WO2019065508A1 - フェライト系ステンレス熱延焼鈍鋼板およびその製造方法 - Google Patents

フェライト系ステンレス熱延焼鈍鋼板およびその製造方法 Download PDF

Info

Publication number
WO2019065508A1
WO2019065508A1 PCT/JP2018/035099 JP2018035099W WO2019065508A1 WO 2019065508 A1 WO2019065508 A1 WO 2019065508A1 JP 2018035099 W JP2018035099 W JP 2018035099W WO 2019065508 A1 WO2019065508 A1 WO 2019065508A1
Authority
WO
WIPO (PCT)
Prior art keywords
thickness
hot
observation
rolling
content
Prior art date
Application number
PCT/JP2018/035099
Other languages
English (en)
French (fr)
Inventor
英尚 川邉
光幸 藤澤
寛 清水
知彦 内野
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020207003378A priority Critical patent/KR102409900B1/ko
Priority to JP2018564989A priority patent/JP6518961B1/ja
Priority to CN201880051166.2A priority patent/CN111032898B/zh
Priority to EP18863317.6A priority patent/EP3623489A4/en
Priority to US16/636,792 priority patent/US11174540B2/en
Priority to MX2020001521A priority patent/MX2020001521A/es
Publication of WO2019065508A1 publication Critical patent/WO2019065508A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to a ferritic stainless hot rolled annealed steel sheet.
  • the present invention relates to a ferritic stainless steel hot-rolled annealed steel sheet which is excellent in surface properties after bending.
  • Ferritic stainless steels are used in many applications because they are less expensive than austenitic stainless steels that are rich in expensive Ni.
  • stainless steel plates are applied to brackets of automobile parts and the like.
  • Various parts are attached to the bracket material by bolts and welding, etc.
  • thick stainless steel is applied from the viewpoint of securing rigidity, and it may be used by being formed into a member of a predetermined shape by pressing.
  • streaks, wrinkles, rough skin, etc. may occur on the surface of the pressed member. So far, various studies have been made on the material, bending workability, surface properties, etc. of thick stainless steel plates.
  • Patent Document 1 discloses a technique for controlling the crystal orientation of a thick ferritic stainless steel plate for a flange having a plate thickness of 5 mm or more which is not bent but sheared and punched to improve low temperature toughness. It is done.
  • Patent Document 2 discloses a technology for reducing the roughened surface after cylindrical deep drawing processing for a cold rolled annealed sheet with controlled steel components, precipitates and crystal grain size .
  • Patent Document 3 there is a manufacturing method for securing excellent ridging property after 20% strain application by tensile processing in which a material is uniformly deformed about a cold rolled annealed sheet by optimizing austenite amount at the time of hot rolling. It is disclosed.
  • Patent Document 4 as a technique relating to the bending processability of a high strength and high toughness stainless steel plate of two phases of a ferrite phase and a martensite phase or a single phase of a martensitic phase, crack generation at a bending vertex is controlled by shape control of MnS inclusion particles. Techniques for suppressing and improving bendability are disclosed.
  • the hot rolling temperature is 800 ° C.
  • the friction coefficient of the latter three passes is 0.2 or less, and the cumulative rolling reduction of the latter three passes is 50% or more, Low-temperature, low-friction coefficient, obtained by hot-rolling at a high pressure in the latter stage
  • the rolled steel structure non-hot-rolled sheet annealing process in which the metallographic structure obtained by hot rolling under high pressure has accumulated processing strain of unrecrystallized
  • a technique for reducing the wrinkle depth generated on the outside of bending after 90 ° bending with a curvature radius of 2 mm By controlling the ratio of hardness to the hardness of the thickness center portion, there is disclosed a technique for reducing the wrinkle depth generated on the outside of bending after 90 ° bending with a curvature radius of 2 mm.
  • the present invention is intended to provide a ferritic stainless steel hot-rolled and annealed steel sheet which is excellent in surface properties after bending and a method for producing the same.
  • the present inventors have detailed the composition and structure in the production process, the plate surface (rolled surface) regarding the surface properties after bending of a ferritic stainless hot-rolled annealed steel sheet for thick applications. Study was carried out.
  • the components and the manufacturing method are limited, and a plurality of observation positions in the sheet thickness direction
  • the present inventors further studied and completed the present invention.
  • the gist of the present invention is as follows.
  • the rolling direction length of the crystal grains is 1,800 ⁇ m / the number of average grain boundaries in the rolling direction
  • the number of average grain boundaries in the rolling direction is 1,800 ⁇ m in the rolling direction within the observation range at each observation position.
  • the thickness in the thickness direction of the crystal grain is 1000 ⁇ m / the number of average grain boundaries in the thickness direction
  • the number of average grain boundaries in the thickness direction is in the thickness direction within the observation range at each observation position. Five lines of 1000 ⁇ m in length are drawn to make an average of the number of grain boundaries crossing the lines.
  • V 0.01 to 0.10%
  • Zr 0.01 to 0.10%
  • Nb 0.01 to 0.10%
  • Mg 0.0005 to 0.0030%
  • Ca 0.0003 to 0.0030%
  • Y 0.01 to 0.20%
  • REM rare earth metal
  • Sn 0.001 to 0.500%
  • Sb 0.001 to 0.500%
  • the ferritic stainless steel hot-rolled annealed steel sheet of the present invention is excellent in surface properties after bending.
  • C 0.001 to 0.025%
  • C is contained excessively, C is localized unevenly in steel with non-uniform size as carbide, and precipitates, and it causes a factor of becoming an expanded grain structure by inhibiting grain size recrystallization grain growth. Decrease the surface quality after processing.
  • the lower the C content the better.
  • the C content is set to 0.025% or less.
  • the C content is preferably 0.010% or less.
  • the excessive reduction in the C content increases the steelmaking cost, so the lower limit of the C content is made 0.001%.
  • the C content is preferably 0.005% or more.
  • Si 0.05 to 0.70%
  • Si contributes to the deoxidation of steel, its effect can not be obtained if the Si content is less than 0.05%. Therefore, the Si content is 0.05% or more.
  • the Si content is preferably 0.15% or more, more preferably 0.20% or more.
  • the Si content exceeds 0.70%, the steel hardens and adversely affects the bendability. Therefore, the Si content is 0.70% or less.
  • the Si content is preferably 0.60% or less, more preferably 0.40% or less.
  • Mn 0.05 to 0.50% Mn contributes to the refinement of the structure and has the effect of obtaining a uniform structure, but when the Mn content is less than 0.05%, the effect can not be obtained. Therefore, the Mn content is 0.05% or more.
  • the Mn content is preferably 0.15% or more, more preferably 0.25% or more. However, if the content of Mn is excessive, a large amount of MnS is formed and the corrosion resistance is adversely affected, so the Mn content is made 0.50% or less.
  • the Mn content is preferably 0.45% or less, more preferably 0.40% or less.
  • P 0.050% or less
  • P segregates at grain boundaries or non-uniformly localized and precipitates in steel with non-uniform size as FeTiP or the like.
  • the content is excessive, P inhibits regular recrystallization grain growth to become a wrought grain structure, and reduces the surface properties after bending. Therefore, the lower the P content, the more preferable.
  • the corrosion resistance is also adversely affected, so the P content is made 0.050% or less.
  • the P content is preferably 0.040% or less.
  • the lower the P content is, the more preferable, and the lower limit is not particularly defined. However, since the excessive reduction of the P content increases the steelmaking cost, it is preferable to set the lower limit of the P content to 0.01%.
  • S 0.01% or less S forms MnS inclusions and adversely affects the corrosion resistance, so the content of S is preferably as small as possible. Therefore, in the present invention, the S content is 0.01% or less.
  • the S content is preferably 0.005% or less, more preferably 0.004% or less.
  • Cr 10.0 to 18.0% Cr is an element that improves the corrosion resistance, and is an essential element in a ferritic stainless steel sheet. Such an effect is obtained when the Cr content is 10.0% or more, so the Cr content is 10.0% or more.
  • the Cr content is preferably 10.5% or more.
  • the Cr content is 18.0% or less.
  • the Cr content is preferably 15.0% or less, more preferably 13.0% or less.
  • Ni 0.01 to 1.00%
  • Ni is an element useful for improving corrosion resistance and toughness. This effect is obtained by setting the Ni content to 0.01% or more. On the other hand, when the Ni content exceeds 1.00%, the bendability is adversely affected. Therefore, the Ni content is 1.00% or less.
  • the Ni content is preferably 0.05% or more, more preferably 0.10% or more. Also, the Ni content is preferably 0.60% or less, more preferably 0.40% or less.
  • Al 0.001 to 0.10%
  • Al is an element useful as a deoxidizer. This effect is obtained by setting the Al content to 0.001% or more.
  • Al content exceeds 0.10%, Al localizes and precipitates unevenly in the steel at an uneven size in the ferrite grain boundary as Al-based inclusions such as AlN.
  • the upper limit of the Al content is set to 0.10%.
  • the Al content is preferably 0.060% or less, more preferably 0.040% or less.
  • N 0.001 to 0.025% Since N forms Cr nitride and causes a drop in corrosion resistance, the lower the N content, the more preferable. Therefore, in the present invention, the N content is set to 0.025% or less.
  • the N content is preferably 0.010% or less.
  • the excessive reduction of the N content increases the steelmaking cost, so the lower limit of the N content is set to 0.001%.
  • the N content is preferably 0.003% or more.
  • Ti 0.01 to 0.40%
  • Ti is a carbonitride-forming element and fixes C and N to suppress a drop in corrosion resistance due to sensitization. The above effect is exhibited when Ti is contained 0.01% or more. Therefore, the Ti content is 0.01% or more.
  • the Ti content exceeds 0.40%, Ti is unevenly localized in the steel as non-uniform size as carbides, and precipitates nonuniformly, and inhibits grained recrystallization grain growth and spreads.
  • the upper limit of the Ti content is 0.40% in order to become a factor to become a texture and to reduce the surface properties after bending.
  • the Ti content is preferably 0.30% or less.
  • C, P, Al and Ti are present in the steel as precipitates, and when each is contained in excess, it affects the variation in the degree of elongation of crystal grains in the thickness direction.
  • the reasons for the variation in the degree of elongation are considered as follows.
  • the surface layer is exposed more to the high temperature during hot-rolled heating and annealing during hot-rolled heating than in the center of the sheet thickness, and the precipitate re-melts in the surface layer and is reprecipitated as the temperature of the steel sheet decreases. There are more precipitates than the center of the plate thickness. Since the reprecipitated precipitates are present finely and uniformly, recrystallized grains are likely to be sized.
  • the heating temperature rising rate is slower than that of the plate thickness surface portion, so the low temperature time is long, the re-dissolution of the precipitates is small, and the undissolved precipitates coarsely and unevenly exist locally Therefore, recrystallized grains are difficult to be sized. Therefore, in the surface layer, although the degree of expansion is relatively small, it is difficult to obtain a grained structure at the center of the plate thickness, and the degree of expansion becomes large, and as a result, the degree of expansion of crystal grains in the plate thickness direction The difference between the maximum value and the minimum value is greater than 5.0, which reduces the surface texture after bending.
  • composition of the basic component of the present invention is the composition of the basic component of the present invention, and the balance other than the above-mentioned basic component can be made into Fe and an unavoidable impurity.
  • an optional component one or two of Cu: 0.01 to 1.00%, Mo: 0.01 to 1.00%, Co: 0.01 to 0.50% by mass%. It may contain more than species.
  • Cu 0.01 to 1.00% Cu has the effect of improving the corrosion resistance. On the other hand, excessive Cu content hardens the steel and adversely affects bendability. Therefore, when containing Cu, the Cu content is made 0.01 to 1.00%.
  • the Cu content is preferably 0.10% or more, more preferably 0.20% or more.
  • the Cu content is preferably 0.80% or less, more preferably 0.50% or less.
  • Mo 0.01 to 1.00% Mo has the effect of improving the corrosion resistance. On the other hand, excessive Mo content hardens the steel and adversely affects bendability. Therefore, when Mo is contained, the Mo content is made 0.01 to 1.00%. When Mo is contained, the Mo content is preferably 0.10% or more, more preferably 0.20% or more. Moreover, when it contains Mo, Mo content is preferably 0.80% or less, more preferably 0.50% or less.
  • Co 0.01 to 0.50%
  • Co has the effect of improving the crevice corrosion resistance.
  • excessive Co content hardens the steel and adversely affects bendability. Therefore, when Co is contained, the Co content is made 0.01 to 0.50%.
  • the Co content is preferably 0.05% or more.
  • the Co content is preferably 0.30% or less, more preferably 0.10% or less.
  • V 0.01 to 0.10%
  • Zr 0.01 to 0.10%
  • Nb 0.01 to 0.10%
  • B 0.0003 to 0.0030% by mass%.
  • Mg 0.0005 to 0.0030%
  • Ca 0.0003 to 0.0030%
  • Y 0.01 to 0.20%
  • REM rare earth metal
  • Sn One or more selected from 0.001 to 0.500% and Sb: 0.001 to 0.500% can be contained as optional components.
  • V 0.01 to 0.10%
  • V is an element having a high affinity to C and N, and precipitates as carbides or nitrides during hot rolling, and has the effect of reducing the solid solution C and solid solution N in the matrix and improving the formability.
  • excessive V content hardens the steel and adversely affects the bendability. Therefore, when V is contained, the V content is made 0.01 to 0.10%.
  • the V content is preferably 0.02% or more.
  • V content is preferably 0.05% or less.
  • Zr 0.01 to 0.10%
  • Zr is an element having a high affinity to C and N, and precipitates as carbides or nitrides during hot rolling, and has the effect of reducing the solid solution C and solid solution N in the matrix and improving the workability.
  • excessive Zr content hardens the steel and adversely affects the bendability. Therefore, when containing Zr, the Zr content is made 0.01 to 0.10%.
  • the Zr content is preferably 0.02% or more.
  • the Zr content is preferably 0.05% or less.
  • Nb 0.01 to 0.10%
  • Nb is an element having a high affinity to C and N, and precipitates as carbides or nitrides during hot rolling, and has the effect of reducing the solid solution C and solid solution N in the matrix and improving the workability.
  • excessive Nb content hardens the steel and adversely affects bendability. Therefore, when Nb is contained, the Nb content is made 0.01 to 0.10%.
  • the Nb content is preferably 0.02% or more.
  • the Nb content is preferably 0.05% or less.
  • B 0.0003 to 0.0030%
  • B is an element effective to prevent low temperature secondary processing embrittlement.
  • the B content is made 0.0003 to 0.0030%.
  • the B content is preferably 0.0005% or more.
  • the B content is preferably 0.0020% or less.
  • Mg 0.0005 to 0.0030% Mg forms Mg oxide with Al in molten steel and acts as a deoxidizer.
  • the Mg content is made 0.0005 to 0.0030%.
  • the Mg content is preferably 0.0010% or more.
  • the Mg content is preferably 0.0020% or less.
  • Ca 0.0003 to 0.0030%
  • Ca is an element that improves the hot workability.
  • the content of Ca is excessive, the toughness of the steel is lowered and the productivity is lowered, and furthermore, the corrosion resistance is lowered by the precipitation of CaS. Therefore, when Ca is contained, the Ca content is made 0.0003 to 0.0030%.
  • the Ca content is preferably 0.0005% or more.
  • the Ca content is preferably 0.0020% or less.
  • Y 0.01 to 0.20%
  • Y is an element that reduces the decrease in viscosity of molten steel and improves the degree of cleanliness.
  • the Y content is made 0.01 to 0.20%.
  • the Y content is preferably 0.03% or more.
  • the Y content is preferably 0.10% or less.
  • REM rare earth metal
  • REM an element having an atomic number of 57 to 71 such as La, Ce, Nd
  • the REM content is made 0.01 to 0.10%.
  • the REM content is preferably 0.03% or more.
  • REM content is preferably 0.05% or less.
  • Sn 0.001 to 0.500%
  • Sn is effective for improving the workability by promoting the formation of deformation bands during rolling.
  • the content of Sn is excessive, the effect is saturated and the processability is further reduced. Therefore, when Sn is contained, the Sn content is set to 0.001 to 0.500%.
  • the Sn content is preferably 0.003% or more.
  • the Sn content is preferably 0.200% or less.
  • Sb 0.001 to 0.500%
  • Sb is effective for improving the processability by promoting the formation of deformation bands during rolling.
  • the Sb content is set to 0.001 to 0.500%.
  • the Sb content is preferably 0.003% or more.
  • the Sb content is preferably 0.200% or less.
  • the component when content of the said arbitrary component is less than a lower limit, the component shall be contained as an unavoidable impurity.
  • the tensile strain is large from the bending neutral axis toward the surface layer side, and a material having a thicker plate thickness than the thin plate material gives a larger tensile strain on the plate surface side.
  • a material with a thicker plate thickness has a larger volume from the surface layer to the center than a thin plate thickness material, and it is strongly affected by the texture in the plate thickness direction at the time of bending.
  • the components and manufacturing method are limited, and the difference between the maximum value and the minimum value of the average grain size in the thickness direction is reduced to 50 ⁇ m or less.
  • the difference between the maximum value and the minimum value of the degree of expansion of crystal grains in the thickness direction is reduced to 5.0 or less, and reduce the variation in crystal grain size in the thickness direction and the variation in shape of crystal grain size.
  • the present inventors have found that it is extremely effective to make the texture uniform in the thickness direction.
  • the difference between the maximum value and the minimum value of the average grain size measured by the following measurement method 1 is 50 ⁇ m or less. If the difference exceeds 50 ⁇ m, good surface properties can not be obtained after bending.
  • the lower limit is not particularly limited, and the difference may be 0 ⁇ m.
  • the difference between the maximum value and the minimum value of the degree of elongation of crystal grains is 5 .0 or less. If the above difference exceeds 5.0, good surface properties can not be obtained.
  • the lower limit is not particularly limited, and the difference may be zero.
  • the number of average grain boundaries is determined by drawing five lines of 1800 ⁇ m in length in the rolling direction within the observation range at each observation position, and taking the average of the number of grain boundaries crossing the respective lines.
  • the number of average grain boundaries in the plate thickness direction is determined by drawing five lines of 1000 ⁇ m in length in the plate thickness direction within the observation range at each observation position, and taking the average of the number of grain boundaries crossing each of the five lines. .
  • the observation range (measurement range) at the observation position of the surface layer including the surface is in the rolling direction of 1800 ⁇ m from the surface to 1000 ⁇ m in the plate thickness direction (back surface direction).
  • the observation range at the observation position is in the range of 1800 ⁇ m in the rolling direction to 1000 ⁇ m in the thickness direction (surface direction) from the back surface.
  • the observation range at the other observation positions is: 1800 ⁇ m in the rolling direction In the thickness direction of 1000 ⁇ m.
  • a partial region of the observation range at each observation position may be included in the observation range of another observation position.
  • the number of crystal grains included in the observation range is the number of crystal grains completely included in the observation range (n1) and the number of crystal grains partially included in the observation range (n2). Manually counted and calculated as n1 + (1/2) x n2.
  • measurement method 2 when drawing five lines with a length of 1800 ⁇ m in the rolling direction within the observation range for each observation position, the lines are divided so that the observation range is equally divided into six in the plate thickness direction Also, when drawing five 1000 ⁇ m long lines in the thickness direction within the observation area for each observation position, draw lines so that the observation area is equally divided into six in the rolling direction by each line. Do.
  • Sheet thickness 5.0 mm or more
  • the present invention is an invention for improving the surface properties after bending of a ferritic stainless steel hot-rolled annealed steel sheet for thick applications.
  • Thin means that the plate thickness is 5.0 mm or more, and particularly, the effect is remarkable when the plate thickness is 7.0 mm or more.
  • the upper limit of plate thickness is not specifically limited, As an example, it is 20.0 mm or less.
  • a method of manufacturing the ferritic stainless hot rolled annealed steel sheet of the present invention will be described.
  • a steel of the above-described composition is melted by a known method such as a converter, an electric furnace, a vacuum melting furnace and the like, and further secondary by a VOD (Vacuum Oxygen Decarburization) method or an AOD method (Argon Oxygen Decarburization) Do the refining.
  • VOD Vauum Oxygen Decarburization
  • AOD method Aron Oxygen Decarburization
  • hot rolling is performed at a rolling finish temperature of 800 to 950 ° C. so that the plate thickness becomes 5.0 mm or more.
  • the hot-rolled steel plate thus produced is heated to a hot-rolled sheet annealing temperature in a temperature range of 200 ° C. to 700-900 ° C. at a heating rate of 5 to 100 ° C./hour, and in a temperature range of 700-900 ° C.
  • the sheet is subjected to a hot-rolled sheet annealing step in which the hot-rolled sheet annealing is carried out for 50 hours.
  • pickling and surface grinding may be performed to perform descaling treatment to remove scale.
  • Skin pass rolling may be performed on the hot-rolled annealed sheet from which the scale has been removed.
  • the rolling completion temperature, the temperature rising rate at hot-rolled sheet annealing, the annealing temperature and the residence time are appropriately controlled. Therefore, it is necessary to effectively apply rolling strain uniformly to the entire steel plate while suppressing uneven recovery and recrystallization locally generated during rolling as much as possible, and to heat the entire steel plate uniformly without temperature unevenness. .
  • End temperature of rolling 800 to 950 ° C
  • the rolling strain applied by hot rolling is recovered by appropriately controlling the rolling end temperature.
  • the temperature at the end of rolling is in the range of 800 to 950.degree.
  • the end of rolling temperature is in the range of 825 to 925 ° C. More preferably, the temperature at the end of rolling is in the range of 850 to 900.degree.
  • hot-rolled sheet annealing is performed on the cooled hot-rolled steel sheet after completion of the above-mentioned hot rolling step.
  • rolling strain is applied effectively and uniformly from the surface layer portion to the thickness center of the plate thickness, and the recrystallization site is increased, thereby extending the grain size and grain size in hot rolled sheet annealing. Promote uniform organization with less variation in degree.
  • the heating rate to the hot-rolled sheet annealing temperature (soaking temperature) in the temperature range of 200 ° C. to 700 to 900 ° C. after starting heating is 5 to 100 ° C.
  • the temperature rising rate to the hot-rolled sheet annealing temperature is lower than 5 ° C./hour, recrystallization is sufficient, and wrought grains disappear, and uniform shape becomes possible.
  • a part of carbonitride precipitated in the hot rolling process is dissolved again, and a part of recrystallized grains is significantly coarsened due to disappearance of pinning sites, and nonuniform mixing occurs after hot-rolled sheet annealing.
  • the grain structure can not be obtained, and the entire steel sheet can not have a structure having uniform fine grain size.
  • the lower limit of the temperature rising rate is 5 ° C./hour because the productivity is lowered.
  • the heating rate is in the range of 10 to 50 ° C./hour.
  • the temperature rising rate in the region below 200 ° C. may be outside the range of 5 to 100 ° C./hour. This is because in the region below 200 ° C., the influence of the temperature rising rate on the tissue is small.
  • the rolled structure formed in the hot rolling step is recrystallized.
  • rolling strain is applied effectively and uniformly from the surface layer portion to the thickness center of the plate thickness, and the recrystallization site is increased, thereby extending the grain size and grain size in hot rolled sheet annealing. Promote uniform organization with less variation in degree. In order to obtain this effect, it is necessary to retain the hot rolled steel sheet in the temperature range of 700 to 900 ° C.
  • the residence temperature is less than 700 ° C., recrystallization is insufficient, and a finely divided grain structure is partially recovered or recrystallized on the thickness surface side, but wrought grains in which recrystallization is insufficient at the center of the thickness It becomes a structure
  • the residence temperature exceeds 900 ° C., recrystallization will occur sufficiently, and wrought grains will disappear, making it possible to make the shape uniform.
  • the retention temperature of the hot-rolled steel sheet is in the range of 700 to 900 ° C. in order to ensure the uniformity of the entire structure from the surface layer portion to the thickness center.
  • the residence temperature is in the range of 750-850.degree.
  • the retention time is also important in order to ensure the uniformity of the entire structure from the surface layer to the thickness center, and to obtain a uniform structure
  • the residence time in the predetermined residence temperature range at the time of hot-rolled sheet annealing needs to be 1 to 50 hours.
  • the residence time is shorter than 1 hour, the temperature unevenness in the thickness surface layer and the thickness center becomes large, the recrystallization behavior differs in the thickness direction, and recrystallization proceeds sufficiently in the thickness surface, and fine alignment Although the grain structure is formed, the heat input is insufficient at the central portion of the plate thickness and recrystallization is insufficient, resulting in a partially recovered or recrystallized coarse wrought grain structure, and a predetermined predetermined texture in the plate thickness direction. I can not get it. On the other hand, when the residence time exceeds 50 hours, sufficient recrystallization occurs, and the wrought grains disappear and the shape can be made uniform.
  • the residence time is in the range of 5 to 30 hours.
  • a time in the temperature range of 700 to 900 ° C. is included in this residence time.
  • the residence time in the temperature range of 700 to 900 ° C. is the temperature rising time from 700 ° C. to the hot-rolled sheet annealing temperature
  • the holding time at the strip annealing temperature (soaking time) and the time during temperature decrease from the hot strip annealing temperature to 700 ° C. are included.
  • the temperature at the time of hot rolling and hot-rolled sheet annealing uses the steel plate surface temperature measured in a noncontact manner by a radiation thermometer with an emissivity of 0.8.
  • the obtained hot-rolled and annealed steel sheet may be subjected to a descaling treatment by shot blasting or acid washing, if necessary. Furthermore, in order to improve the surface quality, grinding, polishing or the like may be performed. In addition, the hot-rolled and annealed steel sheet provided by the present invention may then be subjected to cold rolling and cold rolled sheet annealing.
  • the ferritic stainless steel hot-rolled annealed steel sheet of the present invention is suitable for use where bending is applied.
  • the thickness of the steel plate is 5.0 mm or more.
  • the thickness of the steel plate is not particularly limited, but may be, for example, 20.0 mm or less, and 15.0 mm or less.
  • the steels having the component compositions shown in Table 1 were melted in a small vacuum melting furnace and made into 50 kg steel ingots. These steel ingots were subjected to hot rolling under the conditions shown in Table 2 (hot rolling step).
  • the steel ingot heating temperature at the time of hot rolling was 1100 ° C., and the heat holding time was 30 minutes.
  • hot-rolled sheet annealing was performed on these hot-rolled steel sheets under the conditions shown in Table 2 (hot-rolled sheet annealing step).
  • Test pieces were collected from each of the hot-rolled and annealed steel sheets obtained as described above, and the structure and surface properties after bending were evaluated.
  • the difference between the maximum value and the minimum value of the average grain size at each observation position is determined.
  • draw five lines of 1800 ⁇ m in the observation range so as to equally divide the observation range into six in the plate thickness direction, and roll the observation range of 1000 ⁇ m in the plate thickness direction.
  • the average number of grain boundaries crossing each line is the number of average grain boundaries in the plate thickness direction, the rolling direction length of the crystal grains (1800 ⁇ m / number of average grain boundaries in the rolling direction) and the thickness direction thickness of the grain Determine the average grain size of 1000 ⁇ m / thickness direction) and calculate as the degree of elongation (rolling direction length of crystal grain / thickness direction thickness of grain), maximum value of the elongation degree at each observation position And the difference between the minimum and the minimum.
  • the bending test was performed by the bending method according to JIS 2248: 2006 metal material bending test method.
  • the test piece dimensions are plate thickness ⁇ 40 mm ⁇ 200 mm, and the rolling perpendicular direction (C direction) is the test piece length.
  • the bending radius is 20 mm and the bending angle is 120 °.
  • the surface properties were measured using a one-shot 3D measuring microscope VR-3100 manufactured by Keyence, and the roughness curve in the direction perpendicular to the bending ridge was measured to determine the maximum height Rz.
  • the measuring length is 2.0 cm, and the measuring position is ⁇ 1.0 cm around the bending apex.
  • the steels of the present invention all have excellent surface properties after bending.
  • the comparative steel outside the scope of the present invention was inferior in the surface quality after bending.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

曲げ加工後の表面性状に優れるフェライト系ステンレス熱延焼鈍鋼板を提供する。 質量%で、C:0.001~0.025%、Si:0.05~0.70%、Mn:0.05~0.50%、P:0.050%以下、S:0.01%以下、Cr:10.0~18.0%、Ni:0.01~1.00%、Al:0.001~0.10%、N:0.001~0.025%、Ti:0.01~0.40%、を含有し、残部がFeおよび不可避的不純物からなり、測定方法1で測定した平均結晶粒径の最大値と最小値の差が50μm以下であり、測定方法2で測定した結晶粒の展伸度の最大値と最小値の差が5.0以下であり、板厚が5.0mm以上であるフェライト系ステンレス熱延焼鈍鋼板とする。

Description

フェライト系ステンレス熱延焼鈍鋼板およびその製造方法
 本発明は、フェライト系ステンレス熱延焼鈍鋼板に関する。特に、本発明は、曲げ加工後の表面性状に優れるフェライト系ステンレス熱延焼鈍鋼板に関する。
 フェライト系ステンレス鋼は、高価なNiを多く含むオーステナイト系ステンレス鋼より安価であることから、多くの用途に使用されている。例えば自動車部品のブラケットなどにステンレス鋼板が適用されている。ブラケット材には様々な部品がボルトおよび溶接などで取り付けられ、剛性確保の観点から板厚の厚いステンレス鋼が適用され、プレス加工により所定の形状の部材に成形されて使用される場合がある。しかしながら、プレス加工後の部材の表面に、筋状模様、しわ、肌荒れ、などが発生することがあるという外観上の問題がある。これまでも厚物ステンレス鋼板に関して、材質、曲げ加工性、および表面性状などについて種々の検討がなされている。
 厚物に関する技術として、例えば特許文献1では、曲げ加工ではなく、せん断、打ち抜き加工される板厚5mm以上のフランジ用厚手フェライト系ステンレス鋼板の結晶方位を制御し、低温靱性を向上させる技術が開示されている。加工後の表面性状に関する技術として、例えば特許文献2では、鋼成分、析出物、結晶粒径を制御した冷延焼鈍板について、円筒深絞り加工後の加工肌荒れを低減する技術が開示されている。また特許文献3では、熱間圧延時のオーステナイト量を最適化することにより冷延焼鈍板について、均一に材料が変形する引張加工による20%の歪付与後に優れたリジング性を確保する製造方法が開示されている。特許文献4では、フェライト相とマルテンサイト相の2相ないしマルテンサイト単相の高強度高靱性ステンレス鋼板の曲げ加工性に関する技術として、MnS系介在物粒子の形態制御により曲げ頂点での割れ発生を抑制し、曲げ性を向上する技術が開示されている。曲げ加工後のしわ深さに関する技術として、特許文献5では、熱間圧延温度800℃以下、後段3パスの摩擦係数を0.2以下、後段3パスの累積圧下率を50%以上の、すなわち低温、低摩擦係数、後段強圧下で熱間圧延して得られる金属組織が未再結晶の加工歪が蓄積した圧延加工組織熱延鋼板(熱延板焼鈍工程なし)について板厚表層部の硬さと板厚中心部の硬さとの硬さの比を制御することにより、曲率半径2mmとする90°曲げ後、曲げ外側に発生するしわ深さを少なくする技術が開示されている。
特許第5908936号公報 特許第5307170号公報 特許第3241114号公報 特許第3510787号公報 特開2001-181798号公報
 従来のブラケットなどの厚物用途のフェライト系ステンレス鋼板では、プレス加工後において、良好な表面性状が得られない場合がある。上述のような用途においては、従来の特許文献1に開示の技術で対処することは難しく、曲げ加工後に優れた表面性状を確保できないことが懸念される。特許文献2に開示の技術、特許文献3または特許文献4に開示の技術でも対処することは難しく、曲げ加工後の表面性状の改善を検討していない。特許文献5に開示の技術でも、板厚の影響が大きい曲げ加工時、再結晶組織である厚物の熱延焼鈍板の曲げ加工後の表面性状向上に関する知見を得ることはできない。
 本発明は、曲げ加工後の表面性状に優れるフェライト系ステンレス熱延焼鈍鋼板およびその製造方法を提供しようとするものである。
 本発明者らは、上記課題を解決するために、厚物用途のフェライト系ステンレス熱延焼鈍鋼板の曲げ加工後の表面性状に関して、成分および製造過程における組織、板表面(圧延面)の詳細な検討を行った。その結果、例えば5.0mm以上の厚物のフェライト系ステンレス鋼板の熱延焼鈍板の曲げ加工後の表面性状向上に対しては、成分および製造方法を限定し、板厚方向の複数の観察位置で平均結晶粒径を測定したときの平均結晶粒径の最大値と最小値の差を低減し、かつ板厚方向の結晶粒の展伸度(=結晶粒の圧延方向長さ/結晶粒の板厚方向厚さ)の最大値と最小値の差を低減し、均一な組織することが極めて有効であることを知見した。
 本発明者らはさらに検討を重ね、本発明を完成した。本発明の要旨は次のとおりである。
 [1]質量%で、C:0.001~0.025%、Si:0.05~0.70%、Mn:0.05~0.50%、P:0.050%以下、S:0.01%以下、Cr:10.0~18.0%、Ni:0.01~1.00%、Al:0.001~0.10%、N:0.001~0.025%、Ti:0.01~0.40%、を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、下記の測定方法1で測定した平均結晶粒径の最大値と最小値の差が50μm以下であり、下記の測定方法2で測定した結晶粒の展伸度の最大値と最小値の差が5.0以下であるフェライト系ステンレス熱延焼鈍鋼板。
(測定方法1)
 表面含む表層、板厚1/8面の位置、板厚2/8面の位置、板厚3/8面の位置、板厚4/8面の位置、板厚5/8面の位置、板厚6/8面の位置、板厚7/8面の位置、裏面含む表層の9か所の観察位置で、圧延方向に沿った板厚断面を観察面とし、観察範囲を圧延方向1800μm×板厚方向1000μmとする。
そして、前記各観察位置において、観察範囲の面積/観察範囲に含まれる結晶粒の個数の平方根((1800×1000/観察範囲に含まれる結晶粒の個数)1/2)を算出し、これを前記各観察位置における平均結晶粒径とし、その最大値と最小値の差を求める。
(測定方法2)
 表面含む表層、板厚1/8面の位置、板厚2/8面の位置、板厚3/8面の位置、板厚4/8面の位置、板厚5/8面の位置、板厚6/8面の位置、板厚7/8面の位置、裏面含む表層の9か所の観察位置で、圧延方向に沿った板厚断面を観察面とし、観察範囲を圧延方向1800μm×板厚方向1000μmとする。
そして、前記各観察位置において、結晶粒の圧延方向長さ/結晶粒の板厚方向厚さを算出し、これを前記各観察位置における展伸度とし、その最大値と最小値の差を求める。
ここで、前記結晶粒の圧延方向長さは、1800μm/圧延方向の平均粒界の数であり、前記圧延方向の平均粒界の数は、上記観察位置ごとに観察範囲内で圧延方向に1800μmの長さの線を5本引き、前記各線を横切る粒界の数の平均とする。前記結晶粒の板厚方向厚さは、1000μm/板厚方向の平均粒界の数であり、前記板厚方向の平均粒界の数は、上記観察位置ごとに観察範囲内で板厚方向に1000μmの長さの線を5本引き、前記各線を横切る粒界の数の平均とする。
 [2]前記成分組成に加えて、さらに、質量%で、Cu:0.01~1.00%、Mo:0.01~1.00%、Co:0.01~0.50%の1種または2種以上を含有する、[1]に記載のフェライト系ステンレス熱延焼鈍鋼板。
 [3]前記成分組成に加えて、さらに、質量%で、V:0.01~0.10%、Zr:0.01~0.10%、Nb:0.01~0.10%、B:0.0003~0.0030%、Mg:0.0005~0.0030%、Ca:0.0003~0.0030%、Y:0.01~0.20%、REM(希土類金属):0.01~0.10%、Sn:0.001~0.500%およびSb:0.001~0.500%のうちから選んだ1種または2種以上を含有する、[1]又は[2]に記載のフェライト系ステンレス熱延焼鈍鋼板。
 [4][1]~[3]のいずれかに記載のフェライト系ステンレス熱延焼鈍鋼板の製造方法であって、圧延終了温度800~950℃で熱間圧延を行い熱延鋼板を得る熱間圧延工程と、該熱間圧延工程後の熱延鋼板に対して、昇温速度5~100℃/時間で200℃から700~900℃の温度範囲の熱延板焼鈍温度まで加熱し、かつ、700~900℃の温度範囲に1~50時間滞留する熱延板焼鈍を行う、フェライト系ステンレス熱延焼鈍鋼板の製造方法。
 本発明のフェライト系ステンレス熱延焼鈍鋼板は、曲げ加工後の表面性状に優れる。
 以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。
 まず、本発明においてフェライト系ステンレス熱延焼鈍鋼板の成分組成を上記した範囲に限定した理由について説明する。成分組成に関する「%」表示は、特に断らない限り「質量%」を意味するものとする。
 C:0.001~0.025%
 Cを過剰に含有すると、Cは、炭化物として不均一なサイズで鋼中に不均一に局在して析出し、整粒な再結晶粒成長を阻害し展伸粒組織となる要因となり、曲げ加工後の表面性状を低下させる。C含有量は低いほど好ましく、本発明では、C含有量を0.025%以下とする。C含有量は、好ましくは0.010%以下である。一方、過度のC含有量低減は製鋼コストが増加するため、C含有量の下限を0.001%とする。C含有量は、好ましくは0.005%以上である。
 Si:0.05~0.70%
 Siは鋼の脱酸に寄与するが、Si含有量が0.05%未満ではその効果は得られない。よって、Si含有量は0.05%以上とする。Si含有量は、好ましくは0.15%以上であり、より好ましくは0.20%以上である。一方、Si含有量が0.70%を超えると鋼が硬質化し、曲げ性に悪影響を及ぼす。よってSi含有量は0.70%以下とする。Si含有量は、好ましくは0.60%以下であり、より好ましくは0.40%以下である。
 Mn:0.05~0.50%
 Mnは、組織微細化に寄与し、均一な組織を得る効果を有するが、Mn含有量が0.05%未満ではその効果は得られない。よって、Mn含有量は0.05%以上とする。Mn含有量は、好ましくは0.15%以上であり、より好ましくは0.25%以上である。しかし、Mnを過剰に含有するとMnSが多量に形成し、耐食性に悪影響があるため、Mn含有量は0.50%以下とする。Mn含有量は、好ましくは0.45%以下であり、より好ましくは0.40%以下である。
 P:0.050%以下
 P含有量が0.050%を超えると、粒界にPが偏析したり、FeTiPなどとして不均一なサイズで鋼中に不均一に局在して析出する。その結果、Pは、含有量が過剰になると、整粒な再結晶粒成長を阻害し展伸粒組織となる要因となり、曲げ加工後の表面性状を低下させる。このため、P含有量は低いほど好ましい。さらに、P含有量が過剰になると耐食性にも悪影響を及ぼすため、P含有量は0.050%以下とする。P含有量は、好ましくは0.040%以下である。P含有量は低いほど好ましく、下限は特に規定しないが、過度のP含有量低減は製鋼コストが増加するため、P含有量の下限を0.01%とすることが好ましい。
 S:0.01%以下
 Sは、MnS介在物を形成し、耐食性に悪影響を及ぼすため、Sの含有量は少ないほど好ましい。そこで、本発明では、S含有量を0.01%以下とする。S含有量は、好ましくは0.005%以下であり、より好ましくは0.004%以下である。S含有量は低いほど好ましく、下限は特に規定しないが、過度のS含有量低減は製鋼コストが増加するため、S含有量の下限を0.0003%とすることが好ましい。
 Cr:10.0~18.0%
 Crは、耐食性を向上させる元素であり、フェライト系ステンレス鋼板では不可欠の元素である。このような効果はCr含有量10.0%以上で得られるため、Cr含有量は10.0%以上とする。Cr含有量は、好ましくは10.5%以上である。一方、Cr含有量が18.0%を超えると、伸びが顕著に低下する。よって、Cr含有量は18.0%以下とする。Cr含有量は、15.0%以下が好ましく、より好ましくは13.0%以下である。
 Ni:0.01~1.00%
 Niは、耐食性および靱性の向上に有用な元素である。この効果は、Ni含有量を0.01%以上とすることで得られる。一方で、Ni含有量が1.00%を超えると、曲げ性に悪影響を及ぼす。よって、Ni含有量は1.00%以下とする。Ni含有量は、好ましくは0.05%以上であり、より好ましくは0.10%以上である。また、Ni含有量は、好ましくは0.60%以下であり、より好ましくは0.40%以下である。
 Al:0.001~0.10%
 Alは、脱酸剤として有用な元素である。この効果は、Al含有量を0.001%以上にすることで得られる。しかし、Al含有量が0.10%を超えると、Alは、AlNなどAl系介在物としてフェライト粒界に不均一なサイズで鋼中に不均一に局在して析出する。その結果、Alは、含有量が過剰な場合、整粒な再結晶粒成長を阻害し展伸粒組織となる要因となり、曲げ加工後の表面性状を低下させる。そこで、Al含有量の上限を0.10%とする。Al含有量は、好ましくは0.060%以下であり、より好ましくは0.040%以下である。
 N:0.001~0.025%
 NはCr窒化物を形成し耐食性の低下の原因となるため、N含有量は低いほど好ましい。そこで、本発明では、N含有量を0.025%以下とする。N含有量は、好ましくは0.010%以下である。一方、N含有量の過度の低減は製鋼コストが増加するため、N含有量の下限を0.001%とした。N含有量は、好ましくは0.003%以上である。
 Ti:0.01~0.40%
 Tiは、炭窒化物形成元素であり、C、Nを固定し、鋭敏化に起因する耐食性の低下を抑制する。上記効果はTiを0.01%以上含有すると発揮される。よって、Ti含有量は0.01%以上とする。一方、Ti含有量が0.40%を超えると、Tiは、炭化物として不均一なサイズで鋼中に不均一に局在して析出し、整粒な再結晶粒成長を阻害し展伸粒組織となる要因となり、曲げ加工後の表面性状を低下させるため、Ti含有量の上限を0.40%とする。Ti含有量は、好ましくは0.30%以下である。
 C、P、AlおよびTiは析出物として鋼中に存在し、それぞれ過剰に含有すると、板厚方向の結晶粒の展伸度のばらつきに影響をおよぼす。展伸度のばらつきを生じる理由は以下のとおりと考えられる。板厚中心部より板厚表層部のほうが、熱延加熱時、熱延板焼鈍時に高温にさらされる時間が長く、板厚表層部では析出物が再溶解し、鋼板温度の低下にともない再析出する析出物が板厚中心部より多い。再析出した析出物は微細均一に存在するため、再結晶粒は整粒になりやすい。一方、板厚中心部では、板厚表層部より加熱昇温速度は遅いため低温の時間が長く、析出物の再溶解が少なく、未固溶の析出物が粗大に不均一に局所的に存在するため、再結晶粒は整粒になりにくい。したがって表層では、比較的、展伸度が小さくなるが、板厚中心部では整粒組織を得ることが困難となり、展伸度が大きくなり、結果として板厚方向の結晶粒の展伸度の最大値と最小値の差が5.0より大きくなり、曲げ加工後の表面性状を低下させる。
 以上が本発明の基本成分の組成であり、上記基本成分以外の残部は、Feおよび不可避的不純物とすることができる。本発明ではさらに、任意成分として、質量%で、Cu:0.01~1.00%、Mo:0.01~1.00%、Co:0.01~0.50%の1種または2種以上を含有してもよい。
 Cu:0.01~1.00%
 Cuは耐食性を向上させる効果がある。一方、過剰にCuを含有すると、鋼を硬質化して曲げ性に悪影響を及ぼす。そのため、Cuを含有する場合は、Cu含有量を0.01~1.00%とする。Cuを含有する場合、Cu含有量は、好ましくは0.10%以上であり、より好ましくは0.20%以上である。また、Cuを含有する場合、Cu含有量は、好ましくは0.80%以下であり、より好ましくは0.50%以下である。
 Mo:0.01~1.00%
 Moは耐食性を向上させる効果がある。一方、過剰にMoを含有すると、鋼を硬質化して曲げ性に悪影響を及ぼす。そのため、Moを含有する場合は、Mo含有量を0.01~1.00%とする。Moを含有する場合、Mo含有量は、好ましくは0.10%以上であり、より好ましくは0.20%以上である。また、Moを含有する場合、Mo含有量は、好ましくは0.80%以下であり、より好ましくは0.50%以下である。
 Co:0.01~0.50%
 Coは耐隙間腐食性を向上させる効果がある。一方、過剰にCoを含有すると、鋼を硬質化して曲げ性に悪影響を及ぼす。そのため、Coを含有する場合は、Co含有量を0.01~0.50%とする。Coを含有する場合、Co含有量は、好ましくは0.05%以上である。また、Coを含有する場合、Co含有量は、好ましくは0.30%以下であり、より好ましくは0.10%以下である。
 さらに、質量%で、V:0.01~0.10%、Zr:0.01~0.10%、Nb:0.01~0.10%、B:0.0003~0.0030%、Mg:0.0005~0.0030%、Ca:0.0003~0.0030%、Y:0.01~0.20%およびREM(希土類金属):0.01~0.10%、Sn:0.001~0.500%およびSb:0.001~0.500%のうちから選んだ1種または2種以上を任意成分として含有することができる。
 V:0.01~0.10%
 Vは、CおよびNとの親和力の高い元素であり、熱間圧延時に炭化物あるいは窒化物として析出し、母相中の固溶Cおよび固溶Nを低減させ、加工性を向上させる効果がある。一方、過剰にVを含有すると、鋼を硬質化し、曲げ性に悪影響を及ぼす。そのため、Vを含有する場合は、V含有量を0.01~0.10%とする。Vを含有する場合、V含有量は、好ましくは0.02%以上である。また、Vを含有する場合、V含有量は、好ましくは0.05%以下である。
 Zr:0.01~0.10%
 Zrは、CおよびNとの親和力の高い元素であり、熱間圧延時に炭化物あるいは窒化物として析出し、母相中の固溶Cおよび固溶Nを低減させ、加工性を向上させる効果がある。一方、過剰にZrを含有すると、鋼を硬質化し、曲げ性に悪影響を及ぼす。そのため、Zrを含有する場合は、Zr含有量を0.01~0.10%とする。Zrを含有する場合、Zr含有量は、好ましくは0.02%以上である。また、Zrを含有する場合、Zr含有量は、好ましくは0.05%以下である。
 Nb:0.01~0.10%
 Nbは、CおよびNとの親和力の高い元素であり、熱間圧延時に炭化物あるいは窒化物として析出し、母相中の固溶Cおよび固溶Nを低減させ、加工性を向上させる効果がある。一方、過剰にNbを含有すると、鋼を硬質化し、曲げ性に悪影響を及ぼす。そのため、Nbを含有する場合は、Nb含有量を0.01~0.10%とする。Nbを含有する場合、Nb含有量は、好ましくは0.02%以上である。また、Nbを含有する場合、Nb含有量は、好ましくは0.05%以下である。
 B:0.0003~0.0030%
 Bは、低温二次加工脆化を防止するのに有効な元素である。一方、過剰にBを含有すると熱間加工性が低下する。そのため、Bを含有する場合は、B含有量を0.0003~0.0030%とする。Bを含有する場合、B含有量は、好ましくは0.0005%以上である。また、Bを含有する場合、B含有量は、好ましくは0.0020%以下である。
 Mg:0.0005~0.0030%
 Mgは、溶鋼中でAlとともにMg酸化物を形成し脱酸剤として作用する。一方、過剰にMgを含有すると鋼の靱性が低下して製造性が低下する。そのため、Mgを含有する場合は、Mg含有量を0.0005~0.0030%とする。Mgを含有する場合、Mg含有量は、好ましくは0.0010%以上である。また、Mgを含有する場合、Mg含有量は、好ましくは0.0020%以下である。
 Ca:0.0003~0.0030%
 Caは、熱間加工性を向上させる元素である。一方、過剰にCaを含有すると鋼の靱性が低下して製造性が低下するとともに、さらに、CaSの析出により耐食性が低下する。そのため、Caを含有する場合は、Ca含有量を0.0003~0.0030%とする。Caを含有する場合、Ca含有量は、好ましくは0.0005%以上である。また、Caを含有する場合、Ca含有量は、好ましくは0.0020%以下である。
 Y:0.01~0.20%
 Yは、溶鋼の粘度減少を減少させ、清浄度を向上させる元素である。一方、過剰にYを含有するとその効果は飽和し、さらに、加工性が低下する。そのため、Yを含有する場合は、Y含有量を0.01~0.20%とする。Yを含有する場合、Y含有量は、好ましくは0.03%以上である。また、Yを含有する場合、Y含有量は、好ましくは0.10%以下である。
 REM(希土類金属):0.01~0.10%
 REM(希土類金属:La、Ce、Ndなどの原子番号57~71の元素)は、耐高温酸化性を向上させる元素である。一方、過剰にREMを含有するとその効果は飽和し、さらに、熱間圧延の際に表面欠陥が生じ、製造性が低下する。そのため、REMを含有する場合は、REM含有量を0.01~0.10%とする。REMを含有する場合、REM含有量は、好ましくは0.03%以上である。また、REMを含有する場合、REM含有量は、好ましくは0.05%以下である。
 Sn:0.001~0.500%
 Snは、圧延時における変形帯生成の促進による加工性の向上に効果的である。一方、過剰にSnを含有するとその効果は飽和し、さらに加工性が低下する。そのため、Snを含有する場合は、Sn含有量を0.001~0.500%とする。Snを含有する場合、Sn含有量は、好ましくは0.003%以上である。また、Snを含有する場合、Sn含有量は、好ましくは0.200%以下である。
 Sb:0.001~0.500%
 Sbは、圧延時における変形帯生成の促進による加工性の向上に効果的である。一方、過剰にSbを含有するとその効果は飽和し、さらに加工性が低下する。そのため、Sbを含有する場合は、Sb含有量を0.001~0.500%とする。Sbを含有する場合、Sb含有量は、好ましくは0.003%以上である。また、Sbを含有する場合、Sb含有量は、好ましくは0.200%以下である。
 また、上記任意成分の含有量が下限値未満の場合、その成分は不可避的不純物として含まれるものとする。
 曲げ加工では、曲げ中立軸から表層側に向かって引張歪は大きく、板厚の薄い材料より板厚の厚い材料のほうが板厚表層側で大きな引張歪が付与される。また板厚の薄い材料より板厚の厚い材料のほうが、表層から中心までの体積が大きく、曲げ加工時、板厚方向の組織の影響を強く受けるため、板厚5.0mm以上の厚物のフェライト系ステンレス鋼板の熱延焼鈍板の曲げ加工後の表面性状向上に対しては、組織の均一性を確保することが重要である。
 フェライト系ステンレス熱延焼鈍鋼板の曲げ加工後の表面性状を向上するには、成分、かつ製造方法を限定し、板厚方向の平均結晶粒径の最大値と最小値の差を50μm以下に低減し、板厚方向の結晶粒の展伸度の最大値と最小値の差を5.0以下に低減し、板厚方向の結晶粒径のばらつき、かつ結晶粒径の形状のばらつきを低減し、板厚方向に均一な組織とすることが極めて有効であることを本発明者らは知見した。
 平均結晶粒径の最大値と最小値の差
 本発明のフェライト系ステンレス熱延焼鈍鋼板は、下記の測定方法1で測定した平均結晶粒径の最大値と最小値の差が50μm以下である。上記差が50μmを超えると曲げ加工後に良好な表面性状が得られない。下限は特に限定されず上記差は0μmでもよい。
(測定方法1)
 表面含む表層、板厚1/8面の位置、板厚2/8面の位置、板厚3/8面の位置、板厚4/8面の位置、板厚5/8面の位置、板厚6/8面の位置、板厚7/8面の位置、裏面含む表層の9か所の観察位置で、圧延方向に沿った板厚断面を観察面とし、観察範囲を圧延方向1800μm×板厚方向1000μmとする。
そして、前記各観察位置において、観察範囲の面積/観察範囲に含まれる結晶粒の個数の平方根((1800×1000/観察範囲に含まれる結晶粒の個数)1/2)を算出し、これを前記各観察位置における平均結晶粒径とし、その最大値と最小値の差を求める。
 結晶粒の展伸度の最大値と最小値の差
 本発明のフェライト系ステンレス熱延焼鈍鋼板は、下記の測定方法2で測定した結晶粒の展伸度の最大値と最小値の差が5.0以下である。上記差が5.0を超えると良好な表面性状が得られない。下限は特に限定されず上記差は0でもよい。
(測定方法2)
 表面含む表層、板厚1/8面の位置、板厚2/8面の位置、板厚3/8面の位置、板厚4/8面の位置、板厚5/8面の位置、板厚6/8面の位置、板厚7/8面の位置、裏面含む表層の9か所の観察位置で、圧延方向に沿った板厚断面を観察面とし、観察範囲を圧延方向1800μm×板厚方向1000μmとする。
そして、前記各観察位置において、結晶粒の圧延方向長さ/結晶粒の板厚方向厚さを算出し、これを前記各観察位置における展伸度(展伸度=結晶粒の圧延方向長さ/結晶粒の板厚方向厚さ)とし、その最大値と最小値の差を求める。
ここで、前記結晶粒の圧延方向長さは、1800μm/圧延方向の平均粒界の数(結晶粒の圧延方向長さ=1800μm/圧延方向の平均粒界の数)であり、前記圧延方向の平均粒界の数は、上記観察位置ごとに観察範囲内で圧延方向に1800μmの長さの線を5本引き、前記各線を横切る粒界の数の平均とする。また、前記結晶粒の板厚方向厚さは、1000μm/板厚方向の平均粒界の数(結晶粒の板厚方向厚さ=1000μm/板厚方向の平均粒界の数)であり、前記板厚方向の平均粒界の数は、上記観察位置ごとに観察範囲内で板厚方向に1000μmの長さの線を5本引き、前記5本の各線を横切る粒界の数の平均とする。
 なお、測定方法1、測定方法2において、表面含む表層の観察位置における観察範囲(測定範囲)は、圧延方向1800μm×表面から板厚方向(裏面方向)に1000μmの範囲であり、裏面含む表層の観察位置における観察範囲は、圧延方向1800μm×裏面から板厚方向(表面方向)に1000μmの範囲であり、その他の観察位置における観察範囲は、圧延方向1800μm×板厚各面の観察位置を中央とした板厚方向1000μmの範囲である。また、各観察位置における観察範囲の一部の領域が、他の観察位置の観察範囲に含まれてもよい。
 また、測定方法1において、観察範囲に含まれる結晶粒の個数は、観察範囲に完全に含まれる結晶粒の個数(n1)と、観察範囲に一部が含まれる結晶粒の個数(n2)を手動で数え、n1+(1/2)×n2として算出した。
 また、測定方法2において、観察位置ごとに観察範囲内で圧延方向に1800μmの長さの線を5本引く際には、前記各線により観察範囲を板厚方向に6等分するように線を引き、また、観察位置ごとに観察範囲内で板厚方向に1000μmの長さの線を5本引く際には、前記各線により観察範囲を圧延方向に6等分するように線を引くようにする。
 板厚:5.0mm以上
 本発明は、厚物用途のフェライト系ステンレス熱延焼鈍鋼板の曲げ加工後の表面性状を改善する発明である。「厚物」とは板厚が5.0mm以上であり、特に、板厚が7.0mm以上の場合に、効果が顕著である。板厚の上限は特に限定されないが、一例として20.0mm以下である。
 次に、本発明のフェライト系ステンレス熱延焼鈍鋼板の製造方法について説明する。
 まずは、上記した成分組成の鋼を、転炉、電気炉、真空溶解炉等の公知の方法で溶製し、さらにVOD(Vacuum Oxygen Decarburization)法あるいはAOD法(Argon Oxygen Decarburization)等にて二次精錬を行う。その後連続鋳造法あるいは造塊-分塊法により鋼素材(スラブ)とする。このスラブを、1050~1150℃で1~24時間加熱するか、あるいは高温のスラブを直接、熱間圧延工程に供する。熱間圧延工程において、圧延終了温度800~950℃の条件で、板厚5.0mm以上になるように熱間圧延する。こうして作製した熱延鋼板を、昇温速度5~100℃/時間で200℃から700~900℃の温度範囲の熱延板焼鈍温度まで加熱し、かつ、700~900℃の温度範囲に1~50時間滞留する熱延板焼鈍を行う熱延板焼鈍工程に供する。熱延板焼鈍工程後には酸洗、表面研削を行い、スケールを除去する脱スケール処理を行ってもよい。スケールを除去した熱延焼鈍板にはスキンパス圧延を行ってもよい。
 熱延板焼鈍後に所定のばらつきの少ない結晶粒径かつ結晶粒の展伸度を得るためには、圧延終了温度、熱延板焼鈍時の昇温速度、焼鈍温度および滞留時間を適切に制御することによって、圧延中に局所的に発生する不均一な回復、再結晶を極力抑制しつつ、圧延ひずみを効果的に鋼板全体に均一に付与し、鋼板全体均一に温度ムラなく加熱する必要がある。
 圧延終了温度:800~950℃
 熱延板焼鈍後に所定の結晶粒径かつ結晶粒の展伸度ばらつきの少ない組織を得るためには、圧延終了温度を適切に制御することによって、熱間圧延によって付与される圧延ひずみが回復によって解消されることを防ぎつつ、特に板厚表層部から板厚中心まで圧延ひずみを効果的に均一に付与し、十分な再結晶サイトを鋼板全体に均一に導入する必要がある。
 圧延終了温度が950℃を超えると、圧延時の変形抵抗が低下することにともない、表層に圧延時のせん断変形によるせん断歪が導入されやすくなり板厚方向に均一に歪を付与することが困難となる。また、圧延によって付与したひずみの急速な回復や一部再結晶が生じて、板厚表層部から板厚中心まで圧延ひずみが効果的に均一に付与されず、次工程の熱延板焼鈍後における再結晶サイトが不足したり、または熱延板焼鈍でひずみの回復および再結晶のタイミングにばらつきが生じるため、熱延板焼鈍後に不均一な混粒組織となり、所定の結晶粒径かつ結晶粒の展伸度ばらつきの少ない組織を得ることができない。圧延終了温度は低いほうが好ましく、圧延終了温度を低くすることで、変形抵抗が高くなり、表層におけるせん断変形が起こりにくくなり、板厚方向に均一に歪が蓄積可能となり、次工程の熱延板焼鈍後に均一な再結晶組織が得られる。しかしながら、圧延終了温度を800℃未満に過度に低温化すると、鋼板温度の低下に伴って圧延荷重が著しく上昇するため製造上好ましくなく、鋼板表面の肌荒れが発生して表面品質が低下する場合がある。そのため、板厚表層部から板厚中心まで全体の組織の均一性を確保するには、圧延終了温度は800~950℃の範囲とする。好ましくは、圧延終了温度は825~925℃の範囲とする。より好ましくは、圧延終了温度は850~900℃の範囲とする。
 昇温速度:5~100℃/時間
 本発明では上記熱間圧延工程終了後、冷却された熱延鋼板に対して、熱延板焼鈍を行う。本発明では熱間圧延工程において板厚表層部から板厚中心まで効果的に均一に圧延ひずみを付与し、再結晶サイトを増加させることによって熱延板焼鈍における結晶粒径および結晶粒の展伸度においてばらつきの少ない均一組織化を促進させる。この効果を得るためには熱延板焼鈍工程において、加熱開始後、200℃から700~900℃の温度範囲の熱延板焼鈍温度(均熱温度)までの昇温速度を5~100℃/時間の範囲とする必要がある。前記熱延板焼鈍温度までの昇温速度が100℃/時間を超えると、板厚表層部と板厚中心部での温度ムラが大きくなり、板厚方向で再結晶挙動が異なり、板厚表層では再結晶が十分進行し、微細整粒組織となるが、板厚中心部では入熱が不足し再結晶が不十分なため、部分的に回復または再結晶した粗大な展伸粒組織となり板厚方向に均一な所定の組織を得ることができない。一方、前記熱延板焼鈍温度までの昇温速度が5℃/時間より遅い場合、十分再結晶し、展伸粒はなくなり形状の均一化は可能となる。しかしながら、熱間圧延工程で析出した炭窒化物の一部が再固溶し、ピン止めサイトが消失したことにともない再結晶粒の一部が著しく粗大化し、熱延板焼鈍後に不均一な混粒組織となり、鋼板全体を均一微細な結晶粒径を有する組織とすることができない。また、生産性が低下するため前記昇温速度の下限は5℃/時間とする。好ましくは、前記昇温速度は10~50℃/時間の範囲である。なお、本発明において、200℃未満の領域での昇温速度は5~100℃/時間の範囲外であっても良い。これは200℃未満の領域では組織におよぼす昇温速度の影響が小さいからである。
 700~900℃の温度範囲に1~50時間滞留
 本発明では、熱延板焼鈍工程において、熱間圧延工程で形成させた圧延加工組織を再結晶させる。本発明では熱間圧延工程において板厚表層部から板厚中心まで効果的に均一に圧延ひずみを付与し、再結晶サイトを増加させることによって熱延板焼鈍における結晶粒径および結晶粒の展伸度においてばらつきの少ない均一組織化を促進させる。この効果を得るためには熱延鋼板を700~900℃の温度範囲に滞留させる必要がある。滞留温度が700℃未満では再結晶が不十分となり、板厚表層側では部分的に回復または再結晶した微細な整粒組織となるが、板厚中心部では再結晶が不十分な展伸粒組織となり結晶粒径および結晶粒の展伸度においてばらつきの少ない均一組織を得ることができない。一方、滞留温度が900℃を超えると、十分再結晶し、展伸粒はなくなり形状の均一化は可能となる。一方で、熱間圧延工程で析出した炭窒化物の一部が再固溶し、ピン止めサイトが消失したことにともない再結晶粒の一部が著しく粗大化し、熱延板焼鈍後に不均一な混粒組織となり、鋼板全体を均一微細な結晶粒径を有する組織とすることができない。そのため、板厚表層部から板厚中心まで全体の組織の均一性を確保するには、熱延鋼板の滞留温度は700~900℃の範囲とする。好ましくは、滞留温度は750~850℃の範囲である。
 また、板厚表層部から板厚中心まで全体の組織の均一性を確保するためには、熱延鋼板の滞留温度範囲に加えて、滞留する時間も重要であり、均一組織を得るためには熱延板焼鈍時の所定の滞留温度範囲での滞留時間を1~50時間とする必要がある。前記滞留時間が1時間より短いと、板厚表層部と板厚中心部での温度ムラが大きくなり、板厚方向で再結晶挙動が異なり、板厚表層では再結晶が十分進行し、微細整粒組織となるが、板厚中心部では入熱が不足し再結晶が不十分なため、部分的に回復または再結晶した粗大な展伸粒組織となり、板厚方向に均一な所定の組織を得ることができない。一方、前記滞留時間が50時間を超えると十分再結晶し、展伸粒はなくなり形状の均一化は可能となる。一方、熱間圧延工程で析出した炭窒化物の一部が再固溶し、ピン止めサイトが消失したことにともない再結晶粒の一部が著しく粗大化、熱延板焼鈍後に不均一な混粒組織となり、鋼板全体が均一微細な結晶粒径を有する組織を得ることができない。好ましくは、前記滞留時間は5~30時間の範囲である。なお、均熱前の昇温中、均熱後の冷却中であっても、700~900℃の温度範囲にある時間はこの滞留時間に含める。すなわち、熱延板焼鈍温度が700~900℃の温度範囲の場合には、700~900℃の温度範囲の滞留時間は、700℃~熱延板焼鈍温度までの昇温中の時間と、熱延板焼鈍温度での保持時間(均熱時間)と、熱延板焼鈍温度から700℃までの降温中の時間を含む。また、熱延板焼鈍後の700℃未満の冷却段階の冷却速度には制限を設けない。
 熱間圧延および熱延板焼鈍時の温度は放射率0.8の放射温度計により非接触で測定した鋼板表面温度を用いている。
 得られた熱延焼鈍鋼板には、必要に応じてショットブラストや酸洗による脱スケール処理を行ってもよい。さらに、表面性状を向上させるために、研削や研磨等を施してもよい。また、本発明が提供する熱延焼鈍鋼板はその後、冷間圧延および冷延板焼鈍を行ってもよい。
 本発明のフェライト系ステンレス熱延焼鈍鋼板は、曲げ加工が施される使途に好適である。鋼板の板厚は5.0mm以上である。また、鋼板の板厚は、特に限定しないが、例えば20.0mm以下とすることができ、15.0mm以下とすることができる。
 以下、本発明を、実施例に基づいて具体的に説明する。本発明の技術的範囲は以下の実施例に限定されない。
 表1に示す成分組成(残部はFeおよび不可避的不純物)になる鋼を、小型真空溶解炉で溶製し、50kgの鋼塊とした。これらの鋼塊に、表2に示す条件で熱間圧延を行った(熱間圧延工程)。熱間圧延時の鋼塊加熱温度は1100℃、加熱保持時間は30分とした。ついで、これらの熱延鋼板に対して表2に示す条件で熱延板焼鈍を施した(熱延板焼鈍工程)。
 上記のようにして得られた各熱延焼鈍鋼板から試験片を採取し、組織および曲げ加工後の表面性状を評価した。
 (1)組織評価
 圧延方向が長手となるように板厚×10mm×15mmの試験片を採取し、王水エッチングにより結晶粒界を現出させ、圧延方向に平行なL断面観察を実施した。板厚方向の観察位置は圧延面を含む表面表層、板厚1/8面の位置、板厚2/8面の位置、板厚3/8面の位置、板厚4/8面の位置、板厚5/8面の位置、板厚6/8面の位置、板厚7/8面の位置、圧延面を含む裏面表層の9か所である。平均結晶粒径および結晶粒の展伸度を測定した観察範囲は圧延方向1800μm、板厚方向1000μmの面積範囲である。平均結晶粒径は観察範囲の面積/観察範囲に含まれる結晶粒の個数の平方根、すなわち平均結晶粒径=(1800×1000/観察範囲に含まれる結晶粒の個数)1/2として算出し、各観察位置の平均結晶粒径の最大値と最小値の差を求めている。結晶粒の展伸度は、観察範囲内で圧延方向に、1800μmの線を観察範囲を板厚方向に6等分するように5本引き、板厚方向に、1000μmの線を観察範囲を圧延方向に6等分するように5本引き、圧延方向に引いた前記5本の各線を横切る粒界の数の平均を圧延方向の平均粒界の数、板厚方向に引いた前記5本の各線を横切る粒界の数の平均を板厚方向の平均粒界の数とし、結晶粒の圧延方向長さ(1800μm/圧延方向の平均粒界の数)と結晶粒の板厚方向厚さ(1000μm/板厚方向の平均粒界の数)を求め、展伸度(結晶粒の圧延方向長さ/結晶粒の板厚方向厚さ)として算出し、各観察位置の展伸度の最大値と最小値の差を求めている。
 (2)曲げ加工後の表面性状評価
 曲げ試験はJIS2248:2006金属材料曲げ試験方法に準拠し、押曲げ法にて行った。試験片寸法は板厚×40mm×200mm、圧延直角方向(C方向)が試験片長手である。曲げ半径は20mm、曲げ角度は120°である。表面性状はJIS B 0601-2001に準拠し、キーエンス製のワンショット3D測定マイクロスコープVR-3100を用い、曲げ稜線直角方向の粗度曲線を測定し、最大高さRzを求めた。測定長は2.0cm、測定場所は曲げ頂点を中心に±1.0cmである。曲げ稜線直角方向の粗度曲線の最大高さRzが100μm以下の場合を曲げ加工後の表面性状性良好「○」と判定した。最大高さRzが100μm超えの場合を曲げ加工後の表面性状性不良「×」と判定した。結果を表2「曲げ加工後の表面性状」欄に示す。
 表2に示すとおり、本発明鋼はいずれも優れた曲げ加工後の表面性状を有している。これに対し、本発明範囲外の比較鋼は曲げ加工後の表面性状が劣っていた。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002

Claims (4)

  1.  質量%で、
    C:0.001~0.025%、
    Si:0.05~0.70%、
    Mn:0.05~0.50%、
    P:0.050%以下、
    S:0.01%以下、
    Cr:10.0~18.0%、
    Ni:0.01~1.00%、
    Al:0.001~0.10%、
    N:0.001~0.025%、
    Ti:0.01~0.40%、
    を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
    下記の測定方法1で測定した平均結晶粒径の最大値と最小値の差が50μm以下であり、
    下記の測定方法2で測定した結晶粒の展伸度の最大値と最小値の差が5.0以下であり、板厚が5.0mm以上である、フェライト系ステンレス熱延焼鈍鋼板。
    (測定方法1)
     表面含む表層、板厚1/8面の位置、板厚2/8面の位置、板厚3/8面の位置、板厚4/8面の位置、板厚5/8面の位置、板厚6/8面の位置、板厚7/8面の位置、裏面含む表層の9か所の観察位置で、圧延方向に沿った板厚断面を観察面とし、観察範囲を圧延方向1800μm×板厚方向1000μmとする。
    そして、前記各観察位置において、観察範囲の面積/観察範囲に含まれる結晶粒の個数の平方根((1800×1000/観察範囲に含まれる結晶粒の個数)1/2)を算出し、これを前記各観察位置における平均結晶粒径とし、その最大値と最小値の差を求める。
    (測定方法2)
     表面含む表層、板厚1/8面の位置、板厚2/8面の位置、板厚3/8面の位置、板厚4/8面の位置、板厚5/8面の位置、板厚6/8面の位置、板厚7/8面の位置、裏面含む表層の9か所の観察位置で、圧延方向に沿った板厚断面を観察面とし、観察範囲を圧延方向1800μm×板厚方向1000μmとする。
    そして、前記各観察位置において、結晶粒の圧延方向長さ/結晶粒の板厚方向厚さを算出し、これを前記各観察位置における展伸度とし、その最大値と最小値の差を求める。
    ここで、前記結晶粒の圧延方向長さは、1800μm/圧延方向の平均粒界の数であり、前記圧延方向の平均粒界の数は、上記観察位置ごとに観察範囲内で圧延方向に1800μmの長さの線を5本引き、前記各線を横切る粒界の数の平均とする。前記結晶粒の板厚方向厚さは、1000μm/板厚方向の平均粒界の数であり、前記板厚方向の平均粒界の数は、上記観察位置ごとに観察範囲内で板厚方向に1000μmの長さの線を5本引き、前記各線を横切る粒界の数の平均とする。
  2.  前記成分組成に加えて、さらに、質量%で、
    Cu:0.01~1.00%、
    Mo:0.01~1.00%、
    Co:0.01~0.50%の1種または2種以上を含有する、請求項1に記載のフェライト系ステンレス熱延焼鈍鋼板。
  3.  前記成分組成に加えて、さらに、質量%で、
    V:0.01~0.10%、
    Zr:0.01~0.10%、
    Nb:0.01~0.10%、
    B:0.0003~0.0030%、
    Mg:0.0005~0.0030%、
    Ca:0.0003~0.0030%、
    Y:0.01~0.20%、
    REM(希土類金属):0.01~0.10%、
    Sn:0.001~0.500%
    およびSb:0.001~0.500%のうちから選んだ1種または2種以上を含有する、請求項1または2に記載のフェライト系ステンレス熱延焼鈍鋼板。
  4.  請求項1~3のいずれかに記載のフェライト系ステンレス熱延焼鈍鋼板の製造方法であって、
    圧延終了温度800~950℃で熱間圧延を行い熱延鋼板を得る熱間圧延工程と、
    該熱間圧延工程後の熱延鋼板に対して、昇温速度5~100℃/時間で200℃から700~900℃の温度範囲の熱延板焼鈍温度まで加熱し、かつ、700~900℃の温度範囲に1~50時間滞留する熱延板焼鈍を行う熱延板焼鈍工程と、を有する、フェライト系ステンレス熱延焼鈍鋼板の製造方法。
PCT/JP2018/035099 2017-09-29 2018-09-21 フェライト系ステンレス熱延焼鈍鋼板およびその製造方法 WO2019065508A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020207003378A KR102409900B1 (ko) 2017-09-29 2018-09-21 페라이트계 스테인리스 열연 어닐링 강판 및 그의 제조 방법
JP2018564989A JP6518961B1 (ja) 2017-09-29 2018-09-21 フェライト系ステンレス熱延焼鈍鋼板およびその製造方法
CN201880051166.2A CN111032898B (zh) 2017-09-29 2018-09-21 铁素体系不锈钢热轧退火钢板及其制造方法
EP18863317.6A EP3623489A4 (en) 2017-09-29 2018-09-21 Annealed hot-rolled ferritic stainless steel sheet and process for its manufacture
US16/636,792 US11174540B2 (en) 2017-09-29 2018-09-21 Hot-rolled and annealed ferritic stainless steel sheet and method for manufacturing the same
MX2020001521A MX2020001521A (es) 2017-09-29 2018-09-21 Lamina de acero inoxidable ferritico laminada en caliente y recocida y metodo para la fabricacion de la misma.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-191034 2017-09-29
JP2017191034 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019065508A1 true WO2019065508A1 (ja) 2019-04-04

Family

ID=65901316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035099 WO2019065508A1 (ja) 2017-09-29 2018-09-21 フェライト系ステンレス熱延焼鈍鋼板およびその製造方法

Country Status (8)

Country Link
US (1) US11174540B2 (ja)
EP (1) EP3623489A4 (ja)
JP (1) JP6518961B1 (ja)
KR (1) KR102409900B1 (ja)
CN (1) CN111032898B (ja)
MX (1) MX2020001521A (ja)
TW (1) TWI658153B (ja)
WO (1) WO2019065508A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI731672B (zh) * 2020-05-08 2021-06-21 中國鋼鐵股份有限公司 低碳鋼片及其製造方法
JPWO2023027129A1 (ja) * 2021-08-24 2023-03-02

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51787B1 (ja) 1971-01-18 1976-01-10
JPS537170B2 (ja) 1974-08-21 1978-03-15
JPS598936B2 (ja) 1976-10-19 1984-02-28 三洋電機株式会社 投射型陰極線管の製造方法
JPH07216514A (ja) * 1994-01-26 1995-08-15 Nisshin Steel Co Ltd 冷間鍛造用フェライト系ステンレス鋼およびその鋼板の製造方法
JPH09287060A (ja) * 1996-04-19 1997-11-04 Nippon Steel Corp 加工性に優れた高純フェライト系ステンレス熱延鋼帯の製造方法
JP2001181798A (ja) 1999-12-20 2001-07-03 Kawasaki Steel Corp 曲げ加工性に優れたフェライト系ステンレス熱延鋼板およびその製造方法ならびに冷延鋼板の製造方法
JP2001192735A (ja) * 1999-11-02 2001-07-17 Kawasaki Steel Corp 延性、加工性および耐リジング性に優れたフェライト系Cr含有冷延鋼板およびその製造方法
JP2001207244A (ja) * 1999-09-09 2001-07-31 Kawasaki Steel Corp 延性、加工性および耐リジング性に優れたフェライト系ステンレス冷延鋼板およびその製造方法
JP3241114B2 (ja) 1992-07-14 2001-12-25 日新製鋼株式会社 リジング性および加工性に優れたフエライト系ステンレス鋼板の製造方法
JP2006328524A (ja) * 2005-01-24 2006-12-07 Nippon Steel & Sumikin Stainless Steel Corp 成形時の面内異方性が小さく耐リジング性及び耐肌荒れ性に優れたフェライト系ステンレス鋼薄板及びその製造方法
JP2012140687A (ja) * 2011-01-05 2012-07-26 Nisshin Steel Co Ltd Ti含有フェライト系ステンレス鋼熱延コイルおよび製造法
JP2015187290A (ja) * 2014-03-26 2015-10-29 新日鐵住金ステンレス株式会社 フランジ用フェライト系ステンレス鋼板とその製造方法およびフランジ部品

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2907673B2 (ja) * 1993-03-24 1999-06-21 新日本製鐵株式会社 耐高温塩害性に優れたフェライト系ステンレス鋼とその製造方法
JPH09256065A (ja) * 1996-03-22 1997-09-30 Nippon Steel Corp 表面特性に優れたフェライト系ステンレス鋼薄板の製造方法
JP3510787B2 (ja) 1998-04-16 2004-03-29 新日本製鐵株式会社 曲げ性の優れた高強度高靭性ステンレス鋼板
US6413332B1 (en) * 1999-09-09 2002-07-02 Kawasaki Steel Corporation Method of producing ferritic Cr-containing steel sheet having excellent ductility, formability, and anti-ridging properties
WO2003106725A1 (ja) * 2002-06-01 2003-12-24 Jfeスチール株式会社 Ti添加フェライト系ステンレス鋼板およびその製造方法
CN101328561A (zh) * 2007-06-22 2008-12-24 宝山钢铁股份有限公司 析出强化中铬铁素体不锈钢、带钢及其制造方法
CN102465198A (zh) * 2010-11-13 2012-05-23 山西太钢不锈钢股份有限公司 一种铁素体不锈钢方坯退火的方法
JP5307170B2 (ja) 2011-02-25 2013-10-02 新日鐵住金ステンレス株式会社 加工肌荒れの少ない成形性に優れたフェライト系ステンレス鋼板の製造方法
BR112013032272A2 (pt) * 2011-06-16 2016-12-20 Nippon Steel & Sumikin Sst chapa de aço inoxidável ferrítico que possui excelente resistência ao enrugamento e método de produção da mesma
CN102839328A (zh) 2011-06-24 2012-12-26 宝山钢铁股份有限公司 高深冲性低各向异性的铁素体不锈钢板及其制造方法
WO2015111403A1 (ja) * 2014-01-24 2015-07-30 Jfeスチール株式会社 ステンレス冷延鋼板用素材およびその製造方法
KR101841379B1 (ko) * 2014-02-05 2018-03-22 제이에프이 스틸 가부시키가이샤 페라이트계 스테인리스 열연 어닐링 강판, 그 제조 방법 및 페라이트계 스테인리스 냉연 어닐링 강판
CA2964055C (en) * 2014-10-31 2020-06-30 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite-based stainless steel plate, steel pipe, and production method therefor
JP6142971B1 (ja) * 2015-09-30 2017-06-07 Jfeスチール株式会社 フェライト系ステンレス鋼板

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51787B1 (ja) 1971-01-18 1976-01-10
JPS537170B2 (ja) 1974-08-21 1978-03-15
JPS598936B2 (ja) 1976-10-19 1984-02-28 三洋電機株式会社 投射型陰極線管の製造方法
JP3241114B2 (ja) 1992-07-14 2001-12-25 日新製鋼株式会社 リジング性および加工性に優れたフエライト系ステンレス鋼板の製造方法
JPH07216514A (ja) * 1994-01-26 1995-08-15 Nisshin Steel Co Ltd 冷間鍛造用フェライト系ステンレス鋼およびその鋼板の製造方法
JPH09287060A (ja) * 1996-04-19 1997-11-04 Nippon Steel Corp 加工性に優れた高純フェライト系ステンレス熱延鋼帯の製造方法
JP2001207244A (ja) * 1999-09-09 2001-07-31 Kawasaki Steel Corp 延性、加工性および耐リジング性に優れたフェライト系ステンレス冷延鋼板およびその製造方法
JP2001192735A (ja) * 1999-11-02 2001-07-17 Kawasaki Steel Corp 延性、加工性および耐リジング性に優れたフェライト系Cr含有冷延鋼板およびその製造方法
JP2001181798A (ja) 1999-12-20 2001-07-03 Kawasaki Steel Corp 曲げ加工性に優れたフェライト系ステンレス熱延鋼板およびその製造方法ならびに冷延鋼板の製造方法
JP2006328524A (ja) * 2005-01-24 2006-12-07 Nippon Steel & Sumikin Stainless Steel Corp 成形時の面内異方性が小さく耐リジング性及び耐肌荒れ性に優れたフェライト系ステンレス鋼薄板及びその製造方法
JP2012140687A (ja) * 2011-01-05 2012-07-26 Nisshin Steel Co Ltd Ti含有フェライト系ステンレス鋼熱延コイルおよび製造法
JP2015187290A (ja) * 2014-03-26 2015-10-29 新日鐵住金ステンレス株式会社 フランジ用フェライト系ステンレス鋼板とその製造方法およびフランジ部品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3623489A4

Also Published As

Publication number Publication date
EP3623489A4 (en) 2020-07-08
CN111032898A (zh) 2020-04-17
KR20200026952A (ko) 2020-03-11
JPWO2019065508A1 (ja) 2019-11-14
JP6518961B1 (ja) 2019-05-29
TW201920711A (zh) 2019-06-01
EP3623489A1 (en) 2020-03-18
CN111032898B (zh) 2021-08-20
US20200377980A1 (en) 2020-12-03
MX2020001521A (es) 2020-03-20
TWI658153B (zh) 2019-05-01
KR102409900B1 (ko) 2022-06-15
US11174540B2 (en) 2021-11-16

Similar Documents

Publication Publication Date Title
JP5609945B2 (ja) 高強度冷延鋼板およびその製造方法
JP5862051B2 (ja) 加工性に優れる高強度冷延鋼板ならびにその製造方法
WO2013035848A1 (ja) 中炭素鋼板、焼き入れ部材およびそれらの製造方法
JP5321605B2 (ja) 延性に優れる高強度冷延鋼板およびその製造方法
US6413332B1 (en) Method of producing ferritic Cr-containing steel sheet having excellent ductility, formability, and anti-ridging properties
JP5924459B1 (ja) ステンレス冷延鋼板用素材
JP5862052B2 (ja) 伸びおよび伸びフランジ性に優れる高強度冷延鋼板ならびにその製造方法
WO2017002147A1 (ja) フェライト系ステンレス鋼板およびその製造方法
CN107002199B (zh) 不锈钢及其制造方法
JP2013060657A (ja) 伸びおよび伸びフランジ性に優れる高強度冷延鋼板ならびにその製造方法
JP4962440B2 (ja) 高強度冷延鋼板の製造方法
JP6518961B1 (ja) フェライト系ステンレス熱延焼鈍鋼板およびその製造方法
JP5453747B2 (ja) 打抜き加工性に優れたステンレス冷延鋼板およびその製造方法
JP5217617B2 (ja) フェライト系ステンレス冷延鋼板およびその製造方法
JP2001192735A (ja) 延性、加工性および耐リジング性に優れたフェライト系Cr含有冷延鋼板およびその製造方法
JP6098537B2 (ja) 高強度冷延鋼板およびその製造方法
JP3941363B2 (ja) 延性、加工性および耐リジング性に優れたフェライト系ステンレス冷延鋼板およびその製造方法
JP7166878B2 (ja) フェライト系ステンレス鋼板、およびその製造方法ならびにフェライト系ステンレス部材
JP5644148B2 (ja) 加工後の表面外観に優れたステンレス冷延鋼板およびその製造方法
JP5338245B2 (ja) 強度−伸びバランスが良好で、かつリジングの小さいステンレス冷延鋼板およびその製造方法
JP2004143516A (ja) 冷却後の平たん度に優れる鋼板
WO2013160938A1 (ja) 延性に優れる高強度冷延鋼板およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018564989

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863317

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018863317

Country of ref document: EP

Effective date: 20191212

ENP Entry into the national phase

Ref document number: 20207003378

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE