WO2019065755A1 - 杭の施工方法、集合装置及び集合装置の設計方法 - Google Patents

杭の施工方法、集合装置及び集合装置の設計方法 Download PDF

Info

Publication number
WO2019065755A1
WO2019065755A1 PCT/JP2018/035735 JP2018035735W WO2019065755A1 WO 2019065755 A1 WO2019065755 A1 WO 2019065755A1 JP 2018035735 W JP2018035735 W JP 2018035735W WO 2019065755 A1 WO2019065755 A1 WO 2019065755A1
Authority
WO
WIPO (PCT)
Prior art keywords
pile
pressure fluid
high pressure
discharge
discharge holes
Prior art date
Application number
PCT/JP2018/035735
Other languages
English (en)
French (fr)
Inventor
洋敬 高橋
鈴木 勇吉
北村 卓也
横山 博康
加藤 努
貴光 大森
洋平 諸橋
俊介 森安
久保田 一男
正和 武野
Original Assignee
調和工業株式会社
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 調和工業株式会社, 新日鐵住金株式会社 filed Critical 調和工業株式会社
Priority to AU2018343817A priority Critical patent/AU2018343817B2/en
Priority to JP2019528943A priority patent/JP6566233B1/ja
Publication of WO2019065755A1 publication Critical patent/WO2019065755A1/ja
Priority to PH12020500537A priority patent/PH12020500537A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/02Sheet piles or sheet pile bulkheads
    • E02D5/03Prefabricated parts, e.g. composite sheet piles
    • E02D5/04Prefabricated parts, e.g. composite sheet piles made of steel
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/24Prefabricated piles
    • E02D5/28Prefabricated piles made of steel or other metals
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D7/00Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
    • E02D7/18Placing by vibrating
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D7/00Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
    • E02D7/24Placing by using fluid jets
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D7/00Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
    • E02D7/26Placing by using several means simultaneously

Definitions

  • the present invention relates to a method of constructing a pile for driving a pile into hard ground.
  • JV method As a method of driving a pile into a hard ground, there is a water jet combined vibro hammer method (hereinafter referred to as "JV method”).
  • JV method high-pressure water (hereinafter, “water” includes both fresh water and seawater) is injected from a plurality of injection nozzles attached to the tip of the pile, while giving vibration due to a vibro hammer to the pile,
  • water includes both fresh water and seawater
  • the ground around the pile may be loosened by the injection of high-pressure water and the vibration of the vibrator, and the bearing capacity of the pile may be reduced.
  • rooted bulbs can be formed at the pile tip by pouring a fluid solidifying material such as cement milk around the pile tip and / or around the pile, or grout the pile peripheral surface Methods of processing have been used conventionally.
  • Patent Document 2 a steel pipe pile is driven to a depth at which the pile circumferential surface grout treatment is required by the JV method, and after reaching the depth at which the pile circumferential surface grout treatment is required, the water jet water is changed to flowability.
  • Patent Document 3 after a steel pile is driven to a planned depth by the JV method, a flowable solidifying material is injected from an injection nozzle while pulling up the steel pile, and then a steel is again injected while pouring a flowable solidifying material A rooted bulb is formed at the tip of the pile by driving the pile to the design depth, and if necessary, pour solidifying material into the pile circumferential surface while pulling up the jet nozzle to grout the steel pile circumferential surface
  • the construction method is disclosed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-270157
  • Patent Documents 2 and 3 when the outer peripheral length of the target pile is long, a plurality of jet pipes are evenly arranged on the outer periphery of the pile.
  • the flowability can be obtained with an equal discharge amount from each of a plurality of jet pipes. It is essential to discharge the solidifying material.
  • Patent Documents 2 and 3 do not disclose means for discharging the flowable solidified material with an equal discharge amount from each of the plurality of jet pipes. The same can be said in the case of supplying water to a plurality of jet pipes instead of the flowable solidifying material.
  • the present invention in the construction method of driving a pile into the ground by attaching a plurality of jet pipes to a pile and discharging high pressure fluid from the above problems, the present invention always uses each of the plurality of jet pipes regardless of the fluctuation of the total discharge amount.
  • An object of the present invention is to make it possible to respectively discharge high pressure fluid with an equal discharge amount.
  • An aspect of the present invention is a preparatory step of attaching a plurality of jet piping members and vibro hammers to a pile;
  • a construction method of a pile comprising: a construction process including at least a partial process of causing vibration by the vibro hammer while injecting high-pressure fluid from the tip of the jet piping member into the ground to lower or raise the pile;
  • the preparation step one or more high pressure fluid delivery devices and a collective device having a cylindrical internal space are arranged, and one or more high pressure fluid delivery devices and one or more injection holes in the collective device Are connected to each other, and a plurality of discharge holes in the collecting device and a plurality of jet piping members are connected,
  • the construction step while maintaining a state in which the internal space of the collecting device is filled with high pressure fluid, high pressure fluid is injected from one or more of the injection holes and high pressure fluid is discharged from each of the plurality of discharge holes.
  • a difference between the maximum discharge amount and the minimum discharge amount is 5% or less of the maximum discharge amount for each discharge amount of the plurality of high-pressure fluids discharged from each of the plurality of discharge holes.
  • the number n of the plurality of discharge holes, the diameter d of the internal space, the diameter do of the discharge holes, the flow coefficient ⁇ of the discharge holes, and the two adjacent ones It is preferable that the relationship between the distance L between the discharge holes, the dynamic viscosity coefficient ⁇ of the high pressure fluid, and the sum Q of the discharge amounts satisfy the following equation.
  • high pressure fluid is water or fluid solidification material
  • the above-mentioned construction process Injecting water and applying vibration due to the vibro hammer to drive the pile to a first depth below the support layer interface; Applying vibration by at least the vibro hammer to pull up the pile to a depth corresponding to the set upper end of the pile surface grout; It is preferable to include the step of re-driving the pile to a second depth below the interface of the support layer while injecting the flowable solidifying material.
  • high pressure fluid is water or fluid solidification material
  • the above-mentioned construction process Injecting water and applying vibration due to the vibro hammer to drive the pile to a first depth below the support layer interface; Applying a flowable solidifying material while vibrating the vibro hammer to pull up the pile to a depth corresponding to a set upper end of the rooting; Reinjecting the pile to a second depth below the interface of the support layer while injecting a flowable solidifying material; It is preferable to include the step of withdrawing the jet pipe member while injecting the flowable solidifying material.
  • high pressure fluid is water or fluid solidification material, and the above-mentioned construction process, It is preferable to include the step of driving the pile to a depth below the interface of the support layer by injecting a flowable solidifying material and applying vibration by the vibro hammer.
  • the high pressure fluid may be stirred by a stirrer disposed in the inner space of the collecting device, or the high pressure fluid may be vibrated by a vibrator disposed in the inner space. It is suitable.
  • the construction management device is: Vertical height data of piles continuously transmitted from a total station tracking a prism attached to the vibro hammer, and continuously transmitted from flow meters respectively attached to the delivery ports of one or a plurality of the high-pressure fluid delivery devices
  • the flow data of the high pressure fluid being Movement speed of the pile in each partial process included in the construction process, water and fluidity solidification by comparing the acquired vertical height data of the pile and the flow plan data of the high pressure fluid with the preset construction plan data It is preferable to switch the material or adjust the discharge amount of the high pressure fluid in real time.
  • the jet piping member is A conducting pipe connected to the collecting device; An integrated pipe whose one end is connected to the conduction pipe and whose other end is branched into plural; It is preferable to have a plurality of injection nozzles connected to each of the branched other ends of the collecting pipe.
  • Another aspect of the present invention is a collective device used in a method of constructing a pile including at least a step of injecting a high pressure fluid from a tip of the jet piping member while injecting a pile to which a plurality of jet piping members are attached, A cylindrical internal space, one or more injection holes respectively connected to one or more high pressure fluid delivery devices, and a plurality of discharge holes respectively connected to the plurality of jet piping members;
  • high pressure fluid is injected from one or more of the injection holes and high pressure fluid is discharged from each of the plurality of discharge holes,
  • a difference between the maximum discharge amount and the minimum discharge amount is 5% or less of the maximum discharge amount for each discharge amount of the plurality of high-pressure fluids discharged from each of the plurality of discharge holes.
  • a still further aspect of the present invention is used in a method of constructing a pile including at least a step of injecting a high pressure fluid from a tip of the jet piping member while injecting the pile to which a plurality of jet piping members are attached.
  • It has an internal space, one or more injection holes respectively connected to one or more high pressure fluid delivery devices, and a plurality of discharge holes respectively connected to the plurality of jet piping members, and during construction of the pile
  • a design method of an aggregation device in which a high pressure fluid is injected from one or more of the injection holes and a high pressure fluid is discharged from each of a plurality of the discharge holes while the internal space is filled with the high pressure fluid.
  • the number n of the plurality of discharge holes, the diameter d of the internal space, the diameter do of the discharge holes, the flow coefficient ⁇ of the discharge holes, the distance L between two adjacent discharge holes, and the kinematic viscosity of the high pressure fluid When one or more of the parameters of the coefficient ⁇ are changed, in each case, the total of the respective discharge amounts is Q, and the discharge amounts of the plurality of high-pressure fluids discharged from the plurality of the discharge holes are calculated. Calculate each, For each discharge amount of the plurality of high-pressure fluid discharged from each of the plurality of discharge holes, the difference of the maximum discharge amount and the minimum discharge amount is equal to or less than a predetermined ratio of the maximum discharge amount.
  • a collecting device is provided between the high pressure fluid delivery device and the jet piping member.
  • the collecting apparatus of the present invention is designed to discharge high-pressure fluid from each of the plurality of discharge holes with a substantially equal discharge rate.
  • FIG. 1 is a perspective view showing roughly an example of a construction system for enforcing a construction method of a pile.
  • FIG. 2 is a figure which shows roughly the piping structure in the construction system shown in FIG. 3
  • (a) is a plan view schematically showing an example of the collecting apparatus shown in FIG. 2
  • (b) is a longitudinal sectional view
  • (c) is a cross-sectional view
  • (d) is another example of the collecting apparatus.
  • FIG. FIG. 4A is a schematic longitudinal sectional view for explaining the appropriate condition of the collecting apparatus
  • FIG. 4B is a transverse sectional view.
  • FIG. 5 is a graph based on the simulation of Table 1.
  • FIG. 6 is a graph based on the simulation of Table 2.
  • FIGS. 7 (a) to 7 (h) are views schematically showing each step in the first embodiment of the method for installing a pile of the present invention.
  • Fig.8 (a) is a schematic perspective view of the structural example of the jet piping member in the front-end
  • FIG. 9 is a view schematically showing an example of a construction management method in the construction method of a pile shown in FIG.
  • FIG. 10 is a schematic view for calculating the design injection amount of the flowable solidifying material, in which (a) is a longitudinal cross-sectional view of the pile and its surroundings, and (b) is a cross-sectional view.
  • FIGS. 12 (a) to 12 (d) are diagrams schematically showing each step in the third embodiment of the method for constructing a pile of the present invention.
  • the pile may be a pile other than a steel pipe pile, such as a steel pipe sheet pile, a steel sheet pile or the like.
  • the driving direction may be inclined.
  • FIG. 1 is a perspective view which shows roughly an example of the construction system for enforcing the construction method of a pile.
  • FIG. 2 is a figure which shows typically an example of the piping structure in the construction system shown in FIG.
  • the construction system is installed on the hoist 10.
  • the flowable solidifying material is cement milk.
  • the cement stored in the cement silo 11 and the water stored in the water tank 13 are respectively pumped to one or more mixing plants 12 by pumps, and the mixing plant 12 mixes water and cement to prepare cement milk. Be done.
  • the water-cement ratio (W / C%) which is the weight ratio of water to cement in cement milk, is appropriately set according to the application of the pile and the ground conditions.
  • the water-cement ratio is, for example, generally in the range of 50 to 150%.
  • Additives relating to water reduction, setting delay, expansion, non-separation in water, etc. are added to cement milk as needed.
  • the cement milk produced by the mixing plant 12 can be supplied to one or more high pressure fluid delivery devices 14 by a pump (not shown) via a switching device 18A, as shown in FIG. If the high pressure fluid delivery device 14 has a suction function, the pump between the mixing plant 12 and the high pressure fluid delivery device 14 is not necessary.
  • water withdrawn from the sea and stored in the water tank 13 can be supplied to one or more high-pressure fluid delivery devices 14 by a pump via the switching device 18A. If the high pressure fluid delivery device 14 has a suction function, the pump between the water tank 13 and the high pressure fluid delivery device 14 is not necessary.
  • Each of the one or more high pressure fluid delivery devices 14 is supplied with either cement milk or water by switching the switching device 18A.
  • Each high pressure fluid delivery device 14 can deliver the supplied cement milk or water at high pressure.
  • a flow meter 19 is attached to the delivery port of each high pressure fluid delivery device 14.
  • the outlet of one or more high pressure fluid delivery devices 14 is respectively connected to one or more input ports of the second switching device 18B.
  • One or more output ports of the second switching device 18B are connected to one or more injection holes of the collecting device 16 through one or more high pressure hoses 15, respectively.
  • the cement milk or water delivered from the one or more high pressure fluid delivery devices 14 is once collected in one collecting device 16. Thereafter, cement milk or water is pumped to the plurality of jet piping members via the plurality of high pressure hoses 17 respectively connected to the plurality of discharge holes of the collecting device 16.
  • the plurality of jet piping members are attached to the steel pipe pile 1.
  • the plurality of jet piping members are composed of a plurality of conducting pipes 9, an integrated pipe 8 connected to the tip of each conducting pipe 9, and an injection nozzle 7 connected to each branched end of each integrated pipe 8. ing.
  • the plurality of jet piping members can also be configured from a plurality of conducting pipes 9 and an injection nozzle 7 connected to the tip of each conducting pipe 9.
  • a plurality of injection nozzles 7 are arranged in the circumferential direction near the tip of the steel pipe pile 1.
  • the plurality of injection nozzles 7 can be disposed, for example, every 60 °, 90 °, 120 °, and 180 ° in the circumferential direction.
  • the water tank 13 When there is no floating matter such as dust in the seawater, the water tank 13 may be omitted.
  • the number of mixing plants 12 and high-pressure fluid delivery devices 14 is determined as necessary based on the installation conditions and the like.
  • the vibro hammer 2 is suspended by a crane. In order to drive the vibro-hammer 2 which is electrically driven in the example of FIG. 1, an activation generator 20 is provided and operated by the operation unit 21. In the case of land construction, all these devices are installed in the work yard.
  • FIGS. 1 and 2 (2) Configuration and Design Method of Collecting Device ⁇ Basic Configuration of Collecting Device>
  • the collecting apparatus 16 shown in FIGS. 1 and 2 will be described with reference to FIGS. 3 and 4.
  • 3A is a schematic plan view of an example of the collecting device 16 shown in FIG. 2
  • FIG. 3B is a longitudinal sectional view of FIG. 3A
  • FIG. 3C is a cross sectional view.
  • the collecting device 16 has a substantially cylindrical casing 16a.
  • the housing 16a has a cylindrical internal space.
  • One or a plurality of injection holes 16b are provided on one circumferential surface of the housing 16a on one circumferential surface, and a plurality of discharge holes 16c are provided on the other circumferential surface at predetermined intervals in a direction parallel to the shaft.
  • the injection hole 16 b and the discharge hole 16 c are provided with, for example, a coupler for detachably connecting the high pressure hoses 15 and 17.
  • each of the injection holes 16 b and the discharge holes 16 c is plural, they may have the same number or different numbers.
  • the high pressure fluid flows in from the one or more injection holes 16b and flows out from the plurality of discharge holes 16c, while the entire internal space is kept filled with the high pressure fluid.
  • the collecting device 16 is designed so that the discharge amounts of the high pressure fluid flowing out from each of the plurality of discharge holes 16c are substantially equal regardless of the injection amount of the high pressure fluid from the one or more injection holes 16b. Is preferred.
  • each discharge hole 16 c is obtained by the effect of the collecting device 16.
  • FIG. 3D shows another example of the aggregation device 16.
  • the collecting device 16 of FIG. 3 (d) arranges the straightening vanes 16e in the inner space to meander the high pressure fluid and rectify it into a uniform flow. Thereby, the discharge amount from each discharge hole 16c is stabilized.
  • one or more vibrators 16 d and / or one or more stirrers 16 f may be disposed in the inner space.
  • FIG. 3 (d) shows all of the rectifying plate 16e, the vibrator 16d and the stirrer 16f, one or more of them may be combined and disposed.
  • ⁇ Suitable conditions for collecting device In the case of five discharge holes> With reference to FIG. 4, an appropriate condition of the collecting device for realizing the equalization of the discharge amount in each discharge hole of the collecting device will be described. Specifically, the condition required for the collective device is derived so that the difference between the discharge amounts of the high-pressure fluid discharged from the respective discharge holes of the collective device falls within a predetermined range.
  • FIG. 4A is a schematic cross-sectional view along an axis in an example of the collective device
  • FIG. 4B is a cross-sectional view in a direction perpendicular to the axis.
  • the diameter of the cylindrical internal space of the collecting device 16 is d (hereinafter referred to as "inner diameter d").
  • the collecting device 16 includes three injection holes I1, I2, I3, and five discharge holes A1, A2, A3, A4, A5.
  • the discharge holes A1 to A5 have the same inner diameter do.
  • the injection holes I1 to I3 and the discharge holes A1 to A5 are, for example, arranged at equal intervals.
  • the distance between the discharge holes A1 to A5 is L.
  • the distance between the discharge holes A1 and A5 at both ends and the both end walls of the housing 16a is L / 2.
  • injection hole I1 is disposed at a position corresponding to the middle of discharge holes A1 and A2
  • injection hole I2 is disposed on the opposite side of discharge hole A3
  • injection hole I3 is disposed at a position corresponding to the middle of discharge holes A4 and A5. ing.
  • a condition is derived for the variation in the discharge amount of the high pressure fluid discharged from the five discharge holes A1 to A5 during use of the collecting device 16 to fall within a predetermined range.
  • high-pressure fluid is injected from the injection hole I1 located at the end only with the injection amount Qi, and the injection holes I2 and I3 are closed.
  • the pressure of each high-pressure fluid discharged from the five discharge holes A1, A2, A3, A4, A5 is P1, P1, P2, P3, P4, and the discharge amount is Q1, Q1, Q2, Q3, It is referred to as Q4.
  • the discharge amount Q1 from the discharge holes A1 and A2 closest to the injection hole I1 is the maximum discharge amount
  • the discharge amount Q4 from the farthest discharge hole A5 is the minimum It should be the discharge amount.
  • the variation in discharge amount is defined as a ratio R (%) of the difference between the maximum discharge amount Q1 and the minimum discharge amount Q4 with respect to the maximum discharge amount Q1 as in the following equation, and is referred to as "discharge amount difference R".
  • R (%) ((Q1-Q4) / Q1) ⁇ 100
  • the discharge amount difference R is, for example, 5% or less.
  • discharge amounts Q1, Q1, Q2, Q3, and Q4 from each of the five discharge holes are calculated using Expression [1], Expression [2], and Expression [3].
  • Formula [1] is a relational expression of the pressure and discharge amount in each discharge hole.
  • Formula [2] is a relational expression of the pressure between the adjacent discharge holes ("Hydrology" (second edition) by Uematsu Tokio, P. 52).
  • Expression [3] is an expression that represents v in expression [2].
  • Each parameter in Formula [1], Formula [2], and Formula [3] represents the following physical quantities. Parentheses indicate units.
  • Qk ' Partial sum of discharge amount of discharge holes (m 3 / sec) ⁇ : Discharge hole flow coefficient do: inner diameter of discharge hole (m)
  • g Gravity acceleration (m / sec 2 ) ⁇ : Unit volume weight of cement milk (kN / m 3 )
  • L Distance between two adjacent discharge holes (m) :: Dynamic viscosity of cement milk (m 2 / sec)
  • d Inner diameter of collecting device (m)
  • v Average flow velocity in the collector (m / sec)
  • h Friction loss head (m)
  • the flow rate coefficient ⁇ of the discharge hole is a coefficient which changes depending on the shape of the discharge hole and the like,
  • the discharge amounts Q1, Q1, Q2, Q3, and Q4 of the five discharge holes A1, A2, A3, A4, and A5 are calculated by the following procedures (i) to (vi).
  • (I) First, assuming that the discharge amount Q4 of the discharge hole A5 is a variable, the pressure P4 is obtained from the equation [1] (k 4). Thus, P4 is expressed as a function of Q4.
  • the pressure P3 of the discharge hole A4 is determined using P4 determined in (i) and the equations [2] and [3]. At this time, Pk-1-Pk of Formula [2] is P3-P4, and Qk 'of Formula [3] is Q4. Thus, P3 is expressed as a function of Q4.
  • Pk-1-Pk of Formula [2] is P1-P2, and Qk 'of Formula [3] is Q2 + Q3 + Q4.
  • P1 is expressed as a function of Q4.
  • Q1 is determined by equation [1].
  • Q1 is expressed by the function of Q4.
  • the total discharge amount Q is equal to the injection amount Qi from the injection hole I1, and the value of the injection amount Qi is calculated from the following equation [4].
  • the results of the above (ii) to (iv) are substituted into Q1, Q2 and Q3, and the value of Q4 is determined by convergence calculation.
  • the values of Q1, Q2 and Q3 are calculated from the value of Q4 obtained in (v) and the results of (ii) to (iv) above.
  • the injection amount Qi usually corresponds to the maximum discharge flow rate of one high-pressure fluid delivery device
  • the injection amount Qi (m 3 / sec) in (v) is usually obtained by the following equation [4] .
  • the theoretical maximum discharge amount Qo of the equation [4] is determined by the specification of the high-pressure fluid delivery device used.
  • the injection amount Qi varies with the unit volume weight ⁇ of cement milk used.
  • the high-pressure fluid delivery device is, for example, a water jet cutter capable of pumping water or cement milk (eg, CJ-340 ERS manufactured by Harumi Kogyo Co., Ltd., theoretical maximum discharge rate of 900 liters / min).
  • the right side of the equation [4] is further multiplied by the number.
  • Each parameter of Formula [4] represents the following physical quantity.
  • Qi Injection amount (m 3 ) ⁇ w : Unit volume weight of water (kN / m 3 ) ⁇ : Unit volume weight of cement milk (kN / m 3 )
  • Qo Theoretical maximum discharge rate (m 3 / min)
  • Table 1 shows the above (i) for each of the cases 1 to 7 in which the numerical values of the inner diameter d of the collecting device, the inner diameter do of the discharge hole, the flow coefficient ⁇ of the discharge hole and the discharge hole distance L are appropriately changed. It is the table
  • the unit volume weight ⁇ and the dynamic viscosity coefficient ⁇ of cement milk were calculated assuming that W / C was 65%.
  • the change in unit volume weight ⁇ of cement milk affects the discharge amount of each discharge hole according to equation [1] but does not affect the discharge amount difference R.
  • Table 1 shows the ratios of the other discharge amounts Q2, Q3 and Q4 to the maximum discharge amount Q1 (the lower three stages of the table). As shown in Table 1, in Cases 1 to 5, the discharge amount difference R from the five discharge holes A1 to A5 is 5%. By the same calculation, in Case 6, the discharge amount difference R is 0.5%, and in Case 7, the discharge amount difference R is 15%.
  • ( ⁇ ⁇ do / d) 4 / (Q / ⁇ L) is calculated for cases 1 to 5 respectively, a constant value of 9 ⁇ 10 ⁇ 5 is obtained (the fourth step from the bottom of Table 1).
  • ( ⁇ x ⁇ do / d) 4 / (Q / LL) is a dimensionless quantity, which is referred to as the “shape parameter G” of the collecting device.
  • the shape parameter G is 8.0 ⁇ 10 ⁇ 6 in case 6 and the shape parameter G is 3.0 ⁇ 10 ⁇ 4 in case 7.
  • FIG. 5 is a graph created based on the simulation of Table 1.
  • the horizontal axis is ⁇ x do / d
  • the vertical axis is Q / ⁇ L.
  • Each value of cases 1 to 5 is plotted on one quartic curve.
  • the relationship between ⁇ ⁇ do / d and Q / ⁇ L is the collecting apparatus (eg, case 6 in Table 1) located in the region above the quartic curve in FIG.
  • the discharge amount difference R can be 5% or less.
  • the discharge amount difference R exceeds 5%. It will be.
  • the formula [5] is set according to the value of the discharge amount difference R.
  • the value of the constant on the right side of] that is, the shape parameter G is determined.
  • the value of the shape parameter G can also be derived by experiment.
  • the parameters d, do, ⁇ , L for the collecting device, the parameter ⁇ for cement milk and the parameter Q for the high pressure fluid delivery device can be freely combined.
  • the inner diameter d is 120 mm
  • the inner diameter do of the discharge hole is 45 mm
  • the flow coefficient ⁇ of the discharge hole is 1
  • the discharge hole interval L is 200 mm
  • the dynamic viscosity coefficient 3.3 is 3.3 ⁇ 10 ⁇ 4 m 2 / sec
  • the total discharge amount Q is 1.4 ⁇ 10 -2 m 3 / sec .
  • the axial length of the collecting device may be, for example, 1000 mm
  • the inner diameter of the injection hole may be, for example, 45 mm, but is not limited thereto.
  • the high pressure fluid is injected only from the injection hole I1 located at the end of the collecting device.
  • the discharge amount difference R is considered to be naturally smaller than that when injected from the injection hole I1 located at the end.
  • the injection hole I3 at the opposite end has the same conditions as the injection hole I1. Therefore, even if the high pressure fluid is injected in any combination of one or more of the injection holes I1, I2 and I3, the appropriate condition for setting the discharge amount difference R within 5% is covered by the equation [5] It will be
  • n discharge holes ⁇ Suitable conditions for collecting device: In the case of n discharge holes> Next, the appropriate conditions of the collecting apparatus when the number of discharge holes is expanded to other than five will be described. In the example of FIG. 4, assuming the case where n discharge holes A1 to An are arranged, it is assumed that the worst condition that cement milk of the injection amount Qi is injected from only the injection hole I1 similarly to the example of FIG. did.
  • the number n of discharge holes is set to 3 to 10, and the inner diameter d of the collecting apparatus, the inner diameter do of the discharge holes, the flow coefficient ⁇ of the discharge holes, and the discharge It is the table
  • discharge amounts Q1 to Qn-1 discharge amounts of the discharge holes A1 and A2 are Q1 of the discharge holes A1 to An are calculated using the same procedure as (i) to (vi) described above. There is.
  • the unit volume weight ⁇ and the dynamic viscosity coefficient ⁇ of cement milk were calculated assuming that W / C was 65%.
  • Table 2 shows the ratio of the other discharge amounts Q2 to Qn-1 to the maximum discharge amount Q1 (the lower eight rows in the table).
  • the variation of the discharge amount is defined as a ratio R (%) of the difference between the maximum discharge amount Q1 and the minimum discharge amount Qn-1 with respect to the maximum discharge amount Q1 as in the following equation, and “discharge amount difference R” It is called.
  • R (%) ((Q1-Qn-1) / Q1) ⁇ 100
  • the discharge amount difference R is 5%. According to the same calculation, in Case 9, the discharge amount difference R is 0.65%, and in Case 10, the discharge amount difference R is 32%.
  • equation [6] a model equation in which the discharge amount difference R is equal to or less than a predetermined value was set as equation [6].
  • the left side of equation [6] is the shape parameter G.
  • one set of ⁇ , ⁇ , and ⁇ can be determined according to the value of the discharge amount difference R so that the right side of the equation [6] becomes a constant value.
  • the discharge amount difference R is 5%, one set of ⁇ , ⁇ , ⁇ can be uniquely determined.
  • the calculation results of the shape parameter G on the left side of are as described in Table 2.
  • ⁇ and ⁇ were determined by convergence calculation so as to minimize the fluctuation of ⁇ , which is a value obtained by multiplying the shape parameter G by (n ⁇ ) ⁇ .
  • 0.0039. Therefore, the appropriate condition of the collecting apparatus in which the discharge amount difference R is 5% or less is expressed as Expression [7].
  • FIG. 6 is a graph created based on the simulation of Table 2.
  • the horizontal axis is the number n of discharge holes
  • the vertical axis is the shape parameter G, that is, ( ⁇ ⁇ do / d) 4 / (Q // L).
  • the numbers in cases 1 to 8 are plotted on one curve.
  • the discharge amount difference R is 5% or less.
  • the collective device for example, case 10 in Table 2 in which the value of the shape parameter G with respect to the number n of discharge holes is located in the area above the curve in FIG.
  • the discharge amount difference R when the discharge amount difference R is set to a value other than 5%, depending on the value of the discharge amount difference R, ⁇ , ⁇ , ⁇ of the right side of the equation [6] Determine a set of values.
  • the parameters n, d, do, ⁇ , L for the collecting device, the parameter ⁇ for cement milk and the parameter Q for the high pressure fluid delivery device can be freely combined.
  • the number n of discharge holes is preferably in the range of 3 to 10.
  • the design of the collecting device is performed in advance before construction.
  • the specific design of the collective device for realizing the allowable discharge amount difference R is performed, for example, as in the following procedures I) to IV).
  • I) By determining the high-pressure fluid delivery device used for construction, the injection amount Qi is determined from the equation [4], and at the same time, the total discharge amount Q used for the simulation is determined. Further, by determining W / C% (the smallest value is adopted as the worst condition) of cement milk used for construction, the unit volume weight ⁇ and the dynamic viscosity coefficient ⁇ ⁇ ⁇ used for the simulation are determined.
  • the discharge amount difference R is 5% or less, for example, in the case 3 satisfying the equation [7] in Table 2, the number n of discharge holes is five, the inner diameter d is 150 mm, and the inner diameter do of the discharge holes is 70 mm, discharge hole flow coefficient ⁇ is 0.735, discharge hole distance L is 400 mm, dynamic viscosity coefficient ⁇ is 3.3 ⁇ 10 -4 m 2 / sec, total discharge amount Q is 3.7 ⁇ 10 -2 m It is 3 / sec.
  • the shape parameter G at this time is 9.2 ⁇ 10 ⁇ 5 .
  • the axial length of the collecting device may be, for example, 2000 mm, and the inner diameter of the injection hole may be, for example, 70 mm, but is not limited thereto.
  • the total discharge amount of high-pressure fluid discharged from the plurality of discharge holes of the collective device fluctuates by being controlled according to each construction step, but the discharge amount difference of each discharge hole is This is equal to or less than the allowable discharge amount difference R used in the design of the device.
  • a plurality of collective devices can be provided in one construction system. In this case, it is designed to satisfy the above-mentioned appropriate conditions for each collective device. As a result, at least in each collecting device, it is ensured that the high pressure fluid is delivered from the plurality of discharge holes with a uniform discharge amount.
  • FIGS. 7 (a) to 7 (h) are diagrams schematically showing respective steps in the first embodiment of the construction method of a pile.
  • FIG. 7A shows the preparation process.
  • the pile to be driven is the steel pipe pile 1 here.
  • the driving target ground comprises a support layer G1 located on the lower layer side and a predetermined ground G2 existing between the support layer interface D0 and the ground (in this example, the sea floor).
  • a vibro hammer 2 is attached to the upper end of the steel pipe pile 1.
  • a jet piping member composed of A removable high pressure hose 17 is connected to the upper end of each of the conduction pipes 9 via a coupler. Water or a flowable solidifying material can be pumped into the conduit 9 through the high pressure hose 17.
  • Fig.8 (a) is a perspective view which shows roughly the structural example of the jet piping member in the front-end
  • two sets of jet piping members are attached to the steel pipe pile 1.
  • Water or flowable solidifying material is diverted by the collecting pipe 8 through the conducting pipe 9 and is jetted from the respective injection nozzles 7.
  • the number of conducting pipes 9 and the number of branches of the collecting pipe 8, that is, the number of injection nozzles 7 are not limited to the illustrated example.
  • FIG.7 (b) (c) has shown the casting process following a preparation process.
  • the placing process is performed by the JV method using a water jet. That is, the steel pipe pile 1 is driven into the ground at the tip of the pile by applying vibration by the vibrator 2 while injecting water (indicated by symbol W) in the driving direction from the injection nozzle 7.
  • the vibro hammer 2 has an exciter and a chuck device, and holds the upper end of the steel pipe pile 1 by the chuck device.
  • the exciter generates an axial vibration of the steel pipe pile 1 by rotating an eccentric weight with an electric motor.
  • the electric motor output of the exciter is, for example, 30 to 500 kW, and the vibration frequency is, for example, 10 to 60 Hz.
  • a plurality of vibro hammers may be interlocked.
  • the steel pipe pile 1 is driven until the tip thereof reaches a predetermined first design depth D11.
  • the first design depth D11 can be set deeper than the support layer interface D0 by a predetermined distance (for example, about twice the diameter of the pile 1).
  • FIG. 9 is a diagram schematically showing an example of a construction management method in the construction method of a pile.
  • the construction management system is incorporated into the construction system.
  • the construction management device 26 plays a central role and collects and controls data from each device such as a measuring device.
  • the construction management device 26 can be implemented by a computer, preferably a personal computer, into which a predetermined program has been introduced.
  • the construction management device 26 has a wired and / or wireless communication function. Since this example is sea-based construction, wireless communication is performed with the devices on the hoist 10. Communication with each device on land may be either wired or wireless.
  • the construction management device 26 continuously receives water flow data from the flow meter 19 provided at the delivery port of the high pressure fluid delivery device 14. Further, the vertical height of the steel pipe pile 1 is measured by the prism 25 attached to the vibrator hammer 2 and the total station 24 for tracking the same. The construction management device 26 continuously receives the measured vertical height data from the total station 24.
  • the construction management device 26 compares the flow rate data of water and the vertical height data of the steel pipe pile 1 with the pre-stored construction plan data to control the driving speed of the pile and the discharge amount of water. Generate This enables construction management in real time during driving. For example, measurement data and / or control information is transmitted from the construction management device 26 to the monitor 23 of the operation room of the crane 22.
  • the construction management device 26 determines, based on the vertical height data of the steel pipe pile 1, a first design depth D ⁇ b> 11 which is a driving stop position of the steel pipe pile 1.
  • a first design depth D ⁇ b> 11 which is a driving stop position of the steel pipe pile 1.
  • the idling flow rate is the lowest flow rate that can be stably discharged due to the performance of the machine.
  • the water jet may be stopped. Also, stop the water jet and stop the shot.
  • the vibro hammer 2 may be stopped but may be kept operating for the next pulling process.
  • the discharge amount of the jet during pile driving is as high as the maximum discharging capacity by driving the pile with vibration caused by a vibrator while injecting water without using a flowable solidifying material. It is possible to keep it. Therefore, the various problems that occur when injecting the flowable solidifying material during the driving of the pile do not occur.
  • the pulling up process of FIG. 7 (d) (e) is performed.
  • the pulling-up step may be performed using either the JV method or the vibratory hammer method alone.
  • the steel pipe pile 1 is pulled up by a crane until the tip of the steel pipe pile 1 reaches the second design depth D12.
  • the second design depth D12 is a depth planned as the upper end of the pile peripheral surface grout in the grout processing step described later, and is separately determined in design.
  • vibration is given by a vibrator to jet the water jet to pull up the steel pipe pile 1.
  • the main purpose of using the water jet in combination in the pulling process is the prevention of clogging of the injection nozzle as described above.
  • the discharge amount of water for preventing clogging of the injection nozzle may be the minimum necessary, and should be smaller than that at the time of placement.
  • a pulling up process can be performed using a vibro hammer single construction method.
  • the construction management device 26 of FIG. 9 determines a second design depth D12, which is a pulling up stop position of the steel pipe pile 1, based on the data of the vertical height of the steel pipe pile 1. When the steel pipe pile 1 reaches the pulling stop position, the pulling is stopped.
  • the third design depth D13 is in the support layer G1 and may be approximately the same position as the first design depth D11, a slightly deeper position, or a slightly shallower position.
  • the third design depth D13 may be deeper than the support layer interface D0 by, for example, about one time the diameter of the pile 1.
  • the grout process is a process to drive again into the ground where the pile was once driven, the ground is loosened and obstacles are eliminated, so that the pile may not be driven in the grout process. Absent.
  • a necessary amount of flowable solidifying material is injected from the injection nozzle 7 at every tip depth of the steel pipe pile 1 for grouting.
  • the re-driving speed of the steel pipe pile 1 can not be made faster than the driving capacity of the vibro hammer 2 at the time of pouring of the flowable solidified material. Therefore, even if the high-pressure fluid delivery device 14 shown in FIG. 2 is operated at an idling state by lowering the rotational speed, the fluid solidifying material is injected more than necessary, which may be uneconomical. In such a case, as shown in FIG. 2, if there are a plurality of high-pressure fluid delivery devices, it is preferable to stop part of them. By balancing the driving speed of the pile and the required injection amount of the flowable solidifying material, the high pressure fluid delivery device is stopped as needed to maintain the injection amount of the flowable solidifying material properly and achieve economicization. Is possible.
  • the collecting device 16 shown in FIG. 3 is disposed between the one or more high pressure fluid delivery devices and the plurality of conduits. Therefore, even when all high pressure fluid delivery devices are operated in an idling state or some high pressure fluid delivery devices are stopped, the discharge amount equalizing function of the collecting device 16 enables each high pressure hose to have fluidity.
  • the solidified material can be discharged uniformly. As a result, by uniformly injecting the flowable solidified material from each injection nozzle, a uniform pile circumferential surface grout free from breakage and deviation can be formed, and the required circumferential surface frictional force in the pile can be exhibited.
  • the construction management device 26 shown in FIG. 9 continuously receives the data of the discharge amount of the flowable solidified material from the flow meter 19 provided at the delivery port of the high pressure fluid delivery device 14. Further, the vertical height of the steel pipe pile 1 is measured by the prism 25 attached to the vibro hammer 2 and the total station 24, and the construction management device 26 continuously receives the data from the total station 24.
  • the construction management device 26 combines the data of the discharge amount of the flowable solidified material and the vertical height of the steel pipe pile 1 together and compares the pre-stored data of the construction plan with the driving speed of the pile and flowability of the solidified material. Generate control information to adjust the discharge amount. Thereby, construction management of the grout processing of a pile peripheral surface can be performed in real time.
  • the construction management device 26 determines a third design depth D13 which is a driving stop position of the steel pipe pile 1 based on the data of the vertical height of the steel pipe pile 1.
  • a third design depth D13 which is a driving stop position of the steel pipe pile 1 based on the data of the vertical height of the steel pipe pile 1.
  • the construction management of the pile surface grout processing is performed for the purpose of matching the amount of flowable solidified material injection for each depth of the tip of the steel pipe pile 1 within the construction plan and the allowable tolerance. Specifically, this is performed by adjusting the re-casting speed of the steel pipe pile 1 and the discharge amount of the flowable solidified material.
  • the flowable solidifying material injection amount in the construction plan is calculated based on FIG.
  • FIG. 10 is a schematic view for calculating the design injection amount of the flowable solidifying material, wherein (a) is a longitudinal cross-sectional view of the pile and the periphery thereof, and (b) is a cross-sectional view.
  • the diameter p of the steel pipe pile is, for example, 600 mm to 1,500 mm
  • the injection width q is, for example, 150 mm to 300 mm, but not limited to this range.
  • Non-Patent Document 1 the injection width q and 300 mm, and a cement content in the grout formed in the soil by the injection of cement milk is reported that it is assumed that in the grout 1 m 3 300 kg.
  • the water-cement ratio of the cement milk of nonpatent literature 1 is 100%.
  • This turbid water treatment facility is not essential. For example, if the water level in the pipe is sufficiently lower than the ceiling end of the steel pipe pile 1 because the ceiling end of the steel pipe pile 1 is at a position sufficiently higher than the sea surface etc. It is also possible to achieve economicization.
  • the construction is completed with the jet piping member attached and not attached to the pile, so a special structure is not necessary for attaching the jet piping member, particularly the jet nozzle, as compared to the case of recovering the jet piping device. Therefore, the cost can be reduced. According to this embodiment, it is possible to economically and reliably increase the bearing capacity of the pile driven in by the JV method.
  • FIGS. 11 (a) to 11 (g) are diagrams schematically showing respective steps in a second embodiment of a pile construction method.
  • the description of the same configuration as that of the first embodiment may be omitted.
  • the configuration of the jet piping member is different from that of the first embodiment.
  • four conducting pipes 9 are arranged at every 90 ° in the circumferential direction of the steel pipe pile 1, and one injection nozzle 7 is attached to the tip of each conducting pipe 9.
  • spray nozzle 7 is being fixed to the outer periphery of the steel pipe pile 1 via the fixing means which can be cut
  • the injection nozzle 7 and the conduction pipe 9 can be pulled up by applying an upward tensile force to the conduction pipe 9.
  • the jet piping member of the form similar to 1st Embodiment can also be employ
  • a structure which can be cut by application of a predetermined tensile force is inserted into the boundary portion between the conduit pipe 9 and the collecting pipe 8 in the jet piping member of the first embodiment shown in FIG.
  • FIGS. 11 (b) and 11 (c) schematically show the placement process following the preparation process. It is preferable that the placing process in FIG. 11B is performed by a JV method using a water jet. That is, while injecting water (indicated by reference numeral W) from the injection nozzle 7 to the pile tip ground, vibration is applied by the vibrator hammer 2 to drive the steel pipe pile 1. As in the first embodiment, it is preferable to use water in the initial implantation, but the use of a flowable solidifying material such as cement milk is not excluded.
  • the steel pipe pile 1 is driven until the tip thereof reaches a predetermined first design depth D21.
  • the first design depth D21 is a position deeper than the support layer interface D0 by a predetermined distance (for example, about twice the diameter of the pile 1).
  • the flow rate of the water jet is reduced to the idling flow rate, and the driving is completed.
  • the vibro hammer 2 may be stopped but may be kept operating for the next pulling process.
  • the pulling up process of FIG. 11 (d) is performed.
  • a fluid solidifying material such as cement milk.
  • the water-cement ratio is set as required, for example, in the range of 50 to 150%.
  • vibration by vibro hammer 2 is given, and the steel pipe pile 1 is pulled up with a crane until the tip of steel pipe pile 1 reaches 2nd design depth D22.
  • the second design depth D22 is the depth planned as the upper end of the rooting grout.
  • the second design depth D22 is, for example, a position shallower than the support layer interface D0 by a predetermined distance (for example, about one time the diameter of the pile 1).
  • the rooting process of FIG. 11 (e) is performed. Vibration is applied by the vibrator 2 while injecting the flowable solidified material from the tip of the injection nozzle 7, and the steel pipe pile 1 is driven until the tip of the steel pipe pile 1 reaches the third design depth D23.
  • the third design depth D23 is in the support layer, and is approximately the same position as the first design depth D21, a position slightly deeper than that, or a position slightly shallower than that.
  • the third design depth D23 can be positioned deeper than the support layer interface D0 by, for example, about one time the diameter of the pile 1.
  • the rooting step of FIG. 11 (e) may be performed only once or may be repeated.
  • the steel pipe pile 1 is pulled up to the second design depth D22 again with the injection of the flowable solidified material and the vibration of the vibrator, and then driven to the third design depth D23.
  • Rooting grout is formed by solidification of the flowable solidifying material.
  • a uniform rooting grout free of defects and deviations is formed, and the required tip support force in the pile is obtained. Can be demonstrated.
  • the tip of the steel pipe pile 1 is driven to the third design depth D23. Stop the vibro hammer at this position.
  • the rooting grout can be formed reliably by injecting the flowable solidifying material at this position only for a predetermined time. After the rooting process is finished, remove the vibro hammer.
  • the injection nozzle drawing process shown in FIGS. 11 (f) and 11 (g) is performed.
  • the injection nozzle 7 is separated from the steel pipe pile 1 together with the conduction pipe 9 by applying a predetermined tensile force to the conduction pipe 9.
  • the injection nozzle 7 is pulled out at a predetermined speed.
  • the flowable solidified material is ejected from the injection nozzle 7 while being withdrawn.
  • the water-cement ratio and the flow rate of the cement milk of the flowable solidifying material in the drawing process may be set to values different from those in the above-described rooting process.
  • the fourth design depth D24 is an upper end of the pile circumferential surface grout, which is a depth separately determined in design.
  • the circumferential grout is formed by the solidification of the flowable solidifying material. Also in this case, by uniformly injecting the flowable solidified material around the steel pipe pile 1 by the collecting apparatus of the present invention, a uniform circumferential surface grout free from breakage and deviation is formed, and the required circumferential surface friction in the pile is obtained. It can exert its power.
  • FIGS. 12 (a) to 12 (e) are diagrams schematically showing respective steps in a third embodiment of the construction method of piles.
  • the description of the same configuration as that of the first embodiment may be omitted.
  • the grout process is performed simultaneously in at least a part of the placing process.
  • the initial stage of the placing process is performed by the JV method using a water jet. That is, the steel pipe pile 1 is driven into the pile tip ground by applying vibration by the vibrator 2 while injecting water (indicated by symbol W) in the driving direction from the injection nozzle 7.
  • This embodiment is possible when the driving ground is relatively soft and the driving of the pile is relatively easy, such as when the obstacle is not buried.
  • the driving is temporarily stopped, and the water is switched to a fluid solidifying material such as cement milk (indicated by symbol C).
  • a fluid solidifying material such as cement milk
  • the water-cement ratio is set as required, for example, in the range of 50 to 150%.
  • the steel pipe pile 1 is driven until the tip thereof reaches a predetermined second design depth D32.
  • the second design depth D32 is a position deeper than the support layer interface D0 by a predetermined distance (for example, about twice the diameter of the pile 1).
  • the circumferential grout is formed by the solidification of the flowable solidifying material. Also in this case, by uniformly injecting the flowable solidified material around the steel pipe pile 1 by the collecting apparatus of the present invention, a uniform circumferential surface grout free from breakage and deviation is formed, and the required circumferential surface friction in the pile is obtained. It can exert its power.
  • the flowable solidifying material is injected from the beginning of the placing step of FIG. 12 (b) and vibration is given by the vibro hammer 2 to simultaneously place the placing step and the grout treatment step. It can also be done. This is possible especially when the ground near the ground surface is a fragile soil layer such as sandy soil or cohesive soil.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Piles And Underground Anchors (AREA)

Abstract

杭の支持力を確実に高めることを可能にする杭の施工方法を提供する。 地盤中にて高圧流体を噴射しつつバイブロハンマによる振動を与えて杭を打ち込む工程を備えた杭の施工方法であって、1又は複数の高圧流体送出装置と、円筒状の内部空間を有する集合装置とを配置し、1又は複数の高圧流体送出装置と集合装置における1又は複数の注入孔とをそれぞれ接続すると共に、集合装置における複数の吐出孔と複数のジェット配管部材とをそれぞれ接続する。集合装置の内部空間を高圧流体で充填した状態で複数の吐出孔の各々からそれぞれ高圧流体を吐出させ、かつ、複数の吐出孔の各々から吐出される複数の高圧流体の各吐出量について、最大吐出量と最小吐出量との差が最大吐出量の5%以下である。

Description

杭の施工方法、集合装置及び集合装置の設計方法
 本発明は、硬質地盤に杭を打ち込むための杭の施工方法に関する。
 硬質地盤に杭を打ち込む方法としては、ウォータージェット併用バイブロハンマ工法(以下、「JV工法」と称する)がある。JV工法は、バイブロハンマによる振動を杭に与えつつ、杭先端に取り付けた複数の噴射ノズルから高圧の水(以下、「水」は、真水又は海水のいずれの場合も含む)を噴射して地盤を緩め又は切削し、さらに礫塊等の障害物を移動させることにより、バイブロハンマと杭本体の自重により杭を打ち込む工法である(例えば、特許文献1)。
 しかしながら、従来のJV工法では、高圧の水の噴射とバイブロハンマの振動により、杭の周辺地盤が緩められ、杭の支持力が低下してしまう場合がある。JV工法において杭の支持力を高めるには、杭先端及び/又は杭周辺にセメントミルク等の流動性固化材を注入することにより、杭先端に根固め球根を形成したり、杭周面をグラウト処理する方法が従来から用いられてきた。
 例えば、特許文献2では、JV工法により杭周面グラウト処理が必要となる深度まで鋼管杭を打ち込み、杭周面グラウト処理が必要な深度に到達した後は、ウォータージェットの水に替えて流動性固化材を噴射しながらバイブロハンマで鋼管杭を打ち込むことにより、杭打設と周面グラウト処理を同時に行う工法が開示されている。
 また、特許文献3では、JV工法により予定の深度まで鋼杭を打設した後、鋼杭を引き上げながら噴射ノズルから流動性固化材を注入し、次に流動性固化材を注入しながら再度鋼杭を設計深度まで打ち込むことにより杭先端に根固め球根を形成し、さらに必要に応じて、噴射ノズルを引き上げながら流動性固化材を杭周面に注入して鋼杭周面のグラウト処理を行う工法が開示されている。
特開平7-238544号公報 特開2001-193068公報 特開2004-270157公報
ジェットバイブロ工法で施工した桟橋鋼管杭の支持力とその増大工法について(土木学会論文集No.700/Vl-54、2002年3月)
 特許文献2、3においては、対象とする杭の外周長が長い場合、複数のジェット配管が杭の外周上に均等に配置される。杭先端の根固め球根又は杭周面のグラウト層を、杭を中心として対称的に、均一な大きさ又は厚さに形成するには、複数のジェット配管の各々から均等な吐出量で流動性固化材を吐出することが不可欠である。
 特に、杭周面に均一なグラウト層を形成するためには、施工速度(特許文献2では杭の打ち込み速度、特許文献3では噴射ノズルの引き上げ速度)に合わせて流動性固化材を注入する必要がある。そのためには、地盤条件等に応じて杭の施工中に注入速度を随時調節することが必要となる。有効な調節手段の一つは、例えば、流動性固化材を送出する複数の送出装置の一部を停止状態とすること又は送出装置の流量を調整することである。このように送出装置の実質的な稼動台数を変更した場合にも、複数のジェット配管の各々から均等な吐出量で流動性固化材を吐出する必要がある。
 しかしながら、上記特許文献2、3には、複数のジェット配管の各々から均等な吐出量で流動性固化材を吐出するための手段は提示されていない。流動性固化材に替えて複数のジェット配管に水を送出する場合にも同様のことが云える。
 以上の問題点から本発明は、杭に複数のジェット配管を取り付けて高圧流体を吐出することにより杭を地盤に打ち込む施工方法において、総吐出量の変動に関わらず複数のジェット配管の各々から常に均等な吐出量で高圧流体をそれぞれ吐出可能とすることを目的とする。
 上記の目的を実現するために本発明は、以下の構成を提供する。
・ 本発明の態様は、杭に複数のジェット配管部材及びバイブロハンマを取り付ける準備工程と、
 地盤中にて前記ジェット配管部材の先端から高圧流体を噴射しつつ前記バイブロハンマによる振動を与えて前記杭を下降又は上昇させる部分工程を少なくとも含む施工工程とを備えた杭の施工方法であって、
 前記準備工程において、1又は複数の高圧流体送出装置と、円筒状の内部空間を有する集合装置とを配置し、1又は複数の前記高圧流体送出装置と前記集合装置における1又は複数の注入孔とをそれぞれ接続すると共に、前記集合装置における複数の吐出孔と複数の前記ジェット配管部材とをそれぞれ接続し、
 前記施工工程において、前記集合装置の内部空間を高圧流体で充填した状態を維持しつつ、1つ以上の前記注入孔から高圧流体を注入すると共に複数の前記吐出孔の各々からそれぞれ高圧流体を吐出させ、かつ、
 複数の前記吐出孔の各々から吐出される複数の高圧流体の各吐出量について、最大吐出量と最小吐出量との差が最大吐出量の5%以下であることを特徴とする。
・ 上記態様の杭の施工方法における前記集合装置において、複数の前記吐出孔の数n、前記内部空間の直径d、前記吐出孔の直径do、前記吐出孔の流量係数Λ、隣り合う2つの前記吐出孔の間隔L、前記高圧流体の動粘性係数ν及び前記各吐出量の総和Qの関係が次式を充たすことが、好適である。
Figure JPOXMLDOC01-appb-M000004

・ 上記態様の杭の施工方法において、高圧流体が水又は流動性固化材であり、前記施工工程が、
 水を噴射しつつ前記バイブロハンマによる振動を与えて前記杭を、支持層界面より下の第1の深度まで打ち込む工程と、
 少なくとも前記バイブロハンマによる振動を与えて前記杭を、設定された杭周面グラウト上端に対応する深度まで引き上げる工程と、 
 流動性固化材を噴射しつつ前記杭を、前記支持層界面より下の第2の深度まで再度打ち込む工程とを含むことが、好適である。
・ 上記態様の杭の施工方法において、高圧流体が水又は流動性固化材であり、前記施工工程が、
 水を噴射しつつ前記バイブロハンマによる振動を与えて前記杭を、支持層界面より下の第1の深度まで打ち込む工程と、
 流動性固化材を噴射しつつ前記バイブロハンマによる振動を与えて前記杭を、設定された根固め上端に対応する深度まで引き上げる工程と、
 流動性固化材を噴射しつつ前記杭を、前記支持層界面より下の第2の深度まで再度打ち込む工程と、
 流動性固化材を噴射しつつ前記ジェット配管部材を引き抜く工程とを含むことが、好適である。
・ 上記態様の杭の施工方法において、高圧流体が水又は流動性固化材であり、前記施工工程が、
 流動性固化材を噴射しつつ前記バイブロハンマによる振動を与えて前記杭を、支持層界面より下の深度まで打ち込む工程を含むことが、好適である。
・ 上記態様の杭の施工方法において、前記集合装置の前記内部空間に配置された整流板により高圧流体を蛇行させることが、好適である。
・ 上記態様の杭の施工方法において、前記集合装置の前記内部空間に配置された攪拌機により高圧流体を撹拌し、又は、前記内部空間に配置された振動機により高圧流体に振動を与えることが、好適である。
・ 上記態様の杭の施工方法において、施工管理装置が、
 前記バイブロハンマに取り付けたプリズムを追尾するトータルステーションから連続的に送信される杭の鉛直高さデータ、及び、1又は複数の前記高圧流体送出装置の送出口にそれぞれ取り付けた流量計から連続的にそれぞれ送信される高圧流体の流量データを取得し、
 取得した前記杭の鉛直高さデータ及び前記高圧流体の流量データについて予め設定された施工計画データと比較することにより、前記施工工程に含まれる各部分工程における杭の移動速度、水と流動性固化材の切替、又は、高圧流体の吐出量をリアルタイムで調整することが、好適である。
・ 上記態様の杭の施工方法において、前記ジェット配管部材が、
 前記集合装置に接続される導通管と、
 一端が前記導通管と接続されかつ他端が複数に分岐している集約管と、
 前記集約管の分岐した他端の各々と接続される複数の噴射ノズルと、を有することが、好適である。
・ 本発明の別の態様は、複数のジェット配管部材を取り付けた杭を、前記ジェット配管部材の先端から高圧流体を噴射しつつ打ち込む工程を少なくとも含む杭の施工方法において用いる集合装置であって、
 円筒状の内部空間と、1又は複数の高圧流体送出装置とそれぞれ接続される1又は複数の注入孔と、複数の前記ジェット配管部材とそれぞれ接続される複数の吐出孔とを有し、
 前記杭の施工中、前記内部空間が高圧流体で充填された状態に維持されつつ、1つ以上の前記注入孔から高圧流体が注入されかつ複数の前記吐出孔の各々から高圧流体が吐出され、かつ、
 複数の前記吐出孔の各々から吐出される複数の高圧流体の各吐出量について、最大吐出量と最小吐出量との差が最大吐出量の5%以下であることを特徴とする。
・ 上記態様の集合装置において、
 複数の前記吐出孔の数n、前記内部空間の直径d、前記吐出孔の直径do、前記吐出孔の流量係数Λ、隣り合う2つの前記吐出孔の間隔L、前記高圧流体の動粘性係数ν及び前記各吐出量の総和Qの関係が次式を充たすことが、好適である。
Figure JPOXMLDOC01-appb-M000005

・ 本発明のさらに別の態様は、複数のジェット配管部材を取り付けた杭を、前記ジェット配管部材の先端から高圧流体を噴射しつつ打ち込む工程を少なくとも含む杭の施工方法において用いられ、円筒状の内部空間と、1又は複数の高圧流体送出装置とそれぞれ接続される1又は複数の注入孔と、複数の前記ジェット配管部材とそれぞれ接続される複数の吐出孔とを有し、前記杭の施工中、前記内部空間が高圧流体で充填された状態に維持されつつ、1つ以上の前記注入孔から高圧流体が注入されかつ複数の前記吐出孔の各々から高圧流体が吐出される集合装置の設計方法であって、
 予め、複数の前記吐出孔の数n、前記内部空間の直径d、前記吐出孔の直径do、前記吐出孔の流量係数Λ、隣り合う2つの前記吐出孔の間隔L及び前記高圧流体の動粘性係数νのパラメータのうち1又は複数をそれぞれ変化させた場合に、各場合について、各吐出量の総和をQとして、複数の前記吐出孔の各々から吐出される複数の高圧流体の各吐出量をそれぞれ算出し、
 複数の前記吐出孔の各々から吐出される複数の高圧流体の各吐出量について、最大吐出量と最小吐出量との差が最大吐出量の所定の割合以下となるように、次式のα、β及びδを設定し、
 複数の前記吐出孔の数n、前記内部空間の直径d、前記吐出孔の直径do、前記吐出孔の流量係数Λ、隣り合う2つの前記吐出孔の間隔L、前記高圧流体の動粘性係数ν及び前記各吐出量の総和Qの関係が次式を充たすように設計することを特徴とする。
Figure JPOXMLDOC01-appb-M000006
 本発明の杭の施工方法では、高圧流体送出装置とジェット配管部材の間に集合装置が設けられている。本発明の集合装置は、その複数の吐出孔の各々からほぼ均等な吐出量にて高圧流体をそれぞれ吐出するように設計されている。その結果、高圧流体が流動性固化材である場合は、欠損や偏りのない均一なグラウトを生成することができ、杭が所要の支持力を発揮できる。高圧流体が水である場合は、均等な打ち込みを行うことができる。
図1は、杭の施工方法を実施するための施工システムの例を概略的に示す斜視図である。 図2は、図1に示した施工システムにおける配管構成を概略的に示す図である。 図3(a)は、図2に示した集合装置の一例を概略的に示す平面図、(b)は縦断面図、(c)は横断面図、(d)は集合装置の別の例の縦断面図である。 図4(a)は、集合装置の適正条件を説明するための概略的な縦断面図、(b)は横断面図である。 図5は、表1のシミュレーションに基づくグラフである。 図6は、表2のシミュレーションに基づくグラフである。 図7(a)~(h)は、本発明の杭の施工方法の第1の実施形態における各工程を概略的に示す図である。 図8(a)は、鋼管杭の先端近傍におけるジェット配管部材の構成例の概略的な斜視図であり、(b)は底面図である。 図9は、図1に示した杭の施工方法における施工管理方法の一例を概略的に示す図である。 図10は、流動性固化材の設計注入量を計算するための模式図であって、(a)は杭及びその周囲の縦断面図であり、(b)は横断面図である。 図11(a)~(g)は、本発明の杭の施工方法の第2の実施形態における各工程を概略的に示す図である。 図12(a)~(d)は、本発明の杭の施工方法の第3の実施形態における各工程を概略的に示す図である。
 以下、図面を参照して本発明の実施形態を説明する。
(1)施工システムの構成
 ここでは、鋼管杭を海底の地盤に鉛直方向に打ち込むための海上での施工を例として本発明による杭の施工方法を説明する。しかしながら、本発明は、陸上での施工にも適用可能である。また、杭は、鋼管杭以外の杭でもよく、例えば鋼管矢板、鋼矢板等である。さらに、打ち込み方向は傾斜していてもよい。
 図1は、杭の施工方法を実施するための施工システムの一例を概略的に示す斜視図である。図2は、図1に示した施工システムにおける配管構成の一例を模式的に示す図である。
 施工システムは、起重機船10の上に設置されている。ここでは、流動性固化材をセメントミルクとする。セメントサイロ11に貯留されたセメントと、水タンク13に貯留された水をそれぞれポンプにより1又は複数のミキシングプラント12に圧送し、ミキシングプラント12において、水とセメントを混練することによりセメントミルクが調製される。
 セメントミルクにおける水とセメントの重量比率である水セメント比(W/C%)は、杭の用途及び地盤条件により適宜設定される。水セメント比は、例えば50~150%の範囲が一般的である。セメントミルクには、必要に応じて、減水、凝結遅延、膨張、水中不分離等に関係する添加材が添加される。
 ミキシングプラント12で生成されたセメントミルクは、図2に示すように、切替装置18Aを介してポンプ(図示せず)により1又は複数の高圧流体送出装置14へ供給可能である。高圧流体送出装置14が吸引機能を有する場合は、ミキシングプラント12と高圧流体送出装置14の間のポンプは不要である。
 一方、海から取水して水タンク13に貯留された水は、切替装置18Aを介してポンプにより1又は複数の高圧流体送出装置14へ供給可能である。高圧流体送出装置14が吸引機能を有する場合は、水タンク13と高圧流体送出装置14の間のポンプは不要である。
 1又は複数の高圧流体送出装置14の各々は、切替装置18Aの切り替えによりセメントミルク又は水のいずれかを供給される。各高圧流体送出装置14は、供給されたセメントミルク又は水を高圧にて送出することができる。各高圧流体送出装置14の送出口には、それぞれ流量計19が取り付けられている。
 さらに、1又は複数の高圧流体送出装置14の送出口は、第2の切替装置18Bの1又は複数の入力ポートにそれぞれ接続されている。第2の切替装置18Bの1又は複数の出力ポートは、1又は複数の高圧ホース15を介して集合装置16の1又は複数の注入孔とそれぞれ接続されている。第2の切替装置18Bの切り替えにより、各高圧流体送出装置14から集合装置16の各注入孔へ、セメントミルク又は水を送出又は停止することができる。
 1又は複数の高圧流体送出装置14から送出されたセメントミルク又は水は、一旦、1つの集合装置16に集合させられる。その後、セメントミルク又は水は、集合装置16の複数の吐出孔にそれぞれ接続された複数の高圧ホース17を介して複数のジェット配管部材へ圧送される。
 複数のジェット配管部材は、鋼管杭1に取り付けられている。複数のジェット配管部材は、複数の導通管9と、各導通管9の先端に接続された集約管8と、各集約管8における分岐した各先端にそれぞれ接続された噴射ノズル7とから構成されている。別の例として、複数のジェット配管部材は、複数の導通管9と、各導通管9の先端に接続された噴射ノズル7とから構成されることもできる。いずれの場合も、鋼管杭1の先端近傍に複数の噴射ノズル7が周方向に配置される。複数の噴射ノズル7は、例えば、周方向に60°、90°、120°、180°毎に配置することができる。
 なお、海水に塵等の浮遊物がない場合は水タンク13を省略してもよい。ミキシングプラント12及び高圧流体送出装置14の台数は、施工条件等から必要に応じて決定される。バイブロハンマ2はクレーンにより吊下されている。図1の例では電動式であるバイブロハンマ2を駆動するために発動発電機20が設けられ、操作ユニット21により操作される。陸上施工の場合、これらの装置は全て作業ヤードに設置される。
(2)集合装置の構成及び設計方法
 <集合装置の基本構成>
 図3及び図4を参照して図1及び図2に示した集合装置16について説明する。図3(a)は、図2に示した集合装置16の一例の概略的な平面図、(b)は(a)の縦断面図、(c)は横断面図である。
 図3(a)(b)(c)に示すように、集合装置16は、略円筒体の筐体16aを有する。筐体16aは、円筒状の内部空間を有する。筐体16aの軸を挟んで一方の周面に1又は複数の注入孔16bが、他方の周面に複数の吐出孔16cが、軸と平行な方向に所定の間隔で設けられている。注入孔16b及び吐出孔16cには、例えば、高圧ホース15、17を着脱可能に接続するためのカプラーが設けられる。注入孔16bと吐出孔16cがいずれも複数の場合、それらは同数であっても異なる数であってもよい。
 使用中の集合装置16は、高圧流体が1又は複数の注入孔16bから流入しかつ複数の吐出孔16cから流出する一方、内部空間全体が高圧流体によって充填された状態に維持される。集合装置16は、1又は複数の注入孔16bからの高圧流体の注入量に関わらず、複数の吐出孔16cの各々から流出される高圧流体の吐出量がほぼ均等となるように設計されることが好適である。
 複数の注入孔16bの各々からの注入量にばらつきがある場合、例えば複数の注入孔16bのうち一部の注入量が零となる場合(例えば、図2の一部の高圧流体送出装置14を停止した場合)、高圧流体の全注入量が極度に絞られた場合(例えば、全ての高圧流体送出装置14をアイドリング状態とした場合)であっても、集合装置16の効果によって各吐出孔16cからの高圧流体の吐出量がほぼ均等化される。
 図3(d)は、集合装置16の別の例を示す。図3(d)の集合装置16は、内部空間に整流板16eを配置することにより、高圧流体を蛇行させて均一な流れに整流する。これにより、各吐出孔16cからの吐出量が安定化される。さらに整流機能を高めるために、内部空間に1又は複数の振動機16d及び/又は1又は複数の攪拌機16fを配置してもよい。図3(d)には、整流板16e、振動機16d及び攪拌機16fを全て示しているが、これらのうちの1つ又は複数を組み合わせて配置することができる。
 <集合装置の適正条件:吐出孔5個の場合>
 図4を参照して、集合装置の各吐出孔における吐出量の均等化を実現するための集合装置の適正条件について説明する。具体的には、集合装置の各吐出孔からそれぞれ吐出される高圧流体の吐出量の差が、所定の範囲内に収まるために集合装置に求められる条件を導出する。
 図4(a)は、集合装置の一例における軸に沿った概略的な断面図、(b)は軸に垂直な方向の断面図である。集合装置16の円筒状の内部空間の直径はd(以下「内径d」と称する)である。ここでは一例として、集合装置16が、3個の注入孔I1、I2、I3と、5個の吐出孔A1、A2、A3、A4、A5とを備えている。吐出孔A1~A5は、同じ内径doを有する。注入孔I1~I3及び吐出孔A1~A5は、一例として等間隔に配置されている。吐出孔A1~A5の間隔はLである。但し、この例では、両端の吐出孔A1、A5と筐体16aの両端壁との距離はL/2である。一例として、注入孔I1は吐出孔A1とA2の中間に対応する位置に、注入孔I2は吐出孔A3の向かい側に、注入孔I3は吐出孔A4とA5の中間に対応する位置にそれぞれ配置されている。
 図4の例において、集合装置16の使用中に5個の吐出孔A1~A5からそれぞれ吐出される高圧流体の吐出量のばらつきが、所定の範囲内に収まるための条件を導出する。図4の例において最悪条件を想定し、最も端に位置する注入孔I1のみから注入量Qiで高圧流体が注入され、注入孔I2、I3は閉じているものとする。また、5個の吐出孔A1、A2、A3、A4、A5からそれぞれ吐出される各高圧流体の圧力をP1、P1、P2、P3、P4とし、各吐出量をQ1、Q1、Q2、Q3、Q4とする。吐出孔A1及びA2は、注入孔I1に対して同条件の位置にあることから、圧力及び吐出量が等しいと想定している。各吐出量の総和をQとする。なお、注入孔I1と吐出孔A1との距離及び位置関係と、注入孔I1と吐出孔A2との距離及び位置関係とは、全く同じである。このため、吐出孔A1から吐出される高圧流体の圧力P1及び吐出量Q1は、吐出孔A2のそれらとそれぞれ同じ値となる。
 この例において各吐出孔からの吐出量にばらつきがある場合、注入孔I1に最も近い吐出孔A1、A2からの吐出量Q1が最大吐出量となり、最も遠い吐出孔A5からの吐出量Q4が最小吐出量となるはずである。ここで、吐出量のばらつきを、次式のように、最大吐出量Q1と最小吐出量Q4の差の最大吐出量Q1に対する割合R(%)として定義し、「吐出量差R」と称する。
  R(%)=((Q1-Q4)/Q1)×100
 以下の手順により、吐出量差Rが例えば5%以下となるような集合装置の適正条件を求めることができる。
 先ず、式[1]、式[2]及び式[3]を用いて、5個の吐出孔の各々からの吐出量Q1、Q1、Q2、Q3、Q4を算出する。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 式[1]は、各吐出孔における圧力と吐出量の関係式である。式[2]は隣り合う吐出孔間の圧力の関係式である(「水理学」(第2版)植松時雄著、P.52より)。式[3]は、式[2]のvを表す式である。
 式[1]、式[2]及び式[3]中の各パラメータは以下の物理量を表す。括弧内は単位を表す。
  Qk:吐出孔の吐出量(m/sec)(k=1,2,3,4)
  Qk’:吐出孔の吐出量の部分和(m/sec)
  Λ:吐出孔の流量係数
  do:吐出孔の内径(m)
  Pk:吐出孔における圧力(kN/m)(k=1,2,3,4)
  g:重力加速度(m/sec
  γ:セメントミルクの単位体積重量(kN/m
  L:隣り合う2つの吐出孔間隔(m)
  ν:セメントミルクの動粘性係数(m/sec)
  d:集合装置の内径(m)
  v:集合装置内の平均流速(m/sec)
  h:摩擦損失水頭(m)
 吐出孔の流量係数Λは、吐出孔の形状等により変わる係数であり、一般に実験的に求められる0.5~2程度の無次元数である。
 5個の吐出孔A1、A2、A3、A4、A5の吐出量Q1、Q1、Q2、Q3、Q4を以下の手順(i)~(vi)により算出する。
 (i)先ず、吐出孔A5の吐出量Q4を変数と想定し、式[1](k=4とする)から圧力P4を求める。これによりP4がQ4の関数で表される。
 (ii)次に、(i)で求めたP4並びに式[2]及び式[3]を用いて、吐出孔A4の圧力P3を求める。このとき式[2]のPk-1-PkはP3-P4とし、式[3]のQk’はQ4とする。これによりP3がQ4の関数で表される。P3が求められれば、式[1]によりQ3が求められる。これによりQ3がQ4の関数で表される。
 (iii)次に、(ii)で求めたP3並びに式[2]及び式[3]を用いて、吐出孔A3の圧力P2を求める。このとき式[2]のPk-1-PkはP2-P3とし、式[3]のQk’はQ3+Q4とする。これによりP2がQ4の関数で表される。P2が求められれば、式[1]によりQ2が求められる。これによりQ2がQ4の関数で表される。
 (iv)次に、(iii)で求めたP2並びに式[2]及び式[3]を用いて、吐出孔A2の圧力P1を求める。このとき式[2]のPk-1-PkはP1-P2とし、式[3]のQk’はQ2+Q3+Q4とする。これによりP1がQ4の関数で表される。P1が求められれば、式[1]によりQ1が求められる。これによりQ1がQ4の関数で表される。
 (v)各吐出孔A1~A5からの吐出量の総和Qは、Q=2Q1+Q2+Q3+Q4と表される。総吐出量Qは、注入孔I1からの注入量Qiと等しく、注入量Qiの値は、以下の式[4]から算出される。Q1、Q2及びQ3に上記(ii)~(iv)の結果を代入し、収束計算によりQ4の値を求める。
 (vi)最後に、(v)で求めたQ4の値及び上記(ii)~(iv)の結果からQ1、Q2、Q3の値が算出される。
 注入量Qiは、通常は1台の高圧流体送出装置の最大吐出流量に相当するため、上記(v)における注入量Qi(m/sec)は、通常は以下の式[4]で求められる。この場合、式[4]の理論最大吐出量Qoは、使用する高圧流体送出装置の仕様により決まる。注入量Qiは、使用するセメントミルクの単位体積重量γにより変わる。高圧流体送出装置は、例えば、水又はセメントミルクの圧送が可能なウォータージェットカッター(例えば調和工業株式会社製CJ-340ERS、理論最大吐出量900リットル/min)である。複数の高圧流体送出装置から注入される場合は、式[4]の右辺にさらに台数を乗算する。
Figure JPOXMLDOC01-appb-M000010
 式[4]の各パラメータは、次の物理量を表す。
 Qi:注入量(m
 γ:水の単位体積重量(kN/m
 γ:セメントミルクの単位体積重量(kN/m
 Qo:理論最大吐出量(m/min)
 表1は、集合装置の内径d、吐出孔の内径do、吐出孔の流量係数Λ及び吐出孔間隔Lの各パラメータの数値をそれぞれ適宜変化させたケース1~7の各々について、上記(i)~(vi)の手順によりQ1~Q4を求めたシミュレーション結果をまとめた表である。セメントミルクの単位体積重量γ及び動粘性係数νは、W/Cを65%として算出した。セメントミルクの単位体積重量γの変化は、式[1]から各吐出孔の吐出量に影響するが、吐出量差Rには影響しない。
Figure JPOXMLDOC01-appb-T000011
 表1には、最大吐出量Q1に対する他の吐出量Q2、Q3、Q4の割合が表示されている(表の下3段)。表1に示すように、ケース1~5では、5個の吐出孔A1~A5からの吐出量差Rが5%である。同様の計算により、ケース6では吐出量差Rが0.5%、ケース7では吐出量差Rが15%となる。
 このとき、ケース1~5について、それぞれ(√Λ×do/d)/(Q/νL)を算出すると、一定値9×10-5になる(表1の下から4段目)。(√Λ×do/d)/(Q/νL)は無次元量であり、これを集合装置の「形状パラメータG」と称する。同様の計算により、ケース6では形状パラメータGが8.0×10-6、ケース7では形状パラメータGが3.0×10-4となる。
 この結果から、図4の例において、5個の吐出孔A1~A5からの吐出量差Rが5%以下となる適正条件が、以下の式[5]ように導出される。式[5]において等号が成立するときが、吐出量差Rが5%のときに相当する。
Figure JPOXMLDOC01-appb-M000012
 図5は、表1のシミュレーションに基づいて作成したグラフである。このグラフは、横軸を√Λ×do/dとし、縦軸をQ/νLとしている。ケース1~5の各数値は、1つの四次曲線上にプロットされる。
 図4に示した集合装置の設計において、√Λ×do/dとQ/νLの関係が、図5の四次曲線より上の領域に位置する集合装置(例えば表1のケース6)であれば、吐出量差Rを5%以下とすることができる。一方、√Λ×do/dとQ/νLの関係が、図5の四次曲線より下の領域に位置する集合装置(例えば表1のケース7)は、吐出量差Rが5%を超えることになる。
 図4に示した5個の吐出孔A1~A5を有する集合装置において、吐出量差Rを5%以外の一定の値に設定する場合、その吐出量差Rの値に応じて、式[5]の右辺の定数すなわち形状パラメータGの値が決定される。形状パラメータGの値は、実験によっても導出することができる。
 式[5]の適正条件を充たす限り、集合装置に関するパラメータd、do、Λ、L、セメントミルクに関するパラメータν及び高圧流体送出装置に関するパラメータQを自由に組合せることができる。一例として、表1のケース1では、内径dが120mm、吐出孔の内径doが45mm、吐出孔の流量係数Λが1、吐出孔間隔Lが200mm、動粘性係数νが3.3×10-4/sec、総吐出量Qが1.4×10-2/secである。また、集合装置の軸方向長さは、例えば1000mm、注入孔の内径は例えば45mmとすることができるが、これらに限られない。
 なお、図4に示した例では、集合装置の端に位置する注入孔I1のみから高圧流体が注入されることを想定した。高圧流体が中央の注入孔I2から注入される場合、吐出量差Rは、端に位置する注入孔I1から注入される場合よりも当然に小さくなると考えられる。また反対側の端の注入孔I3については、注入孔I1と同じ条件となる。従って、高圧流体が注入孔I1、I2、I3のうち1又は複数個のいずれの組合せで注入される場合も、吐出量差Rを5%以内とする適正条件は、式[5]で包括されることになる。
 <集合装置の適正条件:吐出孔n個の場合>
 次に、吐出孔の数を5個以外に拡張した場合の集合装置の適正条件について説明する。図4の例において、n個の吐出孔A1~Anが配置されている場合を想定し、図4の例と同様に注入孔I1のみから注入量Qiのセメントミルクが注入される最悪条件を想定した。
 表2は、吐出孔の数nを3個~10個のいずれかに設定し、表1のシミュレーションと同様に、集合装置の内径d、吐出孔の内径do、吐出孔の流量係数Λ、吐出孔間隔L及び動粘性係数νの各パラメータの数値を変化させたケース1~10についてのシミュレーション結果をまとめた表である。ここでも、上述した(i)~(vi)と同様の手順を用いて、各吐出孔A1~Anの吐出量Q1~Qn-1(吐出孔A1とA2の吐出量はQ1)をそれぞれ求めている。セメントミルクの単位体積重量γ及び動粘性係数νは、W/Cを65%として算出した。
Figure JPOXMLDOC01-appb-T000013
 表2には、最大吐出量Q1に対する他の吐出量Q2~Qn-1の割合が表示されている(表の下8段)。ここでも、吐出量のばらつきを、次式のように、最大吐出量Q1と最小吐出量Qn-1の差の最大吐出量Q1に対する割合R(%)として定義し、「吐出量差R」と称する。
  R(%)=((Q1-Qn-1)/Q1)×100
 表2のケース1~8は、吐出量差Rが5%である。同様の計算により、ケース9では吐出量差Rが0.65%、ケース10では吐出量差Rが32%である。
 ここで、吐出量差Rが所定の値以下となるモデル式を式[6]のように設定した。式[6]の左辺は形状パラメータGである。吐出量差Rを所定の値とする場合、その吐出量差Rの値に応じて、式[6]の右辺が一定値となるように一組のα、β、δを決定できる。例えば吐出量差Rが5%のとき、一組のα、β、δを一意に決定できる。
Figure JPOXMLDOC01-appb-M000014
 吐出量差Rが5%となるケース1~8について、α、β、δを次のように決定した。吐出孔の数n、集合装置の内径d、吐出孔の内径do、吐出孔の流量係数Λ、吐出孔間隔L及び動粘性係数νの各パラメータの値を変化させたときの、式[6]の左辺の形状パラメータGの算出結果は、表2に記載の通りである。
 次に、形状パラメータGに(n-α)βを掛けた値であるδの変動を最小とするようにα、βを収束計算で求めた。表2のケース1~8については、α=1.5、β=3と決定された。このα、βの値を用いてδを再計算により求め、δ=0.0039と決定された。従って、吐出量差Rが5%以下となる集合装置の適正条件は、式[7]のように表される。
Figure JPOXMLDOC01-appb-M000015
 図6は、表2のシミュレーションに基づいて作成したグラフである。このグラフは、横軸が吐出孔の数n、縦軸が形状パラメータGすなわち(√Λ×do/d)/(Q/νL)である。ケース1~8の各数値は、1つの曲線上にプロットされる。
 吐出孔の数nに対する形状パラメータGの値が、図6の曲線より下の領域に位置する集合装置(例えば表2のケース9)であれば、吐出量差Rが5%以下となる。一方、吐出孔の数nに対する形状パラメータGの値が、図6の曲線より上の領域に位置する集合装置(例えば表2のケース10)は、吐出量差Rが5%以上となる。
 n個の吐出孔を有する集合装置において、吐出量差Rを5%以外の値に設定する場合、その吐出量差Rの値に応じて、式[6]の右辺のα、β、δの一組の値を決定する。式[6]を充たす限り、集合装置に関するパラメータn、d、do、Λ、L、セメントミルクに関するパラメータν及び高圧流体送出装置に関するパラメータQを自由に組合せることができる。但し、吐出孔の数nは、3~10個の範囲が好適である。
 集合装置の設計は、施工前に予め行われる。許容可能な吐出量差Rを実現する集合装置の具体的な設計は、例えば以下の手順I)~IV)のように行う。
 I)施工に使用する高圧流体送出装置を決定することにより、式[4]より注入量Qiが決定され、同時にシミュレーションに用いる総吐出量Qが決まる。また、施工に使用するセメントミルクのW/C%(最悪条件として最も小さい値を採用)を決定することにより、シミュレーションに用いる単位体積重量γ及び動粘性係数νが決まる。
 II)シミュレーションのために、集合装置の吐出孔の数n、内径d、吐出孔の内径do、吐出孔の流量係数Λ及び吐出孔間隔Lの各パラメータを適宜の値とする複数の組合せと、上記I)の総吐出量Q、単位体積重量γ及び動粘性係数νの値とを用い、上述した(i)~(vi)と同様の手順を実行することにより、各吐出孔の吐出量それぞれ求める。
 III)得られた各吐出孔の吐出量に基づいて、パラメータの複数の組合せの各々について吐出量差Rを算出する。それらの結果から、許容可能な吐出量差Rに一致する複数の組合せを抽出する。
 IV)抽出された複数の組合せの各々について形状パラメータGを算出する。式[6]を用いて、等号の場合のδであるG×(n-α)βの変動が最小となるようなα、βの組合せを求める。得られたα、βを基に改めてδを求める。これにより例えば、許容可能な吐出量差Rが5%の場合は、適正条件の式[7]が得られる。
 V)上記IV)で得られた、例えば式[7]を充足する範囲内で、実際に使用する集合装置の吐出孔の数n、内径d、吐出孔の内径do、吐出孔の流量係数Λ及び吐出孔間隔Lを設定する。なお、吐出孔の流量係数Λは吐出孔の形状等により決まる物理定数であるため、実験又は既往の研究成果より求めることができる。
 一例として、吐出量差Rを5%以下とした場合、例えば表2において式[7]を充足するケース3は、吐出孔の数nが5個、内径dが150mm、吐出孔の内径doが70mm、吐出孔の流量係数Λが0.735、吐出孔間隔Lが400mm、動粘性係数νが3.3×10-4/sec、総吐出量Qが3.7×10-2/secである。このときの形状パラメータGは、9.2×10-5である。また、集合装置の軸方向長さは、例えば2000mm、注入孔の内径は例えば70mmとすることができるが、これらに限られない。
 実際の杭の施工においては、集合装置の複数の吐出孔から吐出される高圧流体の総吐出量は、各施工段階に従って制御されることにより変動するが、各吐出孔の吐出量差は、集合装置の設計で用いられた許容可能な吐出量差R以下となる。
 集合装置のさらに別の実施形態として、1つの施工システムにおいて複数の集合装置を設けることができる。この場合、各集合装置について上記の適正条件を充たすように設計する。それにより、少なくとも各集合装置においては、複数の吐出孔から高圧流体を均等な吐出量で送出することが確保される。
 上述した集合装置の適正条件は、高圧流体がセメントミルクである場合について説明したが、高圧流体が水の場合も同様に適用される。
 上述した集合装置を含む施工システムを用いた本発明による杭の施工方法の各実施形態を以下に説明する。
(3)杭の施工方法の第1の実施形態
 図7(a)~(h)は、杭の施工方法の第1の実施形態における各工程を概略的に示す図である。
 <準備工程>
 図7(a)は準備工程を示す。打設対象の杭は、ここでは鋼管杭1である。打ち込み対象地盤は、下層側に位置する支持層G1と、支持層界面D0から地表(本例では海底)までの間に存在する所定の地盤G2とからなる。鋼管杭1の上端にはバイブロハンマ2が取り付けられる。鋼管杭1の周囲には、一例として、複数の導通管9と、各導通管9の下端に接続される集約管8と、集約管8の分岐した先端にそれぞれ接続される複数の噴射ノズル7とから構成されるジェット配管部材が取り付けられる。各導通管9の上端には、着脱可能な高圧ホース17がカプラーを介してそれぞれ接続されている。高圧ホース17を通して、導通管9に水又は流動性固化材を圧送可能である。
 図8(a)は、鋼管杭1の先端近傍におけるジェット配管部材の構成例を概略的に示す斜視図であり、(b)は底面図である。図示の例では、鋼管杭1に2組のジェット配管部材が取り付けられている。水又は流動性固化材は、導通管9を通って集約管8により分流され、各噴射ノズル7から噴射される。導通管9の本数、集約管8の分岐の数すなわち噴射ノズル7の数は、図示の例に限定されない。
 第1の実施形態の施工方法では、ジェット配管部材を鋼管杭1から取り外す必要がないため、ジェット配管部材の、特に噴射ノズルの鋼管杭1への取り付けに関して詳細な設計は不要であり、所要の強度が確保できれば簡易かつ低コストの手段で取り付けることができる。
 <打設工程>
 図7(b)(c)は、準備工程に続く打設工程を示している。図7(b)に示すように、打設工程はウォータージェットを用いたJV工法により行う。すなわち、噴射ノズル7から打ち込み方向に水(符号Wで示す)を噴射しながらバイブロハンマ2による振動を与えることにより、鋼管杭1を杭先端の地盤に対して打ち込む。
 打ち込みにおいて水を用いることには、幾つかの利点がある。まず、水は流動性固化材に比べて比重が軽いので、吐出量を、高圧流体送出装置の最大吐出能力程度に高く維持することが可能である。従って、地盤を緩め切削する効果が大きい。一方、流動性固化材を打ち込みに用いた場合、長時間のジェット噴射が必要となる結果、大量の流動性固化材を使用することになり不経済となる。水は、現場近傍の河川や海等から自由に調達できる場合が多いが、流動性固化材は調製量に限界があるため、打ち込みに用いた場合に流動性固化材の不足が起こり得る。
 従って、鋼管杭1の初期打ち込みにおいては、バイブロハンマ2による打ち込みを助けるため、噴射ノズル7からできるだけ高圧のウォータージェットを噴射することが、好適である。
 バイブロハンマ2は、起振機とチャック装置を有し、チャック装置により鋼管杭1の上端を把持する。起振機は、電動モータにより偏心重錘を回転させることにより鋼管杭1の軸方向の振動を発生する。起振機の電動モータ出力は例えば30~500kW、振動周波数は例えば10~60Hzである。大型杭の場合は、複数のバイブロハンマを連動させてもよい。
 図7(c)に示すように、鋼管杭1は、その先端が所定の第1の設計深度D11に到達するまで打ち込まれる。第1の設計深度D11は、支持層界面D0よりも所定の距離(例えば杭1の直径の2倍程度)だけ深い位置とすることができる。
 ここで図9を参照する。図9は、杭の施工方法における施工管理方法の一例を概略的に示す図である。施工システムには施工管理システムが組み込まれている。施工管理装置26が中心的役割を担い、計測装置等の各機器からデータを収集し制御を行う。施工管理装置26は、所定のプログラムを導入されたコンピュータ、好適にはパーソナルコンピュータにより実施可能である。
 施工管理装置26は、有線及び/又は無線の通信機能を備えている。本例は海上施工であるので、起重機船10上の機器との間は無線にて通信を行っている。陸上における各機器との通信は、有線又は無線のいずれでもよい。
 施工管理装置26は、高圧流体送出装置14の送出口に設けた流量計19から水の流量データを連続的に受信する。また、バイブロハンマ2に取り付けたプリズム25と、それを追尾するトータルステーション24により鋼管杭1の鉛直高さが計測される。施工管理装置26は、計測された鉛直高さデータをトータルステーション24から連続的に受信する。
 施工管理装置26は、水の流量データと鋼管杭1の鉛直高さデータを、予め記憶された施工計画データと比較することにより、杭の打ち込み速度や水の吐出量を調節するための制御情報を生成する。これにより、打ち込み中、リアルタイムでの施工管理が可能となる。例えば、計測データ及び/又は制御情報は、施工管理装置26からクレーン22の操作室のモニター23に送信される。
 施工管理装置26は、鋼管杭1の鉛直高さデータに基づいて、鋼管杭1の打ち込み停止位置である第1の設計深度D11を判定する。図7(c)に示す第1の設計深度D11に鋼管杭1が到達したならば、ウォータージェットの流量を、アイドリング流量まで下げて、打ち込みを停止する。アイドリング流量は、機械の性能上、安定して吐出可能な最低流量である。ウォータージェットを停止しないことにより、周辺地盤の土粒子の逆流による噴射ノズルの閉塞を防止できる。噴射ノズルに逆止弁等の逆流防止装置が装備されていれば、ウォータージェットを停止してもよい。また、ウォータージェットを停止し、打ち込みを停止する。バイブロハンマ2は、停止してもよいが、次の引上工程のために稼動させたままでもよい。
 本実施例の打設工程においては、流動性固化材を用いず、水を噴射しながらバイブロハンマによる振動を与えて杭を打ち込むことで、杭打ち込み中のジェットの吐出量を最大吐出能力程度に高く保ち続けることが可能である。従って、杭の打ち込み中に流動性固化材を噴射する場合に生じる種々の問題を生じない。
 <引上工程>
 続いて、図7(d)(e)の引上工程を行う。引上工程は、JV工法又はバイブロハンマ単独工法のいずれを用いて行ってもよい。鋼管杭1の先端が第2の設計深度D12に到達するまで、クレーンにより鋼管杭1を引き上げる。第2の設計深度D12は、後述するグラウト処理工程における杭周面グラウトの上端として予定されている深度であり、設計上別途定められている。
 引上工程においてJV工法を用いる場合は、ウォータージェットを噴射しながらバイブロハンマによる振動を与えて鋼管杭1を引き上げる。引上工程においてウォータージェットを併用する主たる目的は、上述した通り噴射ノズルの閉塞防止である。噴射ノズルの閉塞防止のための水の吐出量は必要最小限でよく、打設時に比べて少量とする。なお、噴射ノズルに逆流防止装置が装備されていれば、バイブロハンマ単独工法を用いて引上工程を行うことができる。
 図9の施工管理装置26は、鋼管杭1の鉛直高さのデータに基づいて、鋼管杭1の引き上げ停止位置である第2の設計深度D12を判定する。鋼管杭1が、引き上げ停止位置に到達したならば、引き上げを停止する。
 <グラウト処理工程>
 続いて、図7(f)(g)のグラウト処理工程を行う。鋼管杭1が、引上工程の引き上げ停止位置に到達したならば、水を流動性固化材(符号Cで示す)に切り替える。ここでは流動性固化材としてセメントミルクを用いる。セメントミルクの水セメント比は、例えば50~150%の範囲で必要に応じて設定される。そして、流動性固化材を噴射ノズル7の先端から噴射しながらバイブロハンマ2による振動を与えて、鋼管杭1を打止め深度である第3の設計深度D13まで打ち込む。流動性固化材が固化することにより杭周面グラウトが形成される。第3の設計深度D13は、支持層G1内にあり、第1の設計深度D11とほぼ同じ位置、それより若干深い位置、又はそれより若干浅い位置でもよい。例えば、第3の設計深度D13は、支持層界面D0よりも、例えば杭1の直径の1倍程度だけ深い位置とすることができる。
 グラウト処理工程は、一度杭が打ち込まれた地盤に再度打ち込む工程であるため、地盤が緩められているとともに障害物も排除されているので、グラウト処理工程で杭が打設不能となる事態を生じない。
 鋼管杭1の再打ち込み中は、グラウト処理のために鋼管杭1の先端深度毎に必要量の流動性固化材を噴射ノズル7から注入する。鋼管杭1の再打ち込み速度は、流動性固化材注入時におけるバイブロハンマ2の打ち込み能力以上には速くできない。従って、図2に示した高圧流体送出装置14の回転数を下げ、アイドリング状態で運転したとしても、流動性固化材を必要以上に注入することとなり、不経済になるおそれがある。このようなとき、図2に示すように高圧流体送出装置が複数台あれば、その一部を停止することが好適である。杭の打ち込み速度と流動性固化材の必要注入量との兼ね合いにより、必要に応じて高圧流体送出装置の一部を停止して流動性固化材の注入量を適正に保ち、経済化を図ることが可能である。
 上述した通り、本システムでは1又は複数の高圧流体送出装置と複数の導通管との間に、図3に示した集合装置16が配置されている。従って、全ての高圧流体送出装置をアイドリング状態で運転したり、一部の高圧流体送出装置を停止させたりした場合であっても、集合装置16の吐出量均等化機能により各高圧ホースに流動性固化材を均等に吐出することができる。その結果、各噴射ノズルから流動性固化材が均等に噴射されることによって、欠損や偏りのない均一な杭周面グラウトが形成され、杭における所要の周面摩擦力を発揮することができる。
 グラウト処理工程では、打設工程で一度打ち込まれた地盤に鋼管杭1が再度打ち込まれるため、地盤中の礫塊等の障害物は既に排除されている。従って、流動性固化材注入による打ち込みであっても、鋼管杭1が礫塊等の障害物によって打ち込み困難になる事態を回避できる。
 グラウト処理工程では、バイブロハンマ2による振動が、鋼管杭1及び周辺地盤に与えられている。従って、周辺地盤が砂質土の場合には、注入された流動性固化材が砂質土の間隙に浸透し易くなる。また、周辺地盤が粘性土の場合には、バイブロハンマの振動によって鋼管杭1と地盤に隙間が形成され、その隙間に流動性固化材が浸透し易くなる。その結果、鋼管杭1の外周面とその周囲の土層の間に摩擦力の大きなグラウト層が均一に形成される。これにより、鋼管杭1の支持力を効果的に高めることができる。
 図9に示した施工管理装置26は、高圧流体送出装置14の送出口に設けた流量計19から流動性固化材の吐出量のデータを連続的に受信する。また、バイブロハンマ2に取り付けたプリズム25とトータルステーション24により鋼管杭1の鉛直高さが計測され、施工管理装置26はそのデータをトータルステーション24から連続的に受信する。
 施工管理装置26は、流動性固化材の吐出量と鋼管杭1の鉛直高さの各データを併せて、予め記憶されている施工計画データと比較して杭の打ち込み速度や流動性固化材の吐出量を調節するための制御情報を生成する。これにより、杭周面のグラウト処理をリアルタイムで施工管理することできる。
 施工管理装置26は、鋼管杭1の鉛直高さのデータに基づいて、鋼管杭1の打ち込み停止位置である第3の設計深度D13を判定する。図7(g)に示す打止め深度D13に鋼管杭1が到達したならば、バイブロハンマ2と流動性固化材注入を停止し、打ち込みを完了する。
 杭周面グラウト処理の施工管理は、鋼管杭1の先端深度毎の流動性固化材注入量を、施工計画と許容公差以内で合致させることを目的として行う。具体的には、鋼管杭1の再打設速度と、流動性固化材の吐出量を調整することによって行う。施工計画における流動性固化材注入量は、図10に基づいて計算する。
 図10は、流動性固化材の設計注入量を計算するための模式図であって、(a)は、杭及びその周囲の縦断面図であり、(b)は横断面図である。鋼管杭の直径pは、例えば600mm~1500mm、注入幅qは、例えば150mm~300mmであるが、この範囲に限定しない。一例として、非特許文献1では、注入幅qを300mmと、セメントミルクの注入により土中に形成されたグラウト中のセメント量をグラウト1m中300kgと想定したことが報告されている。なお、非特許文献1のセメントミルクの水セメント比は100%である。
<後処理工程>
 杭周面グラウト処理が完了し流動性固化材の注入を終えた後、図7(h)に示すように、導通管9のカプラーに接続されていた高圧ホース17を取り外し、解放された接合端を、例えば濁水処理施設への注入管に接続する。続いて、高圧洗浄機により、図2のミキシングプラント12に注水して洗浄し、ポンプを介して洗浄水を高圧流体送出装置14に送水し、さらに高圧流体送出装置14から高圧ホース15に送水して集合装置16と高圧ホース17を通し、最後に高圧ホース17から注入管を介し濁水処理施設に注水する。これにより、流動性固化材の圧送系統の洗浄を行う。さらに、濁水処理施設に滞留したスラッジを廃棄して全工程を終了する。
 この濁水処理施設は必須ではない。例えば、鋼管杭1の天端が海面より充分に高い位置にある等の理由から、管内水位が鋼管杭1の天端より充分に低い場合は、洗浄水を鋼管杭内に放流し濁水処理の経済化を図ることも可能である。
 本実施形態では、ジェット配管部材を取り外さず杭に取り付けたまま施工完了するので、ジェット配管装置を回収する場合に比べて、ジェット配管部材特に噴射ノズルの取り付けのために特別な構造が不要であるため、低コストとすることができる。本実施形態によれば、JV工法で打ち込んだ杭の支持力を経済的にかつ確実に高めることが可能となる。
(4)杭の施工方法の第2の実施形態
 図11(a)~(g)は、杭の施工方法の第2の実施形態における各工程を概略的に示す図である。以下の第2の実施形態の説明において、第1の実施形態と同じ構成については説明を省略する場合がある。
<準備工程>
 図11(a)に示す準備工程は、基本的に上述した第1の実施形態において図10(a)で説明した通りである。
 第2の実施形態では、ジェット配管部材の構成が、第1の実施形態とは異なるものを採用している。第2の実施形態では、4本の導通管9が、鋼管杭1の周方向に90°毎に配置され、各導通管9の先端に1つの噴射ノズル7が取り付けられている。噴射ノズル7は、所定の引張り力の印加により切断可能な固定手段を介して鋼管杭1の外周に固定されている。これにより、導通管9に上方への引張り力を印加することにより、噴射ノズル7と導通管9を引き上げることができる。
 なお、第2の実施形態において、第1の実施形態と同様の形態のジェット配管部材を採用することもできる。その場合、図8に示した第1の実施形態のジェット配管部材における導通管9と集約管8との境界部分に、所定の引張り力の印加により切断可能な構造を挿入する。
<打設工程>
 図11(b)(c)は、準備工程に続く打設工程を概略的に示している。図11(b)の打設工程は、ウォータージェットを用いたJV工法により行うことが、好適である。すなわち、杭先端地盤に対し噴射ノズル7から水(符号Wで示す)を噴射しながらバイブロハンマ2による振動を与えて鋼管杭1を打ち込む。第1の実施形態と同様に、初期打ち込みにおいては水を用いることが好適であるが、セメントミルク等の流動性固化材を用いることを排除しない。
 図11(c)に示すように、鋼管杭1は、その先端が所定の第1の設計深度D21に到達するまで打ち込まれる。第1の設計深度D21は、支持層界面D0よりもさらに所定の距離(例えば杭1の直径の2倍程度)だけ深い位置である。
 図11(c)に示す第1の設計深度D21に鋼管杭1が到達したならば、ウォータージェットの流量をアイドリング流量まで下げて、打ち込みを完了する。バイブロハンマ2は、停止してもよいが、次の引上工程のために稼動させたままでもよい。
<引上工程>
 続いて、図11(d)の引上工程を行う。先ず、図11(c)の初期打ち込みの完了後に、水をセメントミルク等の流動性固化材(符号Cで示す)に切り替える。セメントミルクの場合、水セメント比は、例えば50~150%の範囲で必要に応じて設定される。そして、流動性固化材を噴射ノズル7の先端から噴射しながらバイブロハンマ2による振動を与えて、鋼管杭1の先端が第2の設計深度D22に到達するまで、クレーンにより鋼管杭1を引き上げる。第2の設計深度D22は、根固めグラウトの上端として予定されている深度である。第2の設計深度D22は、例えば、支持層界面D0より所定の距離(例えば杭1の直径の1倍程度)だけ浅い位置である。
<根固め工程>
 続いて、図11(e)の根固め処理を行う。流動性固化材を噴砂ノズル7の先端から噴射しながらバイブロハンマ2による振動を与えて、鋼管杭1の先端が第3の設計深度D23に到達するまで鋼管杭1を打ち込む。第3の設計深度D23は、支持層内にあり、第1の設計深度D21とほぼ同じ位置、それより若干深い位置、又はそれより若干浅い位置である。例えば、第3の設計深度D23は、支持層界面D0より、例えば杭1の直径の1倍程度だけ深い位置とすることができる。
 図11(e)の根固め工程は、1回のみ行ってもよく、繰り返し行ってもよい。繰り返し行う場合は、再度、流動性固化材の噴射とバイブロハンマの振動を伴って鋼管杭1を第2の設計深度D22まで引き上げた後、第3の設計深度D23まで打ち込む。特に、硬い地盤の場合は、この引き上げと打ち込みによる根固め工程を適宜の回数繰り返すことが好適である。流動性固化材が固化することにより根固めグラウトが形成される。上述した通り、本発明の集合装置により流動性固化材が鋼管杭1の周囲に均一に噴射されることによって、欠損や偏りのない均一な根固めグラウトが形成され、杭における所要の先端支持力を発揮することができる。
 図11(e)の根固め工程を終えるときは、鋼管杭1の先端を第3の設計深度D23まで打ち込む。この位置でバイブロハンマを停止する。好適には、この位置においてさらに所定の時間だけ流動性固化材の噴射を行うことにより、根固めグラウトを確実に形成することができる。根固め工程終了後にバイブロハンマを取り外す。
<噴射ノズル引抜工程>
 次に、図11(f)(g)に示す噴射ノズル引抜工程を行う。先ず、導通管9に所定の引張力を印加することにより、導通管9と共に噴射ノズル7を鋼管杭1から離脱させる。その後、導通管9の上端をクレーンで吊り上げつつ、噴射ノズル7を所定の速度で引き抜く。このとき、噴射ノズル7から流動性固化材を噴射させつつ引き抜く。
 引抜工程における流動性固化材のセメントミルクの水セメント比及び流量は、上述した根固め工程におけるそれらとは異なる値に設定してもよい。
 噴射ノズル7の先端が、所定の第4の設計深度D24に到達したならば、流動性固化材の噴射を停止する。第4の設計深度D24は、杭周面グラウトの上端であり、設計上別途定められる深度である。
 その後、導通管9及び噴射ノズル7を完全に引き抜く。流動性固化材が固化することにより周面グラウトが形成される。この場合も、本発明の集合装置により流動性固化材が鋼管杭1の周囲に均一に噴射されることによって、欠損や偏りのない均一な周面グラウトが形成され、杭における所要の周面摩擦力を発揮することができる。
<後処理工程>
 第2の実施形態の後処理工程では、第1の実施形態で述べた後処理工程に加え、回収された導通管9及び噴射ノズル7の洗浄を行う。
(5)杭の施工方法の第3の実施形態
 図12(a)~(e)は、杭の施工方法の第3の実施形態における各工程を概略的に示す図である。以下の第3の実施形態の説明において、第1の実施形態と同じ構成については説明を省略する場合がある。
<準備工程>
 図12(a)に示す準備工程は、基本的に上述した第1の実施形態において図1(a)で説明した通りである。
<打設工程/グラウト処理工程>
 図12(b)(c)(d)に示すように、第3の実施形態では、打設工程の少なくとも一部においてグラウト処理工程を同時に行う。図示の例では、打設工程の初期段階は、ウォータージェットを用いたJV工法により行う。すなわち、噴射ノズル7から打ち込み方向に水(符号Wで示す)を噴射しながらバイブロハンマ2による振動を与えることにより、鋼管杭1を杭先端地盤に打ち込む。この実施形態は、打ち込み地盤が比較的軟弱かつ障害物が埋没していない等、杭の打ち込みが比較的容易な場合に可能である。
 鋼管杭1の先端が、所定の第1の設計深度D31に到達したならば、一旦、打ち込みを停止し、水をセメントミルク等の流動性固化材(符号Cで示す)に切り替える。セメントミルクの場合、水セメント比は、例えば50~150%の範囲で必要に応じて設定される。その後、図12(c)に示すように、流動性固化剤を噴射しながらバイブロハンマ2による振動を与えることにより、鋼管杭1をさらに打ち込む。
 図12(d)に示すように、鋼管杭1は、その先端が所定の第2の設計深度D32に到達するまで打ち込まれる。第2の設計深度D32は、支持層界面D0よりもさらに所定の距離(例えば杭1の直径の2倍程度)だけ深い位置である。
 図12(d)に示す第2の設計深度D32に鋼管杭1が到達したならば、流動性固化材の噴射及びバイブロハンマ2を停止し、打ち込みを完了する。
 流動性固化材が固化することにより周面グラウトが形成される。この場合も、本発明の集合装置により流動性固化材が鋼管杭1の周囲に均一に噴射されることによって、欠損や偏りのない均一な周面グラウトが形成され、杭における所要の周面摩擦力を発揮することができる。
 図示しないが、第3の実施形態の変形形態として、図12(b)の打設工程の最初から流動性固化材を噴射しバイブロハンマ2による振動を与えて、打設工程とグラウト処理工程を同時に行うこともできる。これは、特に、地表近傍の地盤が、砂質土や粘性土等の脆弱土層である場合に可能である。
<後処理工程>
 打設工程及びグラウト処理工程が完了し流動性固化材の注入を終えた後、図12(e)に示すように、導通管9のカプラーに嵌合していた高圧ホース17を取り外し、上述した第1の実施形態と同様の後処理工程を行う。
(6)まとめ
 本発明の杭の施工方法は、共通する態様として、杭に複数のジェット配管部材及びバイブロハンマを取り付けると共に、集合装置を含む施工システムの配管を接続する準備工程と、地盤中にてジェット配管部材の先端から高圧流体を噴射しつつバイブロハンマによる振動を与えて杭を下降又は上昇させる部分工程を少なくとも含む施工工程とを備えている。本発明は、上述した各実施形態の構成に限定されるものではなく、本発明の主旨を逸脱しない範囲で本発明を適宜、変更可能である。
 1 鋼管杭
 2 バイブロハンマ
 7 噴射ノズル
 8 集約管
 8a 頭部
 8b 分岐部
 9 導通管
 10 起重機船
 11 セメントサイロ
 12 ミキシングプラント
 13 水タンク
 14 高圧流体送出装置
 15 高圧ホース
 16 集合装置
 16a 筐体
 16b 注入孔
 16c 吐出孔
 16d 振動機
 16e 整流板
 16f 撹拌機
 17 高圧ホース
 18A、18B 切替装置
 19 流量計
 20 発動発電機
 21 操作ユニット
 22 クレーン
 23 モニター
 24 トータルステーション
 25 プリズム
 26 施工管理装置

Claims (12)

  1.  杭に複数のジェット配管部材及びバイブロハンマを取り付ける準備工程と、
     地盤中にて前記ジェット配管部材の先端から高圧流体を噴射しつつ前記バイブロハンマによる振動を与えて前記杭を下降又は上昇させる部分工程を少なくとも含む施工工程とを備えた杭の施工方法であって、
     前記準備工程において、1又は複数の高圧流体送出装置と、円筒状の内部空間を有する集合装置とを配置し、1又は複数の前記高圧流体送出装置と前記集合装置における1又は複数の注入孔とをそれぞれ接続すると共に、前記集合装置における複数の吐出孔と複数の前記ジェット配管部材とをそれぞれ接続し、
     前記施工工程において、前記集合装置の内部空間を高圧流体で充填した状態を維持しつつ、1つ以上の前記注入孔から高圧流体を注入すると共に複数の前記吐出孔の各々からそれぞれ高圧流体を吐出させ、かつ、
     複数の前記吐出孔の各々から吐出される複数の高圧流体の各吐出量について、最大吐出量と最小吐出量との差が最大吐出量の5%以下であることを特徴とする杭の施工方法。
  2.  前記集合装置において、
     複数の前記吐出孔の数n、前記内部空間の直径d、前記吐出孔の直径do、前記吐出孔の流量係数Λ、隣り合う2つの前記吐出孔の間隔L、前記高圧流体の動粘性係数ν及び前記各吐出量の総和Qの関係が次式を充たすことを特徴とする請求項1に記載の杭の施工方法。
    Figure JPOXMLDOC01-appb-M000001
  3.  高圧流体が水又は流動性固化材であり、前記施工工程が、
     水を噴射しつつ前記バイブロハンマによる振動を与えて前記杭を、支持層界面より下の第1の深度まで打ち込む工程と、
     少なくとも前記バイブロハンマによる振動を与えて前記杭を、設定された杭周面グラウト上端に対応する深度まで引き上げる工程と、 
     流動性固化材を噴射しつつ前記杭を、前記支持層界面より下の第2の深度まで再度打ち込む工程とを含むことを特徴とする請求項1又は2に記載の杭の施工方法。
  4.  高圧流体が水又は流動性固化材であり、前記施工工程が、
     水を噴射しつつ前記バイブロハンマによる振動を与えて前記杭を、支持層界面より下の第1の深度まで打ち込む工程と、
     流動性固化材を噴射しつつ前記バイブロハンマによる振動を与えて前記杭を、設定された根固め上端に対応する深度まで引き上げる工程と、
     流動性固化材を噴射しつつ前記杭を、前記支持層界面より下の第2の深度まで再度打ち込む工程と、
     流動性固化材を噴射しつつ前記ジェット配管部材を引き抜く工程とを含むことを特徴とする請求項1又は2に記載の杭の施工方法。
  5.  高圧流体が水又は流動性固化材であり、前記施工工程が、
     流動性固化材を噴射しつつ前記バイブロハンマによる振動を与えて前記杭を、支持層界面より下の深度まで打ち込む工程を含むことを特徴とする請求項1又は2に記載の杭の施工方法。
  6.  前記集合装置の前記内部空間に配置された整流板により高圧流体を蛇行させることを特徴とする
     請求項1~5のいずれかに記載の杭の施工方法。
  7.  前記集合装置の前記内部空間に配置された攪拌機により高圧流体を撹拌し、又は、前記内部空間に配置された振動機により高圧流体に振動を与えることを特徴とする
     請求項1~6のいずれかに記載の杭の施工方法。
  8.  施工管理装置が、
     前記バイブロハンマに取り付けたプリズムを追尾するトータルステーションから連続的に送信される杭の鉛直高さデータ、及び、1又は複数の前記高圧流体送出装置の送出口にそれぞれ取り付けた流量計から連続的にそれぞれ送信される高圧流体の流量データを取得し、
     取得した前記杭の鉛直高さデータ及び前記高圧流体の流量データについて予め設定された施工計画データと比較することにより、前記施工工程に含まれる各部分工程における杭の移動速度、水と流動性固化材の切替、又は、高圧流体の吐出量をリアルタイムで調整することを特徴とする
     請求項1~7のいずれかに記載の杭の施工方法。
  9.  前記ジェット配管部材が、
     前記集合装置に接続される導通管と、
     一端が前記導通管と接続されかつ他端が複数に分岐している集約管と、
     前記集約管の分岐した他端の各々と接続される複数の噴射ノズルと、を有することを特徴とする
     請求項1~8のいずれかに記載の杭の施工方法。
  10.  複数のジェット配管部材を取り付けた杭を、前記ジェット配管部材の先端から高圧流体を噴射しつつ打ち込む工程を少なくとも含む杭の施工方法において用いる集合装置であって、
     円筒状の内部空間と、1又は複数の高圧流体送出装置とそれぞれ接続される1又は複数の注入孔と、複数の前記ジェット配管部材とそれぞれ接続される複数の吐出孔とを有し、
     前記杭の施工中、前記内部空間が高圧流体で充填された状態に維持されつつ、1つ以上の前記注入孔から高圧流体が注入されかつ複数の前記吐出孔の各々から高圧流体が吐出され、かつ、
     複数の前記吐出孔の各々から吐出される複数の高圧流体の各吐出量について、最大吐出量と最小吐出量との差が最大吐出量の5%以下であることを特徴とする集合装置。
  11.  前記集合装置において、
     複数の前記吐出孔の数n、前記内部空間の直径d、前記吐出孔の直径do、前記吐出孔の流量係数Λ、隣り合う2つの前記吐出孔の間隔L、前記高圧流体の動粘性係数ν及び前記各吐出量の総和Qの関係が次式を充たすことを特徴とする請求項10に記載の集合装置。
    Figure JPOXMLDOC01-appb-M000002
  12.  複数のジェット配管部材を取り付けた杭を、前記ジェット配管部材の先端から高圧流体を噴射しつつ打ち込む工程を少なくとも含む杭の施工方法において用いられ、円筒状の内部空間と、1又は複数の高圧流体送出装置とそれぞれ接続される1又は複数の注入孔と、複数の前記ジェット配管部材とそれぞれ接続される複数の吐出孔とを有し、前記杭の施工中、前記内部空間が高圧流体で充填された状態に維持されつつ、1つ以上の前記注入孔から高圧流体が注入されかつ複数の前記吐出孔の各々から高圧流体が吐出される集合装置の設計方法であって、
     予め、複数の前記吐出孔の数n、前記内部空間の直径d、前記吐出孔の直径do、前記吐出孔の流量係数Λ、隣り合う2つの前記吐出孔の間隔L及び前記高圧流体の動粘性係数νのパラメータのうち1又は複数をそれぞれ変化させた場合に、各場合について、各吐出量の総和をQとして、複数の前記吐出孔の各々から吐出される複数の高圧流体の各吐出量をそれぞれ算出し、
     複数の前記吐出孔の各々から吐出される複数の高圧流体の各吐出量について、最大吐出量と最小吐出量との差が最大吐出量の所定の割合以下となるように、次式のα、β及びδを設定し、
     複数の前記吐出孔の数n、前記内部空間の直径d、前記吐出孔の直径do、前記吐出孔の流量係数Λ、隣り合う2つの前記吐出孔の間隔L、前記高圧流体の動粘性係数ν及び前記各吐出量の総和Qの関係が次式を充たすように設計することを特徴とする集合装置の設計方法。
    Figure JPOXMLDOC01-appb-M000003
PCT/JP2018/035735 2017-09-28 2018-09-26 杭の施工方法、集合装置及び集合装置の設計方法 WO2019065755A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2018343817A AU2018343817B2 (en) 2017-09-28 2018-09-26 Pile construction method, manifold device, and manifold device design method
JP2019528943A JP6566233B1 (ja) 2017-09-28 2018-09-26 杭の施工方法、集合装置及び集合装置の設計方法
PH12020500537A PH12020500537A1 (en) 2017-09-28 2020-03-13 Pile construction method, manifold device, and manifold device design method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017188652 2017-09-28
JP2017-188652 2017-09-28

Publications (1)

Publication Number Publication Date
WO2019065755A1 true WO2019065755A1 (ja) 2019-04-04

Family

ID=65903016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035735 WO2019065755A1 (ja) 2017-09-28 2018-09-26 杭の施工方法、集合装置及び集合装置の設計方法

Country Status (4)

Country Link
JP (2) JP6566233B1 (ja)
AU (1) AU2018343817B2 (ja)
PH (1) PH12020500537A1 (ja)
WO (1) WO2019065755A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110805032A (zh) * 2019-11-25 2020-02-18 南京同力建设集团股份有限公司 可任意方位角度定向摆喷的高压旋喷钻机及施工方法
CN114595531A (zh) * 2022-03-11 2022-06-07 武汉雄韬氢雄燃料电池科技有限公司 一种基于双堆流量分配一致性的空气进口歧管设计方法
CN114775604A (zh) * 2022-03-08 2022-07-22 中铁大桥局集团第五工程有限公司 一种用于植入嵌岩基础钢管桩水下定位的施工方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5659245U (ja) * 1979-10-09 1981-05-21
JP3165579U (ja) * 2010-11-11 2011-01-27 新日本工業株式会社 高圧流体併用矢板貫入補助装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5659245U (ja) * 1979-10-09 1981-05-21
JP3165579U (ja) * 2010-11-11 2011-01-27 新日本工業株式会社 高圧流体併用矢板貫入補助装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110805032A (zh) * 2019-11-25 2020-02-18 南京同力建设集团股份有限公司 可任意方位角度定向摆喷的高压旋喷钻机及施工方法
CN114775604A (zh) * 2022-03-08 2022-07-22 中铁大桥局集团第五工程有限公司 一种用于植入嵌岩基础钢管桩水下定位的施工方法
CN114595531A (zh) * 2022-03-11 2022-06-07 武汉雄韬氢雄燃料电池科技有限公司 一种基于双堆流量分配一致性的空气进口歧管设计方法
CN114595531B (zh) * 2022-03-11 2022-10-14 武汉雄韬氢雄燃料电池科技有限公司 一种基于双堆流量分配一致性的空气进口歧管设计方法

Also Published As

Publication number Publication date
PH12020500537A1 (en) 2021-03-15
JPWO2019065755A1 (ja) 2019-11-14
JP2019065692A (ja) 2019-04-25
JP6535862B2 (ja) 2019-07-03
AU2018343817A1 (en) 2020-01-30
AU2018343817B2 (en) 2020-03-05
JP6566233B1 (ja) 2019-08-28

Similar Documents

Publication Publication Date Title
JP6566233B1 (ja) 杭の施工方法、集合装置及び集合装置の設計方法
JP5181239B2 (ja) 鋼管杭および鋼管杭の施工方法
CN103114577B (zh) 建筑物桩基的旋挖成孔施工方法
TWI460337B (zh) 包含除氣步驟之鋼樁打設工法
KR101765312B1 (ko) 자동관리시스템을 이용한 중간심도의 연약지반 개량 장치 및 공법
CN110409421B (zh) 超深桩地连墙施工系统
JP3850802B2 (ja) 鋼杭及びその施工方法
JP2014001545A (ja) 合成置換コラムとその築造装置および築造方法
JPH0227015A (ja) ジェットグラウト工法
CN110820723B (zh) 一种车站深大基坑围护结构地下连续墙施工控制方法
JP3738495B2 (ja) コンクリートの下方打設工法
JP6556485B2 (ja) 地盤注入方法
JP2016075040A (ja) 地盤改良工法
JP6466101B2 (ja) ソイルセメント地中連続壁施工法
JP5985417B2 (ja) 高圧噴射攪拌工法による地盤改良方法
CN210031785U (zh) 浅表砂层或饱和砂层水泥土搅拌桩施工设备
JP4072686B2 (ja) 多軸高圧噴射撹拌地盤改良装置及び工法
JP7102044B1 (ja) 地盤改良工法及び地盤改良装置
JP2001172960A (ja) 地盤の改良または強化工法
CN201635076U (zh) 水泥土地下截水帷幕静压式成型装置
JP2021080789A (ja) 地盤の埋戻し方法及び撹拌翼
JP6307049B2 (ja) 地盤硬化層造成工法とその装置
JP2006322190A (ja) 場所打ちコンクリ−ト杭の杭頭処理方法およびコンクリ−ト処理剤混入装置
JP6529786B2 (ja) 地盤改良工法
JP7486461B2 (ja) 地盤改良工法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860738

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019528943

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018343817

Country of ref document: AU

Date of ref document: 20180926

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18860738

Country of ref document: EP

Kind code of ref document: A1