3, wherein the viscosity of the 5% by weight aqueous solution of the polyamide is 500 mPa ⁇ s or more. 5.
  • x is an integer of 0 to 5; y is an integer of 1 to 7; and z is an integer of 0 to 5).
  • X is a hydrogen ion or a metal ion.
  • R 1 is a hydrogen atom or an aliphatic hydrocarbon group having 10 or less carbon atoms. n is the number of repetitions. ) 6. 5.
  • the binder for an electrochemical element according to any one of 1 to 10 wherein the polyamide is a salt of poly- ⁇ -glutamic acid or poly- ⁇ -glutamic acid.
  • An electrode for a lithium ion battery comprising the binder for an electrochemical device according to any one of 15.1 to 13. 16.
  • the electrode for a lithium ion battery according to 15 comprising an active material containing silicon (Si) or tin (Sn) as a constituent element.
  • the electrode for lithium ion batteries as described in 15 or 16 whose content of the binder for electrochemical elements is 8 weight% or less.
  • the present invention it is possible to provide a binder for an electrochemical device capable of obtaining high binding property even in a small amount.
  • the binder for an electrochemical device of the present invention comprises a polyamide having one or more functional groups selected from a carboxyl group and a salt of a carboxyl group.
  • the polyamide having one or more functional groups selected from the carboxyl group and the salt of the carboxyl group has a weight average molecular weight obtained by gel permeation chromatography of 400,000 to 9,000,000 in terms of polyethylene glycol (PEG). It is below.
  • the viscosity can be expected to be improved, but at the same time there is a tendency to cause problems at the time of dissolution such as the decrease in solubility and the generation of insoluble portion (passage powder). If a powder is generated, it will take a long time to dissolve the polymer, which may lead to a decrease in productivity, and in the next process such as battery production, the powder may be mixed to cause a defect. .
  • the polyamide has an extremely high affinity to water by using, as a binder polymer, a carboxyl group and / or a salt of a carboxyl group which improves water solubility and an amide group simultaneously. Therefore, sufficient solubility can be ensured even if the polyamide has a high molecular weight.
  • the term "electrochemical device” is meant to include a secondary battery such as a lithium ion battery and a capacitor.
  • the weight average molecular weight (Mw, in terms of PEG) of the polyamide is at least 400,000, preferably at least 1,100,000, more preferably at least 1,500,000, particularly preferably at least 2,000,000. It is.
  • Mw weight average molecular weight
  • the polyamide hardly dissolves in the electrolyte solution, and a binding action and a thickening action by molecular chain entanglement can be obtained, so the content is small. Also, it can be expected that the binding property and the coating property will be good.
  • the weight average molecular weight of the polyamide is 1,100,000, 1,500,000, or 2,000,000 or more, the binding property can be maintained with a smaller amount of addition.
  • an active material having a high expansion coefficient such as an active material having silicon or tin as a constituent element, although having a large capacity per unit weight (mAh / g), the network of active materials during charge and discharge is maintained, It can be expected to suppress the decrease in capacity due to repeated charge and discharge.
  • the polyamide has high hydrophilicity due to the inherent molecular structure, so that good solubility can be maintained.
  • the weight average molecular weight of the polyamide is 9,000,000 or less, good solubility can be obtained, and it becomes possible to prepare an electrode composition having a coatable viscosity.
  • the measurement of the weight average molecular weight of the polyamide can be carried out by gel permeation chromatography as described in the examples.
  • the weight average molecular weight of the polyamide can be set to 400,000 or more and 9,000,000 or less by adjusting the type of microorganism used for fermentation, the fermentation condition, and the purification condition when it is prepared by microorganism synthesis or the like.
  • the viscosity of an aqueous solution containing 5% by weight (wt%) of a polyamide (hereinafter referred to as "the polyamide of the present invention") contained in the binder of the present invention is preferably 500 mPa ⁇ s or more, more preferably 550 mPa ⁇ s. It is the above, More preferably, it is 600 mPa * s or more.
  • the viscosity is related to the weight average molecular weight of the polyamide, and the higher the weight average molecular weight of the polyamide, the higher the viscosity in an aqueous solution of 5% by weight of the polyamide.
  • the viscosity of the electrode composition can be controlled even if the content of the binder is small.
  • the active material and the active material and the current collector are strongly bound.
  • the upper limit of the viscosity of the aqueous solution containing 5% by weight of the polyamide is not particularly limited, but is preferably 5000 mPa ⁇ s or less from the viewpoint of handling. The viscosity can be confirmed by the method described in the examples.
  • the polyamide having at least one functional group selected from a carboxyl group and a salt of a carboxyl group is preferably a polymer containing a repeating unit represented by the following formula (1).
  • x is an integer of 0 to 5; y is an integer of 1 to 7; and z is an integer of 0 to 5).
  • X is a hydrogen ion or a metal ion.
  • R 1 is a hydrogen atom or an aliphatic hydrocarbon group having 10 or less carbon atoms. n is the number of repetitions.
  • Formula (1) can also be represented by following formula (1 '). (In the formula (1 ′), x, y, z, X, R 1 and n are the same as the above formula (1).)
  • x, y and z are preferably x is an integer of 0 or more and 3 or less, y is an integer of 1 or more and 4 or less, z is an integer of 0 or more and 3 or less, more preferably x is An integer of 0 or more and 1 or less, y is an integer of 1 or more and 2 or less, and z is an integer of 0 or more and 1 or less.
  • X is a hydrogen ion or a metal ion.
  • the metal ion is preferably an alkali metal ion or an alkaline earth metal ion.
  • Li ion, Na ion, K ion, Ca are preferable, and Li ion or Na ion is more preferable.
  • X is Na ion
  • the polymer can be produced particularly inexpensively, and if X is Li ion, it contributes to the reduction of the charge transfer resistance between the electrolyte and the active material and the improvement of the lithium conductivity in the electrode. I can expect it.
  • a part of X may be an aliphatic hydrocarbon group, which means that a part of X is esterified.
  • the proportion of the esterified unit structure is preferably 70% or less, more preferably 50% or less, and particularly preferably 30% or less. If it is 70% or less of the whole, the water solubility of the said polyamide will become sufficient.
  • examples of the ester include a methyl ester in which X is a methyl group and an ethyl group, an ethyl ester and the like, but the ester is not limited thereto.
  • R 1 is a hydrogen atom or an aliphatic hydrocarbon group having 10 or less carbon atoms.
  • the aliphatic hydrocarbon group includes an alkyl group, an alkoxyalkyl group, a hydroxyalkyl group and the like.
  • Examples of the aliphatic hydrocarbon group having 10 or less carbon atoms include a methyl group, an ethyl group, a linear or branched butyl group, a linear or branched pentyl group, and a methoxymethyl group.
  • the carbon number of the aliphatic hydrocarbon group is preferably 10 or less, more preferably 7 or less, and particularly preferably 5 or less.
  • the aliphatic hydrocarbon group may also have a functional group that forms a hydrogen bond, such as a hydroxyl group. When the carbon number is 10 or less, the solubility in water can be secured. In addition, functional groups such as hydroxyl groups improve water solubility.
  • the COOX moiety corresponds to the carboxyl group of the polyamide and / or the site of the salt thereof, and the degree of neutralization of the carboxyl group in the polyamide (carboxylate group site / (carboxyl group site + carboxylate group site) ) Can be arbitrarily selected from 0% to 100%.
  • the binder of the present invention as a binder of a positive electrode composition and / or a negative electrode composition, an active material having a high alkalinity such that the pH is 8 or more when 1 g of the active material is dispersed in 10 mL of water
  • the degree of neutralization of the carboxyl group is preferably 90% or less, more preferably 50% or less, and still more preferably 30% or less. Even if the degree of neutralization is 0%, it is possible to use it, but in some cases, the water solubility may be reduced.
  • the degree of neutralization of the carboxyl group of the polyamide be high.
  • the degree of neutralization of the carboxyl group is preferably 30% or more, more preferably 50% or more, and still more preferably 80% or more. If the degree of neutralization of the carboxyl group is 30% or more, good water solubility can be expected.
  • the degree of neutralization of the carboxyl group site in the above-mentioned polyamide can be calculated, for example, by confirming the element ratio by elemental analysis (CHN coder method and ICP spectroscopy).
  • a positive electrode active material having a high alkalinity a lithium layered composite oxide can be mentioned, and as a negative electrode active material having a high alkalinity, a lithium titanate, silicon containing lithium and silicon based compounds containing lithium can be mentioned.
  • Examples of the positive electrode active material having low alkalinity include carbon-coated lithium iron phosphate, and examples of the negative electrode active material having low alkalinity include graphite.
  • the proportion of the repeating unit represented by the formula (1) is preferably 30% or more, more preferably 70% The above, particularly preferably 90% or more.
  • the upper limit of the repeating unit is not particularly limited, and 100% may consist of the repeating unit of the formula (1).
  • electrochemical stability and physical properties suitable for an electrochemical device can be provided.
  • the network formed by hydrogen bonds between the amide groups or between the amide group and the carboxyl group has strong binding properties. While being expected, the water solubility by the carboxyl group and good dispersibility and a thickening effect can be expected.
  • the number of repeating units containing an aromatic hydrocarbon group is preferably 20% or less, more preferably 15% or less, still more preferably 10% or less, and the aromatic hydrocarbon group Most preferred if not included.
  • the number of aromatic hydrocarbon group sites contained in the polyamide is smaller, oxidation of the aromatic hydrocarbon group can reduce the change in molecular weight due to oxidative degradation of the polyamide and the possibility of gas generation.
  • the polyamide of the present invention is preferably a polyamino acid or a salt of a polyamino acid, more preferably one or more amino acids selected from the group consisting of glutamic acid, a salt of glutamic acid, aspartic acid and a salt of aspartic acid It is a polymer containing a structure polymerized at the ⁇ - or ⁇ -position.
  • These polyamides are polyamides obtained by utilizing naturally occurring amino acids and are highly environmentally friendly.
  • the neutralized product (salt of amino acid) is preferably a metal ion neutralized product, more preferably an alkali metal ion or alkaline earth metal ion neutralized product, and still more preferably a Li ion or Na ion neutralized product.
  • the polyamide of the present invention is preferably poly- ⁇ -glutamic acid, and more preferably an atactic polymer in which L-glutamic acid and D-glutamic acid coexist. Since the atactic polymer has low crystallinity and high flexibility, when it is used as an electrode, it is unlikely to be cracked and a good electrode sheet can be constructed.
  • the polyamide of the present invention can also be used after being crosslinked when used as a binder.
  • Crosslinking includes crosslinking by addition of polyvalent metal ions, chemical crosslinking by adding a substance having a site that reacts with a carboxylic acid site such as carbodiimide, and electron beam crosslinking, but is not limited thereto.
  • the binder of the present invention contains the polyamide of the present invention, and the content of the polyamide is preferably 10 wt% or more, more preferably 30 wt% or more, and particularly preferably 50% wt or more. If the content of the polyamide is 10 wt% or more, good binding of the binder can be expected.
  • the binder of the present invention may consist essentially of the polyamide of the present invention, optional solvent, and optional other components, and for example, 70% or more, 80% or more, or 90% by weight of the binder of the present invention % Or more may consist of the polyamide of the present invention, an optional solvent, and any other components, and may consist only of the polyamide of the present invention.
  • the binder of the present invention may consist only of the polyamide of the present invention and an optional solvent and other components. In this case, unavoidable impurities may be included.
  • the "other components” are emulsions, dispersants, other water-soluble polymers, and the like.
  • the binder of the present invention may contain a polyamide and may not contain a solvent. Further, the binder of the present invention may be a solution in which polyamide is dissolved in a solvent.
  • a solvent water is preferred. When water is contained as a solvent, the water content in the solvent is preferably as large as possible, for example, in the order of 10%, 30%, 50%, 70%, 80%, 90%, 100%. That is, it is most preferable that the solvent of the binder is only water. Since the binder of the present invention is an aqueous binder mainly using water as a solvent, the environmental impact can be reduced, and the solvent recovery cost can also be reduced.
  • solvents other than water that can be contained in the binder include alcohol solvents such as ethanol and 2-propanol, acetone, NMP, ethylene glycol and the like. However, solvents other than water are not limited to these.
  • the polyamide in the binder is preferably dissolved in water.
  • the polyamide having a low degree of neutralization of the carboxyl group and being insoluble in water may be dissolved in an aqueous solution containing an equal amount of a neutralizing agent.
  • the dissolution rate of polyamide can be defined as (total weight of polyamide in binder ⁇ weight of polyamide insoluble portion) / (total weight of polyamide in binder) ⁇ 100%, and can be evaluated by the method described in the examples.
  • the dissolution rate is preferably 70% or more, preferably 80% or more, and more preferably 100%. If the dissolution rate is less than 70%, problems such as a large unmelted polyamide may occur in an ordinary battery production process.
  • the emulsion contained in the binder is not particularly limited, but non-fluorinated polymers such as (meth) acrylic polymers, nitrile polymers, diene polymers; fluorinated polymers such as PVDF and PTFE (polytetrafluoroethylene) (fluorinated polymers And the like.
  • the emulsion is preferably one that is excellent in the binding property between particles and the flexibility (flexibility of the film). From this viewpoint, (meth) acrylic polymers, nitrile polymers, and (meth) acrylic modified fluorine polymers are exemplified.
  • the dispersant contained in the binder is not particularly limited, and may be an anionic, nonionic or cationic surfactant, or a copolymer of styrene and maleic acid (including a half ester copolymer-ammonium salt), etc.
  • Various dispersants such as molecular dispersants can be used.
  • the binder contains a dispersant, it is preferably contained in an amount of 5 to 20 wt% with respect to 100 wt% of the conductive additive described later.
  • the content of the dispersing agent is in such a range, the conductive aid can be sufficiently micronized, and the dispersibility in the case of mixing the active material can be sufficiently secured.
  • water-soluble polymers contained in the binder include polyoxyalkylenes, water-soluble celluloses, polyacrylic acids and their neutralized products.
  • the pH of the binder is preferably 1.5 or more, more preferably 2.0 or more. On the other hand, it is preferable that the pH of the binder does not exceed 9.0. If the pH is less than 1.5, the current collector and the active material may be corroded and deteriorated, and if the pH exceeds 9.0, the polyamide may be decomposed to lower the molecular weight.
  • the pH of the binder can be confirmed by measuring a 1 wt% aqueous solution or dispersion of the binder at 25 ° C. with a glass electrode type hydrogen ion TES-1380 (product name, manufactured by Custom).
  • the binder of the present invention can be suitably used as a binder of an electrode composition for forming an electrode of an electrochemical device.
  • the binder of the present invention can be used in any of a positive electrode composition containing a positive electrode active material and a negative electrode composition containing a negative electrode active material.
  • An electrode composition containing the binder of the present invention (hereinafter sometimes referred to as the electrode composition of the present invention) contains, in addition to the binder, an active material and a conductive aid.
  • the conductive aid is used to increase the output of the secondary battery, and includes conductive carbon.
  • conductive carbon include carbon black such as ketjen black and acetylene black; fibrous carbon; graphite and the like.
  • ketjen black and acetylene black are preferable.
  • Ketjen black has a hollow shell structure and easily forms a conductive network. Therefore, equivalent performance can be exhibited with a half added amount compared to conventional carbon black.
  • Acetylene black is preferable because it has very few impurities by-produced by using high purity acetylene gas and crystallites on the surface are developed.
  • the conductive additive preferably has an average particle diameter of 1 ⁇ m or less.
  • the average particle size of the conductive aid is more preferably 0.01 to 0.8 ⁇ m, and still more preferably 0.03 to 0.5 ⁇ m.
  • the average particle size of the conductive additive can be measured by a dynamic light scattering particle size distribution meter (for example, the conductive additive refractive index is 2.0).
  • the fibrous carbon which is a conductive agent, since conductive paths can be secured, and output characteristics and cycle characteristics can be improved.
  • the fibrous carbon preferably has a thickness of 0.8 nm or more and 500 nm or less and a length of 1 ⁇ m or more and 100 ⁇ m or less. If the thickness is in the range, sufficient strength and dispersibility can be obtained, and if the length is in the range, the conductive path can be secured by the fiber shape.
  • the positive electrode active material is preferably an active material capable of inserting and extracting lithium ions. By using such a positive electrode active material, it can be suitably used as a positive electrode of a lithium ion battery.
  • the positive electrode active material include various oxides and sulfides, and specific examples thereof include manganese dioxide (MnO 2 ), lithium manganese composite oxide (eg, LiMn 2 O 4 or LiMnO 2 ), lithium nickel composite oxide (Eg LiNiO 2 ), lithium cobalt complex oxide (LiCoO 2 ), lithium nickel cobalt complex oxide (eg LiNi 1-x Co x O 2 ), lithium-nickel-cobalt-aluminum complex oxide (LiNi 0.8 Co) 0.15 Al 0.05 O 2 ), lithium manganese cobalt complex oxide (eg, LiMn x Co 1 -x O 2 ), lithium nickel cobalt manganese complex oxide (eg, LiNi x Mn y Co 1 -x-y O 2) ),
  • V 2 O 5 V 2 O 5
  • organic materials such as conductive polymer materials and disulfide-based polymer materials can also be mentioned.
  • Sulfur compound materials such as sulfur and lithium sulfide can also be mentioned.
  • the low conductivity active material may be used in combination with a conductive material such as carbon.
  • lithium-manganese composite oxide LiMn 2 O 4
  • lithium nickel composite oxide LiNiO 2
  • lithium cobalt composite oxide LiCoO 2
  • lithium-nickel-cobalt-aluminum composite oxide LiNi 0.8 Co 0.15 Al 0.05 O 2
  • lithium manganese cobalt composite oxide LiMn x Co 1-x O 2
  • lithium Nickel-cobalt-manganese composite oxide for example, LiNi x Mn y Co 1 -x-y O 2
  • Li-rich nickel-cobalt-manganese composite oxide LiCoPO 4 , LiNi 0 .5 Mn 1.5 O 4 is preferred.
  • the positive electrode active material from the viewpoint of the battery voltage, LiMO 2, LiM 2 O 4 , Li 2 MO 3 or LiMXO 3or4, Li composite oxide represented by Li 2 MXO 4 is preferred.
  • M is composed of one or more transition metal elements selected from Ni, Co, Mn and Fe, but Al, Ga, Ge, Sn, Pb, Sb, Bi, Si other than transition metals , P, B, etc. may be added.
  • At least 80% of X is composed of one or more elements selected from P, Si and B.
  • a composite oxide of LiMO 2 , LiM 2 O 4 or Li 2 MO 3 in which M is one or more of Ni, Co and Mn is preferable, and M is one or more of Ni, Co and Mn LiMO 2 complex oxides are more preferred.
  • the Li composite oxide has a large electric capacity (Ah / L) per volume as compared with a positive electrode material such as a conductive polymer, and is effective in improving the energy density.
  • the positive electrode active material is preferably a Li composite oxide represented by LiMO 2 from the viewpoint of battery capacity.
  • M preferably contains Ni, more preferably 25% or more of M is Ni, and still more preferably 45% or more of M is Ni.
  • the electric capacity (Ah / kg) per weight of the positive electrode active material is larger than when M is Co and Mn, which is effective in improving the energy density.
  • the positive electrode active material is a layered lithium composite oxide containing Ni
  • the electrode composition containing the positive electrode active material shows a rise in pH due to excess Li salt or the like, and corrosion of the current collector (aluminum or the like) As a result, the original characteristics of the active material may not be obtained.
  • the binder of the present invention for the electrode composition the carboxyl group site of the polyamide can suppress an increase in pH, and the corrosion of the current collector of the layered lithium composite oxide containing Ni can be prevented.
  • the positive electrode active material can also be coated with a metal oxide, carbon or the like.
  • a metal oxide, carbon or the like By covering the positive electrode active material with a metal oxide or carbon, it is possible to suppress the deterioration when the positive electrode active material is in contact with water, and to suppress the oxidative decomposition of the binder and the electrolyte during charge.
  • the metal oxide used for the coating is not particularly limited, but a metal oxide such as Al 2 O 3 , ZrO 2 , TiO 2 , SiO 2 , AlPO 4 or a compound represented by Li ⁇ M ⁇ O ⁇ containing Li May be.
  • M is selected from the group consisting of Al, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ag, Ta, W, and Ir 1 or more metal elements, and 0 ⁇ ⁇ ⁇ 6, 1 ⁇ ⁇ ⁇ 5, 0 ⁇ ⁇ 12.
  • the other components referred to herein refer to components other than polyamide, positive electrode active material, conductive auxiliary agent, and emulsion, and include dispersing agents, water-soluble polymers other than polyamide, and the like.
  • a sufficient binding property can be obtained even if the amount of polyamide as the binder is small, so the content of the positive electrode active material can be increased, and the energy density can be improved.
  • the positive electrode composition containing the binder of the present invention secures the dispersion stability of the filler component such as the positive electrode active material and the conductive auxiliary agent, and is further excellent in the ability to form a coating film and the adhesion to a substrate. .
  • the positive electrode formed from such a positive electrode composition can exhibit sufficient performance as a positive electrode for secondary batteries.
  • the positive electrode composition contains a polyamide, a positive electrode active material, a conductive auxiliary agent, an emulsion and water
  • the positive electrode active material and the conductive auxiliary agent may be uniformly dispersed as a method of producing the positive electrode aqueous composition.
  • the material is not particularly limited as long as it can be used, and can be produced by using beads, a ball mill, a stirring mixer, and the like.
  • Negative electrode active materials are carbon materials such as graphite, natural graphite, artificial graphite, hard carbon, soft carbon, etc .; polyacene conductive polymers, complex metal oxides such as lithium titanate; silicon, silicon alloys, silicon complex oxides, Materials commonly used in lithium ion secondary batteries, such as compounds that form an alloy with lithium such as tin, can be used.
  • carbon materials, silicon, silicon alloys, and silicon composite oxides are preferable.
  • the binder of the present invention has a function of maintaining high binding to a current collector and maintaining an electron conduction network between active materials due to the inherent molecular structure and high molecular weight.
  • the content ratio (weight ratio) of the polyamide, the negative electrode active material, the conductive additive, the emulsion, and other components in the solid content of the negative electrode composition is 0. It is preferably 3 to 8/80 to 99/0 to 10/0 to 9/0 to 5. It becomes possible to make the output characteristic and the electrical characteristic at the time of using an electrode formed from a negative electrode composition as a negative electrode of a battery as it is such a content rate excellent. More preferably, it is 0.5 to 7/85 to 98/0 to 5/0 to 3/0 to 3. More preferably, it is 1.0 to 6/85 to 97/0 to 4/0 to 2.5 / 0 to 1.5.
  • the other components mentioned here mean components other than a negative electrode active material, a conductive support agent, and a binder like a polyamide and an emulsion, and a dispersing agent, a thickener, etc. are contained.
  • a sufficient binding property can be obtained even if the amount of polyamide as a binder is small, so the content of the negative electrode active material can be increased, and the energy density can be improved.
  • the negative electrode composition containing the binder of the present invention secures the dispersion stability of the negative electrode active material, and is further excellent in the ability to form a coating film and the adhesion to a substrate. And the negative electrode formed from such a negative electrode composition can exhibit sufficient performance as a negative electrode for secondary batteries.
  • the binder of the present invention is low in transition metal impurities, there is no risk of metal deposition or excessive formation of Solid Electrolyte Interface (SEI) when used in the production of a negative electrode.
  • SEI Solid Electrolyte Interface
  • the negative electrode composition contains a polyamide, a negative electrode active material, a conductive additive, an emulsion and water, the negative electrode active material and the conductive additive are uniformly dispersed as a method of producing the negative electrode aqueous composition.
  • the material is not particularly limited as long as it can be used, and can be produced by using beads, a ball mill, a stirring mixer, and the like.
  • the electrode composition of the present invention may consist essentially of the binder of the present invention, an active material, a conductive aid, and may further contain a solvent.
  • a solvent for example, 70 wt% or more, 80 wt% or more, or 90 wt% or more of the electrode composition of the present invention may be the binder, the active material, the conductive aid, or the solvent of the present invention.
  • the electrode composition of the present invention may be composed only of the binder, the active material, the conductive additive and the solvent of the present invention. In this case, unavoidable impurities may be included.
  • the solvent contained in an electrode composition can use the solvent which can be used for a binder, and may be the same as or different from the solvent contained in a binder.
  • the electrode composition of the present invention can be applied onto a current collector and dried to form an electrode. More specifically, when the electrode composition is a positive electrode composition containing a positive electrode active material, the positive electrode composition can be applied and dried on a positive electrode current collector to form a positive electrode, and the electrode composition is a negative electrode. When it is a negative electrode composition containing an active material, it can be set as a negative electrode by apply
  • the positive electrode current collector is not particularly limited as long as it is a material having electron conductivity and capable of supplying a current to the held positive electrode material.
  • the positive electrode current collector for example, conductive materials such as C, Ti, Cr, Mo, Ru, Rh, Ta, W, Os, Ir, Pt, Au, Al, etc .; containing two or more of these conductive materials Alloys such as stainless steel may be used.
  • C, Al, stainless steel, etc. are preferable as the positive electrode current collector from the viewpoints of high electric conductivity, stability in electrolyte solution and oxidation resistance, and Al is preferable from the viewpoint of material cost.
  • stainless steel having corrosion resistance to alkali can also be used.
  • the negative electrode current collector is not particularly limited as long as it is a conductive material, but it is preferable to use an electrochemically stable material at the time of a cell reaction, for example, copper, stainless steel, etc. can be used.
  • an electrochemically stable material for example, copper, stainless steel, etc.
  • the carbon-based active material copper having high conductivity is preferable, and in the case of an active material containing silicon, tin and the like having a large expansion and contraction, it is preferable to use a stainless steel excellent in strength.
  • the shape of the current collector is not particularly limited, and a foil-like substrate, a three-dimensional substrate or the like can be used.
  • a foil-like substrate foil metal, mesh, woven fabric, non-woven fabric, expanded, etc.
  • an electrode composition containing a binder which lacks adhesion to the current collector is high even in capacity density
  • the high rate charge and discharge characteristics are also improved.
  • the capacity can be increased by forming a primer layer on the surface of the current collector in advance.
  • the primer layer may be any one as long as it has good adhesion between the active material layer and the current collector and has conductivity.
  • a primer layer can be formed by applying a binder mixed with a carbon-based conductive aid on a current collector at a thickness of 0.1 ⁇ m to 50 ⁇ m.
  • the conductive aid for the primer layer is preferably carbon powder. It is possible to increase the capacity density if it is a metal-based conductive aid, but there is a possibility that the input / output characteristics may be deteriorated, but if it is a carbon-based conductive aid, the input / output characteristics can be improved.
  • carbon-based conductive additives include ketjen black, acetylene black, vapor-grown carbon fibers, graphite, graphene, carbon tubes, etc. These may be used alone or in combination of two or more. Good. Among these, ketjen black or acetylene black is preferable from the viewpoint of conductivity and cost.
  • the binder for the primer layer is not particularly limited as long as it can bind the carbon-based conductive aid.
  • the primer layer when the primer layer is formed using an aqueous binder such as PVA, CMC, sodium alginate or the like in addition to the binder of the present invention, the primer layer may be dissolved when forming the active material layer, and the effect may not be exhibited significantly. is there. Therefore, when using such a water-based binder, it is preferable to crosslink the primer layer in advance.
  • the crosslinking agent include zirconia compounds, boron compounds and titanium compounds, and it is preferable to add 0.1 to 20 wt% with respect to the amount of binder when forming the slurry for primer layer.
  • the primer layer is a foil-like current collector, and it is possible not only to increase the capacity density using a water-based binder but also to reduce polarization and achieve high-rate charge / discharge characteristics even if charge / discharge is performed with a high current. Can be The primer layer is effective not only for the foil-like current collector, but the same effect can be obtained with a three-dimensional substrate.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a lithium ion secondary battery using the binder of the present invention for a positive electrode and / or a negative electrode.
  • a positive electrode current collector 7 in the lithium ion secondary battery 10, a positive electrode current collector 7, a positive electrode 6, a separator and an electrolyte 5, a lithium metal 4 (negative electrode), and a SUS spacer 3 are stacked in this order on a positive electrode can 9.
  • the laminated body is fixed by the gasket 8 on both side surfaces in the stacking direction and the negative electrode can 1 with the wave washer 2 interposed in the stacking direction.
  • a non-aqueous electrolytic solution which is a solution in which an electrolyte is dissolved in an organic solvent
  • the organic solvent include carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate; lactones such as ⁇ -butyrolactone; trimethoxymethane, 1,2-dimethoxyethane, diethyl ether Ethers such as 2-ethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran; Sulfoxides such as dimethylsulfoxide; Oxolanes such as 1,3-dioxolane, 4-methyl-1,3-dioxolane; Acetonitrile, nitromethane, NMP, etc.
  • Nitrogen-containing compounds methyl formate, methyl acetate, butyl acetate, methyl propionate, ethyl propionate, esters such as phosphoric acid triester; diglyme, triglyme, tetra Glymes such as lime; ketones such as acetone, diethyl ketone, methyl ethyl ketone and methyl isobutyl ketone; sulfones such as sulfolane; oxazolidinones such as 3-methyl-2-oxazolidinone; 1,3-propane sultone, 4-butane sultone, Sultones such as naphtha sultone etc. are mentioned. These organic solvents may be used alone or in combination of two or more.
  • the electrolyte for example LiClO 4, LiBF 4, LiI, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, LiCl, LiBr, LiB (C 2 H 5) 4, LiCH 3 SO 3, LiC 4 F 9 SO 3, Li (CF 3 SO 2) 2 N, Li [(CO 2) 2] 2 B and the like.
  • the non-aqueous electrolytic solution a solution in which LiPF 6 is dissolved in carbonates is preferable, and the solution is particularly suitable as an electrolytic solution of a lithium ion secondary battery.
  • non-woven fabric made of synthetic resin such as polytetrafluoroethylene, polypropylene, polyethylene, glass filter, porous ceramic film, porous thin film film, etc. can be used.
  • the separator In order to impart a function such as heat resistance to the separator, it may be coated with a composition (coating liquid) containing the binder of the present invention.
  • a composition (coating liquid) containing the binder of the present invention In addition to the binder of the present invention, the heat resistance of the separator can be improved by mixing ceramic particles such as silica, titanium oxide, aluminum oxide, zirconium oxide, magnesium oxide, niobium oxide, barium oxide and the like on the separator.
  • separator base material in the above-mentioned coat although what was mentioned above can be used without restriction, a porous thin film is preferred, and a polyolefin porous membrane produced using a wet method or a dry method can be used suitably.
  • the above composition can also be coated on the positive electrode or the negative electrode and used as a protective film.
  • a protective film By forming such a protective film on the positive electrode or the negative electrode, improvement of the cycle characteristics of the battery can be expected.
  • the secondary battery can be manufactured, for example, by putting a negative electrode, a separator impregnated with an electrolyte, and a positive electrode in an outer package and sealing it.
  • a method of sealing known methods such as caulking and laminating sealing may be used.
  • Example 1 As a polyamide, poly- ⁇ -glutamate sodium (molecular weight: 2000 kDa), which is a commercial product for cosmetics, was used. The poly- ⁇ -glutamate sodium was subjected to a third calibration curve using the following to determine the weight average molecular weight in terms of PEG. The sample concentration was about 0.3 wt%. As a result, the weight average molecular weight of sodium poly- ⁇ -glutamate was 577,000.
  • Poly- ⁇ -glutamic acid can be synthesized according to the method described in the following document and the like, but is not limited thereto.
  • Journal of Molecular Catalysis B Enzymatic 35 (2005) 128-133 Journal of the Chinese Chemical Society, 2006, 53, 1363-1384.
  • the polyamide was completely dissolved, and a binder in which the polyamide was dissolved in water was obtained.
  • the binder was diluted to 5 wt% with water (polyamide content: 5 wt%), and the viscosity of the diluted aqueous solution was evaluated with a viscometer (DV-II + Pro, manufactured by Brookfield Co., Ltd.).
  • the obtained negative electrode composition is applied to a 10 ⁇ m-thick Cu foil using a film applicator with a micrometer (SA-204 manufactured by Tester Sangyo Co., Ltd.) and an automatic coating apparatus (PI-1210 manufactured by Tester Sangyo Co., Ltd.) After drying at 60 ° C. for 10 minutes and vacuum drying at 120 ° C. for 5 hours, pressing was performed at room temperature to prepare an electrode sheet of 3 mAh / cm 2 and a porosity of 25 to 35%. The obtained electrode sheet was punched out to 14 mm ⁇ and vacuum dried at 120 ° C. for 5 hours to obtain an electrode. In addition, at the time of electrode punching, no powder was dropped.
  • a 3M scotch tape 810 was attached to the manufactured electrode sheet (before pressing), and a tensile test was conducted at 50 mm / min and 180 ° using a testing machine (Precision Universal Testing Machine AGS-J manufactured by Shimadzu Corporation). Was 0.31 N / cm.
  • An electrode manufactured by attaching a gasket to the positive electrode can of a coin cell (Coin cell 2032 manufactured by Hohsen Co., Ltd.) in an Ar-substituted glove box controlled to an oxygen concentration of 10 ppm or less and a water concentration of 5 ppm or less
  • the separators were stacked in order, and an electrolyte was added.
  • a negative electrode, a SUS spacer, a wave washer, and a negative electrode can were stacked, and a coin cell was manufactured by sealing using a coin cell caulking machine (manufactured by Takasen Co., Ltd.).
  • a schematic cross-sectional view of the obtained coin cell is shown in FIG. In the manufactured coin cell, the positive electrode and the negative electrode were well bound.
  • the electrode manufactured in the positive electrode part was used for evaluation in a negative electrode half cell.
  • a positive electrode composition was coated and dried in the same manner as in Example 1 using an Al foil with a thickness of 20 ⁇ m as a current collector, to prepare an electrode sheet with 3 mAh / cm 2 and a porosity of 25 to 35%.
  • Example 2 The same method as in Example 1 was used except that the manufactured electrode sheet was punched out to 14 mm ⁇ as the positive electrode, and a 3 mAh / cm 2 graphite negative electrode (manufactured by Hohsen Co., Ltd.) was punched out to 14 mm ⁇ as the negative electrode. A coin cell was produced, and the charge / discharge characteristics were evaluated under the following conditions. As a result, the capacity retention rate was 91%.
  • the discharge capacity evaluated used the discharge capacity of the 2nd cycle. Further, the capacity retention rate was calculated as the capacity retention rate in the above cycle charge / discharge (100th discharge capacity) / (10th discharge capacity). The battery capacity was calculated as 160 mAh per 1 g of LiNi 0.5 Co 0.2 Mn 0.3 O 2, and 1 C (current value for completely discharging in 1 hour) was calculated based on the capacity.
  • Example 3 The commercially available poly- ⁇ -glutamic acid (2000 kDa), which is a commercial product similar to that of Example 1, is neutralized with lithium hydroxide monohydrate, lyophilized and then ground to give lithium poly- ⁇ -glutamate. Got ready.
  • the weight average molecular weight measured in the same manner as in Example 1 was 529,000. Further, since the degree of neutralization is 90%, it can be confirmed that the polymer substantially consists of 90 wt% lithium glutamate and 10 wt% glutamic acid polymer.
  • An electrode was produced using a silicon-based negative electrode active material (S1000, manufactured by GELON) and the above-mentioned lithium poly- ⁇ -glutamate and evaluated. Since silicon-based electrodes have large expansion and contraction, high cycle characteristics can be realized by using the binder of the present invention having high binding property.
  • the mixture was mixed so that 90 wt% of the active material and 10 wt% of lithium poly- ⁇ -glutamate were added, and water was added so as to have a solid content concentration of 40 wt% to prepare a slurry.
  • the slurry was applied onto a Cu foil and dried in the same manner as in Example 1 to obtain an electrode sheet ( 2 mAh / cm 2 , porosity 25%).
  • a battery was produced in the same manner as in Example 1 using the obtained electrode sheet, and was evaluated under the following conditions.
  • the discharge capacity evaluated used the discharge capacity of the 2nd cycle.
  • the capacity retention rate was calculated as the capacity retention rate in the following cycle charge / discharge (discharge capacity at 1C at 1st cycle) / (discharge capacity at 1C at 60th cycle).
  • the battery capacity of S1000 was calculated as 900 mAh per 1 g, and based on the capacity, 1 C (current value for completely discharging in 1 hour) was calculated.
  • Non-Patent Document 1 As a result of the above measurement, the capacity retention rate after 60 cycles is 79%, which is higher than the result of having no additive to the electrolyte in Non-Patent Document 1 (about 60% capacity retention rate after 60 cycles)
  • the In Non-Patent Document 1 a thin electrode is obtained with which relatively good cycle characteristics such as 1 mAh / cm 2 can be easily obtained, 10 wt% of a conductive additive is added, and the addition amount of the binder is approximately 10 wt%, which is similar to Example 3. . Nevertheless, since the values of Example 3 and Non-patent Document 1 differ as described above, it can be estimated that the change in molecular weight of the polyamide has a very large effect.
  • Example 4 A high molecular weight sodium poly- ⁇ -glutamate synthesized with reference to the document shown in Example 1 (weight average molecular weight measured in the same manner as in Example 1 is 2,010,000) is pulverized, The solubility was also evaluated. As a result, the time to dissolution was 8 hours. In the process of dissolution, a large amount of dam was generated. Usually, it is difficult to form a uniform solution when a large amount of tailing occurs, but sodium poly- ⁇ -glutamate has a high affinity to water, so even with a relatively weak share, the potion dissolves quickly, and eventually uniform Solution was obtained. The viscosity of the obtained solution (0.5 wt% aqueous solution) was 5515 mPa ⁇ s.
  • a battery was fabricated and evaluated in the same manner as in Example 3 so that the poly- ⁇ -glutamate sodium content was 6 wt% and the negative electrode active material (S1000) content was 94 wt%. As a result, the capacity retention rate after 60 cycles showed a relatively good value of 53%.
  • Example 5 Pulverized poly- ⁇ -glutamate calcium (weight average molecular weight measured in the same manner as in Example 1 is 3, 910,000) synthesized with reference to the literature shown in Example 1 and dissolved in the same manner as Example 4. The sex was evaluated. As a result, the time to dissolution was 10 hours. The viscosity of the obtained solution (0.5 wt% aqueous solution) was 12200 mPa ⁇ s. It was extremely high as a 0.5 wt% aqueous solution.
  • the measurement was difficult because the viscosity was too high, but the viscosity is improved as compared with the measurement result in the case of the 0.5 wt% aqueous solution, so it is certain that the viscosity is 500 mPa ⁇ s or more.
  • the degree of neutralization was measured in the same manner as in Example 1. As a result, it was 92%, so it can be confirmed that the polymer substantially consists of 92 wt% calcium glutamate and 8 wt% glutamic acid polymer.
  • the calcium ion which is X is a bivalent cation, one calcium ion is neutralized by two glutamic acids.
  • a battery was fabricated and evaluated in the same manner as in Example 3 so that the above-mentioned poly- ⁇ -glutamic acid calcium was 6 wt% and the negative electrode active material (S1000) was 94 wt%. As a result, the capacity retention rate after 60 cycles showed a relatively good value of 73%. Also, the mixture was evaluated to be 6 wt% of poly- ⁇ -glutamic acid calcium, 89 wt% of the negative electrode active material (S1000), 4 wt% of Denka black, and 1 wt% of VGCF, and evaluated similarly. It showed a good value of 88%.
  • Example 6 The lithium poly- ⁇ -glutamic acid (weight average molecular weight measured in the same manner as in Example 1 is 1,130,000) synthesized with reference to the literature shown in Example 1 is pulverized and dissolved in the same manner as in Example 4. The sex was evaluated. As a result, the time to dissolution was 2 hours. The viscosity of the obtained solution (0.5 wt% aqueous solution) was 1500 mPa ⁇ s. It was extremely high as a 0.5 wt% aqueous solution.
  • the measurement was difficult because the viscosity was too high, but the viscosity is improved as compared with the measurement result in the case of the 0.5 wt% aqueous solution, so it is certain that the viscosity is 500 mPa ⁇ s or more.
  • the degree of neutralization was measured in the same manner as in Example 1. As a result, it was 87%, and it can be confirmed that the polymer substantially consists of a polymer of 87 wt% of lithium glutamate and 13 wt% of glutamate.
  • X hydrogen ion
  • R 1 a polymer consisting of 13 wt% of a hydrogen atom monomer.
  • a battery was fabricated and evaluated in the same manner as in Example 3 so that the poly- ⁇ -glutamic acid lithium was 10 wt% and the negative electrode active material (S1000) was 90 wt%. As a result, the capacity retention rate after 60 cycles showed a relatively good value of 69%.
  • a battery was manufactured and evaluated in the same manner as in Example 3 so that 6 wt% of lithium poly- ⁇ -glutamic acid and 94 wt% of the negative electrode active material (S1000) were used. As a result, the capacity retention rate after 60 cycles was a rather low value of 21%. This fact suggests that in order to reduce the amount of binder to 6 wt%, it is necessary to further increase the molecular weight of lithium poly- ⁇ -glutamate.
  • a battery is manufactured in the same manner as in Example 3 by mixing so that lithium poly-.gamma.-glutamate is 6 wt%, negative electrode active material (S1000) 89 wt%, denka black 4 wt%, and VGCF 1 wt%. ,evaluated.
  • the capacity retention rate showed a relatively good value of 59%. It is considered that this is because Denka Black and VGCF, which are conduction aids, have been effective in maintaining the network.
  • Example 7 The potassium poly- ⁇ -glutamic acid synthesized with reference to the literature shown in Example 1 (weight average molecular weight measured in the same manner as in Example 1 is 8,190,000) is pulverized and dissolved in the same manner as Example 4. The sex was evaluated. As a result, the time to dissolution was 12 hours. The viscosity of the obtained solution (0.5 wt% aqueous solution) was 25300 mPa ⁇ s. It was extremely high as a 0.5 wt% aqueous solution.
  • the measurement was difficult because the viscosity was too high, but the viscosity is improved as compared with the measurement result in the case of the 0.5 wt% aqueous solution, so it is certain that the viscosity is 500 mPa ⁇ s or more.
  • the degree of neutralization was measured in the same manner as in Example 1. As a result, it was 95%. Thus, it can be confirmed that the polymer was substantially composed of 95 wt% potassium glutamate and 5 wt% glutamic acid.
  • a battery was fabricated and evaluated in the same manner as in Example 3 such that the potassium poly- ⁇ -glutamic acid content was 6 wt% and the negative electrode active material (S1000) content was 94 wt%. As a result, the capacity retention rate after 60 cycles showed a relatively good value of 70%.
  • Example 2 An electrode and a coin cell were manufactured and evaluated in the same manner as in Example 1 using the obtained binder. As a result, the tensile strength of the obtained electrode was peeled off by the stress of the tape before the peel test because of weak adhesion. In addition, the electrode was found to be dusted off at the time of punching. Such powdering may cause an internal short circuit when made into a battery, leading to a decrease in productivity and a decrease in the safety of the battery. The capacity retention rate of the coin cell was 83%. The battery characteristics are inferior to those of Example 1. It is presumed that this is because the binding failure causes the active material to be isolated and the capacity can not be obtained.
  • a battery was fabricated and evaluated in the same manner as in Example 3 so that the poly- ⁇ -glutamic acid content was 6 wt% and the negative electrode active material (S1000) content was 94 wt%. As a result, the capacity retention rate after 60 cycles was as low as 11%.
  • Comparative example 2 The dissolution rate was evaluated in the same manner as in Example 1 except that commercially available polyacrylic acid (manufactured by Wako Pure Chemical Industries, average molecular weight: 1,000,000) was used instead of the polyamide of Example 1. As a result, the dissolution rate was 67%. Further kneading for one hour or more was required to completely dissolve the insoluble portion (passed powder). It was 347 mPa * s when the viscosity was evaluated like Example 2 about the binder (content 5 wt% of polyacrylic acid) which the obtained polyacrylic acid melt
  • Example 3 Although the viscosity of the obtained binder is lower than that of Example 1 and the intermolecular entanglement is considered to be small, it is considered that it was easy to form a spliced powder due to the molecular structure. Such low solubility can be a factor that reduces productivity. Further, as in Example 3, 200 mL of water was added to 1 g of polyacrylic acid, and stirred at 400 rpm in a 500 mL beaker using DF70. As a result, it did not completely dissolve in 8 hours. After standing for one night, it was dissolved by stirring for about 8 hours. The viscosity of the obtained solution was 29.4 mPa ⁇ s, which was lower than the value of Example 3. This indicates that the polyamide of Example 3 has high solubility because it has high affinity to water despite having equal or more molecular entanglement.
  • Comparative example 3 The evaluation electrode of the positive electrode and the evaluation cell were prepared and evaluated in the same manner as in Example 2 using the binder of Comparative Example 1, and the capacity retention rate was 85%, and the electrode retention rate was 80%, compared with Example 2. Result was low. It has been found that firm binding with a high molecular weight binder also works advantageously in the positive electrode.
  • the present invention encompasses configurations substantially the same as the configurations described in the embodiments (for example, configurations having the same function, method and result, or configurations having the same purpose and effect).
  • the present invention also encompasses configurations in which non-essential parts of the configurations described in the above embodiments are replaced with other configurations.
  • the present invention also encompasses configurations that can achieve the same effects or the same objects as the configurations described in the above embodiments.
  • the present invention also encompasses a configuration in which a known technique is added to the configuration described in the above embodiment.
  • the present invention is not limited thereto, and other electrochemical elements, for example, a binder for separator coat for lithium ion battery, electricity It can also be suitably used as a binder or the like of a double layer capacitor. In particular, it can be suitably used for other electric devices exposed to an oxidizing and reducing environment, such as a binder for separator coating for lithium ion batteries and a binder for capacitors.
  • Electrochemical elements such as lithium ion batteries and electric double layer capacitors produced using the binder of the present invention can be used in various electric devices and vehicles.
  • Examples of the electric device include a mobile phone and a notebook computer, and examples of the vehicle include a car, a railway, and an airplane.
  • the electric device is not limited to the above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

カルボキシル基及びカルボキシル基の塩から選択される1以上の官能基を有するポリアミドを含む電気化学素子用バインダーであって、前記ポリアミドの重量平均分子量が、ゲルパーミッションクロマトグラフィーによるPEG換算で400,000以上9,000,000以下である電気化学素子用バインダー。

Description

電気化学素子用バインダー
 本発明は、電気化学素子用バインダーに関する。
 二次電池は、繰り返し充放電を行うことができる電池であり、携帯電話やノートパソコン等の電子機器だけでなく、自動車や航空機等の分野においても利用が進んでいる。このような二次電池への需要の高まりを受けて、研究も活発に行われている。特に、二次電池の中でも軽量、小型、且つ高エネルギー密度のリチウムイオン電池は、各産業界から注目されており、開発が盛んに行われている。
 リチウムイオン電池は、主に正極、電解質、負極、及び、セパレータから構成される。この中で電極は、通常、電極組成物を集電体の上に塗布し、乾燥することで製造される。
 電極組成物のうち、正極の形成に用いられる正極組成物は、主に正極活物質、導電助剤、バインダー及び溶媒からなっており、当該バインダーとしては、ポリフッ化ビニリデン(PVDF)をN-メチル-2-ピロリドン(NMP)に溶解させたものが一般に用いられている。これは、PVDFが化学的及び電気的に安定であり、NMPがPVDFを溶解する経時安定性のある溶媒であるためである。
 しかしながら、PVDFの低分子量品は密着性が不十分であるという問題がある一方で、高分子量化したPVDFは溶解性が高くないため、高分子量化PVDFでは固形分濃度を上げることが困難であるという問題があった。また、NMPは沸点が高いため、NMPを溶媒として用いると、電極形成時において溶媒の揮発に多くのエネルギーを必要とする問題がある。それに加え、近年は環境問題への関心の高まりを背景に、電極組成物にも有機溶媒を使用しない水系のものが求められてきている。
 負極組成物用のバインダーとして、水に溶解可能なポリ-γ-グルタミン酸ナトリウム等を用いることが開示されており、ポリ-γ-グルタミン酸ナトリウムに黒鉛とシリコンを混合して製造した負極によってサイクル特性が向上することが開示されている(非特許文献1)。しかしながら、組成物の粘度は十分なものでなく、また、組成物中において10wt%ものバインダーを必要としており、実用的な電池に適用するには不十分なものであった。また、開示された電池の単位面積当たりの容量は、1mAh/cm程度であり、実用レベルには達していないものだった。単位面積当たりの容量が小さい電池では、バインダーの結着性が弱くとも比較的良好なサイクル特性が得られる傾向がある。
 非特許文献2は、ポリアクリル酸の分子量の変化による電池特性の変化について報告している。ポリアクリル酸においては、分子量が大きい方が好ましいということはなく、最適値があることが分かっている。本事実から、その他の樹脂についても樹脂固有の最適値があることが推察される。そのため、例えば、非特許文献1に開示されるポリ-γ-グルタミン酸ナトリウムの高分子量体が、どのような特性を示すかは不明であった。
 特許文献1は、高分子量のポリアクリル酸、高分子量のポリビニルアルコールを開示するが、水溶性ポリマーを水に一括添加すると、継粉(ままこ)と呼ばれる不溶部分が生じる場合がある。不溶部分が生じることで、溶解に時間を要し、コストアップとなるほか、電池製造工程において不具合を生じる可能性があった。
 リチウムイオン電池用の水系ポリマーとして一般的に使用されるCMCNa(カルボキシメチルセルロースナトリウム塩)は水系ポリマーであるが、溶解が困難であり、特許文献2に開示されるようなアルコールに分散した後に水に溶かすような製造法の工夫が行われる。本来は必要ではないアルコールを添加することによって、水系ポリマー中の不純物の増加、コストの増加、及び工程の増加という課題があった。
特開2017-48267号公報 特開2001-261702号公報
ACS Sustainable Chem.Eng.,2017,5(7),pp6343-6355 Journal of Power Sources 378 (2018) 671-676
 本発明は、少量であっても高い結着性が得られる電気化学素子用バインダーを提供するものである。
 本発明によれば、以下の電気化学素子用バインダー等が提供される。
1.カルボキシル基及びカルボキシル基の塩から選択される1以上の官能基を有するポリアミドを含む電気化学素子用バインダーであって、
 ゲルパーミッションクロマトグラフィーによって得られる前記ポリアミドの重量平均分子量が、ポリエチレングリコール換算で400,000以上9,000,000以下である電気化学素子用バインダー。
2.前記ポリアミドの重量平均分子量が1,100,000以上である1に記載の電気化学素子用バインダー。
3.前記ポリアミドの重量平均分子量が1,500,000以上である1に記載の電気化学素子用バインダー。
4.前記ポリアミドの5重量%水溶液の粘度が500mPa・s以上である1~3のいずれかに記載の電気化学素子用バインダー。
5.前記ポリアミドが、下記式(1)で表される繰り返し単位を30mol%以上含む1~4のいずれかにに記載の電気化学素子用バインダー。
Figure JPOXMLDOC01-appb-C000002
(式(1)中、xは0以上5以下の整数、yは1以上7以下の整数、zは0以上5以下の整数である。
 Xは、水素イオン又は金属イオンである。
 Rは、水素原子又は炭素数10以下の脂肪族炭化水素基である。
 nは、繰り返し数である。)
6.前記金属イオンが、アルカリ金属イオン又はアルカリ土類金属イオンである5に記載の電気化学素子用バインダー。
7.前記金属イオンが、リチウムイオン又はナトリウムイオンである5又は6に記載の電気化学素子用バインダー。
8.前記ポリアミドが、エステル化したカルボキシル基を含む1~7のいずれかに記載の電気化学素子用バインダー。
9.前記ポリアミドが、ポリアミノ酸又はポリアミノ酸の塩である1~8のいずれかに記載の電気化学素子用バインダー。
10.前記ポリアミドが、ポリグルタミン酸、ポリグルタミン酸の塩、ポリアスパラギン酸、又はポリアスパラギン酸の塩である1~9のいずれかに記載の電気化学素子用バインダー。
11.前記ポリアミドが、ポリ-γ-グルタミン酸又はポリ-γ-グルタミン酸の塩である1~10のいずれかに記載の電気化学素子用バインダー。
12.前記ポリアミドが、D-グルタミン酸由来の構造とL-グルタミン酸由来の構造を含む1~11のいずれかに記載の電気化学素子用バインダー。
13.さらに水を含む1~12のいずれかに記載の電気化学素子用バインダー。
14.1~13のいずれかに記載の電気化学素子用バインダーを用いた電気化学素子。
15.1~13のいずれかに記載の電気化学素子用バインダーを含むリチウムイオン電池用電極。
16.シリコン(Si)又はスズ(Sn)を構成元素として含む活物質を含む15に記載のリチウムイオン電池用電極。
17.電気化学素子用バインダーの含有量が8重量%以下である15又は16に記載のリチウムイオン電池用電極。
18.前記電極の単位面積当たりの容量が2mAh/cm以上である15~17のいずれかに記載のリチウムイオン電池用電極。
 本発明によれば、少量であっても高い結着性が得られる電気化学素子用バインダーが提供できる。
本発明の二次電池の概略断面図である。
 本発明の電気化学素子用バインダーは、カルボキシル基及びカルボキシル基の塩から選択される1以上の官能基を有するポリアミドを含む。当該カルボキシル基及びカルボキシル基の塩から選択される1以上の官能基を有するポリアミドは、ゲルパーミッションクロマトグラフィーによって得られる重量平均分子量が、ポリエチレングリコール(PEG)換算で400,000以上9,000,000以下である。
 バインダー中のポリマーの分子量が高分子量化すると、粘度の向上が期待できるが、粘度向上と同時に溶解性の低下及び不溶部分(継粉)の発生等の溶解時の問題も生じる傾向がある。継粉が発生すると、ポリマーの溶解に長時間を要することになり、生産性の低下につながるおそれがある他、電池製造等の次工程において、継粉が混入して不良を引き起こす可能性もある。本発明のバインダーでは、水溶性を向上させるカルボキシル基及び/又はカルボキシル基の塩とアミド基を同時に有するポリアミドを、バインダーポリマーとすることで、当該ポリアミドが水に対してきわめて高い親和性を有することから、ポリアミドが高分子量であっても十分な溶解性を確保できる。
 尚、ここで「電気化学素子」とは、リチウムイオン電池等の二次電池、及びキャパシタを含む意味である。
 ポリアミドの重量平均分子量(Mw、PEG換算)は、400,000以上であり、1,100,000以上が好ましく、より好ましくは1,500,000以上であり、特に好ましくは2,000,000以上である。
 ポリアミドの重量平均分子量が400,000以上であれば、ポリアミドが電解液へ溶出しにくくなり、また、分子鎖の絡み合いによる結着作用及び増粘作用が得られるので、少量の含有量であっても結着性及び塗工性が良好になると期待できる。
 さらに、ポリアミドの重量平均分子量が1,100,000以上、1,500,000以上又は2,000,000以上であれば、より少量の添加で結着性が維持できる。そのため、重量当たりの容量(mAh/g)が大きいものの、膨張率が高い活物質、例えば、シリコン又はスズを構成元素とする活物質においても、充放電中の活物質同士のネットワークを維持し、充放電の繰り返しによる容量の低下を抑制することが期待できる。
 一方、高分子量化にともない、一般的にポリマーは溶解しにくくなるが、本発明ではポリアミドが固有の分子構造によって、高い親水性を有するため、良好な溶解性を維持できる。ポリアミドの重量平均分子量が9,000,000以下であれば、良好な溶解性が得られ、塗工可能な粘度の電極組成物を調製することが可能となる。
 ポリアミドの重量平均分子量の測定は、実施例に記載のゲルパーミッションクロマトグラフィーで行うことができる。
 ポリアミドの重量平均分子量は、微生物合成等によって調製する場合、発酵に用いる微生物の種類、発酵条件及び精製条件を調整することで、400,000以上9,000,000以下とすることができる。
 本発明のバインダーが含むポリアミド(以下、「本発明のポリアミド」という場合がある)を5重量%(wt%)含む水溶液の粘度は、好ましくは500mPa・s以上であり、より好ましくは550mPa・s以上であり、さらに好ましくは600mPa・s以上である。当該粘度は、ポリアミドの重量平均分子量と関連し、ポリアミドの重量平均分子量が大きいほど、ポリアミド5重量%の水溶液における粘度が高くなる。
 上記粘度が500mPa・s以上であれば、バインダーの含有量が少量であっても電極組成物の粘度がコントロール可能である。また、電極組成物から電極を製造する場合にも、活物質同士や活物質と集電体を強固に結着することが期待できる。
 ポリアミドを5重量%含む水溶液の粘度の上限は特にないが、5000mPa・s以下であるとハンドリングの観点から好ましい。粘度は実施例に記載の方法で確認できる。
 カルボキシル基及びカルボキシル基の塩から選択される1以上の官能基を有するポリアミドは、好ましくは下記式(1)で表される繰り返し単位を含むポリマーである。
Figure JPOXMLDOC01-appb-C000003
(式(1)中、xは0以上5以下の整数、yは1以上7以下の整数、zは0以上5以下の整数である。
 Xは、水素イオン又は金属イオンである。
 Rは、水素原子又は炭素数10以下の脂肪族炭化水素基である。
 nは、繰り返し数である。)
 尚、式(1)は、下記式(1’)で表すこともできる。
Figure JPOXMLDOC01-appb-C000004
(式(1’)中、x、y、z、X、R及びnは、上記式(1)と同様である。)
 上記式(1)において、x、y及びzは、好ましくはxは0以上3以下の整数、yは1以上4以下の整数、zは0以上3以下の整数であり、より好ましくはxは0以上1以下の整数、yは1以上2以下の整数、zは0以上1以下の整数である。
 x、y及びzの数値が上記範囲であれば、脂肪族骨格が柔軟性を示すことができ、得られる電極の柔軟性が保たれ、疎水性部位である脂肪族骨格が親水性部位であるアミド部位とカルボキシル基又はカルボキシレート基部位に対して十分に少なく、水への溶解性を確保することができる。
 Xは、水素イオン又は金属イオンである。当該金属イオンは、アルカリ金属イオン又はアルカリ土類金属イオンであると好ましい。例えば、Liイオン、Naイオン、Kイオン、Caが好ましく、Liイオン又はNaイオンであるとより好ましい。XがNaイオンであれば、ポリマーを特に安価に製造でき、XがLiイオンであれば、電解液-活物質間の電荷移動抵抗の低減や電極内のリチウム伝導性の向上に寄与することが期待できる。
 Xの一部は脂肪族炭化水素基でもよく、これはXの一部がエステル化されていることを意味する。エステル化された単位構造の割合は全体の70%以下が好ましく、さらに好ましくは50%以下、特に好ましくは30%以下である。全体の70%以下であれば、当該ポリアミドの水溶性が十分なものとなる。また、エステルとしては、Xがメチル基、エチル基であるメチルエステル、エチルエステル等が挙げられるが、これらに限定されるものではない。
 Rは、水素原子又は炭素数10以下の脂肪族炭化水素基である。当該脂肪族炭化水素基は、アルキル基、アルコキシアルキル基、ヒドロキシアルキル基等を含む。当該炭素数10以下の脂肪族炭化水素基としては、メチル基、エチル基、直鎖もしくは分岐のブチル基、直鎖もしくは分岐のペンチル基、メトキシメチル基等が挙げられる。脂肪族炭化水素基の炭素数は10以下が好ましく、さらに好ましくは7以下であり、特に好ましくは5以下である。また、脂肪族炭化水素基は、ヒドロキシル基等の水素結合を形成する官能基を有してもよい。炭素数が10以下であると水への溶解性が確保できる。またヒドロキシル基等の官能基は水溶性を向上させる。
 式(1)において、COOX部分が、ポリアミドが有するカルボキシル基及び/又はその塩の部位に対応し、ポリアミド中のカルボキシル基の中和度(カルボキシレート基部位/(カルボキシル基部位+カルボキシレート基部位))は0%から100%まで任意に選択できる。
 本発明のバインダーを正極組成物及び/又は負極組成物のバインダーとして用いる場合において、活物質1gを10mLの水に分散させた際にpHが8以上となるようなアルカリ度の高い活物質を用いるとき、ポリアミドのカルボキシル基の中和度を低くすることで、スラリーのアルカリ化による集電体の腐食を抑制することが可能となる。この場合において、カルボキシル基の中和度は90%以下が好ましく、50%以下がより好ましく、30%以下がさらに好ましい。中和度が0%でも使用することは可能であるが、水溶性の低下がみられる場合もある。
 一方で、活物質1gを10mLの水に分散させた際にpHが8未満となるようなアルカリ度の低い活物質を用いるとき、ポリアミドのカルボキシル基の中和度は高いほうが好ましい。この場合において、カルボキシル基の中和度は30%以上が好ましく、50%以上がより好ましく、80%以上がさらに好ましい。カルボキシル基の中和度が30%以上であれば良好な水溶性が期待できる。
 上記ポリアミド中のカルボキシル基部位の中和度は、例えば元素分析(CHNコーダー法及びICP分光分析法)で元素比を確認することで計算できる。
 尚、アルカリ度が高い正極活物質としては、リチウム層状複合酸化物が挙げられ、アルカリ度が高い負極活物質としてはチタン酸リチウム、リチウム含有するシリコン及びリチウムを含有するシリコン系化合物等が挙げられる。アルカリ度が低い正極活物質としては、カーボンコートされたリン酸鉄リチウムが挙げられ、アルカリ度が低い負極活物質としては、黒鉛等が挙げられる。
 本発明のポリアミドが、式(1)で表される繰り返し単位を含むポリマーである場合、式(1)で表される繰り返し単位の割合は、好ましくは30%以上であり、より好ましくは70%以上、特に好ましくは90%以上である。繰り返し単位の上限は特になく、100%が式(1)の繰り返し単位からなってもよい。
 式(1)で表される繰り返し単位を30%以上含むポリマーであれば、電気化学素子に好適な電気化学的安定性及び物理特性を与えることができる。具体的には、式(1)に表される繰り返し単位が30%以上含まれると、アミド基同士もしくはアミド基とカルボキシル基との水素結合によって形成されるネットワークによって、強固な結着性を有することが期待されるとともに、カルボキシル基による水溶性及び良好な分散性、増粘作用が期待できる。
 本発明のポリアミドは、芳香族炭化水素基を含む繰り返し単位が全体の20%以下であると好ましく、15%以下であるとより好ましく、10%以下であるとさらに好ましく、芳香族炭化水素基を含まないと最も好ましい。
 ポリアミドに含まれる芳香族炭化水素基部位が少ないほど、芳香族炭化水素基の酸化によってポリアミドの酸化劣化による分子量の変化、及びガス発生のおそれを低減することができる。
 本発明のポリアミドは、好ましくはポリアミノ酸又はポリアミノ酸の塩であり、より好ましくはグルタミン酸、グルタミン酸の塩、アスパラギン酸、及びアスパラギン酸の塩からなる群から選択される1以上のアミノ酸がα位、β位、又はγ位で重合した構造を含むポリマーである。これらポリアミドは、天然に存在するアミノ酸を活用して得られるポリアミドであり、環境調和性が高い。中和物(アミノ酸の塩)は、金属イオンの中和物が好ましく、アルカリ金属イオン又はアルカリ土類金属イオンの中和物がより好ましく、Liイオン又はNaイオンの中和物がさらに好ましい。
 本発明のポリアミドは、好ましくはポリ-γ-グルタミン酸であり、より好ましくはL体のグルタミン酸とD体のグルタミン酸が共存するアタクチックなポリマーである。アタクチックなポリマーは結晶性が低く、柔軟性が高いため、電極とした際に割れが生じにくく、良好な電極シートを構築できる。
 本発明のポリアミドは、バインダーとして用いる際に架橋させて用いることもできる。架橋には多価金属イオンの添加による架橋やカルボジイミド等のカルボン酸部位と反応する部位を有する物質を添加することによる化学架橋、電子線架橋等があるがこれらに限定されるものではない。
 本発明のバインダーは、本発明のポリアミドを含むものであり、当該ポリアミドの含有量は、好ましくは10wt%以上、さらに好ましくは30wt%以上、特に好ましくは50%wt以上である。ポリアミドの含有量が10wt%以上であればバインダーの良好な結着性が期待できる。
 本発明のバインダーは、本発明のポリアミド、任意の溶媒、及び任意のその他成分から本質的になってもよく、本発明のバインダーの、例えば、70%重量以上、80重量%以上、又は90重量%以上が、本発明のポリアミド、任意の溶媒、及び任意のその他成分からなってもよく、本発明のポリアミドのみからなってもよい。また、本発明のバインダーは、本発明のポリアミド及び任意に含まれる溶媒及びその他の成分のみからなってもよい。この場合、不可避不純物を含んでもよい。
 ここで「その他の成分」とは、エマルション、分散剤、その他の水溶性高分子等である。
 本発明のバインダーは、ポリアミドを含めばよく、溶媒は含まなくともよい。また、本発明のバインダーは、ポリアミドが溶媒に溶解した溶液であってもよい。
 溶媒としては、水が好ましい。溶媒として水を含む場合、溶媒における水の含有量は、多いほど好ましく、例えば10%、30%、50%、70%、80%、90%、100%の順に好ましい。即ち、バインダーの溶媒が水のみであるのが最も好ましい。
 本発明のバインダーが、溶媒として水を主に使用する水系バインダーであることで、環境負荷を小さくすることができ、且つ、溶媒回収コストも低減することができる。
 バインダーが含みうる水以外の溶媒としては、例えば、エタノール、2-プロパノール等のアルコール系溶媒、アセトン、NMP、エチレングリコール等が挙げられる。但し、水以外の溶媒はこれらに限定されるものではない。
 溶媒が水である場合に、バインダー中のポリアミドは、水に溶解していると好ましい。カルボキシル基の中和度が低く、水に溶解しないポリアミドについては、等量の中和剤を含む水溶液に溶解してもよい。
 ポリアミドの溶解率は、(バインダー中のポリアミド全重量-ポリアミド不溶部分の重量)/(バインダー中のポリアミド全重量)×100%と定義することができ、実施例に記載の方法で評価できる。
 上記溶解率は、70%以上であるとよく、80%以上であると好ましく、100%がさらに好ましい。溶解率が70%未満では、通常の電池作製プロセスにおいて、ポリアミドの大きな溶け残り等の不具合が起こるおそれがある。
 バインダーが含むエマルションは特に限定されないが、(メタ)アクリル系ポリマー、ニトリル系ポリマー、ジエン系ポリマー等の非フッ素系ポリマー;PVDFやPTFE(ポリテトラフルオロエチレン)等のフッ素系ポリマー(フッ素含有重合体);等が挙げられる。エマルションは、粒子間の結着性と柔軟性(膜の可とう性)に優れるものが好ましい。この観点から、(メタ)アクリル系ポリマー、ニトリル系ポリマー、及び(メタ)アクリル変性フッ素系ポリマーが例示される。
 バインダーが含む分散剤としては、特に制限されず、アニオン性、ノニオン性もしくはカチオン性の界面活性剤、又は、スチレンとマレイン酸との共重合体(ハーフエステルコポリマー-アンモニウム塩を含む)等の高分子分散剤等の種々の分散剤を用いることができる。
 バインダーが分散剤を含む場合には、後述する導電助剤100wt%に対して5~20wt%含有することが好ましい。分散剤の含有量がこのような範囲であると、導電助剤を充分に微粒子化でき、且つ活物質を混合した場合の分散性を充分に確保することが可能となる。
 バインダーが含むその他の水溶性高分子としては、ポリオキシアルキレン、水溶性セルロース、ポリアクリル酸及びその中和物等が挙げられる。
 バインダーのpHは、好ましくは1.5以上であり、より好ましくは2.0以上である。一方、バインダーのpHは、9.0を超えないことが好ましい。pHが1.5未満であると、集電体及び活物質を腐食して劣化させるおそれがあり、pHが9.0を超えるとポリアミドが分解し低分子量化するおそれがある。
 バインダーのpHは、バインダーの1wt%水溶液又は分散液をガラス電極式水素イオン度計TES-1380(製品名、カスタム社製)で25℃で測定することにより確認できる。
<電極組成物>
 本発明のバインダーは、電気化学素子の電極を形成する電極組成物のバインダーとして好適に用いることができる。本発明のバインダーは、正極活物質を含む正極組成物及び負極活物質を含む負極組成物のいずれにも用いることができる。
 本発明のバインダーを含む電極組成物(以下、本発明の電極組成物という場合がある)は、バインダーの他に活物質及び導電助剤を含む。
 導電助剤は二次電池を高出力化するために用いられ、導電性カーボンが挙げられる。
 導電性カーボンとしては、ケッチェンブラック、アセチレンブラック等のカーボンブラック;ファイバー状カーボン;黒鉛等がある。これらの中でもケッチェンブラック、アセチレンブラックが好ましい。ケッチェンブラックは中空シェル構造を持ち、導電性ネットワークを形成しやすい。そのため、従来のカーボンブラックに比べ、半分程度の添加量で同等性能を発現することができる。アセチレンブラックは高純度のアセチレンガスを用いることで副生される不純物が非常に少なく、表面の結晶子が発達しているため好ましい。
 導電助剤は、平均粒子径が1μm以下のものであることが好ましい。平均粒子径が1μm以下の導電助剤を用いることにより、本発明の電極組成物を用いて電極とした場合に出力特性等の電気特性を優れた電極とすることが可能となる。
 導電助剤の平均粒子径は、より好ましくは0.01~0.8μmであり、さらに好ましくは0.03~0.5μmである。導電助剤の平均粒子径は、動的光散乱の粒度分布計(例えば導電助剤屈折率を2.0とする)により測定することができる。
 導電助剤であるファイバー状カーボンとして、カーボンナノファイバー又はカーボンナノチューブを用いると、導電パスが確保できるため、出力特性、サイクル特性が向上するので好ましい。
 ファイバー状カーボンは、太さ0.8nm以上、500nm以下、長さ1μm以上100μm以下が好ましい。太さが当該範囲であれば、十分な強度と分散性が得られ、長さが当該範囲内であれば、ファイバー形状による導電パスの確保が可能となる。
 正極活物質は、リチウムイオンを吸蔵及び放出できる活物質であると好ましい。このような正極活物質を用いることで、リチウムイオン電池の正極として好適に用いることができるものとなる。
 正極活物質としては、種々の酸化物、硫化物が挙げられ、具体例としては、二酸化マンガン(MnO)、リチウムマンガン複合酸化物(例えばLiMn又はLiMnO)、リチウムニッケル複合酸化物(例えばLiNiO)、リチウムコバルト複合酸化物(LiCoO)、リチウムニッケルコバルト複合酸化物(例えばLiNi1-xCo)、リチウム-ニッケル-コバルト-アルミニウム複合酸化物(LiNi0.8Co0.15Al0.05)、リチウムマンガンコバルト複合酸化物(例えばLiMnCo1-x)、リチウムニッケルコバルトマンガン複合酸化物(例えばLiNiMnCo1-x-y)、ポリアニオン系リチウム化合物(例えば、LiFePO、LiCoPOF、LiMnSiO等)、バナジウム酸化物(例えばV)等が挙げられる。また、導電性ポリマー材料、ジスルフィド系ポリマー材料、等の有機材料も挙げられる。硫黄、硫化リチウム等のイオウ化合物材料も挙げられる。導電性の乏しい活物質に関しては、炭素等の導電性物質と複合化して用いてもよい。
 これらのうち、リチウムマンガン複合酸化物(LiMn)、リチウムニッケル複合酸化物(LiNiO)、リチウムコバルト複合酸化物(LiCoO)、リチウムニッケルコバルト複合酸化物(LiNi0.8Co0.2)、リチウム-ニッケル-コバルト-アルミニウム複合酸化物(LiNi0.8Co0.15Al0.05)、リチウムマンガンコバルト複合酸化物(LiMnCo1-x)、リチウムニッケルコバルトマンガン複合酸化物(例えばLiNiMnCo1-x-y)、Li過剰系ニッケル-コバルト-マンガン複合酸化物(LiNiCoMnCO固溶体)、LiCoPO、LiNi0.5Mn1.5が好ましい。
 正極活物質は、電池電圧の観点から、LiMO、LiM、LiMO又はLiMXO3or4、LiMXOで表されるLi複合酸化物が好ましい。ここで、Mは80%以上がNi、Co、Mn及びFeから選択される1以上の遷移金属元素からなるが、遷移金属以外にもAl、Ga、Ge、Sn、Pb、Sb、Bi、Si、P、B等が添加されていてもよい。Xは80%以上がP、Si及びBから選択される1以上の元素からなる。
 上記正極活物質のうち、MがNi、Co及びMnの1以上であるLiMO、LiM又はLiMOの複合酸化物が好ましく、MがNi、Co及びMnの1以上であるLiMOの複合酸化物がより好ましい。Li複合酸化物は導電性ポリマー等の正極物質と比較して体積当たりの電気容量(Ah/L)が大きく、エネルギー密度の向上に有効である。
 正極活物質は、電池容量の観点から、LiMOで表されるLi複合酸化物が好ましい。ここで、MはNiを含むと好ましく、Mのうち25%以上がNiであるとより好ましく、Mの45%以上がNiであるとさらに好ましい。MがNiを含むと、MがCo及びMnの場合に比べて、正極活物質の重量当たりの電気容量(Ah/kg)が大きくなり、エネルギー密度の向上に効果的である。
 正極活物質がNiを含有する層状リチウム複合酸化物である場合、当該正極活物質を含む電極組成物は、余剰のLi塩等によるpHの上昇が見られ、集電体(アルミ等)の腐食により、活物質本来の特性が得られないことがある。一方、電極組成物に本発明のバインダーを用いることで、ポリアミドのカルボキシル基部位がpHの上昇を抑制し、Niを含有する層状リチウム複合酸化物の集電体の腐食を防ぐことができる。
 正極活物質を金属酸化物、炭素等で被覆することもできる。正極活物質を金属酸化物又は炭素で被覆することで正極活物質が水に触れたときの劣化を抑制し、充電時のバインダーや電解液の酸化分解を抑制することができる。
 被覆に用いる金属酸化物は特に限定されないが、Al、ZrO、TiO、SiO、AlPO等の金属酸化物や、Liを含有するLiαβγで表される化合物でもよい。尚、Liαβγにおいて、Mは、Al、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ag、Ta、W、及びIrからなる群から選択される1以上の金属元素であり、0≦α≦6、1≦β≦5、0<γ≦12である。
 正極活物質及び本発明のバインダーを含む正極組成物において、正極組成物の固形分におけるポリアミド、正極活物質、導電助剤、エマルション、及びこれらの成分以外のその他の成分の含有割合(重量比)は、ポリアミド/正極活物質/導電助剤/エマルション/その他の成分=0.2~8/70~98/2~20/0~10/0~5であることが好ましい。
 このような含有割合であると、正極組成物から形成される電極を電池の正極として用いた場合の出力特性や電気特性を優れたものとすることが可能となる。より好ましくは、0.5~7/80~97/1~10/0~6/0~2である。さらに好ましくは、1.0~6/85~97/1.5~8/0~4/0~1.5である。尚、ここでいうその他の成分は、ポリアミド、正極活物質、導電助剤、エマルション以外の成分を指し、分散剤、ポリアミド以外の水溶性高分子等が含まれる。本発明の電極組成物では、バインダーであるポリアミドが少量であっても十分な結着性が得られるので、正極活物質の含有量を増やすことができ、エネルギー密度を向上させることができる。
 本発明のバインダーを含む正極組成物は、正極活物質や導電助剤等のフィラー成分の分散安定性を確保し、さらに、塗膜の形成能、基材との密着性に優れたものとなる。そしてこのような正極組成物から形成される正極は、二次電池用の正極として充分な性能を発揮することができるものである。
 正極組成物が、ポリアミド、正極活物質、導電助剤、エマルションと水とを含むものである場合、当該正極水系組成物の製造方法としては、正極活物質と導電助剤とが均一に分散されることになる限り特に制限されず、ビーズ、ボールミル、攪拌型混合機等を用いることで製造できる。
 負極活物質は、グラファイト、天然黒鉛、人造黒鉛、ハードカーボン、ソフトカーボン等の炭素材料;ポリアセン系導電性高分子、チタン酸リチウム等の複合金属酸化物;シリコン、シリコン合金、シリコン複合酸化物、スズ等のリチウムと合金を形成する化合物等、リチウムイオン二次電池で通常用いられる材料を用いることができる。
 これらのうち、炭素材料、シリコン、シリコン合金、シリコン複合酸化物が好ましい。シリコン複合酸化物やシリコン系の材料においては、事前にリチウムを含有させることも好ましい。
 本発明のバインダーは固有の分子構造及び高い分子量により、集電体への高い結着性、及び、活物質同士の電子伝導ネットワークを維持する機能を有している。そのため、充放電中の膨張収縮の大きいシリコン(Si)又はスズ(Sn)を構成元素として含む活物質を含む場合において、充放電の繰り返しによる、活物質同士の電子伝導ネットワークの切断、及び、充放電容量の低下を抑制することが期待できる。
 負極活物質及び本発明のバインダーを含む負極組成物において、負極組成物の固形分におけるポリアミド、負極活物質、導電助剤、エマルション、及び、その他の成分の含有比率(重量比)は、0.3~8/80~99/0~10/0~9/0~5であることが好ましい。このような含有割合であると、負極組成物から形成される電極を電池の負極として用いた場合の出力特性や電気特性を優れたものとすることが可能となる。より好ましくは、0.5~7/85~98/0~5/0~3/0~3である。さらに好ましくは、1.0~6/85~97/0~4/0~2.5/0~1.5である。尚、ここでいうその他の成分は、負極活物質、導電助剤、ポリアミドやエマルションのようなバインダー以外の成分を意味し、分散剤や増粘剤等が含まれる。
 本発明の電極組成物では、バインダーであるポリアミドが少量であっても十分な結着性が得られるので、負極活物質の含有量を増やすことができ、エネルギー密度を向上させることができる。
 本発明のバインダーを含む負極組成物は、負極活物質の分散安定性を確保し、さらに、塗膜の形成能、基材との密着性に優れたものとなる。そしてこのような負極組成物から形成される負極は、二次電池用の負極として充分な性能を発揮することができるものである。
 また、本発明のバインダーは遷移金属不純物が少ないことから、負極製造に用いた際に、金属の析出やSEI(Solid Electrolyte Interface)の過剰形成が起こるおそれがない。
 負極組成物が、ポリアミド、負極活物質、導電助剤、エマルションと水とを含むものである場合、当該負極水系組成物の製造方法としては、負極活物質と導電助剤とが均一に分散されることになる限り特に制限されず、ビーズ、ボールミル、攪拌型混合機等を用いることで製造できる。
 本発明の電極組成物は、本質的に本発明のバインダー、活物質、導電助剤からなってもよく、さらに溶媒が含まれてよい。本発明の電極組成物の、例えば70重量%以上、80重量%以上、又は90重量%以上が、本発明のバインダー、活物質、導電助剤、溶媒であってもよい。また、本発明の電極組成物は、本発明のバインダー、活物質、導電助剤、溶媒のみからなってもよい。この場合、不可避不純物を含んでもよい。尚、電極組成物に含まれる溶媒は、バインダーに用いることができる溶媒が使用でき、バインダーに含まれる溶媒と同一であっても異なってもよい。
 本発明の電極組成物を集電体上に塗布し、乾燥することで電極とすることができる。
 より具体的には、電極組成物が正極活物質を含む正極組成物である場合、正極組成物を正極集電体上に塗布及び乾燥することで正極とすることができ、電極組成物が負極活物質を含む負極組成物である場合、負極組成物を負極集電体上に塗布及び乾燥することにより負極とすることができる。
 正極集電体は、電子伝導性を有し、保持した正極材料に通電し得る材料であれば特に限定されない。正極集電体としては、例えば、C、Ti、Cr、Mo、Ru、Rh、Ta、W、Os、Ir、Pt、Au、Al等の導電性物質;これら導電性物質の二種類以上を含有する合金(例えば、ステンレス鋼)を使用し得る。
 電気伝導性が高く、電解液中の安定性と耐酸化性がよい観点から、正極集電体としてはC、Al、ステンレス鋼等が好ましく、さらに材料コストの観点からAlが好ましい。アルカリが強い正極スラリーにおいては、アルカリに耐食性を有するステンレス鋼を用いることもできる。
 負極集電体は、導電性材料であれば特に制限されること無く使用できるが、電池反応時に電気化学的に安定な材料を使用することが好ましく、例えば銅、ステンレス等を使用することができる。
 炭素系の活物質には導電性の高い銅が好ましく、膨張収縮が大きなシリコンやスズ等を含有する活物質においては強度に優れたステンレス鋼を適用するのが好ましい。
 集電体の形状には、特に制約はないが、箔状基材、三次元基材等を用いることができる。これらのうち、三次元基材(発泡メタル、メッシュ、織布、不織布、エキスパンド等)を用いると、集電体との密着性に欠けるようなバインダーを含む電極組成物であっても高い容量密度の電極が得られ、高率充放電特性も良好になる。
 集電体が箔状である場合、あらかじめ、集電体表面上にプライマー層を形成することで高容量化を図ることができる。プライマー層は、活物質層と集電体との密着性が良好で、且つ導電性を有しているものであればよい。例えば、炭素系導電助剤を混ぜ合わせたバインダーを集電体上に0.1μm~50μmの厚みで塗布することでプライマー層を形成できる。
 プライマー層用の導電助剤は、炭素粉末が好ましい。金属系の導電助剤であると、容量密度を上げることは可能だが、入出力特性が悪くなるおそれがある一方、炭素系の導電助剤であれば、入出力特性を向上させることができる。
 炭素系導電助剤としては、ケッチェンブラック、アセチレンブラック、気相法炭素繊維、グラファイト、グラフェン、カーボンチューブ等が挙げられ、これら一種単独で用いてもよいし、二種以上を併用してもよい。これらのうち、導電性とコストの観点から、ケッチェンブラック又はアセチレンブラックが好ましい。
 プライマー層用のバインダーは、炭素系導電助剤を結着できるものであれば、特に限定されない。但し、本発明のバインダーの他、PVA、CMC、アルギン酸ナトリウム等の水系バインダーを用いてプライマー層を形成すると、活物質層を形成する際に、プライマー層が溶け、効果が顕著に発揮されないおそれがある。そのため、このような水系バインダーを用いる際は、あらかじめプライマー層を架橋するとよい。架橋材としては、ジルコニア化合物、ホウ素化合物、チタン化合物等が挙げられ、プライマー層用スラリー形成時にバインダー量に対して0.1~20wt%添加するとよい。
 プライマー層は、箔状の集電体で、水系バインダーを用いて容量密度を上げることが可能なだけでなく、高い電流で充放電を行っても、分極が小さくなり高率充放電特性を良好にすることができる。
 尚、プライマー層は箔状の集電体だけに効果があるのではなく、三次元基材でも同様の効果が得られる。
<二次電池>
 図1は、本発明のバインダーを正極及び/又は負極に用いたリチウムイオン二次電池の一実施形態を示す概略断面図である。
 図1において、リチウムイオン二次電池10は、正極缶9上に正極集電体7、正極6、セパレータ及び電解液5、リチウム金属4(負極)及びSUSスペーサ3がこの順に積層しており、当該積層体は、積層方向両側面をガスケット8によって、及び積層方向をウェーブワッシャー2を介した負極缶1によって固定されている。
 二次電池における電解液としては、有機溶媒に電解質を溶解した溶液である非水系電解液を用いることができる。
 有機溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等のカーボネート類;γ-ブチロラクトン等のラクトン類;トリメトキシメタン、1,2-ジメトキシエタン、ジエチルエーテル、2-エトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン等のエーテル類;ジメチルスルホキシド等のスルホキシド類;1,3-ジオキソラン、4-メチル-1,3-ジオキソラン等のオキソラン類;アセトニトリル、ニトロメタン、NMP等の含窒素類;ギ酸メチル、酢酸メチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、リン酸トリエステル等のエステル類;ジグライム、トリグライム、テトラグライム等のグライム類;アセトン、ジエチルケトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類;スルホラン等のスルホン類;3-メチル-2-オキサゾリジノン等のオキサゾリジノン類;1,3-プロパンスルトン、4-ブタンスルトン、ナフタスルトン等のスルトン類等が挙げられる。これらの有機溶媒は、1種単独で用いてもよいし、2種以上を併用してもよい。
 電解質としては、例えばLiClO、LiBF、LiI、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiAlCl、LiCl、LiBr、LiB(C、LiCHSO、LiCSO、Li(CFSON、Li[(COB等が挙げられる。
 非水系電解液としては、カーボネート類にLiPFを溶解した溶液が好ましく、該溶液はリチウムイオン二次電池の電解液として特に好適である。
 正極及び負極の両極の接触による電流の短絡等を防ぐためのセパレータとしては、両極の接触を確実に防止することができ、かつ電解液を通したり含んだりすることができる材料を用いるとよく、例えばポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン等の合成樹脂製の不織布、ガラスフィルター、多孔質セラミックフィルム、多孔質薄膜フィルム等を用いることができる。
 セパレータに耐熱性等の機能を付与するため、本発明のバインダーを含む組成物(塗工液)によってコートしてもよい。
 本発明のバインダーに加えて、シリカ、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム、酸化ニオブ、酸化バリウム等のセラミック粒子を混合しセパレータ上にコートすることで、セパレータの耐熱性を向上できる。
 上記コートにおけるセパレータ基材としては、前述したものを制限なく用いることができるが、多孔質薄膜フィルムが好ましく、湿式法、乾式法を用いて作製したポリオレフィン多孔膜を好適に用いることができる。
 上記組成物は、正極上もしくは負極上にコートし保護膜として用いることも可能である。このような保護膜を正極もしくは負極上に形成することで電池のサイクル特性の向上が期待できる。
 二次電池は、例えば、負極、電解質を含浸したセパレータ、正極を外装体の中に入れて密封することで製造することができる。密封の方法には加締め、ラミネートシール等公知の方法を用いてよい。
実施例1
 ポリアミドとして、化粧品用の市販品であるポリ-γ-グルタミン酸ナトリウム(分子量2000kDa)を用いた。このポリ-γ-グルタミン酸ナトリウムを、下記を用いて3次の検量線を引いてPEG換算での重量平均分子量を測定した。サンプル濃度は0.3wt%程度とした。その結果、ポリ-γ-グルタミン酸ナトリウムの重量平均分子量は577,000であった。
 カラム:東ソー製TSKgel GMPWXL 2本
 溶媒 :0.2M NaNOaq.
 示差屈折率(RI)検出器:日本分光製 RI-1530
 標準サンプル:東ソー製 TSKgel std PEO及びAgilent製 PEG
 CHNコーダー法及びICP分光分析法を用いて、上記ポリ-γ-グルタミン酸ナトリウムを元素分析した結果、C:H:N:Na=36.9:5.3:8.2:11であった。NとNaの比から求めた中和度は97%であったことから、実質的に、97wt%グルタミン酸ナトリウムと3wt%のグルタミン酸の重合体からなることが確認できる。この重合体は、式(1)において、x=0、y=2、z=0、X=ナトリウムイオン、R=水素原子のモノマー97wt%と、x=0、y=2、z=0、X=水素イオン、R=水素原子のモノマー3wt%からなるポリマーである。
 尚、ポリ-γ-グルタミン酸は下記文献等の方法で合成することができるが、これらに限定されるものではない。
Journal of Molecular Catalysis B: Enzymatic 35 (2005) 128-133
Journal of the Chinese Chemical Society,2006,53,1363-1384.
 4gの上記ポリアミドに16gの水を一度に加え、混練機(あわとり練太郎 ARE-310;株式会社シンキー製)を用いて10分間2000rpmで混練し、ポリアミド20wt%の水溶液を調製した。得られたポリアミド水溶液の不溶部分(継粉)をピンセットで採取して重量を測定し、溶解率を評価した。その結果、溶解率は87%であった。
 尚、溶解率は、溶解率=(ポリアミド全重量-ポリアミドの不溶部分の重量)/(ポリアミド全重量)×100%とした。
 溶解率評価後、さらに10分間2000rpmで混練した結果、ポリアミドは完全に溶解し、ポリアミドが水に溶解したバインダーが得られた。当該バインダーを5wt%に水で希釈し(ポリアミドの含有量5wt%)、希釈水溶液の粘度を粘度計(ブルックフィールド社製、DV-II+Pro)で評価したところ、粘度は563mPa・sであった。
 製造したバインダーに、黒鉛を添加し、黒鉛:バインダーの固形分=98:2(重量比)となるように混合し、負極組成物として固形分濃度50wt%のスラリーを得た。
 マイクロメーター付フィルムアプリケーター(テスター産業製、SA-204)と自動塗工装置(テスター産業製、PI-1210)を用いて、得られた負極組成物を厚さ10μmのCu箔に塗工し、60℃で10分乾燥し、120℃で5時間真空乾燥後、プレスを室温で行い、3mAh/cm、空隙率25~35%の電極シートを作製した。得られた電極シートを14mmφに打ち抜いて、120℃で5時間真空乾燥を行い、電極とした。尚、電極打ち抜きの際に、粉落ちはなかった。
 製造した電極シート(プレス前)に3Mスコッチテープ810を張り付け、試験機(島津製作所製精密万能試験機AGS-J)を用いて、50mm/min、180°で引っ張り試験を実施したところ、引っ張り強度は0.31N/cmであった。
 酸素濃度10ppm以下、水分濃度5ppm以下に管理された、Ar置換のグローブボックス中にて、コインセル(宝泉株式会社製、コインセル2032)の正極缶にガスケットをはめて製造した電極を正極とし、さらにセパレータを順に積層し、電解液を加えた。さらに負極、SUSスペーサ、ウェーブワッシャー、負極缶を重ね、コインセルかしめ機(宝泉株式会社製)を用いて、密閉することでコインセルを作製した。得られたコインセルの概略断面図を図1に示す。製造したコインセルでは、正極及び負極は良好に結着されていた。
 ここでは負極ハーフセルでの評価のため、正極部分に製造した電極を用いた。
 尚、コインセルの各構成部材は以下の通りである。
<コインセルの各構成部材>
正極:上記で用意した14mmφのシート
セパレータ:PP/PE/PP三層セパレータ
負極(対極兼、参照極):15mmφのLi箔
電解液:1mol/L LiPFEC/DEC=3/7(キシダ化学製)
 得られたコインセルの充放電特性である放電容量を下記測定条件で評価した。その結果、容量維持率は95%であった。負極組成物が、黒鉛:バインダーの固形分=98:2(重量比)とバインダーの量が少量であるにもかかわらず、良好な容量維持率であることが確認できた。
 尚、評価した放電容量は、下記条件では初回の充放電の不可逆容量が大きいため、2サイクル目の放電容量を採用した。また、容量維持率は下記サイクル充放電において(100回目の放電容量)/(10回目の放電容量)を容量維持率として算出した。また、黒鉛の電池容量を1gあたり360mAhとして算出し、その容量をもとに1C(1時間で完全に放電する電流値)を算出した。
<測定条件>
初期充放電
充電条件:0.1C-CC・CV Cut-off 0.01V
充電終了条件:電流値0.01C以下
放電条件:0.1C-CC Cut-off 1.0V
サイクル充放電
充電条件:1C-CC・CV Cut-off 0.01V
充電終了条件:電流値0.01C以下
放電条件:1C-CC Cut-off 1.0V
実施例2
 活物質としてLiNi0.5Co0.2Mn0.3(以降NCM523と記載する)、導電助剤としてデンカブラック、バインダーとして実施例1のポリアミドを用い、これら活物質、導電助剤及びバインダーに水を徐々に添加して、正極活物質:導電助剤:バインダー=93:5:2(重量比)となるように均一混合し、正極組成物として固形分50wt%のスラリーを得た。
 集電体として厚さ20μmのAl箔を用い、実施例1と同様にして、正極組成物を塗工、乾燥して、3mAh/cm、空隙率25~35%の電極シートを作製した。
 製造した電極シート(プレス前、20mm×90mm)について、セロテープ(ニチバン製 CT-15)を指の腹で滑らかになるように貼り、50mm/min、180°で引きはがし、引きはがし前後でそれぞれ13mmφの電極を2枚打ち抜き、電子天秤で重量を測定することでAl集電体上の電極合材の残存率を算出したところ、残存率は89%であった。
 正極として、製造した電極シートを14mmφに打ち抜いたものを用い、負極として3mAh/cmの黒鉛負極(宝泉株式会社製)を14mmφに打ち抜いたものを用いた以外は実施例1と同様にしてコインセルを作製し、下記条件で充放電特性の評価を実施した。その結果、容量維持率は91%であった。
<測定条件>
温度     :30±5℃
初期充放電
充電条件  :0.1C-CC・CV
充電終了条件:電圧4.3V かつ 電流値0.02C以下
放電条件  :0.1C-CC
放電終了条件:電圧2.0V
サイクル充放電
充電条件  :1C-CC・CV
充電終了条件:電圧4.3V かつ 電流値0.02C以下
放電条件  :1C-CC
放電終了条件:電圧2.0V
 尚、評価した放電容量は、上記条件では初回の充放電の不可逆容量が大きいため、2サイクル目の放電容量を採用した。また、容量維持率は上記サイクル充放電において(100回目の放電容量)/(10回目の放電容量)を容量維持率として算出した。
 尚、LiNi0.5Co0.2Mn0.3 1gあたり160mAhとして電池容量を算出し、その容量をもとに1C(1時間で完全に放電する電流値)を算出した。
実施例3
 実施例1と同様の化粧品用の市販品であるポリ-γ-グルタミン酸(2000kDa)を、水酸化リチウム・一水和物で中和して凍結乾燥後粉砕して、ポリ-γ-グルタミン酸リチウムを準備した。
 実施例1と同様に測定した重量平均分子量は529,000であった。また、中和度は90%であることから、実質的に90wt%グルタミン酸リチウムと10wt%のグルタミン酸の重合体からなることが確認できる。この重合体は、式(1)において、x=0、y=2、z=0、X=リチウムイオン、R=水素原子のモノマー90wt%と、x=0、y=2、z=0、X=水素イオン、R=水素原子のモノマー10wt%からなるポリマーである。
 得られたポリ-γ-グルタミン酸リチウム1gに対し、200mLの水を一気に加え、500mLビーカー(B-500 SCI HARIO株式会社製)中、トルネード用撹拌羽根(DF70、柴田科学株式会社製)を用いて400rpmで撹拌したところ、20分で完全に溶解した。得られた約0.5wt%の水溶液の粘度は44.8mPa・sであった。また、5wt%での粘度は898mPa・sであった。
 溶解過程で、だまは見られるものの、高い吸水性のために、速やかに溶解し均一な溶液ができた。高い吸水性は、電極作製時にだまが残り電極の欠陥となることを抑止でき、電極の歩留まりの向上をもたらす。
 シリコン系の負極活物質(S1000、GELON製)と、上記ポリ-γ-グルタミン酸リチウムを用いて電極を作製し、評価した。シリコン系の電極は膨張収縮が大きいため、高い結着性を有する本発明のバインダーを用いることによって高いサイクル特性を実現できる。
 上記活物質が90wt%、ポリ-γ-グルタミン酸リチウムが10wt%となるように混合し、固形分濃度40wt%となるように水を加え、スラリーを調製した。
 実施例1と同様にして、スラリーをCu箔に塗工、乾燥して、電極シート(2mAh/cm、空隙率25%)とした。
 得られた電極シートを使用して、実施例1と同様に電池を作製し、下記の条件で評価した。
 尚、評価した放電容量は、下記条件では初回の充放電の不可逆容量が大きいため、2サイクル目の放電容量を採用した。また、容量維持率は下記サイクル充放電において(1回目の1Cでの放電容量)/(60回目の1Cでの放電容量)を容量維持率として算出した。また、S1000の電池容量を1gあたり900mAhとして算出し、その容量をもとに1C(1時間で完全に放電する電流値)を算出した。
<測定条件>
初期充放電
充電条件:0.2C-CC・CV Cut-off 0.01V
充電終了条件:電流値0.01C以下
放電条件:0.2C-CC Cut-off 1.0V
サイクル充放電
充電条件:1C-CC・CV Cut-off 0.01V
充電終了条件:電流値0.01C以下
放電条件:1C-CC Cut-off 1.0V
 上記測定の結果、60サイクル後の容量維持率は79%であり、非特許文献1での電解液への添加剤なしの結果(60サイクル後に容量維持率60%程度)に比べ高い値を示した。非特許文献1では、1mAh/cmと比較的良いサイクル特性が得やすい薄い電極とし、導電助剤を10wt%添加したうえで、バインダーの添加量は10wt%と実施例3と同等程度である。それにもかかわらず、実施例3と非特許文献1の値は上記の通り異なることから、ポリアミドの分子量の変化が非常に大きな効果をもたらしていることが推定できる。
実施例4
 実施例1に示した文献を参照して合成した高分子量のポリ-γ-グルタミン酸ナトリウム(実施例1と同様にして測定した重量平均分子量は2,010,000)を粉砕し、実施例3と同様に溶解性を評価した。その結果、溶解までの時間は8時間であった。溶解の過程では大きなだまが生じた。通常、大きなだまが生じると均一な溶液にはなりにくいが、ポリ-γ-グルタミン酸ナトリウムは、水への親和性が高いため、比較的弱いシェアでも、だまが速やかに溶解し、最終的に均一な溶液が得られた。
 得られた溶液(0.5wt%水溶液)の粘度は5515mPa・sであった。0.5wt%水溶液としては極めて高かった。5wt%水溶液では、粘度が高すぎるため測定が困難であったが、0.5wt%水溶液での測定結果に比べ粘度が向上するため、500mPa・s以上であることは確実である。
 実施例4のポリ-γ-グルタミン酸ナトリウムは、後述する比較例に比べて、極めて大きな粘度、即ち、分子の絡み合いを有するにも関わらず、良好な溶解性を示している。
 実施例1と同様に中和度を測定した結果、97%であったことから、実質的に、97wt%グルタミン酸ナトリウムと3wt%のグルタミン酸の重合体からなることが確認できる。この重合体は、式(1)において、x=0、y=2、z=0、X=ナトリウムイオン、R=水素原子のモノマー97wt%と、x=0、y=2、z=0、X=水素イオン、R=水素原子のモノマー3wt%からなるポリマーである。
 上記ポリ-γ-グルタミン酸ナトリウムが6wt%、負極活物質(S1000)が94wt%になるようにして、実施例3と同様に電池を作製し、評価した。その結果、60サイクル後の容量維持率は53%と比較的良好な値を示した。
 また、ポリ-γ-グルタミン酸ナトリウムが6wt%、負極活物質(S1000)が89wt%、導電助剤として、デンカブラック(デンカ株式会社製)が4wt%、及び、気相法炭素繊維(VGCF、昭和電工株式会社製)が1wt%となるように混合して、同様に評価したところ、容量維持率は71%と良好な値を示した。
実施例5
 実施例1に示した文献を参照して合成したポリ-γ-グルタミン酸カルシウム(実施例1と同様にして測定した重量平均分子量は3,910,000)を粉砕し、実施例4と同様に溶解性を評価した。その結果、溶解までの時間は10時間であった。
 得られた溶液(0.5wt%水溶液)の粘度は12200mPa・sであった。0.5wt%水溶液としては極めて高かった。5wt%水溶液では、粘度が高すぎるため測定が困難であったが、0.5wt%水溶液での測定結果に比べ粘度が向上するため、500mPa・s以上であることは確実である。
 実施例1と同様に中和度を測定した結果、92%であったことから、実質的に、92wt%グルタミン酸カルシウムと8wt%のグルタミン酸の重合体からなることが確認できる。この重合体は、式(1)において、x=0、y=2、z=0、X=カルシウムイオン、R=水素原子のモノマー92wt%と、x=0、y=2、z=0、X=水素イオン、R=水素原子のモノマー8wt%からなるポリマーである。
 尚、Xであるカルシウムイオンは2価のカチオンであるため、1つのカルシウムイオンを2つのグルタミン酸で中和している。
 上記ポリ-γ-グルタミン酸カルシウムが6wt%、負極活物質(S1000)が94wt%になるようにして、実施例3と同様に電池を作製・評価した。その結果、60サイクル後の容量維持率は73%と比較的良好な値を示した。
 また、ポリ-γ-グルタミン酸カルシウムが6wt%、負極活物質(S1000)が89wt%、デンカブラックが4wt%、VGCFが1wt%となるように混合して、同様に評価したところ、容量維持率は88%と良好な値を示した。
実施例6
 実施例1に示した文献を参照して合成したポリ-γ-グルタミン酸リチウム(実施例1と同様にして測定した重量平均分子量は1,130,000)を粉砕し、実施例4と同様に溶解性を評価した。その結果、溶解までの時間は2時間であった。
 得られた溶液(0.5wt%水溶液)の粘度は1500mPa・sであった。0.5wt%水溶液としては極めて高かった。5wt%水溶液では、粘度が高すぎるため測定が困難であったが、0.5wt%水溶液での測定結果に比べ粘度が向上するため、500mPa・s以上であることは確実である。
 実施例1と同様に中和度を測定した結果、87%であったことから、実質的に、87wt%グルタミン酸リチウムと13wt%のグルタミン酸の重合体からなることが確認できる。この重合体は、式(1)において、x=0、y=2、z=0、X=リチウムイオン、R=水素原子のモノマー87wt%と、x=0、y=2、z=0、X=水素イオン、R=水素原子のモノマー13wt%からなるポリマーである。
 上記ポリ-γ-グルタミン酸リチウムが10wt%、負極活物質(S1000)が90wt%になるようにして、実施例3と同様に電池を作製し、評価した。その結果、60サイクル後の容量維持率は69%と比較的良好な値を示した。
 また、ポリ-γ-グルタミン酸リチウムが6wt%、負極活物質(S1000)が94wt%になるようにして、実施例3と同様に電池を作製し、評価した。その結果、60サイクル後の容量維持率は21%とやや低い値であった。本事実は、6wt%までバインダー量を低減するには、ポリ-γ-グルタミン酸リチウムのさらなる高分子量化が必要であることを示唆している。
 さらに、ポリ-γ-グルタミン酸リチウムが6wt%、負極活物質(S1000)が89wt%、デンカブラックが4wt%、VGCFが1wt%となるように混合して、実施例3と同様に電池を作製し、評価した。その結果、容量維持率は59%と比較的良好な値を示した。これは、導電助剤であるデンカブラック及びVGCFがネットワークの維持に効果を発揮したためと考えられる。
実施例7
 実施例1に示した文献を参照して合成したポリ-γ-グルタミン酸カリウム(実施例1と同様にして測定した重量平均分子量は8,190,000)を粉砕し、実施例4と同様に溶解性を評価した。その結果、溶解までの時間は12時間であった。
 得られた溶液(0.5wt%水溶液)の粘度は25300mPa・sであった。0.5wt%水溶液としては極めて高かった。5wt%水溶液では、粘度が高すぎるため測定が困難であったが、0.5wt%水溶液での測定結果に比べ粘度が向上するため、500mPa・s以上であることは確実である。
 実施例1と同様に中和度を測定した結果、95%であったことから、実質的に、95wt%グルタミン酸カリウムと5wt%のグルタミン酸の重合体からなることが確認できる。この重合体は、式(1)において、x=0、y=2、z=0、X=カリウムイオン、R=水素原子のモノマー95wt%と、x=0、y=2、z=0、X=水素イオン、R=水素原子のモノマー5wt%からなるポリマーである。
 上記ポリ-γ-グルタミン酸カリウムが6wt%、負極活物質(S1000)が94wt%になるようにして、実施例3と同様に電池を作製し、評価した。その結果、60サイクル後の容量維持率は70%と比較的良好な値を示した。
比較例1
 非特許文献1に記載の市販品のポリ-γ-グルタミン酸(和光純薬工業製、Mw=1,500,000~2,500,000)に等量の水酸化ナトリウムを添加し、固形分濃度20wt%のバインダーを20g得た。ポリ-γ-グルタミン酸は全て溶解しており、溶解率100%であった。また、得られたバインダーの粘度は444mPa・sであった。
 得られたポリアミド(ポリ-γ-グルタミン酸ナトリウム中和物)について、実施例1と同様にして重量平均分子量を評価したところ、重量平均分子量は37.0万であった。
 また、実施例1と同様にしてポリ-γ-グルタミン酸の中和度を測定した結果、94%であったことから、実質的に94wt%グルタミン酸ナトリウムと6wt%のグルタミン酸の重合体であることが確認できる。この重合体は、式(1)において、x=0、y=2、z=0、X=リチウムイオン、R=水素原子のモノマー94wt%と、x=0、y=2、z=0、X=水素イオン、R=水素原子のモノマー6wt%からなるポリマーである。
 得られたバインダーを用いて実施例1と同様にして電極とコインセルを製造し、評価した。
 その結果、得られた電極の引っ張り強度は、接着が弱いために剥離試験前にテープの応力ではがれてしまった。また、電極は打ち抜きの際に粉落ちが見られた。このような粉落ちは電池にした際の内部短絡の原因になるおそれがあり、生産性の低下や電池の安全性の低下につながるものである。
 コインセルの容量維持率は83%であった。この電池特性は、実施例1に比べて劣るものである。これは結着不良により活物質が孤立し、容量が得られなくなったためと推察される。
 ポリ-γ-グルタミン酸が6wt%、負極活物質(S1000)が94wt%になるようにして、実施例3と同様に電池を作製し、評価した。その結果、60サイクル後の容量維持率は11%と低いものであった。
比較例2
 実施例1のポリアミドの代わりに、市販品のポリアクリル酸(和光純薬工業製、平均分子量は1,000,000)を用いた他は、実施例1と同様にして溶解率を評価した。その結果、溶解率は67%であった。
 不溶部分(継粉)を完全に溶解させるには1時間以上のさらなる混練が必要であった。得られたポリアクリル酸が水に溶解したバインダー(ポリアクリル酸の含有量5wt%)について、実施例2と同様にして粘度を評価したところ、347mPa・sであった。
 得られたバインダーの粘度は、実施例1に比べ低い粘度であり、分子間の絡み合いは少ないと推察されるが、分子構造に起因して継粉を生じやすかったと考えられる。このような溶解性の低さは生産性を低下させる要因になりうる。
 また、実施例3と同様に、1gのポリアクリル酸に200mLの水を添加し、DF70を用いて500mLビーカー中で400rpmにて撹拌した。その結果、8時間では完全に溶解しなかった。尚、1晩放置後、さらに8時間程度撹拌することにより溶解した。
 得られた溶液の粘度は29.4mPa・sであり、実施例3の値よりも低かった。これは実施例3のポリアミドが、同等以上の分子の絡み合いを持つにもかかわらず、水への親和性が高いことから、高い溶解性を有することを示している。
比較例3
 比較例1のバインダーを用いて、実施例2と同様に正極の評価用電極、評価セルを作製し評価したところ、容量維持率は85%、電極の残存率は80%と実施例2に比べて低い結果であった。高分子量のバインダーによる強固な結着は正極においても有利に働くことが分かった。
 以上、本発明を若干の実施形態及び実施例によって説明したが、本発明はこれらに限定されるものではなく、本発明の要旨の範囲内で種々の変形が可能である。本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法及び結果が同一の構成、あるいは目的及び効果が同一の構成)を包含する。また本発明は、上記の実施形態で説明した構成の本質的でない部分を他の構成に置き換えた構成を包含する。さらに本発明は、上記の実施形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成をも包含する。さらに本発明は、上記の実施形態で説明した構成に公知技術を付加した構成をも包含する。
 例えば、実施例はリチウムイオン二次電池の負極用及び正極用バインダーを例にとって説明したが、これに限定されるものではなく、その他の電気化学素子、例えばリチウムイオン電池のセパレータコート用バインダー、電気二重層キャパシタのバインダー等としても好適に用いることができる。特に、リチウムイオン電池のセパレータコート用バインダーやキャパシタ用バインダー等、酸化及び還元環境にさらされる他の電気デバイスには好適に用いることができる。
 本発明のバインダーを用いて製造した、リチウムイオン電池、電気二重層キャパシタ等の電気化学素子は、様々な電気機器や車両に用いることができる。電気機器としては携帯電話やノートパソコン等、車両としては自動車、鉄道、飛行機等が挙げられるが、上記に限定されるものではない。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献、及び本願のパリ条約による優先権の基礎となる出願の内容を全て援用する。

Claims (18)

  1.  カルボキシル基及びカルボキシル基の塩から選択される1以上の官能基を有するポリアミドを含む電気化学素子用バインダーであって、
     ゲルパーミッションクロマトグラフィーによって得られる前記ポリアミドの重量平均分子量が、ポリエチレングリコール換算で400,000以上9,000,000以下である電気化学素子用バインダー。
  2.  前記ポリアミドの重量平均分子量が1,100,000以上である請求項1に記載の電気化学素子用バインダー。
  3.  前記ポリアミドの重量平均分子量が1,500,000以上である請求項1に記載の電気化学素子用バインダー。
  4.  前記ポリアミドの5重量%水溶液の粘度が500mPa・s以上である請求項1~3のいずれかに記載の電気化学素子用バインダー。
  5.  前記ポリアミドが、下記式(1)で表される繰り返し単位を30mol%以上含む請求項1~4のいずれかに記載の電気化学素子用バインダー。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、xは0以上5以下の整数、yは1以上7以下の整数、zは0以上5以下の整数である。
     Xは、水素イオン又は金属イオンである。
     Rは、水素原子又は炭素数10以下の脂肪族炭化水素基である。
     nは、繰り返し数である。)
  6.  前記金属イオンが、アルカリ金属イオン又はアルカリ土類金属イオンである請求項5に記載の電気化学素子用バインダー。
  7.  前記金属イオンが、リチウムイオン又はナトリウムイオンである請求項5又は6に記載の電気化学素子用バインダー。
  8.  前記ポリアミドが、エステル化したカルボキシル基を含む請求項1~7のいずれかに記載の電気化学素子用バインダー。
  9.  前記ポリアミドが、ポリアミノ酸又はポリアミノ酸の塩である請求項1~8のいずれかに記載の電気化学素子用バインダー。
  10.  前記ポリアミドが、ポリグルタミン酸、ポリグルタミン酸の塩、ポリアスパラギン酸、又はポリアスパラギン酸の塩である請求項1~9のいずれかに記載の電気化学素子用バインダー。
  11.  前記ポリアミドが、ポリ-γ-グルタミン酸又はポリ-γ-グルタミン酸の塩である請求項1~10のいずれかに記載の電気化学素子用バインダー。
  12.  前記ポリアミドが、D-グルタミン酸由来の構造とL-グルタミン酸由来の構造を含む請求項1~11のいずれかに記載の電気化学素子用バインダー。
  13.  さらに水を含む請求項1~12のいずれかに記載の電気化学素子用バインダー。
  14.  請求項1~13のいずれかに記載の電気化学素子用バインダーを用いた電気化学素子。
  15.  請求項1~13のいずれかに記載の電気化学素子用バインダーを含むリチウムイオン電池用電極。
  16.  シリコン(Si)又はスズ(Sn)を構成元素として含む活物質を含む請求項15に記載のリチウムイオン電池用電極。
  17.  電気化学素子用バインダーの含有量が8重量%以下である請求項15又は16に記載のリチウムイオン電池用電極。
  18.  前記電極の単位面積当たりの容量が2mAh/cm以上である請求項15~17のいずれかに記載のリチウムイオン電池用電極。
     
PCT/JP2018/036047 2017-09-28 2018-09-27 電気化学素子用バインダー WO2019065883A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017187974 2017-09-28
JP2017-187974 2017-09-28

Publications (1)

Publication Number Publication Date
WO2019065883A1 true WO2019065883A1 (ja) 2019-04-04

Family

ID=65903072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036047 WO2019065883A1 (ja) 2017-09-28 2018-09-27 電気化学素子用バインダー

Country Status (1)

Country Link
WO (1) WO2019065883A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113451579A (zh) * 2021-06-28 2021-09-28 广东工业大学 一种用于锂离子电池硅基负极的复合粘结剂及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004210699A (ja) * 2002-12-27 2004-07-29 Ichimaru Pharcos Co Ltd 化粧料組成物
JP2009120585A (ja) * 2007-10-26 2009-06-04 Toyobo Co Ltd 増粘剤
JP2010212144A (ja) * 2009-03-11 2010-09-24 Nissan Motor Co Ltd リチウムイオン二次電池
JP2016046151A (ja) * 2014-08-25 2016-04-04 株式会社豊田自動織機 二次電池負極用結着剤、二次電池用負極及びその製造方法、並びに非水電解質二次電池
WO2017110710A1 (ja) * 2015-12-25 2017-06-29 東レ株式会社 樹脂組成物
WO2017175838A1 (ja) * 2016-04-08 2017-10-12 出光興産株式会社 電気化学素子用バインダー
WO2018096981A1 (ja) * 2016-11-25 2018-05-31 出光興産株式会社 電気化学素子用バインダー

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004210699A (ja) * 2002-12-27 2004-07-29 Ichimaru Pharcos Co Ltd 化粧料組成物
JP2009120585A (ja) * 2007-10-26 2009-06-04 Toyobo Co Ltd 増粘剤
JP2010212144A (ja) * 2009-03-11 2010-09-24 Nissan Motor Co Ltd リチウムイオン二次電池
JP2016046151A (ja) * 2014-08-25 2016-04-04 株式会社豊田自動織機 二次電池負極用結着剤、二次電池用負極及びその製造方法、並びに非水電解質二次電池
WO2017110710A1 (ja) * 2015-12-25 2017-06-29 東レ株式会社 樹脂組成物
WO2017175838A1 (ja) * 2016-04-08 2017-10-12 出光興産株式会社 電気化学素子用バインダー
WO2018096981A1 (ja) * 2016-11-25 2018-05-31 出光興産株式会社 電気化学素子用バインダー

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KOMABA, SHINICHI ET AL.: "A Study on Solid Electrolyte Interphase of Silicon-based Electrodes for Lithium Ion Batteries by Hard X-ray Photoelectron Spectroscope", 2014 SPRING NEW INDUSTRIAL AREA PROPOSAL/GENERAL (INDUSTRIAL APPLICATION) PROPOSAL REPORT (2014B) (2015 ) ., 2015, pages 48 - 52 *
MOCHIZUKI T. ET AL.: "Natto'' Binder of Poly-'Y- glutamate Enabling to Enhance Silicon/Graphite Composite Electrode Performance for Lithium-Ion Batteries", ACS SUSTAINABLE CHEMISTRY AND ENGINEERING (JUNE 2017, vol. 5, no. 7, pages 6343 - 6355, XP055586433 *
MOCHIZUKI, TAKAHIRO ET AL.: "Improving Si/Graphite Composite Electrode Properties Using Polyglutamic Acid Binders", PROCEEDINGS OF THE 82ND MEETING OF THE ELECTROCHEMICAL SOCIETY OF JAPAN, 2015 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113451579A (zh) * 2021-06-28 2021-09-28 广东工业大学 一种用于锂离子电池硅基负极的复合粘结剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
US10752733B2 (en) Binder for electrochemical element
WO2018096981A1 (ja) 電気化学素子用バインダー
KR20230007337A (ko) 도전재분산액 및 그의 제조방법, 그리고 그것을 이용한 이차전지 전극용 조성물, 전극막, 이차전지, 차량
KR101620066B1 (ko) 저저항 전기화학소자용 전극, 그의 제조방법 및 상기 전극을 포함하는 전기화학소자
JP6304774B2 (ja) 負極製造用ペーストの製造方法、リチウムイオン二次電池用負極の製造方法、リチウムイオン二次電池用負極およびリチウムイオン二次電池
WO2017170281A1 (ja) 電気化学素子電極用バインダー組成物、電気化学素子電極用スラリー組成物、電気化学素子用電極、および電気化学素子
JP2008027904A (ja) リチウム蓄電池電極用のデンプンならびにリチウムおよびチタン混合酸化物ベースを有する水性分散体
JP7031655B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用導電材ペースト組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
WO2017150048A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用導電材ペースト組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
JP2021017587A (ja) 電気化学素子用バインダーの製造方法及び架橋ポリマー前駆体組成物
TWI795390B (zh) 非水電解質電池用黏合劑組成物、以及使用其之非水電解質電池用黏合劑水溶液、非水電解質電池用漿體組成物、非水電解質電池用電極、及非水電解質電池
JP6759589B2 (ja) 電気化学素子用導電性組成物、電気化学素子電極用組成物、接着剤層付集電体及び電気化学素子用電極
JP2019059708A (ja) ポリ−γ−グルタミン酸化合物、該ポリ−γ−グルタミン酸化合物の製造方法、電気化学素子用バインダー、及び電気化学素子
WO2019181660A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用導電材ペースト組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
JP2016021391A (ja) 電気化学素子用導電材分散液、電気化学素子正極用スラリー、電気化学素子用正極および電気化学素子
JP2020077620A (ja) 電気化学素子用バインダー組成物
US11329278B2 (en) Process to prepare an electrode for an electrochemical storage device
WO2019065883A1 (ja) 電気化学素子用バインダー
WO2021006198A1 (ja) 変性ポリマー及び組成物
JPWO2019117056A1 (ja) 非水電解質電池用バインダー、それを用いたバインダー水溶液およびスラリー組成物、並びに非水電解質電池用電極および非水電解質電池
WO2020204058A1 (ja) 電気化学素子用バインダー
WO2021251084A1 (ja) 非水電解質二次電池用負極およびそれを用いた非水電解質二次電池
JP2022002188A (ja) リチウムイオン電池用セパレータ
CN115152048A (zh) 非水电解质二次电池用负极和非水电解质二次电池
WO2020137403A1 (ja) 二次電池電極用炭素材料分散液、二次電池電極用スラリー組成物、二次電池用電極および二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862485

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18862485

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP