WO2019064973A1 - 防曇層積層体 - Google Patents

防曇層積層体 Download PDF

Info

Publication number
WO2019064973A1
WO2019064973A1 PCT/JP2018/030244 JP2018030244W WO2019064973A1 WO 2019064973 A1 WO2019064973 A1 WO 2019064973A1 JP 2018030244 W JP2018030244 W JP 2018030244W WO 2019064973 A1 WO2019064973 A1 WO 2019064973A1
Authority
WO
WIPO (PCT)
Prior art keywords
antifogging layer
antifogging
composition
mass
layer
Prior art date
Application number
PCT/JP2018/030244
Other languages
English (en)
French (fr)
Inventor
優介 畠中
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2019544399A priority Critical patent/JPWO2019064973A1/ja
Publication of WO2019064973A1 publication Critical patent/WO2019064973A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B23/08Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/14Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose characterised by containing special compounding ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters

Definitions

  • the present disclosure relates to an antifogging layer laminate.
  • a hydrophilic antifogging layer that converts water droplets into a water film by making the surface super hydrophilic, and water absorption
  • a water absorbing antifogging layer is known that absorbs water droplets by using an elastic material.
  • an antifogging agent composition for forming an antifogging layer for example, a colloid is formed with an alkoxycellulose having a 2% aqueous solution viscosity of 1000 cps or less and an alkoxy group having 2 or more carbon atoms, or
  • an anti-fogging agent composition comprising an inorganic oxide which forms a colloid with an alkoxycellulose as a main component (see Japanese Patent Application Laid-Open No. 63-132989).
  • various antifogging compositions or antifogging paints listed below are disclosed.
  • an antifogging paint comprising, as essential components, a colloidal silica sol (A) formed using a basic catalyst and a hydrophilic polymer (B) is disclosed in JP 2000-336347 A.
  • the anti-fogging agent composition which contains silica sol (A) in which the form of a colloidal particle is chain
  • a water-absorbing organic-inorganic composite film comprising a water-absorbing organic polymer and an inorganic substance is coated on the surface of a substrate as an antifogging film-forming substrate, and the surface is water-repellent treated Technology is disclosed.
  • JP-A-2000-154374 98.0 to 99.8% by weight of water, 0.01 to 0.40% by weight of water-soluble cellulose and 0.16 to 1.99 of colloidal silica having an average particle diameter of 3 to 50 nm are disclosed.
  • an antifogging agent comprising a weight percent and having a concentration of the alkali component of 50 ppm or less.
  • JP-A-2009-54348 discloses a vehicle lamp having a light source in a housing, a lens for transmitting light from the light source, and a vent for adjusting pressure fluctuation in the housing, wherein the inner surface of the lens is water soluble.
  • a vehicle lamp is disclosed which is composed of a cross-linked product in which polymers are three-dimensionally cross-linked, and an antifogging coating having a water absorption of 1.5 to 25 mg / cm 2 is formed.
  • the antifogging layer formed of the antifogging agent composition or the like preferably has a thickness of a certain degree or more from the viewpoint of antifogging property and durability.
  • the antifogging layer using the existing antifogging agent, antifogging composition, etc. adheres between the obtained antifogging layer and the substrate when the coating amount is simply increased to increase the layer thickness. Problems may be caused, for example, the antifogging layer may be easily cracked, or the antifogging layer may be difficult to maintain good antifogging properties. there were.
  • the antifogging composition, the antifogging layer and the like described in the above do not pay attention to the problems caused by thickening of the antifogging film, and the occurrence of cracks due to thickening is suppressed and good antifogging properties And the antifogging layer which can express the generation
  • the problem to be solved by the embodiment of the present invention is that, even when the antifogging layer is a thick film, the occurrence of cracks in the antifogging layer and the peeling between the substrate and the antifogging layer are suppressed and prevented. It is providing the antifogging layer laminated body in which the fogging property and generation
  • Means for solving the above problems include the following aspects.
  • the loss tangent tan ⁇ is 0.1 or more in the temperature range of ⁇ 20 ° C. to 40 ° C., and the temperature at which tan ⁇ exhibits the maximum value is in the range of more than 40 ° C. and 118 ° C. or less.
  • the antifogging layer laminated body as described in ⁇ 1> whose film thickness of a ⁇ 2> antifogging layer is 5 micrometers-20 micrometers.
  • the antifogging layer laminated body as described in ⁇ 1> or ⁇ 2> whose average primary particle diameter of a ⁇ 3> silica particle is 10 nm or more and 20 nm or less.
  • ⁇ 5> The group consisting of a polymer having a cellulose skeleton, a mixture of two or more polymers having different glass transition temperatures, and a copolymer including two or more polymer units having different glass transition temperatures.
  • ⁇ 6> The antifogging layer laminate according to ⁇ 5>, wherein the two polymers in the mixture of two or more polymers having different glass transition temperatures are selected from hydrophilic polymers containing the same structural unit.
  • ⁇ 7> Containing of a first polymer having a lower glass transition temperature and a second polymer having a higher glass transition temperature among two polymers in a mixture of two or more polymers having different glass transition temperatures from each other
  • ⁇ 8> The antifogging layer laminate according to any one of ⁇ 1> to ⁇ 7>, wherein the binder contains at least one functional group selected from an alkoxysilyl group, a silanol group, and a hydrophilic group.
  • ⁇ 12> The antifogging layer laminate according to any one of ⁇ 1> to ⁇ 11>, which is a protective material of a light of a car or a protective material of a surveillance camera.
  • the antifogging layer laminate having a good ability to suppress the occurrence of drooping marks.
  • FIG. 1 is a partial schematic cross-sectional view showing an embodiment of the antifogging layer laminate of the present disclosure.
  • the amount of each component in the composition is the total amount of the plurality of substances present in the composition unless a plurality of substances corresponding to each component are present in the composition. means.
  • the notation not describing substitution and non-substitution includes not only one having no substituent but also one having a substituent.
  • the "alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • “mass%” and “weight%” are synonymous, and “mass part” and “part by weight” are synonymous.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) in the present disclosure use values measured by a gel permeation chromatography (GPC) analyzer.
  • GPC gel permeation chromatography
  • measurement of Mw and Mn by GPC is carried out using HLC-8120GPC and SC-8020 (both are manufactured by Tosoh Corporation) as measuring devices, and TSKgel (registered trademark) Super HM-H (6. It is carried out by using two pieces of 0 mm ID ⁇ 15 cm, Tosoh Corp., and using THF (tetrahydrofuran) as an eluent.
  • Measurement conditions are: sample concentration 0.5% by mass, flow rate 0.6 ml / min, sample injection volume 10 ⁇ l (microliter), measurement temperature 40 ° C., using a suggestive refractometer (RI) detector It can be carried out.
  • the calibration curve is the standard sample TSK standard, polystyrene of Tosoh Corp .: "A-500”, “F-1”, “F- 10", “F-80”, “F-380”, "A- Those prepared from 10 samples of “2500”, “F-4”, “F-40”, “F-128” and “F-700” can be used.
  • solvent means water, an organic solvent, and a mixed solvent of water and an organic solvent.
  • solid content in the present disclosure means a component excluding a solvent, and liquid components such as low molecular weight components other than the solvent are also included in the "solid content” in the present disclosure.
  • (meth) acrylic is a concept including acrylic and / or methacrylic.
  • “antifogging” refers to the ability to suppress the fogging of the antifogging layer.
  • “Fogging” in the present disclosure includes water vapor clouding, silicone gas clouding, and high haze values (i.e., low transparency).
  • the generation suppressing property of water dripping marks (hereinafter sometimes referred to as water dripping resistance) means the marks of water droplets flowing when the water droplets adhering to the surface of the anti-fog layer flow down, that is, water dripping It is said that the trace is hard to be formed on the surface of the antifogging layer. If the formation of the mark of water dripping is not suppressed, the mark where the water droplet flows on the anti-fog layer surface will be streaked, and the appearance of the anti-fog layer will be impaired.
  • the antifogging layer laminate of the present disclosure (hereinafter sometimes simply referred to as "laminate") has a substrate and an antifogging layer provided on at least a part of the substrate, and the antifogging layer Contains a binder and silica particles, and the loss tangent tan ⁇ (hereinafter, may be referred to as tan ⁇ ) of the antifogging layer at 1 Hz with respect to the temperature is 0.1 at a temperature of ⁇ 20 ° C. or more and 40 ° C.
  • the temperature at which tan ⁇ shows the maximum value is in the range of more than 40 ° C. and 118 ° C. or less, and the solid mass of the silica particles is A and the solid mass of the binder is B, the mass of both is in the following relationship Formula (1) is satisfied, and the film thickness of the antifogging layer is 2 ⁇ m or more and 30 ⁇ m or less. 0.07 ⁇ B / A ⁇ 2.00 Relational expression (1).
  • the antifogging layer laminate of the present disclosure contains a binder and silica particles in the antifogging layer, and the silica particles can impart good transparency and hydrophilicity to the antifogging layer.
  • the silica particles can impart good transparency and hydrophilicity to the antifogging layer.
  • inorganic oxides such as binders and colloidal silica described in JP-A-63-132989, JP-A-2005-314495, JP-A-2000-336347, or JP-A-2001-152137.
  • the antifogging layer in the present disclosure in which the content of the binder relative to the content of the silica particles is in the above range in contrast to the antifogging layer and the like formed by the antifogging composition containing The bondability between each other, the bondability between the silica particles and the substrate through the binder, and the like are further enhanced.
  • the antifogging layer in the present disclosure is considered to be an antifogging layer excellent in transparency and adhesion to a substrate, and peeling of the substrate and the antifogging layer is also suppressed.
  • a binder and a silica particle can form the structure which has a suitable space
  • the antifogging layer in the present disclosure has a relatively high value of 0.1 or more in a temperature range of ⁇ 20 ° C. or more and 40 ° C. or less, that is, in a temperature range from low temperature to normal temperature (25 ° C.).
  • tan ⁇ the flow stress of the film acting when the temperature is lowered to normal temperature after the film formation drying of the antifogging layer is relaxed.
  • the antifogging layer in the present disclosure measures tan ⁇ with respect to temperature, the temperature at which tan ⁇ exhibits the maximum value is more than 40 ° C. and 118 ° C. or less, that is, in the vicinity of the heating temperature at the time of film formation drying.
  • the antifogging layer laminate in the present disclosure has an antifogging layer having a film thickness of 2 ⁇ m or more and 30 ⁇ m or less having good water retentivity, there is no concern of cracking and film peeling, and the antifogging property is I think that it became good and the occurrence of water mark was suppressed.
  • FIG. 1 is a partial schematic cross-sectional view showing an embodiment of a laminate of the present disclosure.
  • the laminate 10 has a base 12 and an antifogging layer 14, the antifogging layer 14 includes silica particles 16 and a binder 18 covering the silica particles 16, and the silica particles 16 are mutually attached via the binder 18. Bonded and formed into a stone-flake-like anti-fog layer. In addition, it is estimated that a void 20 is formed between the silica particles 16 bonded via the binder 18.
  • the antifogging layer 14 exhibits tan ⁇ described later in a temperature range of ⁇ 20 ° C. or more and 40 ° C. or less.
  • the antifogging layer in the present disclosure contains a binder and silica particles, and meets the following conditions.
  • the antifogging layer has a tan ⁇ at 1 Hz to a temperature of 0.1 or more in a temperature range of -20 ° C. to 40 ° C., and a temperature at which tan ⁇ exhibits a maximum value exceeds 40 ° C. to 118 ° C. It is in the following range.
  • (II) Assuming that the solid mass of the silica particles is A and the solid mass of the binder is B, the mass of the both satisfy the following relational expression (1). 0.07 ⁇ B / A ⁇ 2.00 Relational expression (1)
  • the film thickness of the antifogging layer is 2 ⁇ m or more and 30 ⁇ m or less.
  • the antifogging layer in the present disclosure has a tan ⁇ at 1 Hz to a temperature of 0.1 or more in a region of a temperature of ⁇ 20 ° C. or more and 40 ° C. or less. That is, when a curve of tan ⁇ with respect to temperature is created at 1 Hz, the curve is at a position of 0.1 or more as a value of tan ⁇ in a region of a temperature of ⁇ 20 ° C. or more and 40 ° C. or less. In other words, the antifogging layer exhibits a value of 0.1 or more at which tan ⁇ in a low temperature range to a normal temperature range is a relatively high value.
  • the tan ⁇ in the region of a temperature of ⁇ 20 ° C. or more and 40 ° C. or less is preferably 0.12 or more, more preferably 0.15 or more, and still more preferably 0.18 or more.
  • the upper limit value of tan ⁇ in the above temperature range is not particularly limited, but is preferably 0.40 or less from the viewpoint that a hard antifogging layer can be formed to a certain extent.
  • the antifogging layer according to the present disclosure has a temperature at which tan ⁇ at 1 Hz with respect to the temperature exhibits a maximum value in the range of more than 40 ° C. and 118 ° C. or less. That is, in the curve obtained when the curve of tan ⁇ with respect to temperature is made at 1 Hz, the temperature at which tan ⁇ exhibits the maximum value, in other words, the peak temperature is in the range of more than 40 ° C. and 118 ° C. or less.
  • the peak temperature described above is preferably in the range of 42 ° C. or more and 110 ° C. or less, more preferably in the range of 45 ° C. or more and 105 ° C. or less, and still more preferably in the range of 50 ° C. or more and 100 ° C. or less .
  • the film thickness of the antifogging layer is increased by satisfying the above conditions, specifically, even when the thickness is 2 ⁇ m or more and 30 ⁇ m or less, generation of a crack when forming the antifogging layer, and between the antifogging layer and the substrate Peeling is effectively suppressed.
  • the measurement of tan ⁇ with respect to temperature can be performed using a dynamic viscoelasticity measuring device as a measuring device.
  • a dynamic viscoelasticity measuring device As a measuring device.
  • the value of tan ⁇ obtained using a dynamic viscoelasticity measurement apparatus “Rheogel E-4000” manufactured by UBM Co., Ltd. is employed.
  • the sample used for measurement collects what separated the antifogging layer from the base material of a laminated body, and uses what was cut by width 6 mm x length 20 mm.
  • the thickness of the cut antifogging layer sample is measured with an electronic caliper, and each time the measured thickness is input to the measuring device.
  • the power system Fs 1 kg
  • the dynamic strain Fs 0.1 mm
  • the heel load meter 2 kg
  • the measurement is performed in a 1 Hz sine wave mode.
  • the measurement temperature is set to a start temperature of -30.degree. C., and is measured at a step temperature of 3.degree. C. and a heating rate of 5.degree. C./minute until it exceeds 130.degree.
  • From the curve of tan ⁇ with respect to the obtained temperature the value of tan ⁇ in the temperature range of ⁇ 20 ° C. or more and 40 ° C. or less is obtained.
  • the temperature at which the peak of the curve exists ie, the peak temperature can be obtained.
  • the preferable shape of the curve is, for example, a curve shape (multimodal) of two peaks having peaks respectively in a region of a temperature of ⁇ 20 ° C. or more and 40 ° C. or less and a region of more than 40 ° C. and 118 ° C.
  • the peak shape at a temperature of -20 ° C to 40 ° C is a two-peak curve shape with a smaller value than the peak at a temperature above 40 ° C and at most 118 ° C; the peak temperature is reached with a gentle curve, and the peak temperature is 40
  • the shape of tan ⁇ does not fall below 0.1 (curved shape of one peak); and the like.
  • the shape of the tan ⁇ curve with respect to the temperature in the present disclosure is not limited to the above-exemplified embodiment.
  • the binder preferably has a weight average molecular weight of 100,000 or more and 1,000,000 or less, preferably 150,000 or more and 900,000 or less, and 200,000 or more and 800,000 or less. More preferable.
  • the weight average molecular weight of the binder is in the above range, the elution of the components of the antifogging layer is suppressed at the time of water absorption, the water dripping resistance is improved, and to the solvent when preparing the composition for forming the antifogging layer The solubility of the binder is good, and the formed antifogging layer has good transparency.
  • the binders may be used alone or in combination of two or more different binders.
  • a polymer having a cellulose skeleton, a mixture of two or more types of polymers having different glass transition temperatures, and two or more types having different glass transition temperatures (hereinafter, the glass transition temperature may be referred to as Tg)
  • Tg glass transition temperature
  • binder When only one type of binder is used, cellulose having properties of relaxation of motion of rigid main chain and motion relaxation around flexible main chain / side chain linking group (for example, ether group) as suitable binder
  • a blend of two or more kinds of polymers satisfies the condition of tan ⁇
  • the weight average molecular weight of one of the polymers is less than 100,000, the low molecular weight polymer bleeds out after the formation of the antifogging film, and elution occurs when water droplets adhere. In some cases, this is not preferable.
  • binder contained in the antifogging layer described above may be referred to as "specific binder”.
  • the antifogging layer according to the present disclosure can include a polymer having a cellulose skeleton as a binder.
  • the polymer having a cellulose skeleton includes a polymer having a polysaccharide structure represented by the following formula (a), and a derivative thereof.
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and a hydrocarbon group having 1 to 10 carbon atoms is And may contain a carboxylic acid group as a substituent.
  • the said carbon number shows the carbon number which a hydrocarbon group has, and the number of carbons of the carboxylic acid group as a substituent is not contained.
  • n is the number of bonds of the structural unit represented by the formula (a), and a numerical value in the range of the preferable weight average molecular weight described above can be appropriately selected.
  • n is more preferably in the range of 1 to 10, that is, the weight average molecular weight of the polymer having a cellulose skeleton is 100,000 or more and 1,000,000 or less.
  • the weight average molecular weight of the polymer having a cellulose skeleton can be measured according to the method of measuring the weight average molecular weight described above.
  • the cLogP value of the functional group of the polymer having a cellulose skeleton is preferably ⁇ 0.2 or less, more preferably ⁇ 0.6 or less.
  • the hydrophilicity of the polymer having a cellulose skeleton is enhanced, and the composition is formed using the composition for forming an antifogging layer and the composition for forming an antifogging layer Anti-fogging layer is improved.
  • the cLogP value of the functional group of the polymer having a cellulose backbone can be measured from the octanol / water partition coefficient.
  • the cLogP value of the functional group of the polymer having a cellulose skeleton adopts a calculated value calculated by computer calculation.
  • the above calculated values are from Biobyte Corp. It is a value obtained by the LogP prediction function installed in CambridgeSoft's "ChemDraw” using a company's numerical value.
  • a polymer having a cellulose skeleton for example, carboxymethylcellulose, carboxymethylethylcellulose, methylcellulose, ethylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, didoroxyethylmethylcellulose, hydroxypropylmethylcellulose, cellulose acetate, nitrocellulose, croscarmellose, Ethyl hydroxyethyl cellulose, and salts thereof, and the like can be mentioned.
  • a commercially available product may be used as the polymer having a cellulose skeleton.
  • a commercial item for example, Daicel Fine Chem Co., Ltd. product, carboxymethylcellulose 1110, 1120, 1130, 1140, 1150, 1160, 1170, 1180, 1190, 1220, 1240, 1250, 1260, 1260, 1330, 1350, 1380, 1390, 1390 2200, 2260, 2280 etc.), for example, manufactured by Daicel Fine Chem Co., Ltd., hydroxyethyl cellulose SP 200, SP 400, SP 500, SP 600, SP 850, SP 900 etc.
  • the antifogging layer may contain only one type of polymer having a cellulose skeleton, or two or more types of polymers.
  • the antifogging layer according to the present disclosure can include a copolymer including two or more types of polymer units as a binder.
  • the copolymer containing two or more different polymer units contained in the specific binder that can be used to form the antifogging layer include polyester units, polyurethane units, acrylic units, polyethylene units, polypropylene units, polystyrene units, polychlorinated
  • the copolymer which contains 2 or more types of polymer units chosen from a vinyl unit, a polycarbonate unit, a polyimide unit, a polysulfide unit, a silicone unit etc. is mentioned.
  • a copolymer containing a polyester unit and an acrylic unit a copolymer containing a polyester unit and a polyurethane unit, a polyester unit, a copolymer containing a polyurethane unit and an acrylic unit, and the like can be mentioned.
  • the polymer unit means a partial structure as a block polymer including a plurality of structural units derived from the same type of monomer.
  • the polyester unit is a block polymer of an ester monomer, and the weight average molecular weight as a unit is in the range of 2,000 to 10,000, and the Tg at a weight average molecular weight of 10,000 is ⁇ 19 ° C. Indicates a partial structure.
  • the above polyurethane unit is a block polymer containing a urethane bond, which has a weight average molecular weight in the range of 2,000 to 10,000, and a Tg of -43 ° C at a weight average molecular weight of 10,000. Shows the structure.
  • the acrylic unit is a block (co) polymer of acrylate or methacrylate, and the weight average molecular weight of the unit is in the range of 2,000 to 10,000, and the Tg at weight average molecular weight of 10,000 is 48.
  • the partial structure of ° C is shown. It is considered that the tan ⁇ curve of the composite resin, which is a copolymer containing in the molecule partial structures (polymer units) having different Tg's as described above, is the preferable tan ⁇ curve described above.
  • the content ratio of two or more types of polymer units is appropriately selected according to the target tan ⁇ .
  • the binder obtained exhibits rigid physical properties, and the film strength is improved.
  • a polyurethane unit in a mass ratio of 10% or more, the flexibility of the obtained binder is improved, and the contraction stress at the time of film formation is relaxed.
  • the linkage of two or more polymer units is not particularly limited in the main chain / side chain. Therefore, the copolymer containing two or more types of polymer units may be a block polymer or a graft copolymer. A commercial item may be used as a copolymer containing 2 or more types of polymer units.
  • PES Resin WAC-17XC manufactured by Takamatsu Yushi Co., Ltd., PES Resin A-125S (all are trade names), NeoPac series manufactured by Kushimoto Kasei Co., Ltd .: R-9699, R-9029, E-123, E125 (All are trade names) and the like.
  • PES Resin WAC-17XC has a main skeleton comprising a polyester unit / polyurethane unit / acrylic unit. Since the Tg of each unit is ⁇ 19 ° C., ⁇ 43 ° C., and 48 ° C.
  • the copolymer containing the above three types of units satisfies the condition of tan ⁇ with respect to the temperature specified in the present disclosure. It is guessed.
  • Pesresin WAC-17XC contains the above three types of units in the main skeleton.
  • the main chain / side chain structure is not particularly limited at the position where each unit is contained as long as it contains the above three types of units, and it is presumed that the copolymer satisfies the condition of tan ⁇ with respect to the temperature specified in the present disclosure. Be done.
  • PES resin A-125S is a composite resin containing an acrylic unit and a polyester unit as the main skeleton, and has alkoxysilyl group, sodium sulfonate group, etc. in its molecule as a substituent, so it bonds to silica. It is presumed to be a hydrophilic polymer.
  • the Tg of PES resin A-125S is 63 ° C.
  • the antifogging layer according to the present disclosure can include a mixture of two or more polymers as a binder.
  • a binder satisfying the condition of tan ⁇ with respect to the above temperature, it is possible to mix and use a plurality of polymers having good compatibility and different Tg from each other.
  • Tg depends on weight average molecular weight
  • a plurality of polymers having different weight average molecular weights may be blended to satisfy the above conditions.
  • the main skeleton may contain structural units derived from the same monomer, or structural units derived from monomers similar to each other, and may be used in combination of two or more polymers having different Tg, It is preferable to use a combination of two or more kinds of polymers having structural units and having different molecular weights.
  • the compatibility at the time of blending is good, it is not essential to include the same or similar structural units.
  • two or more polymers used in a mixture of two or more polymers having different glass transition temperatures are hydrophilic polymers containing the same structural units as one another. It is preferable to be selected from Specific examples of the hydrophilic polymer used for preparation of the mixture include hydroxyethyl cellulose (HEC), hydroxypropyl cellulose, poly (meth) acrylamide, polyvinyl pyrrolidone, polyvinyl acetate, polyvinyl alcohol (PVA), polyvinyl butyral, polyethylene glycol Etc.
  • HEC hydroxyethyl cellulose
  • PVA polyvinyl alcohol
  • the content ratio of the first polymer having a lower Tg to the second polymer having a higher Tg is, by mass ratio
  • the content ratio of the first polymer having a lower Tg to the second polymer having a higher Tg is preferably in the range of 25:75 to 50:50 by mass ratio
  • the range of 30:70 to 45:55 is more preferable. That is, it is preferable that the content ratio of the high Tg polymer is more.
  • a mixture of two or more types of polymers having different Tgs a mixture of two or more types of polyvinyl alcohols having different Tgs is preferable.
  • polyvinyl alcohol when blending PVA having a weight average molecular weight (Mw) of 133,000 and PVA having a higher Mw and a higher Tg, the blend ratio is 25: The range of 75 to 50: 50 is preferable, and the range of 30: 70 to 45: 55 is more preferable.
  • the physical properties of the antifogging layer can be controlled by introducing an appropriate functional group into the polymer.
  • the specific binder preferably contains at least one functional group selected from an alkoxysilyl group, a silanol group, and a hydrophilic group.
  • silica particles contained in the antifogging layer can be specified by introducing an alkoxysilyl group, a silanol group or the like into each of the polymers described above, or introducing a hydrophilic group such as a sulfoxy group or a carboxy group.
  • the affinity to the binder and the hydrophilicity of the antifogging layer can be further enhanced.
  • the antifogging layer according to the present disclosure contains silica particles.
  • Silica particles contribute to the improvement of physical resistance and hydrophilicity of the antifogging layer. That is, the silica particles function as a hard filler in the antifogging layer and can improve the hydrophilicity of the antifogging layer by the action of the hydroxyl groups on the particle surface.
  • a silica particle although a solid silica particle (namely, silica particle which does not have a hollow part), a hollow silica particle, etc. are mentioned, it is preferable to use a solid silica particle from a viewpoint of physical tolerance.
  • Examples of solid silica particles include fumed silica and colloidal silica.
  • Fumed silica can be obtained by reacting a compound containing a silicon atom with oxygen and hydrogen in the gas phase.
  • a silicon compound used as a raw material a halogenated silicon (for example, silicon chloride) etc. are mentioned.
  • Colloidal silica can be synthesized by a sol-gel method in which a raw material compound is hydrolyzed and condensed.
  • alkoxy silicon for example, tetraethoxysilane
  • a halogenated silane compound for example, diphenyldichlorosilane
  • the shape of the silica particles is not particularly limited, and examples thereof include a spherical shape, a plate shape, a needle shape, a chain shape, and a necklace shape (a bead shape).
  • the term "spherical” as used herein includes not only true spheres but also shapes such as spheroids and ovals. Among these, from the viewpoint of adhesion to a substrate, it is preferably in a shape selected from the group consisting of spheres, chains, and necklaces, more preferably chains or necklaces, chains More preferably,
  • the size of the silica particles is not particularly limited.
  • the average primary particle diameter of the silica particles is preferably 1 nm to 100 nm, and 5 nm to 50 nm. Is more preferably 10 nm or more and 20 nm or less.
  • the average primary particle diameter of the silica particles is 300 or more from the photograph obtained by observing the dispersed silica particles with a transmission electron microscope when the shape of the silica particles is spherical or substantially spherical such as cross section oval.
  • the projected area of the silica particles is measured, the equivalent circle diameter is determined from the projected area, and the average value of the equivalent circle diameters obtained is taken as the average primary particle diameter of the silica particles. If the shape of the silica particles is not spherical or substantially spherical, other methods such as dynamic light scattering are used to determine the average primary particle size of the silica particles.
  • a commercial item can be used for a silica particle.
  • silica particles include Snowtex (registered trademark) series (eg, Snowtex (registered trademark) OUP) manufactured by Nissan Chemical Industries, Ltd., AEROSIL (registered trademark) series manufactured by Evonik Co., Ltd., Narco Chemical Co., Ltd. Nalco (registered trademark) series (for example, Nalco (registered trademark) 8699) manufactured by the company, Qutron PL series (for example, PL-1) manufactured by Sakai Chemical Industry Co., Ltd., and the like.
  • the antifogging layer may contain only one type of silica particles, or may contain two or more types. When the antifogging layer contains two or more types of silica particles, silica particles having different shapes, average primary particle sizes, etc. may be used in combination.
  • the relationship between the solid mass of the silica particles A and the solid mass of the specific binder B is the following relational expression (2) It is preferable to satisfy the following relationship formula (3), and it is more preferable to meet the following relationship formula (4).
  • B / A in the relational expression (1) when B / A in the relational expression (1) is 0.07 or more, the haze value is lowered, and it is considered that the generation of a water drip mark due to the swelling and dissolution of the antifogging layer can be suppressed.
  • B / A in a relational expression (1) being 2.00 or less, a haze value becomes low and antifogging property becomes favorable.
  • B / A in the relational expression (1) is 2.00 or less, the porosity in the antifogging layer becomes an appropriate range, the amount of water that can be taken into the antifogging layer increases, and the antifogging property and water resistance It is thought that the dripping property is improved.
  • the content of the silica particles in the antifogging layer is preferably 10% by mass to 90% by mass, and more preferably 20% by mass to 70% by mass, with respect to the total mass of the antifogging layer. More preferably, it is 40% by mass to 65% by mass. When the content is in the range described above, it is possible to form an antifogging layer which is more excellent in hardness, scratch resistance and impact resistance and has desired hydrophilicity.
  • the content of the specific binder in the antifogging layer is preferably 3% by mass to 67% by mass, more preferably 5% by mass to 60% by mass, and more preferably 7% by mass to 50% by mass with respect to the total mass of the antifogging layer. More preferably, it is%.
  • the content of the specific binder is in the above range, the retention of the silica particles becomes good, the excellent antifogging property is exhibited, and the crack resistance can be further improved.
  • the film thickness of the antifogging layer according to the present disclosure is 2 ⁇ m or more and 30 ⁇ m or less, preferably 5 ⁇ m or more and 20 ⁇ m or less, and is 5 ⁇ m or more and 10 ⁇ m or less from the viewpoint of water dripping resistance, stain resistance and transparency. Is more preferred.
  • the film thickness is 2 ⁇ m or more, the integrated amount of the voids in the antifogging layer becomes large, and the water absorption amount increases. Therefore, it is considered that the antifogging property of the antifogging layer and the stain resistance of the surface resulting from the hydrophilicity are improved.
  • the measuring method of the film thickness of an antifogging layer is as follows. The cross section in the direction perpendicular to the surface of the antifogging layer of the laminate is observed by a transmission electron microscope, the film thickness of the antifogging layer is measured at 10 random points in the surface, and the average value is the film thickness of the antifogging layer Do.
  • the magnification upon observation with a transmission electron microscope is preferably 1,000 times to 50,000 times.
  • the water contact angle of the antifogging layer is preferably 40 ° or less, more preferably 30 ° or less.
  • the water contact angle is 1 ⁇ l (microliter) of pure water on the surface of the antifogging layer to be measured at 25 ° C. using a contact angle meter DM-701 (manufactured by Kyowa Interface Science Co., Ltd.) )
  • the value obtained by dropping and using the ⁇ / 2 method is used.
  • the measurement is performed five times, and the arithmetic mean value of the values obtained by measurement is adopted as the water contact angle in the present specification.
  • the antifogging layer is a structure including silica particles as solid particles. It is preferable that the antifogging layer surface has a concavo-convex structure of silica particles from the viewpoint of enhancing the hydrophilicity of the antifogging layer surface and further improving the antifogging property.
  • the concavo-convex structure can be evaluated as arithmetic surface roughness Ra.
  • Arithmetic surface roughness Ra is preferably 1 nm or more and 100 nm or less, and more preferably 3 nm or more and 50 nm or less.
  • the arithmetic surface roughness Ra can be measured using an atomic force microscope (AFM). More specifically, the surface roughness Ra can be measured according to JIS B0601 (2001) using an atomic force microscope (AFM) (SPA-400, manufactured by Seiko Instruments Inc.). it can.
  • the antifogging layer in the present disclosure preferably has a void inside, from the viewpoint of further enhancing the water retention.
  • the antifogging layer has a void inside means that the porosity of the antifogging layer is 5% or more.
  • the porosity is preferably 10% or more and 50% or less from the viewpoints of stain resistance and water drip resistance.
  • the porosity can be measured using an automatic porosimeter (Autopore IV 9520, manufactured by Shimadzu Corporation) at an ambient temperature of 25 ° C. under the standard conditions of the above-mentioned measuring apparatus.
  • the membrane density of the anti-fog layer is not more than 0.80 g / cm 3 or more 1.40 g / cm 3 are preferable from the viewpoint of antifogging property, stain resistance and water sagging becomes better, 0. more preferably 80 g / cm 3 or more 1.40 g / cm 3 or less, 0.90 g / cm 3 or more and more preferably 1.35 g / cm 3 or less, 1.05 g / cm 3 or more 1.30g It is particularly preferable that the ratio is at most 3 cm 3 .
  • the film density of the antifogging layer is measured by the following method. Prepare a laminate for 100 cm 2 as a measurement sample, and measure the mass. In addition, the film thickness of the antifogging layer is measured from a transmission electron microscope (SEM) image of the cross section of the laminate. The film thickness measured by SEM is an average value obtained by measuring 10 random points in a plane in the laminate of the measurement samples. Next, the antifogging layer is scraped from the laminate, and the mass of the substrate after scraping is measured.
  • SEM transmission electron microscope
  • the mass per unit area of the substrate after scraping the antifogging layer is xg / cm 2
  • the mass per unit area of the laminate measured first is yg / cm 2
  • the film of the laminate measured from SEM When the thickness is z cm, the film density of the antifogging layer is calculated by the following method.
  • Film density of antifogging layer [g / cm 3 ] (yx) [g / cm 2 ] / z [cm]
  • the film density of the antifogging layer can also be referred to as the bulk density of the antifogging layer.
  • the anti-fog layer water retention capacity is preferably at 1.5 mg / cm 2 or more 25.0 mg / cm 2 or less, more preferably 1.5 mg / cm 2 or more 15.0 mg / cm 2 or less, 1 more preferably .5mg / cm 2 or more 12.0 mg / cm 2 or less, particularly preferably 2.0 mg / cm 2 or more 6.0 mg / cm 2 or less.
  • the water retention amount of the antifogging layer is 1.5 mg or more, the water absorption of the antifogging layer is further improved, the contamination resistance becomes better, and the water retention amount is 25.0 mg or less. Swelling, dissolution and the like are suppressed, and the water dripping resistance becomes better.
  • the above antifogging layer water retention amount is measured by the following method.
  • a laminate having an antifogging layer on a substrate is prepared as a measurement sample. Prepare a water bath maintained at 60 ° C, install it in the direction where the antifogging layer of the laminate goes down under the conditions of 25 ° C ambient temperature and 50% relative humidity, and the distance to the water surface of the water bath is 5cm While keeping the condition, the antifogging layer is exposed to steam from a hot water bath just before the antifogging layer becomes cloudy or drips.
  • the mass of the laminate before applying the vapor and the mass of the laminate after applying the vapor to the antifogging layer are measured, and the water retention amount is determined according to the following formula from the obtained measurement values.
  • M 1 is the mass of the laminate before vapor application (mg)
  • M 2 is the mass of the laminate after vapor application (mg)
  • S is the area of the area to which the vapor of the antifogging layer is applied ( cm 2 ) is shown.
  • the antifogging layer may optionally contain other components in addition to the components described above.
  • other components include adhesion assistants that contribute to the improvement of adhesion with the substrate, antistatic agents, and components other than those described above that are used in the composition for forming an antifogging layer described later.
  • the antifogging layer may further contain a cohesion aid.
  • the adhesion promoter contributes to the improvement of the adhesion between the antifogging layer and the substrate (in particular, a polycarbonate substrate or a polymethyl methacrylate substrate).
  • the adhesion aiding agent in the present disclosure may use, as the water absorbing polymer, a material that contributes to the improvement of the hydrophilicity of the antifogging film.
  • adhesion assistants include film-forming polymers, and more specifically, polar groups (hydroxyl groups, such as urethane resins, (meth) acrylic resins, polyphosphates, metaphosphates, etc. within the molecule.
  • polar groups such as urethane resins, (meth) acrylic resins, polyphosphates, metaphosphates, etc. within the molecule.
  • the compound which has a carboxy group, a phosphoric acid group, a sulfonic acid group, an amino group etc. is mentioned.
  • at least the at least one selected from the group consisting of a hydroxyl group, a carboxy group, and a phosphoric acid group as an adhesion assistant from the viewpoint that the adhesion between the antifogging layer and the substrate is better.
  • Compounds having one type of functional group are preferable, and at least one type selected from the group consisting of urethane resins, (meth) acrylic resins, and polyphosphates is more preferable, and urethane resins and (meth) acrylic resins are more preferable. Further preferred is at least one resin selected from the group consisting of
  • urethane type resin For example, the polyurethane etc. which have a soft segment / hard segment structure formed with a polyol skeleton and a polyisocyanate skeleton are mentioned.
  • a commercial item can be used as urethane resin.
  • Commercially available products of urethane resins Takelac (registered trademark) W series, WS series, WD series of Mitsui Chemicals, Inc., Permarin (registered trademark) series of Sanyo Chemical Industries, Ltd., Yukot (registered trademark) Series, Euprene (registered trademark) series, etc. may be mentioned.
  • (meth) acrylic resin refers to a structural unit derived from acrylic acid, a structural unit derived from methacrylic acid, a structural unit derived from acrylic acid ester, and a structural unit derived from methacrylic acid ester
  • polyacrylic acid is preferable as the (meth) acrylic resin.
  • the weight average molecular weight of the polyacrylic acid is preferably 25,000 to 5,000,000, more preferably 50,000 to 2,000,000, and 150,000 to 1,000, More preferably, it is less than or equal to 000.
  • the weight average molecular weight of polyacrylic acid can be measured by gel permeation chromatography (GPC). The measurement conditions by GPC are as described above.
  • polyphosphates examples include sodium polyphosphate and potassium polyphosphate.
  • the cohesion aid may be contained alone or in combination of two or more.
  • the content of the cohesion aid is preferably 0.001% by mass or more and 5% by mass or less, based on the total mass of the antifog layer, 0.01% by mass
  • the content is more preferably 1% by mass or less and still more preferably 0.05% by mass or more and 0.5% by mass or less. It is easy to form the antifogging layer which is excellent in adhesiveness with a base material as it is the said range.
  • the antifogging layer can include an antistatic agent.
  • the antifogging layer by including the antistatic agent, the antifogging layer is imparted with antistatic properties, adhesion of contaminants is more effectively suppressed, and the contamination resistance of the antifogging layer surface is further improved. it can.
  • the antistatic agent is not particularly limited, and can be appropriately selected from compounds having an antistatic function.
  • the antistatic agent may be either a compound exhibiting surface activity or a compound not exhibiting surface activity.
  • examples of the antistatic agent include ionic surfactants and metal oxide particles.
  • the silica particle as stated above is not contained in a metal oxide particle here.
  • metal oxide particles may be required in relatively large amounts in order to impart antistatic properties to the film, but since they are inorganic substances, they are suitable in terms of enhancing the scratch resistance of the film.
  • ionic surfactants examples include alkyl sulfates (sodium dodecyl sulfate, sodium lauryl sulfate, etc.), alkyl benzene sulfonates (sodium dodecyl benzene sulfonate, sodium lauryl benzene sulfonate), alkyl sulfosuccinates (di (2) Anionic surfactants such as -ethylhexyl) sodium sulfosuccinate etc .; and cationic surfactants such as alkyl trimethyl ammonium salts and dialkyl dimethyl ammonium salts.
  • metal oxide particles examples include tin oxide particles, antimony-doped tin oxide particles, tin-doped indium oxide particles, zinc oxide particles and the like.
  • the shape of the metal oxide particles is not particularly limited, and may be spherical, plate-like or needle-like.
  • the average primary particle diameter is preferably 100 nm or less, and 50 nm or less More preferably, the thickness is 30 nm or less.
  • the measurement of the average primary particle size of the metal oxide particles can be performed in the same manner as the measurement method of the average primary particle size of the silica particles described above.
  • the average primary particle diameter of the metal oxide particles in the composition for forming an antifogging layer is measured, 5 ⁇ l of the composition for forming an antifogging layer is dropped on a slide glass and naturally dried, The surface of the glass may be observed to measure 50 particle diameters of individual primary particles of primary particles of metal oxide particles present on the glass surface, and the average primary particle diameter may be calculated as an average value thereof.
  • the antifogging layer contains an antistatic agent, it may contain only one type of antistatic agent, or may contain two or more types.
  • the content of the ionic surfactant in the antifogging layer is preferably 5% by mass or less based on the total solid content of the antifogging layer
  • the content is more preferably 1% by mass or less and still more preferably 0.5% by mass or less.
  • the content of the ionic surfactant in the antifogging layer is relative to the total mass of the antifogging layer from the viewpoint of the effect of improving the stain resistance by containing the ionic surfactant. It is preferable that it is 0.01 mass% or more.
  • aggregation of a silica particle is suppressed as content of the ionic surfactant in the said antifogging layer is 0.01 mass% or more and 5 mass% or less with respect to the total mass of the said antifogging layer. While being, it can form the anti-fogging layer which is excellent in stain resistance.
  • the content of the metal oxide particles in the antifogging layer is 40% by mass or less based on the total mass of the antifogging layer. Is more preferably 20% by mass or less, and still more preferably 10% by mass or less.
  • the content of the metal oxide particles in the antifogging layer is 1% by mass with respect to the total mass of the antifogging layer from the viewpoint of the effect of improving the antifouling property of the film by containing the metal oxide particles. It is preferable that it is more than.
  • the antifogging layer is formed by coating.
  • the antifogging layer can be effectively provided with antistatic properties without impairing the film forming property.
  • the laminate of the present disclosure has a substrate.
  • the laminate has an antifogging layer provided on at least a part of the substrate. That is, the antifogging layer may be provided on a part of the substrate or may be provided on the entire surface of the substrate.
  • the antifogging layer provided on the substrate may be provided in direct contact with the substrate or may be provided via another layer. However, as described above, the antifogging layer in the present disclosure is preferably provided in direct contact with the substrate because the adhesion to the substrate is good.
  • the material of the substrate is not particularly limited as long as it can stably hold the antifogging layer, and is appropriately selected from various materials such as glass, resin (that is, plastic), metal, ceramics, etc. and used for producing the substrate be able to.
  • the substrate may be, for example, a substrate consisting of a single material, or may be a composite material formed of a plurality of materials.
  • As the composite material a composite material which is a mixture of two or more kinds of materials, a composite material in which different materials are laminated, and the like can be mentioned.
  • the composite material examples include a composite material in which glass and a resin material are mixed and formed by mixing glass and a resin material, and a resin composite material in which a plurality of resin materials are kneaded or bonded.
  • the substrate is not limited to the above examples.
  • the resin base material is mentioned suitably from a viewpoint of the ease of processing.
  • resin substrates are generally used as protective materials for automobile lights and protective materials for surveillance cameras.
  • the base material is formed of a resin material, the base material is excellent in durability against light and heat, and has good adhesion with the antifogging layer, and even after lamination with the antifogging layer, the base material The base material which can form the laminated body by which transparency of this is maintained is preferable.
  • a substrate selected from an acrylic resin substrate, a polycarbonate substrate and a polyethylene terephthalate substrate is preferable, and from the viewpoint that a laminate excellent in adhesion can be formed, an acrylic resin substrate, Or it is more preferable that it is a polycarbonate base material.
  • an acrylic resin base material a polymethyl methacrylate base material is mentioned preferably.
  • the thickness and shape of the substrate are not particularly limited, and are appropriately set according to the application target.
  • surface treatment may be given to the surface of a substrate if needed.
  • a surface treatment method Well-known surface treatments, such as a washing process using a solvent etc., a corona treatment, etc. can be given.
  • the manufacturing method of the laminated body of this indication includes the method of providing the below-mentioned composition for anti-fogging layer formation on a base material, drying, and forming an anti-fogging layer.
  • a coating method is preferably mentioned.
  • known coating methods such as spray coating, brush coating, roller coating, bar coating, dip coating (so-called dip coating) and the like can be applied according to the purpose.
  • the antifogging layer of the present disclosure is applied partially to a composition layer for forming an antifogging layer when the composition for forming an antifogging layer is applied to a substrate and dried to form the antifogging layer.
  • the film thickness of the antifogging layer is effectively suppressed since the occurrence of cracks and the peeling between the substrate and the antifogging layer during drying of the composition layer for forming the antifogging layer are effectively suppressed. Even in the case where the thickness is made thicker, the productivity of the laminate is dramatically increased.
  • the method for setting the substrate is not particularly limited.
  • the substrate may be set in a frame and the direction of the substrate may be uniformly coated, and depending on the shape of the substrate, the direction of the substrate may be horizontal, vertical, etc. It can also be applied while changing as appropriate.
  • any of a pressure-feeding type, a suction type, and a gravity type can be used.
  • the nozzle diameter of the spray nozzle is preferably 0.1 mm ⁇ or more and 1.8 mm ⁇ or less, and the air pressure is preferably 0.02 MPa or more and 0.60 MPa or less.
  • the applied film thickness can be made more uniform.
  • the amount of air is preferably 5 L (liter) / min or more and 600 L / min or less, and the amount of paint ejection is 5 L / min or more and 600 L / min or less
  • the pattern opening is preferably 40 mm or more and 450 mm or less.
  • the temperature condition is preferably 15 ° C. or more and 35 ° C. or less, and the humidity condition is preferably 80% RH or less.
  • the cleanliness is not particularly limited. For example, from the viewpoint of suppressing surface failure due to fine particles (that is, particles) in the coating environment, cleanliness of class 10,000 or more is preferable, and cleanliness of class 1,000 or more It is more preferable that
  • the application amount of the composition for forming an antifogging layer is not particularly limited, and is appropriately set in consideration of operability and the like according to the concentration of solid content in the composition for forming an antifogging layer, the desired film thickness and the like. be able to.
  • the coating amount of the antifogging layer-forming composition is preferably 1 mL / m 2 or more and 400 mL / m 2 or less, more preferably 2 mL / m 2 or more and 100 mL / m 2 or less, and 4 mL / m 2 more preferably 2 or more and 40 mL / m 2 or less, particularly preferably 6 mL / m 2 or more 20 mL / m 2 or less. Coating accuracy will become favorable as it is the above-mentioned range.
  • the manufacturing method of the laminated body which concerns on this indication includes drying the composition for antifog layer formation provided on the base material. Drying of the composition for antifogging layer formation may be performed using a heating device.
  • the heating device is not particularly limited as long as it can be heated to a target temperature, and any known heating device can be used. As the heating device, in addition to an oven, an electric furnace, etc., a heating device manufactured independently according to the production line can be used.
  • the drying conditions of the composition for forming an antifogging layer are not particularly limited, and can be appropriately set in consideration of the curability of the coating film. Drying of the composition for forming an antifogging layer may be performed under constant temperature conditions where a predetermined set temperature is kept constant, or temperature conditions may be changed stepwise.
  • drying conditions of the composition for antifogging layer formation in the case of the former the drying conditions which heat the composition for antifogging layer formation for 1 minute-60 minutes as the atmospheric temperature of a heating area
  • heating conditions are preferably 45 ° C. to 120 ° C. for 1 to 60 minutes, and heating conditions are 60 ° C. to 120 ° C. for 1 to 60 minutes. Is more preferred.
  • the temperature on the surface of the antifogging layer is in the range of more than 40 ° C. and 118 ° C. or less, and as described above
  • tan ⁇ the curing stress acting at the time of film formation heating is alleviated, and even when the thickness of the antifogging layer is thick, the occurrence of cracks during drying is effectively suppressed.
  • Drying of the composition for forming an antifogging layer in the latter case is preferably performed separately in pre-drying and main drying.
  • predrying conditions conditions in which the atmosphere temperature of the heating area is set to 20 ° C. or more and 60 ° C. or less and heating is performed for 5 seconds to 10 minutes are preferable.
  • the heating condition at the time of main drying is preferably the same as in the range of 40 ° C. or more and 130 ° C. or less at which the maximum value of the atmosphere temperature is the atmosphere temperature shown under the above-mentioned constant temperature conditions.
  • the surface temperature of the antifogging layer under drying conditions can be measured by an infrared thermometer or the like.
  • the air volume of dry air can be suitably set in consideration of the optimum temperature at the time of reaching the substrate.
  • coated the composition for anti-fogging layer may be directly placed on a base (namely, flat placement), and may be dried, It may also be hung and dried.
  • Cleaning of parts of the spray gun, coating apparatus and the like after being used for coating may be performed using solvents such as thinner, water, alcohol, surfactant and the like.
  • solvents such as thinner, water, alcohol, surfactant and the like.
  • the temperature of the cleaning solution is preferably normal temperature or more, and more preferably 50 ° C. or more.
  • the storage container of the composition for forming an antifogging layer is not particularly limited, and may be a metal container such as one can and royal can or may be a container made of resin such as polyethylene and polypropylene. It is preferable that the storage temperature of the composition for anti-fogging layer formation is 0 degreeC or more and 50 degrees C or less.
  • composition for forming an antifogging layer is not particularly limited as long as the antifogging layer in the laminate according to the present disclosure can be formed.
  • the content of the antifogging layer of the present disclosure, in which the silica particles and the specific binder described above are formed using the composition for forming an antifogging layer satisfies the conditions described above There is no particular limitation as long as each is contained in
  • Preferred embodiments of the silica particles and the specific binder in the composition for forming an antifogging layer in the present disclosure are as described in the antifogging layer of the laminate of the present disclosure described above, and the preferred content and range of content ratio are also It is similar.
  • the content of the specific binder in the composition for forming an antifogging layer according to the present disclosure is preferably 3% by mass to 67% by mass with respect to the total solid content of the composition for forming an antifogging layer,
  • the content is more preferably in the range of 60% by mass and still more preferably in the range of 7% by mass to 50% by mass.
  • the content of the silica particles in the composition for forming an antifogging layer is preferably 10% by mass or more and 90% by mass or less with respect to the total solid content of the composition for forming an antifogging layer, and is 20% by mass or more
  • the content is more preferably 70% by mass or less, and still more preferably 40% by mass or more and 65% by mass or less.
  • the composition for forming an antifogging layer according to the present disclosure preferably contains a solvent (dispersion medium) from the viewpoint that the coatability to be applied to a substrate, preferably, to be applied to a substrate becomes good.
  • the solvent is not particularly limited.
  • As the solvent one or more selected from water and organic solvents other than water can be used.
  • the composition for antifogging layer formation can contain water as a solvent. By containing water, the antifogging layer formed by the composition for antifogging layer formation becomes more favorable in transparency and base material adhesiveness.
  • water used as a solvent ion-exchanged water, pure water, distilled water and the like are preferable from the viewpoint of less impurities.
  • the content of water relative to the total solvent contained in the composition for forming an antifogging layer is preferably 10% by mass to 70% by mass with respect to the total amount of water and a solvent other than water, ie, the total amount of solvent 20% by mass to 65% by mass is more preferable, and 30% by mass to 60% by mass is more preferable.
  • the solubility of the specific binder becomes good, and the coated surface condition when forming the composition layer for forming an antifogging layer becomes better.
  • the formed antifogging layer can further improve the adhesion with the substrate and the transparency of the antifogging layer.
  • the composition for antifogging layer formation can contain solvents other than water.
  • solvents other than water include ketone solvents, glycol solvents, alcohol solvents, glycol ether solvents, ether solvents and the like.
  • the coating property of the composition for anti-fogging layer formation becomes more favorable, and the transparency of the formed anti-fogging layer becomes more favorable by raising the solubility of a specific binder more.
  • solvents other than water ketone solvents, alcohol solvents and the like are preferable.
  • the composition for anti-fogging layer formation contains a ketone solvent.
  • the ketone-based solvent contributes to improving the adhesion between the antifogging layer formed from the composition for forming an antifogging layer and the substrate by mixing the interface between the antifogging paint and the substrate. obtain.
  • the ketone-based solvent is not particularly limited, and includes acetone, diacetone alcohol (DAA), acetylacetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, cyclopentanone and the like.
  • the ketone-based solvent is preferably a ketone-based solvent having an SP value (solubility parameter) of 10.0 MPa 1/2 or more from the viewpoint of being able to form an antifogging layer having more excellent transparency.
  • the upper limit of the SP value of the ketone-based solvent is not particularly limited, and is, for example, 13.0 MPa 1/2 or less from the viewpoint of coating property to a base material, for example, surface failure such as repelling hardly occurs Is preferred.
  • ketone solvents having an SP value of 10.0 MPa 1/2 or more are shown below, but are not limited to the examples under ketone solvents.
  • the numerical values in parentheses after the following specific examples indicate SP values (unit: MPa 1/2 ).
  • Acetone (10.0), diacetone alcohol (10.2), acetylacetone (10.3), cyclopentanone (10.4) is preferably contained.
  • the above-mentioned SP value is a value represented by the square root of molecular aggregation energy.
  • F It is a value calculated by the method described in Fedors, Polymer Engineering Science, 14, p147-p154 (1974).
  • the composition for forming an antifogging layer may contain only one type of ketone solvent, or may contain two or more types.
  • the content of the ketone solvent is 1 from the viewpoint of further improving the transparency of the antifogging road and the adhesion between the antifogging layer and the substrate. % By mass or more and 95% by mass or less is preferable, 2% by mass or more and 50% by mass or less is more preferable, and 3% by mass or more and 10% by mass or less is particularly preferable.
  • the content of the ketone-based solvent in the composition for forming an antifogging layer should be appropriately set according to the type of the substrate to be used, the solubility of the material contained in the composition for forming an antifogging layer, etc. Can.
  • the composition for forming an antifogging layer may contain an alcohol solvent.
  • the "alcohol solvent” refers to a solvent having a structure in which one carbon atom of hydrocarbon is substituted by one hydroxy group, that is, a monohydric alcohol solvent.
  • alcohol solvents methanol, ethanol (EtOH), butanol, n-propanol, 2-propanol, tert-butanol, 2-butanol, benzyl alcohol, 2-methyl-1-butanol, 2-methyl-2-butanol, etc. Can be mentioned.
  • the composition for forming an antifogging layer may contain an ether solvent.
  • ether solvent refers to a solvent having a structure having no hydroxy group in one molecule and at least one ether group.
  • examples of ether solvents include isopropyl ether, 1,4-dioxane, tert-butyl methyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 1,2-dimethoxyethane, diethyl ether and the like.
  • composition for forming an antifogging layer can contain a glycol solvent.
  • glycol-based solvent refers to a solvent having a structure in which two or more carbon atoms of hydrocarbon are substituted by one hydroxy group.
  • glycol solvents ethylene glycol, diethylene glycol, triethylene glycol, glycerin, propylene glycol, dipropylene glycol, tripropylene glycol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1 And 4-butanediol, diethanolamine, triethanolamine, propylene glycol, dipropylene glycol and the like.
  • at least one selected from propylene glycol and dipropylene glycol is preferable as the glycol-based solvent from the viewpoint of the dispersibility of the silica particles and the drying property when applied.
  • the glycol-based solvent since the viscosity of the glycol-based solvent is high, the glycol-based solvent may be contained in the solvent for the purpose of adjusting the viscosity.
  • composition for forming an antifogging layer can contain a glycol ether solvent.
  • glycol ether solvent refers to a solvent having a structure having one hydroxy group and at least one ether group in one molecule.
  • glycol ether solvents include diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, propylene glycol monomethyl ether, propylene glycol monobutyl ether, 3-methoxy-3-methyl-1-butanol, diethylene glycol mono Hexyl ether, propylene glycol monomethyl ether propionate, dipropylene glycol methyl ether, methyl cellosolve, ethyl cellosolve, butyl cellosolve, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-propyl ether, ethylene glycol mono- Isopropyl ether Ether, ethylene glycol monobutyl -n- butyl ether, ethylene glycol monobutyl - isobutyl ether, and ethylene glycol monobutyl -t- butyl ether.
  • the coating suitability becomes better.
  • the composition for forming an antifogging layer further contains a glycol-based solvent, the viscosity of the composition for forming an antifogging layer is increased, and dripping of the composition for forming an antifogging layer becomes difficult to occur during coating. .
  • Solvents other than water which the composition for anti-fogging layer formation of this indication may contain are not limited to the above-mentioned illustration.
  • the solvent other than water may contain only one type, or two or more types.
  • the content of the solvent other than water is not particularly limited.
  • the content of the solvent other than water in the composition for forming an antifogging layer is included in the composition for forming an antifogging layer from the viewpoint of coatability to a substrate (for example, surface failure such as repelling hardly occurs).
  • the content is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 20% by mass or more, and particularly preferably 40% by mass or more based on the total mass of the solvent to be used.
  • 75 mass% or less is preferable with respect to the total mass of the solvent contained in the composition for anti-fogging layer formation from an adhesive viewpoint with a base material, 65 mass% or less is more preferable, and 55 mass% or less More preferable.
  • the total content of the solvent in the composition for forming an antifogging layer according to the present disclosure is relative to the total mass of the composition for forming an antifogging layer from the viewpoint of keeping the stability of the composition for forming an antifogging layer over time well.
  • the content is preferably 50% by mass or more, more preferably 70% by mass or more, and particularly preferably 90% by mass or more.
  • composition for forming an antifogging layer according to the present disclosure may optionally contain other components other than the components described above.
  • Other components include viscosity modifiers, surfactants, pH adjusters, and other components (adhesion aids, antistatic agents, etc.) which may be contained in the above-described antifogging layer.
  • composition for forming an antifogging layer according to the present disclosure may further contain a viscosity modifier.
  • a viscosity modifier When the composition for forming an antifogging layer according to the present disclosure contains a viscosity modifier, the viscosity of the composition for forming an antifogging layer is increased, dripping is less likely to occur during application, and coating suitability is improved.
  • the viscosity modifier in the present disclosure may function as a water-absorbing organic polymer.
  • the viscosity modifier is not particularly limited, and examples thereof include known thickeners, solvents having high viscosity, and the like.
  • the viscosity modifier can be suitably selected according to the method of providing the composition for anti-fogging layer formation to a base material. It does not specifically limit as a thickener, It is preferable to select suitably according to the kind of solvent contained in the composition for anti-fogging layer formation.
  • a thickener a thickener having a weight average molecular weight of 3,000 or more and 10,000,000 or less is preferable from the viewpoint that a thickening effect can be obtained by using a relatively small amount.
  • the above-mentioned urethane resin and (meth) acrylic resin are not contained in a thickener here.
  • the weight average molecular weight of the thickener can be measured by the same method as the weight average molecular weight of the polyacrylic acid described above.
  • the thickener examples include inorganic materials (silicate (water soluble alkali silicate), montmorillonite, organic montmorillonite, colloidal alumina, etc.), protein materials (casein, sodium caseinate, ammonium caseinate) Etc.), alginic acid based materials (sodium alginate etc.), polyether based materials (pluronic polyethers, polyether dialkyl esters, polyether dialkyl ethers, polyether urethane modified products, polyether epoxy modified products etc.), maleic anhydride copolymerization System materials (partial esters of vinyl ether-maleic anhydride copolymer, drying oil fatty acid allyl alcohol ester-half ester of maleic anhydride, etc.) and the like can be mentioned.
  • thickeners examples include SEPIGEL 305 manufactured by Seiwa Kasei Co., Ltd., and DISPERBYK (registered trademark) 410, 411, 415, 420, 425, 428, 430, 431, 7410ET, 7411 ES, manufactured by BIC Chemie. 7420 ES, Koscut GA 468 manufactured by Osaka Organic Chemical Industry Co., Ltd., and the like.
  • polyamide wax salt, acetylene glycol, Zentan gum, an oligomer or polymer having a polar group at a molecular terminal or a side chain may be mentioned.
  • composition for forming an antifogging layer according to the present disclosure further includes a thickener as a viscosity modifier
  • the thickener may be contained alone or in combination of two or more.
  • the content of the thickening agent in the composition for forming an antifogging layer is the total mass of the composition for forming an antifogging layer
  • the content is preferably 0.01% by mass or more and 40% by mass or less, more preferably 0.05% by mass or more and 20% by mass or less, and 0.1% by mass or more and 10% by mass or less Is more preferred.
  • a solvent having a high viscosity is preferable in that the viscosity modifier component does not remain in the formed film.
  • a solvent having a high viscosity refers to, for example, a solvent having a viscosity of 30 mPa / s or more at 25 ° C.
  • the viscosity in the present specification is a value measured using a Toki Sangyo Co., Ltd. product B-type viscometer (model: TVB-10).
  • the viscosity may be adjusted by using a thickener and a solvent with high viscosity in combination.
  • the optimum viscosity of the composition for forming an antifogging layer according to the present disclosure varies depending on the method of application to a substrate, but in the case of spray coating, for example, the viscosity of the composition for forming an antifogging layer is 2 mPa / s
  • the viscosity is preferably 200 mPa / s or more, more preferably 3 mPa / s to 100 mPa / s, and still more preferably 4 mPa / s to 50 mPa / s.
  • composition for forming an antifogging layer preferably contains a surfactant selected from nonionic surfactants and anionic surfactants having at least one of a phosphoric acid group and a carboxy group.
  • the composition for antifogging layer formation which concerns on this indication can form the antifogging film which is excellent in the adhesion prevention property of a contaminant, ie, antifouling property, by including surfactant.
  • the surfactant referred to here is a compound having surface activity and having an antistatic function which has been mentioned as the antistatic agent described above (that is, an acid group other than a phosphate group and a carboxy group in the molecule) And anionic surfactants selected from the group consisting of cationic surfactants and cationic surfactants are not included.
  • an antistatic agent and a surfactant may be used in combination regardless of whether the antistatic agent exhibits surface activity or not.
  • the composition for forming an antifogging layer preferably contains a surfactant from the viewpoint of water washing properties.
  • the composition for forming an antifogging layer preferably contains a surfactant separately from the antistatic agent from the viewpoint of further improving the antifouling property.
  • the composition for forming an antifogging layer according to the present disclosure not only enhances the antifouling property of the film to be formed, but also improves the coatability when forming the film by coating, for example. Specifically, when the composition for forming an antifogging layer according to the present disclosure contains a surfactant, the surface tension of the composition for forming an antifogging layer is reduced, and thus the uniformity of the film is further enhanced.
  • Nonionic surfactant- As surfactant a nonionic surfactant is mentioned, for example.
  • an ionic surfactant is used as the antistatic agent, if the ionic surfactant is excessively present in the composition for forming an antifogging layer, the electrolytic mass in the system is increased to easily cause aggregation of silica particles. Therefore, it is preferable to use a nonionic surfactant in combination.
  • the nonionic surfactant does not necessarily have to be used in combination with the ionic surfactant, and may contain a nonionic surfactant alone as a surfactant.
  • nonionic surfactant examples include polyalkylene glycol monoalkyl ether, polyalkylene glycol monoalkyl ester, and polyalkylene glycol monoalkyl ester / monoalkyl ether.
  • specific examples of the nonionic surfactant include polyethylene glycol monolauryl ether, polyethylene glycol monostearyl ether, polyethylene glycol monocetyl ether, polyethylene glycol monolauryl ester, polyethylene glycol monostearyl ester and the like.
  • the nonionic surfactant is an HLB from the viewpoint of forming an antifogging layer which is more excellent in hydrophilicity and antifouling property.
  • Nonionic surfactants having a value (hydrophilic / lipophilic balance) of greater than 15 are preferred.
  • the composition for forming an antifogging layer according to the present disclosure contains a specific nonionic surfactant, the hydrophilicity of the antifogging layer to be formed is further improved, and a contaminant (for example, silicone) which is a hydrophobic component Adhesion prevention becomes good.
  • the HLB value of the specific nonionic surfactant is preferably 15.5 or more, more preferably 16 or more, still more preferably 17 or more, and particularly preferably 18 or more.
  • the upper limit of the HLB value of the specific nonionic surfactant is not particularly limited, and is preferably, for example, 20 or less.
  • the HLB value (Hydrophile-Lipophile Balance) of surfactant is the hydrophilic and lipophilic balance of surfactant.
  • the HLB value of the surfactant in the present specification is a value which is defined by the following formula (I) according to the Griffin method (all revision edition new surfactant introduction, p 128) and is obtained by arithmetic.
  • Surfactant HLB value (molecular weight of hydrophilic group portion / surfactant molecular weight) ⁇ 20 (I)
  • nonionic surfactants include polyoxyalkylene alkyl ether, polyoxyalkylene alkyl phenol ether, polyoxyalkylene aryl ether, polyoxyalkylene alkyl aryl ether, sorbitan derivative, formalin condensate of polyoxyalkylene aryl ether, polyoxy Examples include formalin condensates of alkylene alkyl aryl ethers, polyethylene glycol and the like. Among these, polyoxyalkylene alkyl ethers are particularly preferable as the specific nonionic surfactant.
  • the alkyl group of the polyoxyalkylene alkyl ether in the specific nonionic surfactant includes, for example, a linear alkyl group having 1 to 36 carbon atoms or a branched alkyl group having 3 to 36 carbon atoms.
  • the oxyalkylene moiety of the polyoxyalkylene alkyl ether is preferably polyoxyethylene from the viewpoint that a film having particularly excellent hydrophilicity can be formed.
  • the number of polyoxyethylene structural units possessed by the specific nonionic surfactant is preferably 6 or more, more preferably 10 or more, still more preferably 15 or more, and 20 or more. Is particularly preferred.
  • the number of polyoxyethylene structural units can be, for example, 100 or less from the viewpoint of solubility.
  • a surfactant represented by the following formula (II) is preferable.
  • m represents an integer of 6 to 100.
  • R represents a linear alkyl group having 1 to 36 carbon atoms or a branched alkyl group having 3 to 36 carbon atoms.
  • a commercial item can be used as a specific nonionic surfactant.
  • Examples of commercially available products of specified nonionic surfactants include EMALEX® 715 (HLB value: 15.6), EMALEX 720 (HLB value: 16.5), EMALEX 730 (Japan Emulsion Co., Ltd.). HLB value: 17.5), EMALEX 750 (HLB value: 18.4) (all trade names: polyoxyethylene lauryl ether), Kao Corporation Reodore TW-P120 (trade name: polyoxyethylene sorbitan monopalmi) Tate, HLB value: 15.6), PEG2000 (trade name, HLB value: 19.9) of Sanyo Chemical Industries, Ltd., and the like.
  • composition for forming an antifogging layer according to the present disclosure contains a nonionic surfactant
  • the nonionic surfactant may be contained alone or in combination of two or more.
  • the nonionic surfactant in the composition for forming an antifogging layer contains a nonionic surfactant (preferably, a specific nonionic surfactant), the nonionic surfactant in the composition for forming an antifogging layer
  • the content is preferably 0.01% by mass or more and 15% by mass or less based on the total solid content of the composition for forming an antifogging layer, and more preferably 0.1% by mass or more and 10% by mass or less Preferably, it is more preferably 1% by mass or more and 10% by mass or less.
  • the hydrophilicity of the antifogging layer formed becomes it favorable that it is the said range, and the adhesion prevention property of the contaminant (for example, silicone) which is a hydrophobic component becomes favorable.
  • the surfactant includes, for example, an ionic surfactant having at least one of a phosphoric acid group and a carboxy group (hereinafter, also referred to as “specific ionic surfactant”).
  • an ionic surfactant having at least one of a phosphoric acid group and a carboxy group hereinafter, also referred to as “specific ionic surfactant”.
  • the composition for forming an antifogging layer according to the present disclosure contains a specific ionic surfactant, at least one functional group of a phosphoric acid group and a carboxy group possessed by the specific ionic surfactant functions as an acid adsorbing group.
  • Adsorb on the surface of the already mentioned silica particles The adsorption improves the dispersion stability of the silica particles. Further, since adsorption of the hydrophobic component to the surface of the silica particles is suppressed by adsorption, good hydrophilicity attributed to the silica particles is not lost, and good
  • the specific ionic surfactant is preferably an anionic surfactant in consideration of its adsorptivity with silica particles, and as a hydrophobic group, a hydrocarbon group having 1 to 36 carbon atoms, a cyclohexyl group, a cyclobutyl group
  • a hydrophobic group selected from aliphatic cyclic hydrocarbon groups such as a group, and aromatic hydrocarbon groups such as a styryl group, a naphthyl group, a phenyl group and a phenylene ether group, and phosphorus as an acid adsorbing group It is more preferable that it is a compound having at least one of an acid group and a carboxy group.
  • the above-mentioned hydrophobic group may further have a substituent.
  • the specific ionic surfactant preferably has at least one functional group selected from a phosphoric acid group and a carboxy group as an acid adsorptive group. That is, it is preferable that the specific ionic surfactant does not have an acid adsorbing group other than a phosphoric acid group such as a sulfonic acid group and a sulfuric acid group and a carboxy group.
  • Examples of the specific ionic surfactant having a phosphoric acid group include alkyl phosphoric acid ester salts and polyoxyethylene alkyl ether phosphates.
  • Specific ionic surfactants having a carboxy group include N-acyl amino acids, polyoxyethylene alkyl ether carboxylates, aliphatic carboxylates, aliphatic dicarboxylates, and polycarboxylic acids having a weight average molecular weight of less than 25,000. Examples include acid copolymers, and maleic acid copolymers having a weight average molecular weight of less than 25,000.
  • the acid value of the specific ionic surfactant is preferably 180 mg KOH / g or less, more preferably 100 mg KOH / g or less, from the viewpoint of the dispersion stability of the silica particles and the adsorption inhibitory property of the hydrophobic component.
  • the lower limit of the acid value of the specific ionic surfactant is not particularly limited, and is preferably 3 mg KOH / g, for example.
  • the acid number of a specific ionic surfactant in the present disclosure can be measured by titration of an indicator.
  • the number of mg of potassium hydroxide for neutralizing the acid component in 1 g of solid content of the specific ionic surfactant is calculated and calculated. Is a value determined by
  • a commercial item can be used as a specific ionic surfactant.
  • specific ionic surfactants include DISPERBYK®-2015 (acid-adsorbable group: carboxy group, acid value: 10 mg KOH / g, solid content: 40% by mass) manufactured by BYK, DISPERBYK (Registered trademark) -180 (acid-adsorbable group: phosphoric acid group, acid value: 94 mg KOH / g), EVONIC TEGO® Disperss 660 C (acid-adsorbable group: phosphoric acid group, acid value: 30 mg KOH / g) , BYK (registered trademark) -P104 (acid-adsorbable group: carboxy group, acid value: 180 mg KOH / g), and the like.
  • composition for forming an antifogging layer according to the present disclosure contains a specific ionic surfactant, it may contain only one specific ionic surfactant, or may contain two or more kinds.
  • the content of the ionic surfactant in the composition for forming an antifogging layer is the entire content of the composition for forming an antifogging layer It is preferable that it is 0.05 to 50 mass% with respect to solid content, It is more preferable that it is 0.5 to 20 mass%, It is 1 to 15 mass% Is more preferred. Within the above range, the aggregation preventing effect of the silica particles and the adsorption preventing effect of the hydrophobic component become better, and it becomes easy to obtain the antifouling property improvement effect of the hydrophilic film by including the specific ionic surfactant.
  • the composition for forming an antifogging layer according to the present disclosure comprises silica particles, a specific binder, and a solvent optionally used, for example, a ketone-based solvent, water, etc., by mixing the optional components described above. It is preferred to prepare.
  • a specific binder is mixed with a solvent containing water, and then a ketone solvent and silica particles are added to the obtained mixture.
  • the other solvent which is an optional component as stated above, polyacrylic acid, surfactant, an antistatic agent etc. can be added if desired.
  • the laminate of the present disclosure can be used in various applications. Specifically, for example, protective materials for protecting surveillance cameras, lights, sensor lamps and the like (so-called protective covers); roof materials of garages of vehicles such as automobiles and motorcycles; signs such as road signs; highway road shoulders Soundproof walls for installation, railways, etc .; Body of vehicles such as automobiles and two-wheelers; For imparting functions such as anti-fogging to window glass, mirrors, protective materials of lights (eg, lenses) etc. Can be suitably used. Among these, the laminate can be more suitably used as a protective material for automobile lights (headlights, tail lamps, door mirror blinker lights, etc.) and protective materials for surveillance cameras.
  • a car includes a light unit configured to include a light and a lens for protecting the light.
  • a transparent substrate such as glass or plastic used in this light unit has a dew point below one of the surfaces due to the difference in temperature and humidity between the inner surface and the outer surface across the substrate, or with respect to the substrate.
  • the moisture in the atmosphere adheres as a water droplet, and the substrate surface condenses.
  • so-called “clouding” may occur due to the scattering of light due to the condensed water droplets.
  • cloudiness occurs in headlights and rear lights, the appearance is significantly impaired.
  • the laminate according to the present disclosure does not generate cracks in the antifogging layer or peel between the antifogging layer and the substrate, and exhibits sufficient antifogging properties.
  • the antifogging layer of the present disclosure is also excellent in transparency. Therefore, automotive lights and surveillance cameras to which the laminate of the present disclosure is applied have excellent anti-fogging properties because their appearance, function and performance are unlikely to be impaired, and are excellent in stain resistance and substrate adhesion. It can be kept for a long time.
  • Example 1 preparation of composition 1 for forming an antifogging layer
  • Ethanol Ethanol
  • solvent 28.88 parts by mass Water
  • solvent 23.81 parts by mass
  • Silica particles average primary particle size: 10 nm): 42.35 parts by mass
  • the composition 1 for forming an antifogging layer obtained above was used as a base material PMMA (polymethyl methacrylate resin, trade name: Comoglass (registered trademark) CG P, thickness: 1 mm, size: 10 cm ⁇ 10 cm, ( Using Kuraray Co., Ltd., a spray gun (type: W-101-101G, Anest Iwata Co., Ltd.) was applied. After application, the substrate coated with composition 1 for forming an antifogging layer was allowed to stand at 25 ° C. for 1 minute. After standing, the coated film of the composition 1 for forming an antifogging layer is dried by heating at an atmosphere temperature of 80 ° C. for 20 minutes to form a laminate having an antifogging layer with a film thickness of 2 ⁇ m on a substrate. The body was made.
  • PMMA polymethyl methacrylate resin, trade name: Comoglass (registered trademark) CG P, thickness: 1 mm, size: 10 cm ⁇ 10 cm
  • Example 1 is the same as Example 1, except that the type of the specific binder, the silica particles, and the content ratio (B / A) of the silica particles to the specific binder are changed as described in Tables 1 to 5.
  • HEC hydroxyethyl cellulose
  • PVA polyvinyl alcohol
  • Hydroxyethyl cellulose (HEC) SANHEC-L manufactured by Tri Crystal Co., Ltd., a specific binder having a cellulose skeleton / weight-average molecular weight 90000
  • Hydroxyethyl cellulose (HEC) SP 500 made by Daicel Fine Chem Co., Ltd., a specific binder having a cellulose skeleton / weight average molecular weight of 100.0 million)
  • Hydroxyethyl cellulose (HEC) SP 200 made by Daicel Fine Chem Co., Ltd., a specific binder having a cellulose skeleton / weight average molecular weight 10,000,000)
  • Hydroxyethyl cellulose (HEC) SP 400 made by Daicel Fine Chem Co., Ltd., a specific binder having a cellulose skeleton / weight average molecular weight 25 million)
  • Hydroxyethyl cellulose (HEC) SP 600 made by Daicel Fine Chem Co., Ltd.
  • Polyester / urethane / acrylic composite resin (PES RESIN WAC-17XC (trade name), manufactured by Takamatsu Yushi Co., Ltd .: main skeleton is polyester (Tg: -19 ° C) / polyurethane (Tg: -43 ° C) / acrylic (Tg: 48 ° C) copolymer containing unit)
  • Acrylic / polyester composite resin (PES RESIN A-125S (trade name), manufactured by Takamatsu Yushi Co., Ltd., Tg: 63 ° C.)
  • Polyester resin plus coat Z-561 manufactured by Koka Kogyo Co., Ltd., weight average molecular weight 27,000, solid content concentration 25%
  • Silica particles Average primary particle size: 20 nm, Snowtex-O-40 (Nissan Chemical Co., Ltd./solid content 40%) Silica particles: Average primary particle size: 40 nm, Snowtex-OL (Nissan Chemical Co., Ltd. product / solids concentration 20%)
  • a power system Fs: 1 kg, a dynamic strain Fs: 0.1 mm, and an eyelid load meter: 2 kg were input together with the measurement thickness of the antifogging layer sample.
  • the measurements were made in a 1 Hz sine wave mode.
  • the measurement temperature range was set to a start temperature of -30.degree. C., a step temperature of 3.degree. C., and a heating rate of 5.degree. C./min, until it exceeded 130.degree.
  • the results are shown in Tables 1 to 5.
  • Tables 1 to 5 From the curve of tan ⁇ against temperature, the temperature at which the peak of the curve exists, ie, the peak temperature was obtained, and the results are shown in Tables 1 to 5.
  • Antifogging (initial) Prepare a 40 ° C water bath and keep the distance to the water surface of the hot water bath at 5 cm only within the 5 cm square of the film of the laminate under the conditions of an ambient temperature of 25 ° C and a relative humidity of 50%. The bath steam was applied for 1 minute. Thereafter, the antifogging property was evaluated by visually observing the appearance. In the following evaluation criteria, “A”, “B”, and “C” are practically acceptable levels. A: No haze was observed, and there was no distortion in the transmission image observed through the laminate. B: No haze was observed, and there was slight distortion in the transmission image observed through the laminate. C: Clouding is not observed, and there is distortion in the transmission image that can be observed through the laminate. D: Cloudiness is observed.
  • Contamination resistance 3 mL of silicone oil TSF 458-100 (manufactured by Momentive Performance Materials Japan Co., Ltd.) was sealed in a 110 mL screw tube bottle, and the antifogging layer side of the laminate was sealed toward the screw tube inner side.
  • the sealed screw tube was placed on a hot plate maintained at 130 ° C. and left for 24 hours. After standing, the laminate was taken out, and the antifogging property of the film was evaluated by the same method as the above antifogging evaluation. Evaluation of contamination resistance was performed according to the following evaluation criteria. The better the antifogging properties of the laminate after standing, the better the contamination resistance to silicone gas, meaning that the laminate is excellent.
  • A”, “B”, and “C” are practically acceptable levels.
  • Water contact angle A water contact angle is 1 ⁇ l (microliter) of pure water dropped on the surface of the antifogging layer to be measured at 25 ° C using a contact angle meter DM-701 (manufactured by Kyowa Interface Science Co., Ltd.) It calculated
  • Haze transparency
  • the haze (Haze) of the laminate was measured using a haze meter (model number: NDH 5000, manufactured by Nippon Denshoku Kogyo Co., Ltd.), and the obtained measured value was used as an index for evaluating the transparency.
  • the haze value was calculated by subtracting the haze value of only the substrate from the measurement value of the laminate in order to remove the difference due to the substrate.
  • the substrate surface of the laminate that is, the surface opposite to the surface on which the film of the laminate is formed was measured toward the light source. In this evaluation test, the lower the measured value of the haze, the more the transparency means that the laminate is excellent.
  • the transparency of the laminate is excellent means that the transparency of the film is excellent.
  • “A”, “B”, and “C” are practically acceptable levels.
  • Adhesion between substrate and antifogging layer The adhesion between the substrate and the antifogging layer was evaluated according to the following evaluation criteria by performing a crosscut test on the antifogging layer according to JIS (Japanese Industrial Standard) K5600 (crosscut method in 1999). In the cross cut test in the evaluation of the example etc., the cut interval was 2 mm, and 25 square grids of 2 mm square were formed. In the following evaluation criteria, “A”, “B”, and “C” are practically acceptable levels. A: Peeling was not observed at all. B: Peeling was observed only on the cut line. C: One or more and five or less lattice peelings were observed. D: Peeling of more than 5 (six or more) grids was observed.
  • Antifogging layer water holding amount was measured by the method described above. That is, a hot water bath maintained at 60 ° C. is prepared, and under the conditions of an ambient temperature of 25 ° C. and a relative humidity of 50%, the direction in which the antifogging layer of the laminate is downward, ie, the antifogging layer of the laminate is a hot water bath From the hot water bath until the clouding or dripping occurs in the antifogging layer, with the distance between the water surface of the hot water bath and the surface of the antifogging layer being kept at 5 cm. Steam was applied to the antifogging layer.
  • M 1 is the mass of the laminate before vapor application (mg)
  • M 2 is the mass of the laminate after vapor application (mg)
  • S is the area of the area to which the vapor of the antifogging layer is applied ( cm 2 ) is shown.
  • the water retention amount of the antifogging layer is referred to as “film water holding amount”.
  • the laminates of Examples 1 to 16 were excellent in antifogging properties, stain resistance on the surface of the antifogging layer, and water dripping resistance. Moreover, it was excellent also in transparency and base-material adhesiveness.
  • the comparative example 1 whose content ratio (B / A) of a silica particle and a specific binder is smaller than the range of this indication was inferior to adhesiveness with a base material.
  • the comparative example 2 whose (B / A) is too large rather than the range of this indication was inferior to water dripping resistance.
  • All of Comparative Examples 3 to 6 in which the condition of tan ⁇ was out of the range of the present disclosure were low in water dripping resistance as compared with Examples.
  • Examples 101 to 116 and Comparative Examples 101 to 106 [Crack test] Regarding the occurrence of cracks in the laminate, a film thickness of 2 ⁇ m was prepared in each of Examples 1 to 16 and Comparative Examples 1 to 6, and the appearance of the films was visually observed to evaluate the crack properties. Further, using the same composition for forming an antifogging layer as the composition used in Examples 1 to 16 and Comparative Examples 1 to 6, the film thickness of the antifogging layer after drying is 5 ⁇ m and 10 ⁇ m, respectively. The antifogging layer laminate was prepared as 20 ⁇ m and 30 ⁇ m, and the occurrence of cracks in the laminate was similarly evaluated. The results are shown in Tables 6 to 10 below as Examples 101 to 116 and Comparative Examples 101 to 106, respectively.
  • a and B are practically acceptable levels.
  • the laminates of Examples 101 to 116 formed of the composition for forming an antifogging layer used for forming the antifogging layer in the laminates of Examples 1 to 16 are It can be seen that the occurrence of cracks is suppressed even if the thickness of the antifogging layer is increased.
  • Table 5 in the laminate of Comparative Example 1, in the laminate of Comparative Example 101 formed of the composition for forming an antifogging layer used for forming the antifogging layer, the occurrence of cracks is suppressed to some extent.
  • the transparency of the antifogging layer is low, and the laminate is inferior in peel resistance and has a practically problematic level.
  • the laminate of Comparative Example 2 although the laminate of Comparative Example 102 formed by the composition for forming an antifogging layer used for forming the antifogging layer, the occurrence of cracks is suppressed even if the film thickness is increased. Since the transparency of the antifogging layer is low and the resistance to water dripping is poor, it can be seen that the antifogging layer laminate has a practically problematic level.
  • Example 17 [Application to surveillance camera cover]
  • the composition for forming an antifogging layer obtained in each of the above examples is a spray gun (type: W on the inner surface of a housing replacement cover RCP 7 C used for an outdoor dome housing A-ODP 7 C 1 A made by Sony Corporation).
  • -101-101G Anest Iwata Co., Ltd. was used to apply.
  • the applied coating solution was dried at 120 ° C. for 20 minutes to obtain a camera cover whose inner surface is covered with an antifogging layer (thickness after drying: 100 ⁇ m).
  • Example 18 The inner surface of the housing replacement cover RCP7C is the same as in Example 17 except that the thickness of the antifogging layer after drying is 3 ⁇ m using the composition for forming an antifogging layer obtained in each of the above examples. Camera covers coated with an antifogging layer were obtained respectively. Next, prepare a 60 ° C. water bath, and keep the distance between the water surface and the inner surface of the hot water bath on the inner surface covered with the antifogging layer of the obtained camera cover for 2 minutes I hit it.
  • Example 19 The composition for forming an antifogging layer obtained in each of the above examples was applied to the inner surface of a housing replacement cover (trade name: BKC-13L, manufactured by Plako Co., Ltd.) using a spray gun (type: W-101-101G, It applied using Annest Iwata Co., Ltd.). Next, the applied coating solution was dried at 80 ° C. for 10 minutes to obtain a camera cover whose inner surface is coated with an antifogging layer (thickness after drying: 3 ⁇ m). Next, prepare a 60 ° C. water bath, and keep the distance between the water surface and the inner surface of the hot water bath on the inner surface covered with the antifogging layer of the obtained camera cover for 2 minutes I hit it.
  • Example 20 [Application to automobile headlight lens]
  • the composition for forming an antifogging layer obtained in each of the above-mentioned Examples was spray gun (type: W-101-101G, ANEST IWATA, Ltd. It applied using a).
  • the applied coating solution was dried at 120 ° C. for 20 minutes to obtain headlight lenses each coated with an antifogging layer on the inner surface.
  • prepare a 60 ° C water bath and keep the distance between the water surface and the inner surface of the hot water bath on the inner surface covered with the antifogging layer of the obtained headlight lens, and keep the distance between the water surface and the inner surface 5 cm. I applied for a minute.
  • Example 21 In the same manner as in Example 20, except that the thickness of the antifogging layer after drying was 3 ⁇ m, using the composition for forming an antifogging layer obtained in each of the above examples, W 219 repair manufactured by Office K Co., Ltd. The headlight lens in which the inner surface of the headlight lens was coated with the antifogging layer was obtained. Next, prepare a 60 ° C water bath, and keep the distance between the water surface and the inner surface of the hot water bath on the inner surface covered with the antifogging layer of the obtained headlight lens, and keep the distance between the water surface and the inner surface 5 cm. I applied for a minute.
  • Example 22 [Application to car tail light lens]
  • the composition for forming an antifogging layer obtained in each of the above-mentioned examples is a spray gun (type: W-101) on the inner surface of the lens cover of LED tail light for Vitz (product number: OET 153) manufactured by Motors Corporation. It apply

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

基材と、基材上の少なくとも一部に設けられた防曇層とを有し、防曇層は、バインダーと、シリカ粒子とを含み、防曇層の、温度に対する1Hzでの損失正接tanδが、温度-20℃以上40℃以下の領域において0.1以上であり、且つ、tanδが最大値を示す温度が40℃を超え118℃以下の範囲にあり、シリカ粒子の固形質量をA、バインダーの固形質量をBとした場合、両者の質量が下記関係式(1)を満たしており、防曇層の膜厚が2μm以上30μm以下である、防曇層積層体。 0.07≦B/A≦2.00 関係式(1)

Description

防曇層積層体
 本開示は、防曇層積層体に関する。
 屋内又は屋外に設置されて長期間にわたって使用される装置、建材等は、様々な環境に曝されるため、徐々に埃、塵、砂利等が堆積したり、風雨時の雨水に濡れたりする等して、予定されている機能及び性能が損なわれる場合がある。
 例えば、自動車のヘッドランプ等の車両灯具において、灯室内に高湿度の空気が入り込み、外気や降雨等によってレンズが冷やされ、内面に水分が結露することによって曇りが生じることがある。その結果、車両灯の輝度が低下し、またレンズ面の美観が損なわれる場合がある。
 このようなレンズの曇りを防ぐために、曇りが発生する部位に防曇剤組成物を塗布する方法が知られている。防曇剤組成物を塗布して得られた膜(以下、防曇層と称することがある)としては、表面を超親水にすることで水滴を水膜に変える親水型防曇層と、吸水性材料を使用することで、水滴を吸収する吸水型防曇層が知られている。
 防曇層形成用の防曇剤組成物としては、例えば、2%水溶液の粘度が1000cps以下で、かつ、炭素原子数が2以上のアルコキシ基を有するアルコキシセルロースとコロイドを形成するか、またはヒドロキシアルコキシセルロースとコロイドを形成する無機酸化物を主要成分とする防曇剤組成物が開示されている(特開昭63-132989号公報参照)。
 さらに、以下に挙げる種々の防曇性組成物或いは防曇塗料が開示されている。
 特開2005-314495号公報には、塩基性触媒を用いて形成されたコロイダルシリカゾル(A)と親水性ポリマー(B)とを必須成分として含有する防曇塗料が、特開2000-336347号公報には、コロイド粒子の形状が鎖状のシリカゾル(A)を含有する防曇剤組成物が、それぞれ開示されている。
 特開2001-152137号公報には、防曇性被膜形成基材として、基材表面に、吸水性有機高分子と無機物質よりなる吸水性有機無機複合被膜を被覆し、その表面を撥水性加工してなる技術が開示されている。
 特開2000-154374号公報には、水98.0~99.8重量%、水溶性セルロース0.01~0.40重量%および平均粒径3~50nmのコロイダルシリカ0.16~1.99重量%からなり、アルカリ成分の濃度が50ppm以下である防曇剤が開示されている。
 特開2009-54348号公報には、ハウジング内の光源、該光源からの光を透過するレンズ及びハウジング内の気圧変動を調整するための通気孔を有する車両用灯具において、レンズの内面に水溶性高分子を三次元的に架橋した架橋体で構成され、1.5~25mg/cmの吸水量を有する防曇塗膜が形成されている車両用灯が開示されている。
 防曇剤組成物等から形成される防曇層は、防曇性及び耐久性の観点から、ある程度以上の厚さを有することが好ましい。しかしながら、既存の防曇剤、防曇性組成物等を用いた防曇性層は、単に塗布量を増加させて層厚を厚くした場合、得られた防曇性層と基材との密着性が低下し、剥離が生じやすくなる、或いは、防曇層にひび割れ(クラック)が生じやすくなるなどの問題が生じる場合があり、防曇層が良好な防曇性を保持することが困難であった。
 上記の特開昭63-132989号公報、特開2005-314495号公報、特開2000-336347号公報、特開2001-152137号公報、特開2000-154374号公報又は特開2009-54348号公報に記載の防曇性組成物、防曇層等は、防曇膜の厚膜化による問題点に着目しておらず、厚膜化によるクラックの発生が抑制され、且つ、良好な防曇性及び水垂れ跡の発生抑制性を発現し得る防曇層を開示していない。
 本発明の一実施形態が解決しようとする課題は、防曇層を厚膜とした場合においても、防曇層におけるクラックの発生及び基材と防曇層との剥離が抑制され、且つ、防曇性及び水垂れ跡の発生抑制性が良好な防曇層積層体を提供することである。
 上記課題を解決するための手段には、以下の態様が含まれる。
<1> 基材と、基材上の少なくとも一部に設けられた防曇層とを有し、防曇層は、バインダーと、シリカ粒子とを含み、防曇層は、温度に対する1Hzでの損失正接tanδが、温度-20℃以上40℃以下の領域において0.1以上であり、且つ、tanδが最大値を示す温度が40℃を超え118℃以下の範囲にあり、シリカ粒子の固形質量をA、バインダーの固形質量をBとした場合、A及びBが下記関係式(1)を満たしており、防曇層の膜厚が2μm以上30μm以下である、防曇層積層体。
 0.07≦B/A≦2.00  関係式(1)
<2> 防曇層の膜厚が5μm以上20μm以下である<1>に記載の防曇層積層体。
<3> シリカ粒子の平均一次粒子径が、10nm以上20nm以下である<1>又は<2>に記載の防曇層積層体。
<4> バインダーの重量平均分子量が、100,000以上1,000,000以下である<1>~<3>のいずれか1つに記載の防曇層積層体。
<5> バインダーが、セルロース骨格を有するポリマー、互いに異なるガラス転移温度を有する2種以上のポリマーの混合物、及び互いに異なるガラス転移温度を有する2種以上のポリマーユニットを含む共重合体からなる群より選ばれる少なくとも1種である<1>~<4>のいずれか1つに記載の防曇層積層体。
<6> 互いに異なるガラス転移温度を有する2種以上のポリマーの混合物における2種のポリマーは、同じ構造単位を含む親水性ポリマーから選ばれる<5>に記載の防曇層積層体。
<7> 互いに異なるガラス転移温度を有する2種以上のポリマーの混合物における2種のポリマーのうち、よりガラス転移温度の低い第1のポリマーと、よりガラス転移温度の高い第2のポリマーとの含有比率は、質量比で、25:75~50:50の範囲である<5>又は<6>に記載の防曇層積層体。
<8> バインダーは、アルコキシシリル基、シラノール基、及び親水性基から選択される少なくとも1種の官能基を含む<1>~<7>のいずれか1つに記載の防曇層積層体。
<9> 防曇層の水接触角が40°以下である<1>~<8>のいずれか1つに記載の防曇層積層体。
<10> 基材が、樹脂基材である<1>~<9>のいずれか1つに記載の防曇層積層体。
<11> 樹脂基材が、アクリル樹脂基材、又は、ポリカーボネート基材である<10>に記載の防曇層積層体。
<12> 自動車のライトの保護材又は監視カメラの保護材である<1>~<11>のいずれか1つに記載の防曇層積層体。
 本発明の一実施形態によれば、防曇層を厚膜とした場合においても、防曇層におけるクラックの発生及び基材と防曇層との剥離が抑制され、且つ、防曇性及び水垂れ跡の発生抑制性が良好な防曇層積層体を提供することができる。
本開示の防曇層積層体の一実施形態を示す部分概略断面図である。
 以下、本開示の内容について詳細に説明する。以下に記載する構成要件の説明は、本開示の代表的な実施態様に基づいてなされることがあるが、本開示はそのような実施態様に限定されない。
 なお、本開示において、数値範囲を示す「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、好ましい態様の組み合わせは、より好ましい態様である。
 本開示において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合は、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 また、本開示における基(原子団)の表記において、置換及び無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
 本開示において、「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義である。
 本開示における重量平均分子量(Mw)及び数平均分子量(Mn)は、特に断りのない限り、ゲルパーミエーションクロマトグラフィ(GPC)分析装置により測定した値を用いている。
 詳細には、GPCによるMw及びMnの測定は、測定装置として、HLC-8120GPC及びSC-8020(いずれも東ソー(株))を用い、カラムとして、TSKgel(登録商標)Super HM-H(6.0mmID×15cm、東ソー(株))を2本用い、溶離液として、THF(テトラヒドロフラン)を用いることにより行われる。測定条件は、試料濃度を0.5質量%、流速を0.6ml/min、サンプル注入量を10μl(マイクロリットル)、及び測定温度を40℃とし、示唆屈折計(RI)検出器を用いて行うことができる。検量線は、東ソー(株)の「標準試料TSK standard,polystyrene」:「A-500」、「F-1」、「F-10」、「F-80」、「F-380」、「A-2500」、「F-4」、「F-40」、「F-128」、及び「F-700」の10サンプルから作製されたものを用いることができる。
 本開示において、「溶媒」とは、水、有機溶剤、及び水と有機溶剤との混合溶媒を意味する。
 本開示における「固形分」との語は、溶媒を除く成分を意味し、溶媒以外の低分子量成分等の液状成分も、本開示における「固形分」に含まれる。
 本開示において、「(メタ)アクリル」は、アクリル及びメタクリルのいずれか又は双方を包含する概念である。
 本開示において、「防曇性」とは、防曇層の曇りを抑制する性能をいう。本開示における「曇り」には、水蒸気による曇り、シリコーンガスによる曇り、及びヘイズ値が高いこと(即ち、透明性が低いこと)が含まれる。
 また、水垂れ跡の発生抑制性(以下、耐水垂れ性と称することがある)とは、防曇層の表面に付着した水滴が流下する際に、水滴の流れた跡、即ち、水垂れの跡が防曇層表面に形成され難い性能をいう。水垂れの跡の形成が抑制されないと、防曇層表面に水滴の流れた跡が筋状に残り、防曇層の外観が損なわれる。
 以下、本開示の防曇層積層体を詳細に説明する。
[防曇層積層体]
 本開示の防曇層積層体(以下、単に「積層体」と称することがある)は、基材と、基材上の少なくとも一部に設けられた防曇層とを有し、防曇層は、バインダーと、シリカ粒子とを含み、防曇層の、温度に対する1Hzでの損失正接tanδ(以下、tanδと称することがある)が、温度-20℃以上40℃以下の領域において0.1以上であり、且つ、tanδが最大値を示す温度が40℃を超え118℃以下の範囲にあり、シリカ粒子の固形質量をA、バインダーの固形質量をBとした場合、両者の質量が下記関係式(1)を満たしており、防曇層の膜厚が2μm以上30μm以下である。
0.07≦B/A≦2.00  関係式(1)。
 本発明者らが鋭意検討した結果、基材に防曇層形成用組成物を塗布し、乾燥して防曇層を形成する場合、防曇層の膜厚を2μm以上30μm以下にすると、乾燥時の加熱による防曇層の乾燥収縮によりクラックが生じたり、基材と防曇層との剥離が生じたりする場合があることが判明した。
 吸水性の防曇層は、膜厚を増加させると吸水能の向上、耐水垂れ性の向上等が期待できる一方で、上記のような問題が生じることがある。本開示の防曇層積層体は、上記構成とすることで、良好な吸水能及び耐水垂れ性を維持しつつ、防曇層の厚膜化により生じる課題が解決され得ることを見出した。
 本開示の作用機構は明確ではないが、以下のように推定している。
 本開示の防曇層積層体は、防曇層に、バインダー及びシリカ粒子を含み、シリカ粒子は、良好な透明性と親水性と防曇層に与え得る。シリカ粒子の含有量に対するバインダーの含有量を0.07以上2.00以下とすることにより、バインダー中で、シリカ粒子が編析することなく均一に分散される。このため、例えば、特開昭63-132989号公報、特開2005-314495号公報、特開2000-336347号公報、又は特開2001-152137号公報に記載の、バインダーとコロイダルシリカ等の無機酸化物とを含む防曇組成物により形成された防曇層等との対比において、シリカ粒子の含有量に対するバインダーの含有量を上記範囲とした本開示における防曇層は、バインダーを介したシリカ粒子同士の結合性、バインダーを介したシリカ粒子と基材との結合性等がより高まる。さらに、本開示における防曇層は、透明性と基材との密着性に優れた防曇層となり、基材と防曇層との剥離も抑制されると考えられる。また、バインダーとシリカ粒子とが適度な空隙を有する構造を形成し、良好な吸水能及び耐水垂れ性を維持することができると考えられる。
 本開示における防曇層は、温度に対するtanδを測定した場合、-20℃以上40℃以下の温度領域、即ち、低温から常温(25℃)近傍の温度領域において、0.1以上という比較的高いtanδであることにより、防曇層の成膜乾燥後に常温まで降温される際に働く膜の流動応力が緩和される。また、本開示における防曇層は、温度に対するtanδを測定した場合、tanδが最大値を示す温度が、40℃を超え118℃以下、即ち成膜乾燥時の加熱温度の近傍範囲にあることにより、成膜加熱時に働く硬化応力が緩和される。よって、流動応力及び硬化応力の緩和が相俟って、クラックの発生及び基材からの防曇層の剥離が効果的に抑制されると推定している。
 一方、以下に詳述するように、喩え水溶性高分子を用いた場合においても、上記物性を有しない防曇層を有する積層体では、十分な防曇性又は耐水垂れ性が得られず、成膜時のクラックの発生を抑制し得ない。
 従って、本開示における防曇層積層体は、良好な保水性を有する膜厚が2μm以上30μm以下の防曇層を有していても、クラック発生及び膜剥離の懸念はなく、防曇性が良好となり、水垂れ跡の発生が抑制されたと考えている。
 以下、本開示の積層体の一実施形態の構成を、図1を用いて説明する。図1は、本開示の積層体の一実施形態を示す部分概略断面図である。積層体10は、基材12及び防曇層14を有し、防曇層14は、シリカ粒子16と、シリカ粒子16を覆うバインダー18とを含み、シリカ粒子16同士がバインダー18を介して互いに結合し、石垣状の防曇層に形成されている。また、バインダー18を介して結合されたシリカ粒子16同士の間には空隙20が形成されていると推定される。防曇層14は、-20℃以上40℃以下の温度領域において後述のtanδを示す。
<防曇層>
 本開示における防曇層は、バインダーと、シリカ粒子とを含み、以下の条件を満たす。
(I)防曇層は、温度に対する1Hzでのtanδが、温度-20℃以上40℃以下の領域において0.1以上であり、且つ、tanδが最大値を示す温度が40℃を超え118℃以下の範囲にある。
(II)シリカ粒子の固形質量をA、バインダーの固形質量をBとした場合、両者の質量が下記関係式(1)を満たしている。
0.07≦B/A≦2.00  関係式(1)
(III)防曇層の膜厚が2μm以上30μm以下である。
〔条件(I)について〕
 本開示における防曇層は、温度に対する1Hzでのtanδが、温度-20℃以上40℃以下の領域において0.1以上である。即ち、1Hzにおいて、温度に対するtanδの曲線を作成した場合、温度-20℃以上40℃以下の領域において、曲線がtanδの値として0.1以上の位置にある。言い換えれば、防曇層は、低温域から常温域におけるtanδが比較的高い値である0.1以上を示す。温度-20℃以上40℃以下の領域におけるtanδは、0.12以上が好ましく、0.15以上がより好ましく、0.18以上であることがさらに好ましい。
 上記温度域におけるtanδの上限値には特に制限はないが、ある程度硬質の防曇層を成形し得るという観点から、tanδは0.40以下であることが好ましい。
 本開示に係る防曇層は、温度に対する1Hzでのtanδが最大値を示す温度が40℃を超え118℃以下の範囲にある。即ち、1Hzにおいて、温度に対するtanδの曲線を作成した場合に得られた曲線において、tanδが最大値を示す温度、言い換えれば、ピーク温度は40℃を超え118℃以下の範囲にある。
 既述のピーク温度は、42℃以上110℃以下の範囲にあることが好ましく、45℃以上105℃以下の範囲にあることがより好ましく、50℃以上100℃以下の範囲にあることがさらに好ましい。
 上記条件を満たすことで、防曇層の膜厚を厚くした場合、具体的には2μm以上30μm以下とした場合でも、防曇層形成時におけるクラックの発生、及び防曇層と基材との剥離が効果的に抑制される。
 温度に対するtanδの測定は、測定装置として、動的粘弾性測定装置を使用して行なうことができる。本開示では、(株)ユービーエム製の動的粘弾性測定装置「Rheogel E-4000」を用いて得られたtanδの値を採用している。
 測定に使用するサンプルは、積層体の基材から剥離した防曇層を収集し、幅6mm×長さ20mmにカットしたものを用いる。
 まず、カットした防曇層サンプルの厚みを電子ノギスで測定し、都度、測定厚みを測定装置に入力する。
 防曇層サンプルの測定厚みの入力に加え、測定条件である動力系Fs:1kg、動歪Fs:0.1mm、靜荷重計:2kgを、装置に入力する。
 測定は1Hzの正弦波モードにて行う。
 測定温度の範囲は-30℃を開始温度とし、ステップ温度3℃、昇温速度5℃/分の条件で、130℃を超えるまで測定する。
 得られた温度に対するtanδの曲線から、温度-20℃以上40℃以下の領域におけるtanδの値を得る。
 また、同様に温度に対するtanδの曲線から、曲線のピークが存在する温度、即ち、ピーク温度を得ることができる。
 好ましい曲線の形状としては、例えば、温度-20℃以上40℃以下の領域と、40℃を超え118℃以下の領域に、それぞれピークを有する2ピークの曲線形状(多峰性)であって、温度-20℃以上40℃以下の領域におけるピークが、40℃を超え118℃以下の領域におけるピークよりも値が小さい、2ピークの曲線形状;なだらかな曲線でピーク温度に達し、ピーク温度が40℃を超え118℃以下の領域にあり、かつ、温度-20℃以上40℃以下の領域では、tanδの値が0.1を下回らない形状(1ピークの曲線形状);などが挙げられる。但し、本開示における温度に対するtanδ曲線の形状は、上記例示した態様に限定されない。
-バインダー-
 既述の如きtanδの条件を満たすためには、防曇層に含まれるバインダーの選択が重要となる。
 バインダーは、重量平均分子量が、100,000以上1,000,000以下であることが好ましく、150,000以上900,000以下であることが好ましく、200,000以上800,000以下であることがさらに好ましい。
 バインダーの重量平均分子量が上記範囲であることにより、吸水時に防曇層の成分の溶出が抑制されて耐水垂れ性が向上し、且つ、防曇層形成用組成物を調製する際の溶媒へのバインダーの溶解性が良好であり、形成された防曇層は透明性が良好となる。
 バインダーは、1種のみを用いてもよく、互いに異なる2種以上のバインダーを混合して使用してもよい。
 バインダーとしては、セルロース骨格を有するポリマー、互いに異なるガラス転移温度を有する2種以上のポリマーの混合物、及び互いに異なるガラス転移温度(以下、ガラス転移温度をTgと称することがある)を有する2種以上のポリマーユニットを含む共重合体からなる群より選ばれる少なくとも1種であることが好ましい。
 バインダーを1種のみ用いる場合には、好適なバインダーとして、剛直な主鎖の運動緩和性と、柔軟な主鎖/側鎖連結基(例えば、エーテル基)周りの運動緩和性の特性を有するセルロース骨格を有するバインダー、互いにTg、極性、分子量等の少なくともいずれかが異なる複数のポリマーユニット(即ち、部分構造)を含む共重合体などが挙げられる。
 2種以上のポリマーのブレンドにて上記tanδの条件を満たす場合、互いにTg、分子量等の異なる2種以上のポリマーをブレンドすることが好ましい。
 なお、2種のポリマーをブレンドする場合、一方のポリマーの重量平均分子量が100,000未満であると、防曇膜形成後により低分子量のポリマーがブリードアウトしたり、水滴が付着した際に溶出されやすくなったりなる場合があり、好ましくない。
 以下に、好ましいバインダーの例を、非限定的に示す。既述の防曇層が含むバインダーを、以下、「特定バインダー」と称することがある。
(1.セルロース骨格を有するポリマー)
 本開示に係る防曇層には、バインダーとしてセルロース骨格を有するポリマーを含むことができる。
 本開示において、セルロース骨格を有するポリマーとは、下記式(a)で表わされる多糖類構造を有するポリマー、及びその誘導体を含む。
Figure JPOXMLDOC01-appb-C000001

 
 式(a)中、R、R、及びR、は、それぞれ独立に、水素原子、又は炭素数が1~10の炭化水素基を表し、炭素数が1~10の炭化水素基は、置換基としてカルボン酸基を含むことができる。なお、上記炭素数は、炭化水素基が有する炭素数を示し、置換基としてのカルボン酸基の炭素の数は含まれない。
 nは、式(a)で表される構造単位の結合数であり、既述の好ましい重量平均分子量の範囲となる数値を適宜選択することができる。なかでも、nが1~10の範囲、即ち、セルロース骨格を有するポリマーの重量平均分子量が100,000以上1,000、000以下であることがより好ましい。
 セルロース骨格を有するポリマーの重量平均分子量は、既述の重量平均分子量の測定方法に従って測定できる。
 セルロース骨格を有するポリマーの官能基のcLogP値は、-0.2以下であることが好ましく、-0.6以下であることがより好ましい。セルロース骨格を有するポリマーの官能基のcLogP値が上記範囲であることにより、セルロース骨格を有するポリマーの親水性が高まり、防曇層形成用組成物及び防曇層形成用組成物を用いて形成される防曇層の防曇性が良化する。
 セルロース骨格を有するポリマーの官能基のcLogP値は、オクタノール/水分配係数から測定することができる。本開示では、セルロース骨格を有するポリマーの官能基のcLogP値は、コンピュータ計算により算出した計算値を採用している。上記の計算値は、Biobyte Corp.社の数値を用いた、CambridgeSoft社製「ChemDraw」に搭載されたLogP予測機能によって得られる値である。
 セルロース骨格を有するポリマーとしては、例えば、カルボキシメチルセルロース、カルボキシメチルエチルセルロース、メチルセルロース、エチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ジドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、セルロースアセテート、ニトロセルロース、クロスカルメロース、エチルヒドロキシエチルセルロース、及びこれらの塩、等が挙げられる。
 セルロース骨格を有するポリマーは、市販品を用いてもよい。市販品としては、例えば、ダイセルファインケム(株)製、カルボキシメチルセルロース1110、1120、1130、1140、1150、1160、1170、1180、1190、1220、1240、1250、1260、1330、1350、1380、1390、2200、2260、2280など)、例えば、ダイセルファインケム(株)製、ヒドロキシエチルセルロースSP200、SP400、SP500、SP600、SP850、SP900などが挙げられる。
 セルロース骨格を有するポリマーは、防曇層に、1種のみ含まれてよく、2種以上含まれていてもよい。
(2.2種以上のポリマーユニットを含む共重合体)
 本開示に係る防曇層には、バインダーとして2種以上のポリマーユニットを含む共重合体を含むことができる。
 防曇層の形成に用い得る特定バインダーに含まれる2種以上の互いに異なるポリマーユニットを含む共重合体としては、ポリエステルユニット、ポリウレタンユニット、アクリル系ユニット、ポリエチレンユニット、ポリプロピレンユニット、ポリスチレンユニット、ポリ塩化ビニルユニット、ポリカーボネートユニット、ポリイミドユニット、ポリサルファイドユニット、シリコーンユニット、等から選ばれる2種以上のポリマーユニットを含む共重合体が挙げられる。
 例えば、ポリエステルユニット及びアクリル系ユニットを含む共重合体、ポリエステルユニット及びポリウレタンユニットを含む共重合体、ポリエステルユニット、ポリウレタンユニット及びアクリル系ユニットを含む共重合体などが挙げられる。
 ここで、ポリマーユニットとは、同種のモノマーに由来する複数の構造単位を含むブロック重合体としての部分構造を意味する。
 例えば、上記ポリエステルユニットとは、エステルモノマーのブロック重合体であって、ユニットとしての重量平均分子量が2,000~10,000の範囲にあり、重量平均分子量10,000におけるTgが-19℃の部分構造を示す。
 上記ポリウレタンユニットとは、ウレタン結合を含むブロック重合体であって、ユニットとしての重量平均分子量が2,000~10,000の範囲にあり、重量平均分子量10,000におけるTgが-43℃の部分構造を示す。
 上記アクリル系ユニットとは、アクリレート又はメタクリレートのブロック(共)重合体であって、ユニットとしての重量平均分子量が2,000~10,000の範囲にあり、重量平均分子量10,000におけるTgが48℃の部分構造を示す。
 分子内に、既述の互いに異なるTgを有する部分構造(ポリマーユニット)を含む共重合体である複合樹脂のtanδ曲線は、既述の好ましいtanδ曲線となると考えられる。
 2種以上のポリマーユニットの含有比率は、目的とするtanδにより適宜選択される。例えば、アクリル系ユニットを、質量比で10%以上含むことで、得られるバインダーは、剛直な物性を示し、膜強度が向上する。また、例えば、ポリウレタンユニットを、質量比で10%以上含むことで、得られるバインダーは、柔軟性が向上し、膜形成時の収縮応力が緩和される。
 2種以上のポリマーユニットの結合は、特に主鎖/側鎖の制限はない。従って、2種以上のポリマーユニットを含む共重合体は、ブロック重合体であってもよく、グラフト共重合体であってもよい。
 2種以上のポリマーユニットを含む共重合体としては、市販品を用いてもよい。
 市販品としては、高松油脂(株)製のペスレジンWAC-17XC、ペスレジンA-125S(いずれも商品名)、楠本化成(株)製NeoPacシリーズ:R-9699、R-9029、E-123、E125(いずれも商品名)等が挙げられる。
 ペスレジンWAC-17XCは、主骨格はポリエステルユニット/ポリウレタンユニット/アクリル系ユニットを含む。各ユニットのTgが上記記載順ではそれぞれ-19℃、-43℃、及び48℃であるため、上記3種のユニットを含む共重合体は、本開示で規定する温度に対するtanδの条件を満たすと推測される。なお、ペスレジンWAC-17XCは、主骨格に上記3種のユニットを含む。なお、上記3種のユニットを含む限り、各ユニットが含まれる位置には、特に主鎖/側鎖構造に制限はなく、本開示で規定する温度に対するtanδの条件を満たす共重合体となると推測される。
 また、ペスレジンA-125Sは、主骨格はアクリルユニット及びポリエステルユニットを含む複合樹脂であり、置換基として、分子内にアルコキシシリル基、スルホン酸ナトリウム基等を有しているため、シリカと結合しやすい親水的ポリマーと推定している。なお、ペスレジンA-125SのTgは63℃である。
(3.2種以上のポリマーの混合物)
 本開示に係る防曇層には、バインダーとして2種以上のポリマーの混合物を含むことができる。
 2種以上のポリマーをブレンドすることで、上記温度に対するtanδの条件を満たすバインダーとするためには、相溶性が良好であり、互いに異なるTgを有する複数のポリマーを混合して用いることができる。なお、Tgは、重量平均分子量にも依存すると考えられることから、互いに重量平均分子量の異なる複数のポリマーをブレンドして上記条件を満たしてもよい。
 相溶性の観点からは、主骨格に、同一のモノマーに由来する構造単位、又は互いに類似のモノマーに由来する構造単位を含み、且つ、Tgが異なる2種以上のポリマーを併用すること、同種の構造単位を含み、互いに分子量の異なる2種以上のポリマーを併用することなどが好ましい。ブレンド時の相溶性が良好である場合には、必ずしも同一又は類似の構造単位を含むことは必須ではない。
 なかでも、形成される防曇層の親水性の観点からは、互いに異なるガラス転移温度を有する2種以上のポリマーの混合物に用いられる2種以上のポリマーは、互いに同じ構造単位を含む親水性ポリマーから選ばれることが好ましい。
 混合物の調製に用いられる親水性ポリマーとしては、具体的には、ヒドロキシエチルセルロース(HEC)、ヒドロキシプロピルセルロース、ポリ(メタ)アクリルアミド、ポリビニルピロリドン、ポリビニルアセテート、ポリビニルアルコール(PVA)、ポリビニルブチラール、ポリエチレングリコール等が挙げられる。
 また、互いに異なるTgを有する2種以上のポリマーの混合物における2種のポリマーのうち、よりTgの低い第1のポリマーと、よりTgの高い第2のポリマーとの含有比率は、質量比で、互いにTgの異なる2種のポリマーを併用する場合、よりTgが低い第1のポリマーと、よりTgが高い第2のポリマーの含有比率は、質量比で25:75~50:50の範囲が好ましく、30:70~45:55の範囲がより好ましい。即ち、Tgの高いポリマーの含有比率がより多いことが好ましい。
 互いに異なるTgを有する2種以上のポリマーの混合物としては、より具体的には、互いにTgの異なる2種以上のポリビニルアルコールの混合物などが好ましい。
 ポリビニルアルコールを例に挙げれば、重量平均分子量(Mw)が13.3万のPVAと、Mwがより高く、Tgもより高い22.0万のPVAとをブレンドする場合、ブレンド比は、25:75~50:50の範囲が好ましく、30:70~45:55の範囲がより好ましい。
 なお、既述のいずれのポリマーを用いる場合であっても、ポリマーに適切な官能基を導入することで、防曇層の物性を制御することもできる。
 特定バインダーは、アルコキシシリル基、シラノール基、及び親水性基から選択される少なくとも1種の官能基を含むことが好ましい。
 例えば、既述の各ポリマーに、アルコキシシリル基、シラノール基などを導入すること、スルホキシ基、カルボキシ基等の親水性基を導入すること等の手段により、防曇層に含まれるシリカ粒子と特定バインダーとの親和性及び防曇層の親水性をより高めることができる。
-シリカ粒子-
 本開示に係る防曇層は、シリカ粒子を含有する。
 シリカ粒子は、防曇層の物理耐性及び親水性の向上に寄与する。すなわち、シリカ粒子は、防曇層において硬いフィラーとして機能し、かつ、粒子表面のヒドロキシ基の作用によって防曇層の親水性を向上し得る。シリカ粒子としては、中実シリカ粒子(即ち、中空部分を有しないシリカ粒子)、中空シリカ粒子等が挙げられるが、物理耐性の観点から中実シリカ粒子を用いることが好ましい。
 中実シリカ粒子としては、ヒュームドシリカ、コロイダルシリカ等が挙げられる。
 ヒュームドシリカは、ケイ素原子を含む化合物を気相中で酸素及び水素と反応させることによって得ることができる。原料となるケイ素化合物としては、ハロゲン化ケイ素(例えば、塩化ケイ素)等が挙げられる。
 コロイダルシリカは、原料化合物を加水分解及び縮合するゾルゲル法により合成することができる。コロイダルシリカの原料化合物としては、アルコキシケイ素(例えば、テトラエトキシシラン)、ハロゲン化シラン化合物(例えば、ジフェニルジクロロシラン)等が挙げられる。
 シリカ粒子の形状は、特に限定されず、球状、板状、針状、鎖状、ネックレス状(数珠状)等の形状が挙げられる。ここでいう「球状」には、真球状の他、回転楕円体、卵形等の形状も含まれる。
 これらの中でも、基材密着性の観点から、球状、鎖状、及び、ネックレス状よりなる群から選ばれた形状であることが好ましく、鎖状、又は、ネックレス状であることがより好ましく、鎖状であることがさらに好ましい。
 シリカ粒子の大きさは、特に限定されない。例えば、耐水垂れ性、耐汚染性及び基材と防曇層との密着性向上の観点から、シリカ粒子の平均一次粒子径は、1nm以上100nm以下であることが好ましく、5nm以上50nm以下であることがより好ましく、10nm以上20nm以下であることがさらに好ましい。
 シリカ粒子の平均一次粒子径は、シリカ粒子の形状が球状又は断面楕円等の略球状である場合には、分散したシリカ粒子を透過型電子顕微鏡により観察し、得られた写真から300個以上のシリカ粒子について投影面積を測定し、投影面積から円相当径を求め、得られた円相当径の平均値をシリカ粒子の平均一次粒子径とする。シリカ粒子の形状が球状又は略球状ではない場合には、その他の方法、例えば、動的光散乱法を用いて、シリカ粒子の平均一次粒子径を求める。
 シリカ粒子は、市販品を用いることができる。
 シリカ粒子の市販品の例としては、日産化学工業(株)製のスノーテックス(登録商標)シリーズ〔例えば、スノーテックス(登録商標)OUP〕、エボニック社製のAEROSIL(登録商標)シリーズ、ナルコケミカル社製のNalco(登録商標)シリーズ〔例えば、Nalco(登録商標)8699〕、扶桑化学工業(株)製のクォートロンPLシリーズ(例えば、PL-1)等が挙げられる。
 防曇層は、シリカ粒子を、1種のみ含んでいてもよく、2種以上含んでいてもよい。防曇層がシリカ粒子を2種以上含む場合には、形状、平均一次粒子径等が互いに異なるシリカ粒子を併用してもよい。
〔条件(II)について〕
-関係式(1)-
 防曇層中において、シリカ粒子の固形質量をA、特定バインダーの固形質量をBとした場合、両者は、下記関係式(1)を満たす。
 0.07≦B/A≦2.00  関係式(1)
 関係式(1)を満たすことで、良好な防曇性を有し、特定バインダーの偏在が少なくなり、シリカ粒子同士及びシリカ粒子と基材との結合性が高まることで防曇層形成用組成物の高透明性と密着性とが両立する。さらに、防曇層の作製時におけるクラックの発生が抑制される。
 クラックの発生抑制性及び基材との密着性の観点から、上記防曇層中において、シリカ粒子の固形質量をAと、特定バインダーの固形質量をBとの関係は、下記関係式(2)を満たすことが好ましく、下記関係式(3)を満たすことがより好ましく、下記関係式(4)を満たすことがさらに好ましい。
 0.10≦B/A≦1.90  関係式(2)
 0.11≦B/A≦1.00  関係式(3)
 0.11≦B/A≦0.50  関係式(4)
 関係式(1)におけるB/Aが0.07以上であることで、防曇層中のシリカ粒子を固定している特定バインダー量が好ましい割合となり、防曇層を厚くした場合における耐クラック性及び基材と防曇層との密着性が良好となる。また、関係式(1)におけるB/Aが0.07以上であることで、ヘイズ値が低くなり、防曇層の膨潤と溶解による水垂れ跡の発生を抑制できると考えられる。
 関係式(1)におけるB/Aが2.00以下であることで、ヘイズ値が低くなり、防曇性が良好となる。さらに、関係式(1)におけるB/Aが2.00以下であることで、防曇層中における空隙率が適切な範囲となり、防曇層に取り込める水分量が多くなり、防曇性および耐水垂れ性が向上すると考えられる。
 防曇層におけるシリカ粒子の含有量は、防曇層の全質量に対して、10質量%以上90質量%以下であることが好ましく、20質量%以上70質量%以下であることがより好ましく、40質量%以上65質量%以下であることがさらに好ましい。含有量が既述の範囲であることで、硬度、耐傷性及び耐衝撃性により優れ、かつ、所望の親水性を有する防曇層を形成することができる。
 防曇層における特定バインダーの含有量は、防曇層の全質量に対して3質量%~67質量%が好ましく、5質量%~60質量%であることがより好ましく、7質量%~50質量%であることがさらに好ましい。特定バインダーの含有量が上記範囲であることで、シリカ粒子の保持性が良好となり、優れた防曇性が発揮され、且つ、耐クラック性をより向上させることができる。
 上記シリカ粒子及び特定バインダーの好ましい含有量の範囲において、上記関係式(1)を満たす比率にてシリカ粒子と、特定バインダーとの含有量を決定することが好ましい。
〔条件(III)について〕
-膜厚-
 本開示に係る防曇層の膜厚は、2μm以上30μm以下であり、耐水垂れ性、耐汚染性及び透明性の観点から、5μm以上20μm以下であることが好ましく、5μm以上10μm以下であることがより好ましい。
 膜厚が2μm以上であることで、防曇層の空隙の積算量が大きくなり、吸水量が増加する。従って、防曇層の防曇性、及び親水性に起因する表面の耐汚染性が向上すると考えられる。膜厚が30μm以下であることで、防曇層の膨潤と溶解の量が抑えられ、耐水垂れ性が良好となり、透明性にも優れる防曇層となる。
 防曇層の膜厚の測定方法は、以下の通りである。
 積層体の防曇層の面に対する垂直方向断面を透過型電子顕微鏡により観察し、防曇層の膜厚を面内のランダムな10点で測定し、その平均値を防曇層の膜厚とする。
 積層体の垂直方向断面を得る方法としては、例えば、ミクロトームによる切断、冷凍結後の破断面切削等により、面方向から積層体を垂直に切断する方法が挙げられる。正確な膜厚を得るためには、透過型電子顕微鏡による観察時の倍率は、1,000倍~50,000倍とすることが好ましい。
 
 本開示における防曇層の、さらに好ましい態様について以下に述べる。
-水接触角-
 防曇層の水接触角は40°以下であることが好ましく、30°以下であることがより好ましい。
 本明細書において、水接触角は、接触角計DM-701(協和界面科学(株)製)を用い、25℃にて、測定対象とする防曇層の表面に純水を1μl(マイクロリットル)滴下して、θ/2法により求めた値を用いている。測定は、5回行ない、測定して得た値の算術平均値を本明細書における水接触角として採用している。
-表面粗さ-
 防曇層は、固体粒子としてのシリカ粒子を含む構造である。防曇層表面には、シリカ粒子による凹凸構造を有していることが防曇層表面の親水性を高め、防曇性をより良化させる観点から好ましい。
 凹凸構造は、算術表面粗さRaとして評価することができ、算術表面粗さRaは1nm以上100nm以下であることが好ましく、3nm以上50nm以下であることがより好ましい。
 なお、算術表面粗さRaは、原子間力顕微鏡(AFM)を用いて測定することが可能である。より具体的には、表面粗さRaの測定方法は、原子間力顕微鏡(AFM)(セイコーインスツルメンツ社製、SPA-400)を用いて、JIS B0601(2001年)に準拠して測定することができる。
-空隙率-
 本開示における防曇層は、内部に空隙を有することが、保水性をより高める観点から好ましい。なお、「防曇層が内部に空隙を有する」とは、防曇層の空隙率が5%以上であることを意味する。耐汚染性及び耐水垂れ性の観点から、空隙率は10%以上50%以下であることが好ましい。
 空隙率は、自動ポロシメータ((株)島津製作所製、オートポアIV 9520)を用いて、雰囲気温度25℃で、上記測定装置の標準の条件にて、測定することができる。
-膜密度-
 上記防曇層の膜密度は、0.80g/cm以上1.40g/cm以下であることが、防曇性、耐汚染性及び耐水垂れ性がより良好となる観点から好ましく、0.80g/cm以上1.40g/cm以下であることがより好ましく、0.90g/cm以上1.35g/cm以下であることがさらに好ましく、1.05g/cm以上1.30g/cm以下であることが特に好ましい。
 防曇層の膜密度は、以下の方法により測定する。
 測定用試料として、100cm分の積層体を用意し、質量を測定する。また、積層体断面の透過型電子顕微鏡(SEM)画像から防曇層の膜厚を測定する。SEMによる測定膜厚は測定用試料の積層体において、面内のランダムな10点を測定した平均値を採用する。次に、積層体から防曇層を削り取り、削り取った後の基材の質量を測定する。
 防曇層を削り取った後の基材の単位面積当たりの質量をxg/cm、最初に測定した積層体の単位面積当たりの質量をyg/cmとし、SEMから測定された積層体の膜厚をzcmとした場合、防曇層の膜密度は以下の方法で算出される。
 防曇層の膜密度[g/cm]=(y-x)[g/cm]/z[cm]
 なお、防曇層の膜密度は、防曇層の嵩密度ともいうことができる。
-防曇層保水量-
 上記防曇層保水量は、1.5mg/cm以上25.0mg/cm以下であることが好ましく、1.5mg/cm以上15.0mg/cm以下であることがより好ましく、1.5mg/cm以上12.0mg/cm以下であることがさらに好ましく、2.0mg/cm以上6.0mg/cm以下であることが特に好ましい。
 防曇層の保水量が1.5mg以上であることにより、防曇層の吸水性がより向上し、耐汚染性がより良好となり、保水量が25.0mg以下であることで防曇層の膨潤、溶解等が抑制され、耐水垂れ性がより良好となる。
 上記防曇層保水量は、以下の方法により測定する。
 測定用試料として、基材上に防曇層を備えた積層体を準備する。
 60℃に保った湯水浴を準備し、雰囲気温度25℃、相対湿度50%の条件下で、積層体の防曇層が下になる方向に設置して、湯水浴の水面との距離を5cmに保った状態で、防曇層に曇り又は水垂れが発生する直前まで湯水浴からの蒸気を防曇層に当てる。
 蒸気を当てる前の積層体の質量と、防曇層に蒸気を当てた後の積層体の質量とを測定し、得られた測定値から、以下の計算式にて保水量を求める。
 防曇層保水量(mg/cm)=(M-M)/S
 ここで、Mは蒸気を当てる前の積層体の質量(mg)、Mは蒸気を当てた後の積層体の質量(mg)、Sは防曇層の蒸気を当てた領域の面積(cm)を示す。
-その他の成分-
 防曇層は、必要に応じて、上記にて説明した成分以外のその他の成分を含んでいてもよい。その他の成分としては、基材との密着性向上に寄与する密着助剤、帯電防止剤、後述する防曇層形成用組成物に用いられる上記以外の成分等が挙げられる。
-密着助剤-
 防曇層は、密着助剤を更に含んでいてもよい。
 防曇層において、密着助剤は、防曇層と基材(特に、ポリカーボネート基材又はポリメチルメタクリレート基材)との密着性向上に寄与する。
 本開示における密着助剤は、吸水性ポリマーとして、防曇膜の親水性向上に寄与する材料を用いてもよい。
 密着助剤としては、膜形成性のポリマーが挙げられ、より具体的には、ウレタン系樹脂、(メタ)アクリル系樹脂、ポリリン酸塩、メタリン酸塩等の、分子内に極性基(水酸基、カルボキシ基、リン酸基、スルホン酸基、アミノ基等)を有する化合物が挙げられる。
 既述の化合物の中でも、密着助剤としては、防曇層と基材との密着性がより良好であるという観点から、末端に水酸基、カルボキシ基、及びリン酸基よりなる群から選ばれる少なくとも1種の官能基を有する化合物が好ましく、ウレタン系樹脂、(メタ)アクリル系樹脂、及びポリリン酸塩よりなる群から選ばれる少なくとも1種がより好ましく、ウレタン系樹脂及び(メタ)アクリル系樹脂よりなる群から選ばれる少なくとも1種の樹脂が更に好ましい。
 ウレタン系樹脂としては、特に限定されず、例えば、ポリオール骨格とポリイソシアネート骨格とで形成されるソフトセグメント/ハードセグメント構造を有するポリウレタン等が挙げられる。
 ウレタン系樹脂としては、市販品を用いることができる。
 ウレタン系樹脂の市販品の例としては、三井化学(株)のタケラック(登録商標)Wシリーズ、WSシリーズ、WDシリーズ、三洋化成工業(株)のパーマリン(登録商標)シリーズ、ユーコート(登録商標)シリーズ、ユープレン(登録商標)シリーズ等が挙げられる。
 本開示において、「(メタ)アクリル系樹脂」とは、アクリル酸に由来する構成単位、メタクリル酸に由来する構成単位、アクリル酸エステルに由来する構成単位、及びメタクリル酸エステルに由来する構成単位よりなる群から選ばれる少なくとも1種を含む重合体をいう。
 (メタ)アクリル系樹脂としては、アクリル酸の単独重合体(即ち、ポリアクリル酸)、メタクリル酸の単独重合体(即ち、ポリメタクリル酸)、アクリル酸、メタクリル酸、アクリル酸エステル、及びメタクリル酸エステル等よりなる群から選ばれる少なくとも1種の単量体を含む共重合体などが挙げられる。
 これらの中でも、(メタ)アクリル系樹脂としては、ポリアクリル酸が好ましい。ポリアクリル酸の重量平均分子量は、25,000以上5,000,000以下であることが好ましく、50,000以上2,000,000以下であることがより好ましく、150,000以上1,000,000以下であることが更に好ましい。
 ポリアクリル酸の重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)によって測定することができる。
 GPCによる測定条件は、既述のとおりである。
 ポリリン酸塩としては、ポリリン酸ナトリウム、ポリリン酸カリウム等が挙げられる。
 防曇層が密着助剤を含む場合、密着助剤を、1種のみ含んでいてもよく、2種以上含んでいてもよい。
 防曇層が密着助剤を含む場合、密着助剤の含有量は、防曇層の全質量に対して、0.001質量%以上5質量%以下であることが好ましく、0.01質量%以上1質量%以下であることがより好ましく、0.05質量%以上0.5質量%以下であることが更に好ましい。上記範囲であると、基材との密着性に優れる防曇層を形成し易い。
-帯電防止剤-
 防曇層は、帯電防止剤を含むことができる。
 防曇層において、帯電防止剤を含むことにより、防曇層が帯電防止性を付与され、汚染物質の付着がより効果的に抑制され、防曇層表面の耐汚染性をより向上することができる。
 帯電防止剤としては、特に限定されず、帯電防止機能を有する化合物から、適宜選択することができる。帯電防止剤は、界面活性を示す化合物又は界面活性を示さない化合物のいずれであってもよい。帯電防止剤としては、例えば、イオン性の界面活性剤、金属酸化物粒子等が挙げられる。
 なお、ここでいう金属酸化物粒子には、既述のシリカ粒子は含まれない。
 イオン性の界面活性剤は、例えば、塗布により上記防曇層を形成する場合に、膜面付近に偏析しやすい性質があるため、少量で効果が期待できる。また、金属酸化物粒子は、膜に帯電防止性を与えるために比較的多量を必要とされる場合があるが、無機物であるため、膜の耐傷性を高める点で適している。
 イオン性の界面活性剤としては、アルキル硫酸塩〔ドデシル硫酸ナトリウム、ラウリル硫酸ナトリウム等〕、アルキルベンゼンスルホン酸塩〔ドデシルベンゼンスルホン酸ナトリウム、ラウリルベンゼンスルホン酸ナトリウム等〕、アルキルスルホコハク酸塩〔ジ(2-エチルヘキシル)スルホコハク酸ナトリウム等〕、などのアニオン性界面活性剤;アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩等のカチオン性界面活性剤が挙げられる。
 金属酸化物粒子としては、酸化スズ粒子、アンチモンドープ酸化スズ粒子、スズドープ酸化インジウム粒子、酸化亜鉛粒子等が挙げられる。
 金属酸化物粒子の形状は、特に限定されず、球状であってもよく、板状であってもよく、針状であってもよい。
 金属酸化物粒子は、屈折率が大きく、粒径が大きいと、透過光の過度の散乱による損失が発生しやすいため、平均一次粒子径が100nm以下であることが好ましく、50nm以下であることがより好ましく、30nm以下であることが更に好ましい。
 金属酸化物粒子の平均一次粒子径の測定は、既述のシリカ粒子の平均一次粒子径の測定方法と同様にして測定することができる。なお、防曇層形成用組成物中の金属酸化物粒子の平均一次粒子径を測定する場合には、スライドガラス上に5μlの防曇層形成用組成物を滴下し、自然乾燥させた後、ガラス表面を観察し、ガラス表面に存在する金属酸化物粒子の一次粒子について、個々の一次粒子の粒子径を50個測定し、その平均値としての平均一次粒子径を算出すればよい。
 防曇層が帯電防止剤を含む場合、帯電防止剤を、1種のみ含んでいてもよく、2種以上含んでいてもよい。
 防曇層としてイオン性の界面活性剤を含む場合、防曇層中のイオン性の界面活性剤の含有量は、防曇層の全固形分に対して、5質量%以下であることが好ましく、1質量%以下であることがより好ましく、0.5質量%以下であることが更に好ましい。
 また、上記防曇層中のイオン性の界面活性剤の含有量は、イオン性の界面活性剤を含むことによる耐汚染性の向上効果の観点から、上記防曇層の全質量に対して、0.01質量%以上であることが好ましい。
 なお、上記防曇層中のイオン性の界面活性剤の含有量が、上記防曇層の全質量に対して、0.01質量%以上5質量%以下であると、シリカ粒子の凝集を抑制しつつ、防汚性に優れる防曇層を形成することができる。
 上記防曇層が帯電防止剤として金属酸化物粒子を含む場合、上記防曇層中の金属酸化物粒子の含有量は、上記防曇層の全質量に対して、40質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることが更に好ましい。
 また、上記防曇層中の金属酸化物粒子の含有量は、金属酸化物粒子を含むことによる膜の防汚性の向上効果の観点から、上記防曇層の全質量に対して1質量%以上であることが好ましい。
 なお、上記防曇層中の金属酸化物粒子の含有量が、上記防曇層の全質量に対して1質量%以上40質量%以下であると、上記防曇層を塗布により形成する場合の成膜性を損なうことなく、上記防曇層に対して効果的に帯電防止性を付与することができる。
<基材>
 本開示の積層体は、基材を有する。
 積層体は、基材上の少なくとも一部に設けられた防曇層を有する。即ち、防曇層は、基材の一部に設けられていてもよく、基材の全面に設けられていてもよい。
 基材上に備えられる防曇層は、基材に直接接して備えられてもよく、別の層を介して備えられていてもよい。しかし、既述の如く、本開示における防曇層は、基材との密着性が良好であるため、基材に直接接して備えられることが好ましい。
 基材の材料としては、防曇層を安定に保持し得る限り、特に限定されず、ガラス、樹脂(すなわち、プラスチック)、金属、セラミックス等の各種材料から適宜選択して基材の作製に用いることができる。
 基材は、例えば、単独の材料からなる基材であってもよく、複数の材料から形成される複合材料であってもよい。複合材料としては、2種以上の材料の混合物である複合材料、互いに異なる材料が積層された複合材料などが挙げられる。複合材料としては、例えば、ガラス及び樹脂材料を含み、ガラスと樹脂材料とが混在して複合化した複合材料、複数種の樹脂材料が混練又は貼合された樹脂複合材等が挙げられるが、基材は上記の例示に限定されない。
 基材としては、加工の容易性の観点から、樹脂基材が好適に挙げられる。
 例えば、自動車のライトの保護材、及び監視カメラの保護材には、樹脂基材が一般的に用いられる。
 基材を樹脂材料で形成する場合、基材としては、光及び熱に対する耐久性に優れ、かつ、防曇層との密着性が良好であり、防曇層との積層後においても、基材の透明性が維持される積層体を形成できる基材が好ましい。そのような観点からは、アクリル樹脂基材、ポリカーボネート基材及びポリエチレンテレフタレート基材から選ばれる基材であることが好ましく、密着性により優れた積層体を形成できるという観点から、アクリル樹脂基材、又は、ポリカーボネート基材であることがより好ましい。アクリル樹脂基材としては、ポリメチルメタクリレート基材が好ましく挙げられる。
 基材の厚さや形状は、特に限定されず、適用対象に応じて、適宜設定される。
 また、基材の表面には、必要に応じ、表面処理が施されていてもよい。表面処理方法としては、特に制限はなく、溶剤等を用いた洗浄処理、コロナ処理等の公知の表面処理を施すことができる。
(積層体の製造)
 本開示の積層体の製造方法には特に制限はない。
 本開示の積層体の製造方法は、後述の防曇層形成用組成物を、基材上に付与し、乾燥して防曇層を形成する方法を含むことが好ましい。
 基材上に、防曇層形成用組成物を付与する方法としては、特に制限はない。
 基材上に、防曇層形成用組成物を付与する方法としては、好ましくは塗布法が挙げられる。塗布法は、公知の塗布法、例えば、スプレー塗布、刷毛塗布、ローラー塗布、バー塗布、ディップ塗布(所謂、浸漬塗布)等の公知の塗布法を目的に応じて適用することができる。
 塗布法により、防曇層を形成する場合、防曇層の膜厚をより厚くする場合、又は、広い面積に防曇層を形成する場合には、同じ箇所、又は、隣接する箇所に複数回の塗布を繰り返すことがある。複数回、塗布及び乾燥を繰り返す場合、局所的に塗布膜の重なりによって膜厚が厚くなることがある。
 本開示の防曇層は、防曇層形成用組成物を基材に付与し、乾燥して防曇層を形成する際に、防曇層形成用組成物層に重なり等により部分的に厚膜の箇所が形成されても、防曇層形成用組成物層の乾燥時におけるクラックの発生及び基材と防曇層との剥離が効果的に抑制されることから、防曇層の膜厚をより厚くした場合においても、積層体の生産性が飛躍的に高まる。
 防曇層形成用組成物層の形成に適用される塗布法としては、曲面、凹凸等の様々な表面形状を有する立体構造体へ塗布する場合には、スプレー塗布が好ましい。
 防曇層形成用組成物をスプレー塗布により基材に塗布する場合、基材のセット方法は、特に限定されない。基材を枠体にセットして基材の向きを一定にて塗布してもよく、基材の形状に応じて、基材の向きを、塗布方向に対して、水平方向、垂直方向等、適宜変更しながら塗布することもできる。
 塗布膜厚をより均一にするためには、スプレーノズルと基材との距離が等間隔となる位置にスプレーノズルを配置して基材に塗布することが好ましく、また、スプレーノズルと基材との距離を10mm以上1,000mm以下とすることが好ましい。
 防曇層形成用組成物の塗布装置への供給方式は、圧送型、吸上型、及び重力型のいずれの方式を用いることもできる。
 スプレーノズルのノズル口径は、0.1mmφ以上1.8mmφ以下であることが好ましく、エア圧は、0.02MPa以上0.60MPa以下であることが好ましい。このような条件で塗布することで、塗布膜厚をより均一にすることができる。なお、スプレー塗布によって、更に好適な塗布膜を形成するためには、エア量、防曇層形成用組成物の噴出量、パターン開き等の調整が必要である。
 防曇層形成用組成物をスプレー塗布により基材に塗布する場合、エア量は5L(リットル)/分以上600L/分以下であることが好ましく、塗料噴出量は5L/分以上600L/分以下であることが好ましく、パターン開きは40mm以上450mm以下であることが好ましい。
 スプレー塗布においては、塗布時の環境も塗布膜の形成に影響する。温度条件としては15℃以上35℃以下であることが好ましく、湿度条件としては80%RH以下であることが好ましい。
 清浄度は、特に限定されないが、例えば、塗布環境中の微粒子(即ち、パーティクル)による面状故障を抑制する観点から、クラス10,000以上の清浄度が好ましく、クラス1,000以上の清浄度であることがより好ましい。
 防曇層形成用組成物の塗布量は、特に限定されず、防曇層形成用組成物中の固形分の濃度、所望の膜厚等に応じて、操作性等を考慮し、適宜設定することができる。例えば、防曇層形成用組成物の塗布量は、1mL/m以上400mL/m以下であることが好ましく、2mL/m以上100mL/m以下であることがより好ましく、4mL/m以上40mL/m以下であることが更に好ましく、6mL/m以上20mL/m以下であることが特に好ましい。上記範囲であると、塗布精度が良好となる。
 本開示に係る積層体の製造方法は、基材上に付与した防曇層形成用組成物を乾燥することを含むことが好ましい。
 防曇層形成用組成物の乾燥は、加熱装置を用いて行なってもよい。加熱装置としては、目的の温度に加熱することができれば、特に限定されることなく、公知の加熱装置をいずれも用いることができる。加熱装置としては、オーブン、電気炉等の他、製造ラインに合わせて独自に作製した加熱装置を用いることができる。
 防曇層形成用組成物の乾燥条件は、特に限定されず、塗布膜の硬化性も考慮し、適宜設定することができる。
 防曇層形成用組成物の乾燥は、所定の設定温度を一定に保った恒温条件にて行ってもよいし、段階的に温度条件を変えて行ってもよい。
 前者の場合における防曇層形成用組成物の乾燥条件としては、防曇層形成用組成物を、加熱領域の雰囲気温度を40℃以上130℃以下として1分間~60分間加熱する乾燥条件が挙げられ、加熱領域の雰囲気温度を45℃以上120℃以下として1分間~60分間加熱する乾燥条件が好ましく、加熱領域の雰囲気温度を60℃以上120℃以下にして1分間~60分間加熱する乾燥条件がより好ましい。
 なお、加熱領域の雰囲気温度が上記範囲であると、防曇層表面の温度は、40℃を超え118℃以下の範囲となり、既述の如く、加熱による成膜乾燥時の防曇層表面の加熱温度の範囲にtanδの最大値を有することにより、成膜加熱時に働く硬化応力が緩和され、防曇層の厚みが厚い場合であっても、乾燥時のクラックの発生が効果的に抑制される。
 後者の場合における防曇層形成用組成物の乾燥は、予備乾燥と本乾燥とに分けて行うことが好ましい。予備乾燥の条件としては、加熱領域の雰囲気温度を20℃以上60℃以下にして5秒間~10分間加熱する条件が好ましい。本乾燥時における加熱条件は、雰囲気温度の最大値が、上記恒温条件で示した雰囲気温度である40℃以上130℃以下の範囲と同様であることが好ましい。
 なお、乾燥条件における防曇層の表面温度は、赤外線温度計等により測定することができる。
 防曇層形成用組成物の乾燥を、乾燥風を吹き付けることにより行う場合、乾燥風の風量は、基材に到達した際の最適温度を考慮して、適宜設定することができる。しかし、乾燥ムラを考慮すると、可能な限り風量を抑えることが好ましく、無風、即ち、基材に直接乾燥風が当たらない条件で乾燥を行うことがより好ましい。
 なお、防曇層形成用組成物を塗布した基材は、基材の形状に応じて、台座の上に直置き(即ち、平置き)して乾燥してもよいし、立てかけて乾燥してもよいし、吊るして乾燥してもよい。
 塗布に使用した後のスプレーガンの部品、塗布装置等の洗浄は、シンナー等の溶剤、水、アルコール、界面活性剤などを使用してもよい。また、スケール等が付着した汚れ、残存した防曇層形成用組成物等を効果的に洗浄するためには、酸性又はアルカリ性の水溶液を用いて洗浄することが好ましく、pH3.0以下の水溶液又はpH8.0以上の水溶液を用いて洗浄することがより好ましい。洗浄液の温度は、常温以上が好ましく、50℃以上であることがより好ましい。
 防曇層形成用組成物の保管容器は、特に限定されず、一斗缶、ローヤル缶等の金属製容器であってもよいし、ポリエチレン、ポリプロピレン等の樹脂製の容器であってもよい。
 防曇層形成用組成物の保管温度は、0℃以上50℃以下であることが好ましい。
(防曇層形成用組成物)
 本開示に係る防曇層形成用組成物は、本開示に係る積層体における防曇層を形成することができれば特に制限はない。
 防曇層形成用組成物は、既述のシリカ粒子と特定バインダーとが、防曇層形成用組成物を用いて形成される本開示の防曇層が、既述の条件を満たす含有量となる量でそれぞれ含まれていれば特に制限はない。
 本開示における防曇層形成用組成物におけるシリカ粒子、及び、特定バインダーの好ましい態様は、上述した本開示の積層体の防曇層において記載したとおりであり、好ましい含有量及び含有比率の範囲も同様である。
 即ち、本開示に係る防曇層形成用組成物における特定バインダーの含有量は、防曇層形成用組成物の全固形分に対して、3質量%~67質量%であることが好ましく、5質量%~60質量%であることがより好ましく、7質量%~50質量%であることがさらに好ましい。
 また、防曇層形成用組成物におけるシリカ粒子の含有量は、防曇層形成用組成物の全固形分に対して、10質量%以上90質量%以下であることが好ましく、20質量%以上70質量%以下であることがより好ましく、40質量%以上65質量%以下であることがさらに好ましい。
 また、防曇性、耐汚染性及び水垂れ跡抑制性の観点から、本開示に係る防曇層形成用組成物中において、シリカ粒子の固形質量をA、バインダーの固形質量をBとした場合、両者の質量が下記関係式(1)を満たしている。
0.07≦B/A≦2.00  関係式(1)
-溶媒-
 本開示に係る防曇層形成用組成物は、基材に付与する、好ましくは、基材に塗布する際の塗布性が良好となるという観点から、溶媒(分散媒)を含むことが好ましい。
 溶媒は特に限定されない。溶媒としては、水及び水以外の有機溶剤から選択される1種以上を使用することができる。
(水)
 防曇層形成用組成物は、溶媒として水を含有することができる。水を含有することにより、防曇層形成用組成物により形成された防曇層は、透明性及び基材密着性がより良好となる。
 溶媒として用いる水は、不純物がより少ないという観点から、イオン交換水、純水、蒸留水等が好ましい。
 防曇層形成用組成物に含まれる全溶媒に対する水の含有量は、水と水以外の溶剤との合計量、即ち全溶媒量に対して10質量%以上70質量%以下であることが好ましく、20質量%~65質量%であることがより好ましく、30質量%~60質量%であることがさらに好ましい。
 全溶媒に対する水の含有量が上記範囲であることにより、特定バインダーの溶解性が良好となり、防曇層形成用組成物層を形成する際の塗布面状性がより良好となる。さらに、形成された防曇層は、基材との密着性、防曇層の透明性をより向上することができる。
(水以外の溶剤)
 防曇層形成用組成物は、水以外の溶剤を含むことができる。
 水以外の溶剤としては、例えば、ケトン系溶剤、グリコール系溶剤、アルコール系溶剤、グリコールエーテル系溶剤、エーテル系溶剤等が挙げられる。
 防曇層形成用組成物が水以外の溶媒を含むことで、積層体とした場合に、防曇層形成用組成物により形成される防曇層と基材との間の界面混合効果が期待でき、防曇層と基材との密着性がより高まる。また、防曇層形成用組成物の塗布性がより良好となり、特定バインダーの溶解性をより高めることにより、形成された防曇層は透明性がより良好となる。
 水以外の溶剤としては、ケトン系溶剤、アルコール系溶剤などが好ましい。
-ケトン系溶剤-
 防曇層形成用組成物は、ケトン系溶剤を含むことが好ましい。
 ケトン系溶剤は、防曇塗料と基材との間の界面を混合させることにより、防曇層形成用組成物から形成される防曇層と基材との密着性を向上させることに寄与し得る。
 ケトン系溶剤としては、特に限定されず、アセトン、ジアセトンアルコール(DAA)、アセチルアセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン、シクロペンタノン等が挙げられる。
 ケトン系溶剤は、より透明性に優れる防曇層を形成することができるという観点から、SP値(溶解度パラメーター)が10.0MPa1/2以上のケトン系溶剤であることが好ましい。なお、ケトン系溶剤のSP値の上限は、特に限定されず、例えば、基材への塗布性、例えば、ハジキ等の面状故障が生じ難いという観点から、13.0MPa1/2以下であることが好ましい。
 SP値が10.0MPa1/2以上のケトン系溶剤の具体例を以下に示すが、ケトン系溶剤配下の例示に限定されない。下記の具体例の後ろのカッコ内の数値は、SP値(単位:MPa1/2)を示す。
 アセトン(10.0)、ジアセトンアルコール(10.2)、アセチルアセトン(10.3)、シクロペンタノン(10.4)。
 なかでも、ジアセトンアルコール(4-ヒドロキシ-4-メチル-2-ペンタノン)を含むことが好ましい。
 上記のSP値は、分子凝集エネルギーの平方根で表される値で、R.F.Fedors,Polymer Engineering Science,14,p147~p154(1974)に記載の方法で計算される値である。
 防曇層形成用組成物は、ケトン系溶剤を、1種のみ含んでいてもよく、2種以上含んでいてもよい。
 防曇層形成用組成物がケトン系溶剤を含む場合の、ケトン系溶剤の含有量は、防曇道の透明性及び防曇層と基材との密着性がより向上するとの観点から、1質量%以上95質量%以下が好ましく、2質量%以上50質量%以下がより好ましく、3質量%以上10質量%以下が特に好ましい。
 なお、防曇層形成用組成物中のケトン系溶剤の含有量は、使用する基材の種類、防曇層形成用組成物中に含まれる素材の溶解性などに応じて、適宜設定することができる。
-アルコール系溶剤-
 防曇層形成用組成物はアルコール系溶剤を含んでもよい。
 なお、本明細書において、「アルコール系溶剤」とは、炭化水素の1つの炭素原子に1つのヒドロキシ基が置換した構造の溶剤、即ち、1価のアルコール系溶剤をいう。
 アルコール系溶剤としては、メタノール、エタノール(EtOH)、ブタノール、n-プロパノール、2-プロパノール、tert-ブタノール、2-ブタノール、ベンジルアルコール、2-メチル-1-ブタノール、2-メチル-2-ブタノール等が挙げられる。
-エーテル系溶剤-
 防曇層形成用組成物はエーテル系溶剤を含んでもよい。
 本明細書において、「エーテル系溶剤」とは、1分子内にヒドロキシ基を有さず、かつ、少なくとも1つのエーテル基を有する構造の溶剤をいう。
 エーテル系溶剤としては、イソプロピルエーテル、1,4-ジオキサン、tert-ブチルメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,2ジメトキシエタン、ジエチルエーテル等が挙げられる。
-グリコール系溶剤-
 防曇層形成用組成物は、グリコール系溶剤を含むことができる。
 本明細書において、「グリコール系溶剤」とは、炭化水素の2つ以上の炭素原子にそれぞれ1つずつヒドロキシ基が置換した構造の溶剤をいう。
 グリコール系溶剤としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、グリセリン、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ジエタノールアミン、トリエタノールアミン、プロピレングリコール、ジプロピレングリコール等が挙げられる。
 これらの中でも、グリコール系溶剤としては、シリカ粒子の分散性及び塗布した際の乾燥性の観点から、プロピレングリコール及びジプロピレングリコールから選ばれる少なくとも1種が好ましい。
 なお、グリコール系溶剤は粘度が高いため、粘度の調整を目的として溶媒に含まれてもよい。
-グリコールエーテル系溶剤-
 防曇層形成用組成物は、グリコールエーテル系溶剤を含むことができる。
 本明細書において、「グリコールエーテル系溶剤」とは、1分子内に1つのヒドロキシ基と少なくとも1つのエーテル基とを有する構造の溶剤をいう。
 グリコールエーテル系溶剤としては、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、3-メトキシ-3-メチル-1-ブタノール、ジエチレングリコールモノへキシルエーテル、プロピレングリコールモノメチルエーテルプロピオネート、ジプロピレングリコールメチルエーテル、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ-n-プロピルエーテル、エチレングリコールモノ-イソプロピルエーテル、エチレングリコールモノ-n-ブチルエーテル、エチレングリコールモノ-イソブチルエーテル、エチレングリコールモノ-t-ブチルエーテル等が挙げられる。
 防曇層形成用組成物がグリコール系溶剤を含むことで、塗装適性がより良好となる。また、防曇層形成用組成物が、グリコール系溶剤を更に含むことで、防曇層形成用組成物の粘度が高まり、塗装の際に防曇層形成用組成物の液垂れが生じ難くなる。
 本開示の防曇層形成用組成物が含み得る水以外の溶剤は、上記の例示に限定されない。
 防曇層形成用組成物が水以外の溶剤を含む場合、水以外の溶剤は、1種のみ含んでもよく、2種以上を含んでもよい。
 防曇層形成用組成物が水以外の溶剤を含む場合、水以外の溶剤の含有量は、特に限定されない。
 防曇層形成用組成物中の水以外の溶剤の含有量は、基材への塗布性(例えば、ハジキ等の面状故障が生じ難い)の観点から、防曇層形成用組成物に含まれる溶媒の全質量に対して、5質量%以上が好ましく、10質量%以上がより好ましく、20質量%以上が更に好ましく、40質量%以上が特に好ましい。
 また、基材との密着性の観点から、防曇層形成用組成物に含まれる溶媒の全質量に対して、75質量%以下が好ましく、65質量%以下がより好ましく、55質量%以下が更に好ましい。
 本開示に係る防曇層形成用組成物における溶媒の総含有量は、防曇層形成用組成物の経時における安定性を良好に保つ観点から、防曇層形成用組成物の全質量に対して、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることが特に好ましい。
<その他の成分>
 本開示に係る防曇層形成用組成物は、必要に応じて、上記にて説明した成分以外のその他の成分を含んでいてもよい。その他の成分としては、粘度調整剤、界面活性剤、pH調整剤、上述した防曇層に含んでいてもよいその他の成分(密着助剤、帯電防止剤など)等が挙げられる。
-粘度調整剤-
 本開示に係る防曇層形成用組成物は、粘度調整剤を更に含んでいてもよい。
 本開示に係る防曇層形成用組成物が粘度調整剤を含むと、防曇層形成用組成物の粘度が高まり、塗布の際に液垂れが生じ難くなり、塗装適性が向上する。
 本開示における粘度調整剤は、吸水性有機高分子として機能するものであってもよい。
 粘度調整剤としては、特に限定されず、公知の増粘剤、粘度の高い溶剤等が挙げられる。粘度調整剤は、防曇層形成用組成物を基材に付与する方法に応じて、適宜選択することができる。
 増粘剤としては、特に限定されず、防曇層形成用組成物に含まれる溶媒の種類に応じて、適宜選択することが好ましい。増粘剤としては、比較的少量の使用で増粘効果が得られるという観点から、重量平均分子量が3,000以上10,000,000以下の増粘剤が好ましい。
 なお、ここでいう増粘剤には、既述のウレタン系樹脂及び(メタ)アクリル系樹脂は含まれない。
 増粘剤の重量平均分子量は、既述のポリアクリル酸の重量平均分子量と同様の方法により測定することができる。
 増粘剤としては、具体的には、無機系材料〔ケイ酸塩(水溶性ケイ酸アルカリ)、モンモリロナイト、有機モンモリロナイト、コロイド状アルミナ等〕、タンパク質系材料(カゼイン、カゼイン酸ソーダ、カゼイン酸アンモニウム等)、アルギン酸系材料(アルギン酸ソーダ等)、ポリエーテル系材料(プルロニックポリエーテル、ポリエーテルジアルキルエステル、ポリエーテルジアルキルエーテル、ポリエーテルウレタン変性物、ポリエーテルエポキシ変性物等)、無水マレイン酸共重合体系材料(ビニルエーテル-無水マレイン酸共重合物の部分エステル、乾性油脂肪酸アリルアルコールエステル-無水マレイン酸のハーフエステル等)などが挙げられる。
 市販されている増粘剤としては、(株)成和化成製のSEPIGEL 305、ビックケミー社製のDISPERBYK(登録商標)410、411、415、420、425、428、430、431、7410ET、7411ES、7420ES、大阪有機化学工業(株)製のコスカットGA468等が挙げられる。
 また、増粘剤としては、上記以外にも、ポリアマイドワックス塩、アセチレングリコール、ゼンタンガム、分子末端若しくは側鎖に極性基を有するオリゴマー又はポリマー等が挙げられる。
 本開示に係る防曇層形成用組成物が粘度調整剤として増粘剤を更に含む場合、増粘剤を、1種のみ含んでいてもよく、2種以上含んでいてもよい。
 本開示に係る防曇層形成用組成物が粘度調整剤として増粘剤を含む場合、防曇層形成用組成物中の増粘剤の含有量は、防曇層形成用組成物の全質量に対して、0.01質量%以上40質量%以下であることが好ましく、0.05質量%以上20質量%以下であることがより好ましく、0.1質量%以上10質量%以下であることが更に好ましい。
 粘度調整剤としては、形成される膜中に粘度調整剤成分が残存しない点において、粘度の高い溶剤が好ましい。
 本明細書において、「粘度の高い溶剤」とは、例えば、25℃における粘度が30mPa/s以上の溶剤をいう。
 なお、本明細書における粘度は、東機産業(株)製B型粘度計(型式:TVB-10)を用いて測定した値である。
 本開示に係る防曇層形成用組成物が粘度調整剤を更に含む場合、増粘剤と粘度の高い溶剤とを併用して粘度を調整してもよい。本開示に係る防曇層形成用組成物の最適な粘度は、基材への塗布方法によって異なるが、例えば、スプレー塗布の場合には、防曇層形成用組成物の粘度は、2mPa/s以上200mPa/s以下であることが好ましく、3mPa/s以上100mPa/s以下であることがより好ましく、4mPa/s以上50mPa/s以下であることが更に好ましい。
-界面活性剤-
 本開示に係る防曇層形成用組成物は、非イオン性界面活性剤、並びにリン酸基及びカルボキシ基の少なくとも一方を有するアニオン性界面活性剤から選ばれる界面活性剤を含むことが好ましい。
 本開示に係る防曇層形成用組成物は、界面活性剤を含むことで、汚染物質の付着防止性、即ち、防汚性に優れる防曇膜を形成することができる。
 なお、ここでいう界面活性剤には、既述の帯電防止剤として挙げた、界面活性を示し、かつ、帯電防止機能を有する化合物(すなわち、分子内にリン酸基及びカルボキシ基以外の酸性基を有するアニオン性界面活性剤、並びにカチオン性界面活性剤から選ばれるイオン性の界面活性剤)は含まれない。
 本開示に係る防曇層形成用組成物では、帯電防止剤が界面活性を示すか示さないかに関わらず、帯電防止剤と界面活性剤とを併用してもよい。
 帯電防止剤が界面活性を示さない化合物である場合には、水洗浄性の観点から、防曇層形成用組成物は、界面活性剤を含むことが好ましい。帯電防止剤が界面活性を示す化合物である場合には、防汚性をより向上させる観点から、防曇層形成用組成物は、帯電防止剤とは別に界面活性剤を含むことが好ましい。
 本開示に係る防曇層形成用組成物は、界面活性剤を含むことにより、形成される膜の防汚性が高まるのみならず、例えば、膜を塗布により形成する場合の塗布性が高まる。詳細には、本開示に係る防曇層形成用組成物が界面活性剤を含むと、防曇層形成用組成物の表面張力が低下するため、膜の均一性がより高まる。
-非イオン性界面活性剤-
 界面活性剤としては、例えば、非イオン性界面活性剤が挙げられる。
 帯電防止剤としてイオン性の界面活性剤を用いる場合、防曇層形成用組成物中にイオン性の界面活性剤が過剰に存在すると、系内の電解質量が増えてシリカ粒子の凝集を招きやすいことから、非イオン性界面活性剤を併用することが好ましい。但し、非イオン性界面活性剤は、必ずしもイオン性の界面活性剤と併用する必要はなく、界面活性剤として非イオン性界面活性剤を単独で含んでもよい。
 非イオン性界面活性剤としては、ポリアルキレングリコールモノアルキルエーテル、ポリアルキレングリコールモノアルキルエステル、ポリアルキレングリコールモノアルキルエステル・モノアルキルエーテル等が挙げられる。非イオン性界面活性剤の具体的な例としては、ポリエチレングリコールモノラウリルエーテル、ポリエチレングリコールモノステアリルエーテル、ポリエチレングリコールモノセチルエーテル、ポリエチレングリコールモノラウリルエステル、ポリエチレングリコールモノステアリルエステル等が挙げられる。
 本開示に係る防曇層形成用組成物が非イオン性界面活性剤を含む場合、非イオン性界面活性剤としては、親水性及び防汚性により優れる防曇層を形成するという観点から、HLB値(親水親油バランス)が15より大きい非イオン性界面活性剤(以下、「特定非イオン性界面活性剤」ともいう。)が好ましい。
 本開示に係る防曇層形成用組成物が特定非イオン性界面活性剤を含むと、形成される防曇層の親水性がより向上し、疎水性成分である汚染物質(例えば、シリコーン)の付着防止性が良好となる。
 特定非イオン性界面活性剤のHLB値は、15.5以上であることが好ましく、16以上であることがより好ましく、17以上であることが更に好ましく、18以上であることが特に好ましい。
 特定非イオン性界面活性剤のHLB値の上限は、特に限定されず、例えば、20以下が好ましい。
 界面活性剤のHLB値(Hydrophile-Lipophile Balance)とは、界面活性剤の親水親油バランスのことである。
 本明細書における界面活性剤のHLB値は、グリフィン法(全訂版 新・界面活性剤入門、p128)により以下の式(I)で定義され、算術により求められる値である。
 界面活性剤のHLB値=(親水基部分の分子量/界面活性剤の分子量)×20 (I)
 特定非イオン性界面活性剤としては、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンアルキルフェノールエーテル、ポリオキシアルキレンアリールエーテル、ポリオキシアルキレンアルキルアリールエーテル、ソルビタン誘導体、ポリオキシアルキレンアリールエーテルのホルマリン縮合物、ポリオキシアルキレンアルキルアリールエーテルのホルマリン縮合物、ポリエチレングリコール等が挙げられる。
 これらの中でも、特定非イオン性界面活性剤としては、ポリオキシアルキレンアルキルエーテルが特に好ましい。
 特定非イオン性界面活性剤におけるポリオキシアルキレンアルキルエーテルのアルキル基としては、例えば、炭素数が1~36の直鎖型アルキル基又は炭素数が3~36の分岐型のアルキル基が挙げられる。
 また、ポリオキシアルキレンアルキルエーテルのオキシアルキレン部は、親水性に特に優れる膜を形成することができるという観点から、ポリオキシエチレンであることが好ましい。また、特定非イオン性界面活性剤が有するポリオキシエチレン構造単位数は、6以上であることが好ましく、10以上であることがより好ましく、15以上であることが更に好ましく、20以上であることが特に好ましい。また、ポリオキシエチレン構造単位数は、例えば、溶解性の観点から、100以下とすることができる。
 特定非イオン性界面活性剤がポリオキシアルキレンアルキルエーテルである場合、下記の式(II)で表される界面活性剤が好ましい。
 RO-(C0)m-H  (II)
 式(II)中、mは、6~100の整数を表す。Rは、炭素数1~36の直鎖型アルキル基又は炭素数3~36の分岐型アルキル基を表す。
 特定非イオン性界面活性剤としては、市販品を用いることができる。特定非イオン性界面活性剤の市販品の例としては、日本エマルジョン(株)のEMALEX(登録商標) 715(HLB値:15.6)、EMALEX 720(HLB値:16.5)、EMALEX 730(HLB値:17.5)、EMALEX 750(HLB値:18.4)(いずれも商品名、ポリオキシエチレンラウリルエーテル)、花王(株)のレオドールTW-P120(商品名、ポリオキシエチレンソルビタンモノパルミテート、HLB値:15.6)、三洋化成工業(株)のPEG2000(商品名、HLB値:19.9)等が挙げられる。
 本開示に係る防曇層形成用組成物が非イオン性界面活性剤を含む場合、非イオン性界面活性剤を、1種のみ含んでいてもよく、2種以上含んでいてもよい。
 本開示に係る防曇層形成用組成物が非イオン性界面活性剤(好ましくは、特定非イオン性界面活性剤)を含む場合、防曇層形成用組成物中の非イオン性界面活性剤の含有量は、防曇層形成用組成物の全固形分に対して、0.01質量%以上15質量%以下であることが好ましく、0.1質量%以上10質量%以下であることがより好ましく、1質量%以上10質量%以下であることが更に好ましい。上記範囲であると、形成される防曇層の親水性が良好となり、疎水性成分である汚染物質(例えば、シリコーン)の付着防止性が良好となる。
-リン酸基及びカルボキシ基の少なくとも一方を有するイオン性界面活性剤-
 界面活性剤としては、例えば、リン酸基及びカルボキシ基の少なくとも一方を有するイオン性界面活性剤(以下、「特定イオン性界面活性剤」ともいう。)が挙げられる。
 本開示に係る防曇層形成用組成物が特定イオン性界面活性剤を含むと、特定イオン性界面活性剤が有するリン酸基及びカルボキシ基の少なくとも一方の官能基が酸吸着性基として機能し、既述のシリカ粒子の表面に吸着する。吸着により、シリカ粒子の分散安定性が向上する。また、吸着により、シリカ粒子の表面への疎水性成分の吸着が抑制されるため、シリカ粒子に起因する良好な親水性が損なわれず、良好な防汚性が保持される。
 特定イオン性界面活性剤は、シリカ粒子との吸着性を考慮すると、アニオン性界面活性剤であることが好ましく、疎水性基として、炭素数1~36の炭化水素基、シクロへキシル基、シクロブチル基等の脂肪族環状炭化水素基、及び、スチリル基、ナフチル基、フェニル基、フェニレンエーテル基等の芳香族炭化水素基から選ばれる疎水性基を有し、かつ、酸吸着性基として、リン酸基及びカルボキシ基の少なくとも一方を有する化合物であることがより好ましい。なお、既述の疎水性基は、更に、置換基を有していてもよい。
 特定イオン性界面活性剤は、酸吸着基として、リン酸基及びカルボキシ基から選ばれる少なくとも1種の官能基のみを有していることが好ましい。すなわち、特定イオン性界面活性剤は、スルホン酸基、硫酸基等のリン酸基及びカルボキシ基以外の酸吸着基を有していないことが好ましい。
 リン酸基を有する特定イオン性界面活性剤としては、アルキルリン酸エステル塩、ポリオキシエチレンアルキルエーテルリン酸塩等が挙げられる。
 カルボキシ基を有する特定イオン性界面活性剤としては、N-アシルアミノ酸、ポリオキシエチレンアルキルエーテルカルボン酸塩、脂肪族カルボン酸塩、脂肪族ジカルボン酸塩、重量平均分子量が25,000未満のポリカルボン酸系共重合体、重量平均分子量が25,000未満のマレイン酸系共重合体等が挙げられる。
 特定イオン性界面活性剤の酸価は、シリカ粒子の分散安定性及び疎水性成分の吸着抑制性の観点から、180mgKOH/g以下であることが好ましく、100mgKOH/g以下であることがより好ましい。
 特定イオン性界面活性剤の酸価の下限は、特に限定されず、例えば、3mgKOH/gであることが好ましい。
 本開示における特定イオン性界面活性剤の酸価は、指示薬の滴定により測定することができる。具体的には、JIS(日本工業規格)K 0070に記載の方法に従い、特定イオン性界面活性剤の固形分1g中の酸成分を中和する水酸化カリウムのmg数を測定して算出することにより求められる値である。
 特定イオン性界面活性剤としては、市販品を用いることができる。特定イオン性界面活性剤の市販品の例としては、BYK社製のDISPERBYK(登録商標)-2015(酸吸着性基:カルボキシ基、酸価:10mgKOH/g、固形分:40質量%)、DISPERBYK(登録商標)-180(酸吸着性基:リン酸基、酸価:94mgKOH/g)、エボニック社のTEGO(登録商標)Dispers660C(酸吸着性基:リン酸基、酸価:30mgKOH/g)、BYK(登録商標)-P104(酸吸着性基:カルボキシ基、酸価:180mgKOH/g)等が挙げられる。
 本開示に係る防曇層形成用組成物が特定イオン性界面活性剤を含む場合、特定イオン性界面活性剤を、1種のみ含んでいてもよく、2種以上含んでいてもよい。
 本開示に係る防曇層形成用組成物が特定イオン性界面活性剤を含む場合、防曇層形成用組成物中のイオン性界面活性剤の含有量は、防曇層形成用組成物の全固形分に対して、0.05質量%以上50質量%以下であることが好ましく、0.5質量%以上20質量%以下であることがより好ましく、1質量%以上15質量%以下であることが更に好ましい。上記範囲であると、シリカ粒子の凝集防止効果、及び疎水性成分の吸着防止効果がより良好となり、特定イオン性界面活性剤を含むことによる親水性膜の防汚性向上効果が得やすくなる。
<防曇層形成用組成物の調製方法>
 本開示に係る防曇層形成用組成物は、シリカ粒子と、特定バインダーと、必要に応じて用いられる溶媒、例えば、ケトン系溶剤、水等と、既述の任意成分とを混合することにより調製することが好ましい。
 例えば、本開示に係る防曇層形成用組成物の調製方法としては、まず、特定バインダーを、水を含む溶媒と混合し、次いで、得られた混合物に、ケトン系溶剤及びシリカ粒子を添加する。この際、所望により、既述の任意成分である他の溶剤、ポリアクリル酸、界面活性剤、帯電防止剤等を添加することができる。
<積層体の用途>
 本開示の積層体は、種々の用途に用いることができる。具体的には、例えば、監視カメラ、照明、センサー灯具等を保護するための保護材(所謂、保護カバー);自動車、二輪車等の車両の車庫の屋根材;道路標識等の標識;高速道路路肩設置用、鉄道用等の防音壁;自動車、二輪車等の車両のボディー;自動車の窓ガラス、ミラー、ライトの保護材(例えば、レンズ)などに対して、防曇性等の機能を付与するために、好適に用いることができる。
 これらの中でも、積層体は、自動車のライト(ヘッドライト、テールランプ、ドアミラーウィンカーライト等)の保護材、及び監視カメラの保護材に対して、より好適に用いることができる。
 一般に、自動車は、ライトとライトを保護するためのレンズとを含んで構成されるライトユニットを備えている。このライトユニットにおいて使用される、ガラスやプラスチック等の透明基材は、基材を挟んで内面と外面の温湿度の差により、一方の表面が露点以下になった場合、又は、基材に対して急激な温湿度変化が起こった場合に雰囲気中の水分が水滴として付着し、基材表面は結露する。その結果、結露した水滴により光の散乱が起こる、いわゆる「曇り」が発生することがある。このような「曇り」がヘッドライトやリアライトで生じた場合、外観が著しく損なわれる。
 基材表面が結露する現象が生じる場合としては、例えば、沸騰水蒸気が基材に接触した場合や、透明基材が低温部から高温多湿の環境に移った場合等が挙げられる。
 このような曇りは、保護カバーを有する監視カメラ(すなわち、ハウジング一体型監視カメラ)の保護カバーにおいても生じる場合があり、この場合は視認性や安全性が著しく損なわれる。
 本開示に係る積層体は、防曇層を厚くしても、防曇層におけるクラックの発生、防曇層と基材との剥離が生じず、十分な防曇性を発現する。さらに本開示の防曇層は透明性にも優れる。従って、本開示の積層体を適用した自動車のライト及び監視カメラは、その外観、機能及び性能が損なわれ難く、かつ、耐汚染性及び基材密着性に優れることから、優れた防曇性を長期間にわたって保つことができる。
 以下、実施例により本開示を詳細に説明するが、本開示はこれらに限定されるものではない。なお、本実施例において、「%」とは、特に断りのない限り、「質量%」を意味する。
<実施例1>
(防曇層形成用組成物1の調製)
 下記成分を混合し、防曇層形成用組成物1を得た。
 エタノール(EtOH;溶媒)      :28.88質量部
 水(溶媒)               :23.81質量部
 ジアセトンアルコール(DAA;溶媒)   :4.11質量部
 ヒドロキシエチルセルロース(HEC)SP400(ダイセル
 ファインケム(株)製、セルロース骨格を有する特定バインダー/
 重量平均分子量25万)          :0.85質量部
 スノーテックス033(日産化学工業(株)製/固形分濃度33%
   シリカ粒子:平均一次粒径:10nm) :42.35質量部
 上記で得た防曇層形成用組成物1を、基材であるPMMA(ポリメタクリル酸メチル樹脂、商品名:コモグラス(登録商標)CG P、厚さ:1mm、大きさ:10cm×10cm、(株)クラレ製)上に、スプレーガン(形式:W-101-101G、アネスト岩田(株))を用いて塗布した。塗布後、防曇層形成用組成物1を塗布した基材を、25℃にて1分間静置した。静置後、塗布した防曇層形成用組成物1の塗膜を、雰囲気温度80℃にて、20分間加熱して乾燥させて、基材上に、膜厚2μmの防曇層を有する積層体を作製した。
<実施例2~実施例16、及び、比較例1~6>
 特定バインダーの種類、シリカ粒子、及びシリカ粒子と特定バインダーとの含有比率(B/A)を、表1~表5に記載のように代えた以外は、実施例1と同様にして、実施例2~実施例16及び比較例1~比較例6の基材上に防曇層を備える積層体を作製した。
 使用した材料の詳細を以下に示す。
 なお、表中では、ヒドロキシエチルセルロースを「HEC」と、ポリビニルアルコールを「PVA」とそれぞれ略記する。
(特定バインダー)
 ヒドロキシエチルセルロース(HEC)SANHEC-L(三晶(株)製、セルロース骨格を有する特定バインダー/重量平均分子量9.0万)
 ヒドロキシエチルセルロース(HEC)SP500(ダイセルファインケム(株)製、セルロース骨格を有する特定バインダー/重量平均分子量100.0万))
 ヒドロキシエチルセルロース(HEC)SP200(ダイセルファインケム(株)製、セルロース骨格を有する特定バインダー/重量平均分子量10.0万))
 ヒドロキシエチルセルロース(HEC)SP400(ダイセルファインケム(株)製、セルロース骨格を有する特定バインダー/重量平均分子量25.0万))
 ヒドロキシエチルセルロース(HEC)SP600(ダイセルファインケム(株)製、セルロース骨格を有する特定バインダー/重量平均分子量120.0万))
 ポリビニルアルコール(PVA-1)ポリビニルアルコール#563900(シグマアルドリッチ社製、特定バインダー/重量平均分子量13.3万)
 ポリビニルアルコール(PVA-2)デンカポバールB-20(デンカ(株)製、特定バインダー/重量平均分子量22.0万)
 PVA-1とPVA-2との混合比率(質量比)
  実施例5 40:60
  実施例6 25:75
  実施例16 50:50
  比較例4 60:40
  比較例6 20:80
 ポリエステル/ウレタン/アクリル系複合樹脂(ペスレジンWAC-17XC(商品名)、高松油脂(株)製:主骨格はポリエステル(Tg:-19℃)/ポリウレタン(Tg:-43℃)/アクリル(Tg:48℃)ユニットを含む共重合体)
 アクリル/ポリエステル系複合樹脂(ペスレジンA-125S(商品名)、高松油脂(株)製、Tg:63℃)
 ポリエステル樹脂
 プラスコートZ-561(互応化工業(株)製、重量平均分子量2.7万、固形分濃度25%)
(シリカ粒子)
 シリカ粒子:平均一次粒径:20nm、スノーテックス-O-40(日産化学(株)製/固形分濃度40%)
 シリカ粒子:平均一次粒径:40nm、スノーテックス-OL(日産化学(株)製/固形分濃度20%)
(溶媒)
 水(蒸留水)
 エタノール(EtOH:トレーサブル95:日本アルコール産業(株)製)
 ジアセトンアルコール(DAA:東京化成工業(株)製)
(損失正接tanδの測定)
 測定装置として、(株)ユービーエム製の動的粘弾性測定装置「Rheogel E-4000」を使用し、温度に対するtanδの測定を行なった。
 測定に使用したサンプルは、積層体の基材から剥離した防曇層を収集し、巾6mm×長さ20mmにカットしたものを用いた。
 まず、カットした防曇層サンプルの厚みを電子ノギスで測定し、都度、測定厚みを測定装置に入力した。
 防曇層サンプルの測定厚みの入力と共に、動力系Fs:1kg、動歪Fs:0.1mm、靜荷重計:2kgと入力した。
 測定は1Hzの正弦波モードにて行った。
 測定温度の範囲は-30℃を開始温度とし、ステップ温度3℃、昇温速度5℃/分の条件で、130℃を超えるまで測定した。
 得られた温度に対するtanδの曲線から、温度-20℃以上40℃以下の領域において、10℃毎にtanδの値を得て、結果を表1~表5に記載した。
 同様に温度に対するtanδの曲線から、曲線のピークが存在する温度、即ち、ピーク温度を得て、結果を表1~表5に記載した。
[評価]
 上記にて作製した防曇層積層体を用いて、以下の性能評価を行った。結果を表1~表5に示す。
1.防曇性(初期)
 40℃の湯浴を準備し、雰囲気温度25℃、相対湿度50%の条件下で、積層体の膜の5cm四方の範囲にのみ、湯浴の水面との距離を5cmに保った状態で湯浴の蒸気を1分間当てた。その後、目視により外観を観察することで、防曇性を評価した。
 下記の評価基準において、「A」、「B」、及び「C」が実用上許容されるレベルである。
  A:曇りが認められず、積層体を通して観察できる透過像に歪みが全くない。
  B:曇りが認められず、積層体を通して観察できる透過像にわずかに歪みがある。
  C:曇りが認められず、積層体を通して観察できる透過像に歪みがある。
  D:曇りが認められる。
2.耐汚染性
 スクリュー管瓶110mLにシリコーンオイルTSF458-100(モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製)3mLを封入し、積層体の防曇層面をスクリュー管内部側に向けて密封した。密封したスクリュー管瓶を、130℃に保ったホットプレートの上に乗せ、24時間放置した。放置後、積層体を取り出し、膜の防曇性を、上記防曇性評価と同様の方法により評価した。耐汚染性の評価は、以下の評価基準に従って行った。
 放置後の積層体の防曇性がよいほど、シリコーンガスに対する耐汚染性に優れる積層体であることを意味する。
 下記の評価基準において、「A」、「B」、及び「C」が実用上許容されるレベルである。
  A:曇りが認められず、積層体を通して観察できる透過像に歪みが全くない。
  B:曇りが認められず、積層体を通して観察できる透過像にわずかに歪みがある。
  C:曇りが認められず、積層体を通して観察できる透過像に歪みがある。
  D:曇りが認められる。
3.水接触角
 水接触角は、接触角計DM-701(協和界面科学(株)製)を用い、25℃にて、測定対象とする防曇層の表面に純水を1μl(マイクロリットル)滴下して、θ/2法により求めた。
 測定は、5回行ない、測定して得た値の算術平均値を水接触角とした。
 水接触角が40°以下であれば、防曇性が良好であり、30°以下であればより良好であり、10°以下であれば防曇性が優れていると評価した。
4.耐水垂れ性
 60℃の湯浴を準備し、雰囲気温度25℃、相対湿度50%の条件下で、積層体の膜の5cm四方の範囲にのみ、湯浴の水面との距離を5cmに保った状態で湯浴の蒸気を2分間当てた。その後積層体を垂直に保持し、水滴を自重で落下させた。水滴を落下させた後、積層体を自然乾燥させ、目視により積層体における防曇層の外観を観察することで、水垂れ性を評価した。
 下記の評価基準において、「A」、「B」、及び「C」が実用上許容されるレベルである。
  A:水垂れ跡が全く認められない。
  B:水垂れ跡の輪郭がわずかに認められる。
  C:水垂れ跡の輪郭が認められる。
  D:水垂れ跡が輪郭とともに水滴の流下した跡として認められる。
5.ヘイズ(透明性)
 ヘイズメーター(型番:NDH 5000、日本電色工業(株)製)を用いて、積層体のヘイズ(Haze)を測定し、得られた測定値を、透明性を評価する指標とした。基材による差異を除去するため、へイズ値は積層体での測定値から基材のみのヘイズ値を引くことで算出した。測定は、積層体の基材面、すなわち積層体の膜が形成されている面とは反対側の面を光源に向けて測定した。
 本評価試験において、ヘイズの測定値は低いほど、透明性に優れる積層体であることを意味する。また、積層体の透明性が優れるということは、膜の透明性が優れることを意味する。
 下記の評価基準において、「A」、「B」、及び「C」が実用上許容されるレベルである。
  A:ヘイズ0.8%未満
  B:ヘイズ0.8%以上1.2%未満
  C:ヘイズ1.2%以上1.6%未満
  D:ヘイズ1.6%以上2.0%未満
6.基材と防曇層との密着性(基材密着性)
 基材と防曇層との密着性は、防曇層に対して、JIS(日本工業規格)K5600(1999年 クロスカット法)に準拠したクロスカットテストを行い、以下の評価基準に従って評価した。実施例等の評価におけるクロスカットテストでは、カット間隔を2mmとし、2mm角の正方形の格子を25個形成した。
 下記の評価基準において、「A」、「B」、及び「C」が実用上許容されるレベルである。
  A:剥がれが全く認められなかった。
  B:カット線上のみ剥がれが認められた。
  C:1つ以上5つ以下の格子の剥がれが認められた。
  D:5つを超える(6つ以上の)格子の剥がれが認められた。
7.防曇層保水量
 防曇層保水量は、既述の方法により測定した。
 即ち、60℃に保った湯浴を準備し、雰囲気温度25℃、相対湿度50%の条件下で、積層体の防曇層が下になる方向、即ち、積層体の防曇層が湯浴を配置した方向側になる位置に設置して、湯浴の水面と防曇層の面との距離を5cmに保った状態で、防曇層に曇り又は水垂れが発生する直前まで湯浴からの蒸気を防曇層に当てた。
 蒸気を当てる前の積層体の質量と、防曇層に蒸気を当てた後の積層体の質量とを測定し、得られた測定値から、以下の計算式にて保水量を求めた。
 防曇層保水量(mg/cm)=(M-M)/S
 ここで、Mは蒸気を当てる前の積層体の質量(mg)、Mは蒸気を当てた後の積層体の質量(mg)、Sは防曇層の蒸気を当てた領域の面積(cm)を示す。
 なお、表1~表5では、防曇層保水量を「膜保水量」と記載する。
Figure JPOXMLDOC01-appb-T000002

 
Figure JPOXMLDOC01-appb-T000003

 
Figure JPOXMLDOC01-appb-T000004

 
Figure JPOXMLDOC01-appb-T000005

 
Figure JPOXMLDOC01-appb-T000006

 
 表1~表5に示すように、実施例1~実施例16の積層体は、防曇性、防曇層の表面における耐汚染性及び耐水垂れ性に優れていた。また、透明性及び基材密着性にも優れていた。
 シリカ粒子と特定バインダーとの含有比率(B/A)が本開示の範囲よりも小さい比較例1は、基材との密着性に劣っていた。また、(B/A)が本開示の範囲よりも大きすぎる比較例2は、耐水垂れ性に劣っていた。tanδの条件が本開示の範囲外である比較例3~比較例6は、いずれも耐水垂れ性が実施例に比べて低かった。
<実施例101~実施例116、及び、比較例101~106>
[クラックテスト]
 積層体のクラック発生について、実施例1~実施例16及び比較例1~比較例6で厚さ2μmの膜厚を作製し、目視により、外観を観察することでクラック性を評価した。
 また、実施例1~実施例16及び比較例1~比較例6で用いた組成物と同じ防曇層形成用組成物を用いて、乾燥後の防曇層の膜厚を、それぞれ5μm、10μm、20μm及び30μmとして防曇層積層体を作製し、同様にして積層体のクラック発生について評価した。結果を、それぞれ実施例101~実施例116、及び、比較例101~106として、下記表6~表10に示す。
 下記の評価基準において、「A」、及び「B」が実用上許容されるレベルである。
  A:クラックが全く認められなかった。
  B:クラックが防曇層周縁部に1本以上10本以内認められた。
  C:クラックが防曇層周縁部に11本以上30本以内認められた。
  D:クラックが防曇層中央部に認められた。
Figure JPOXMLDOC01-appb-T000007

 
Figure JPOXMLDOC01-appb-T000008

 
Figure JPOXMLDOC01-appb-T000009

 
Figure JPOXMLDOC01-appb-T000010

 
Figure JPOXMLDOC01-appb-T000011

 
 表6~表10に示すように、実施例1~実施例16の積層体において防曇層の形成に用いた防曇層形成用組成物により形成した実施例101~実施例116の積層体は、防曇層の厚みを厚くしてもクラックの発生が抑制されることがわかる。
 なお、表5に示すように、比較例1の積層体において防曇層の形成に用いた防曇層形成用組成物により形成した比較例101積層体は、クラックの発生はある程度、抑制されるが、防曇層の透明性が低く、積層体は耐剥離性に劣り、実用上問題のあるレベルであることがわかる。また、比較例2の積層体において防曇層の形成に用いた防曇層形成用組成物により形成した比較例102の積層体は、膜厚を大きくしてもクラックの発生は抑制されるが、防曇層の透明性が低く、耐水垂れ性に劣るため、防曇層積層体としては、実用上問題のあるレベルであることがわかる。
(実施例17)
[監視カメラカバーへの適用]
 ソニー(株)製ネットワークカメラ用屋外ドームハウジングA-ODP7C1Aに用いられるハウジング交換カバーRCP7Cの内面に、上記の各実施例で得られた防曇層形成用組成物をそれぞれ、スプレーガン(形式:W-101-101G、アネスト岩田(株))を用いて塗布した。次いで、塗布した塗布液を、120℃にて20分間乾燥させることにより、内面が防曇層(乾燥後の厚さ:100μm)で被覆されたカメラカバーをそれぞれ得た。次いで、60℃の湯浴を準備し、得られたカメラカバーの防曇層で被覆された内面に、湯浴の水面と内面との距離を5cmに保った状態で湯浴の蒸気を2分間当てた。
 また、比較試験として、塗布液を用いて防曇層を形成していないハウジング交換カバーRCP7Cの内面に、上記と同様の方法により蒸気を当てた。
 その結果、防曇層を形成していないカメラカバーの内面には、曇りが生じたのに対して、防曇層を形成したカメラカバーの内面は曇らず、防曇層形成用組成物を用いた場合、いずれも良好な防曇性を示す防曇層を形成できることが明らかとなった。
(実施例18)
 上記の各実施例で得られた防曇層形成用組成物を用い、防曇層の乾燥後の厚さを3μmにした以外は、実施例17と同様にして、ハウジング交換カバーRCP7Cの内面が防曇層で被覆されたカメラカバーをそれぞれ得た。次いで、60℃の湯浴を準備し、得られたカメラカバーの防曇層で被覆された内面に、湯浴の水面と内面との距離を5cmに保った状態で湯浴の蒸気を2分間当てた。
 その結果、防曇層を形成したカメラカバーの内面は曇らず、防曇層形成用組成物を用いた場合、いずれも良好な防曇性を示す防曇層を形成できることが明らかとなった。
(実施例19)
 ハウジング交換カバー(商品名:BKC-13L、(株)プラコー製)の内面に上記の各実施例で得られた防曇層形成用組成物をそれぞれ、スプレーガン(形式:W-101-101G、アネスト岩田(株))を用いて塗布した。次いで、塗布した塗布液を、80℃にて10分間乾燥させることにより、内面が防曇層(乾燥後の厚さ:3μm)で被覆されたカメラカバーをそれぞれ得た。次いで、60℃の湯浴を準備し、得られたカメラカバーの防曇層で被覆された内面に、湯浴の水面と内面との距離を5cmに保った状態で湯浴の蒸気を2分間当てた。
 また、比較試験として、塗布液を用いて防曇層を形成していないハウジング交換カバーBKC-13Lの内面に、上記と同様の方法により蒸気を当てた。
 その結果、防曇層を形成していないカメラカバーの内面には、曇りが生じたのに対して、防曇層を形成したカメラカバーの内面は曇らず、防曇層形成用組成物を用いた場合、いずれも良好な防曇性を示す防曇層を形成できることが明らかとなった。
(実施例20)
[自動車ヘッドライトレンズへの適用]
 (株)オフィスケイ製W219補修用ヘッドライトレンズの内面に、上記の各実施例で得られた防曇層形成用組成物をそれぞれ、スプレーガン(形式:W-101-101G、アネスト岩田(株))を用いて塗布した。次いで、塗布した塗布液を、120℃にて20分間乾燥させることにより、内面が防曇層で被覆されたヘッドライトレンズをそれぞれ得た。次いで、60℃の湯浴を準備し、得られたヘッドライトレンズの防曇層で被覆された内面に、湯浴の水面と内面との距離を5cmに保った状態で湯浴の蒸気を2分間当てた。
 また、比較試験として、塗布液を用いて防曇層を形成していないヘッドライトレンズの内面に、上記と同様の方法により蒸気を当てた。
 その結果、防曇層を形成していないヘッドライトレンズの内面には、曇りが生じたのに対して、防曇層を形成したヘッドライトレンズの内面は曇らず、防曇層形成用組成物を用いた場合、いずれも良好な防曇性を示す防曇層を形成できることが明らかとなった。
(実施例21)
 上記の各実施例で得られた防曇層形成用組成物を用い、防曇層の乾燥後の厚さ3μmにした以外は、実施例20と同様にして、(株)オフィスケイ製W219補修用ヘッドライトレンズの内面が防曇層で被覆されたヘッドライトレンズをそれぞれ得た。次いで、60℃の湯浴を準備し、得られたヘッドライトレンズの防曇層で被覆された内面に、湯浴の水面と内面との距離を5cmに保った状態で湯浴の蒸気を2分間当てた。
 その結果、防曇層を形成したヘッドライトレンズの内面は曇らず、防曇層形成用組成物を用いた場合、いずれも良好な防曇性を示す防曇層を形成できることが明らかとなった。
(実施例22)
[自動車テールライトレンズへの適用]
 (有)モータープロデュース製ヴィッツ用LEDテールライト(商品番号:OET153)のレンズカバー内面に、上記の各実施例で得られた防曇層形成用組成物をそれぞれ、スプレーガン(形式:W-101-101G、アネスト岩田(株))を用いてそれぞれ塗布した。次いで、塗布した塗布液を、80℃にて10分間乾燥させることにより、内面が防曇層(乾燥後の厚さ:3μm)で被覆されたテールライトレンズをそれぞれ得た。次いで、60℃の湯浴を準備し、得られたテールライトレンズの防曇層で被覆された内面に、湯浴の水面と内面との距離を5cmに保った状態で湯浴の蒸気を2分間当てた。
 また、比較試験として、塗布液を用いて防曇層を形成していないテールライトレンズの内面に、上記と同様の方法により蒸気を当てた。
 その結果、防曇層を形成していないテールライトレンズの内面には、曇りが生じたのに対して、防曇層を形成したテールライトレンズの内面は曇らず、防曇層形成用組成物を用いた場合、いずれも良好な防曇性を示す防曇層を形成できることが明らかとなった。
 2017年9月29日に出願された日本国特許出願2017-191911の開示は参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
(符号の説明)
 10:積層体
 12:基材
 14:防曇層
 16:シリカ粒子
 18:バインダー
 20:空隙

Claims (12)

  1.  基材と、前記基材上の少なくとも一部に設けられた防曇層とを有し、
     前記防曇層は、バインダーと、シリカ粒子とを含み、
     前記防曇層は、温度に対する1Hzでの損失正接tanδが、温度-20℃以上40℃以下の領域において0.1以上であり、且つ、前記損失正接tanδが最大値を示す温度が40℃を超え118℃以下の範囲にあり、
     前記シリカ粒子の固形質量をA、前記バインダーの固形質量をBとした場合、A及びBが下記関係式(1)を満たしており、
    0.07≦B/A≦2.00  関係式(1)
     前記防曇層の膜厚が2μm以上30μm以下である、防曇層積層体。
  2.  前記防曇層の膜厚が5μm以上20μm以下である請求項1に記載の防曇層積層体。
  3.  前記シリカ粒子の平均一次粒子径が、10nm以上20nm以下である請求項1又は請求項2に記載の防曇層積層体。
  4.  前記バインダーの重量平均分子量が、100,000以上1,000,000以下である請求項1~請求項3のいずれか1項に記載の防曇層積層体。
  5.  前記バインダーが、セルロース骨格を有するポリマー、互いに異なるガラス転移温度を有する2種以上のポリマーの混合物、及び互いに異なるガラス転移温度を有する2種以上のポリマーユニットを含む共重合体からなる群より選ばれる少なくとも1種である請求項1~請求項4のいずれか1項に記載の防曇層積層体。
  6.  前記互いに異なるガラス転移温度を有する2種以上のポリマーの混合物における2種のポリマーは、同じ構造単位を含む親水性ポリマーから選ばれる請求項5に記載の防曇層積層体。
  7.  前記互いに異なるガラス転移温度を有する2種以上のポリマーの混合物における2種のポリマーのうち、よりガラス転移温度の低い第1のポリマーと、よりガラス転移温度の高い第2のポリマーとの含有比率は、質量比で、25:75~50:50の範囲である請求項5又は請求項6に記載の防曇層積層体。
  8.  前記バインダーは、アルコキシシリル基、シラノール基、及び親水性基から選択される少なくとも1種の官能基を含む請求項1~請求項7のいずれか1項に記載の防曇層積層体。
  9.  前記防曇層の水接触角が40°以下である請求項1~請求項8のいずれか1項に記載の防曇層積層体。
  10.  前記基材が、樹脂基材である請求項1~請求項9のいずれか1項に記載の防曇層積層体。
  11.  前記樹脂基材が、アクリル樹脂基材、又は、ポリカーボネート基材である請求項10に記載の防曇層積層体。
  12.  自動車のライトの保護材又は監視カメラの保護材である請求項1~請求項11のいずれか1項に記載の防曇層積層体。
PCT/JP2018/030244 2017-09-29 2018-08-13 防曇層積層体 WO2019064973A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019544399A JPWO2019064973A1 (ja) 2017-09-29 2018-08-13 防曇層積層体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-191911 2017-09-29
JP2017191911 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019064973A1 true WO2019064973A1 (ja) 2019-04-04

Family

ID=65901278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030244 WO2019064973A1 (ja) 2017-09-29 2018-08-13 防曇層積層体

Country Status (2)

Country Link
JP (1) JPWO2019064973A1 (ja)
WO (1) WO2019064973A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021141129A1 (ja) * 2020-01-10 2021-07-15 昭和電工マテリアルズ株式会社 車両用ランプ構造体の防曇方法、防曇剤及び親水化剤
WO2022249748A1 (ja) * 2021-05-24 2022-12-01 住友精化株式会社 ゲル状組成物
WO2023176851A1 (ja) * 2022-03-16 2023-09-21 東洋紡株式会社 積層フィルム、食品包装容器用蓋材および食品包装容器
WO2023176850A1 (ja) * 2022-03-16 2023-09-21 東洋紡株式会社 積層フィルム、食品包装容器用蓋材および食品包装容器
EP4144500A4 (en) * 2020-05-01 2023-10-11 Koito Manufacturing Co., Ltd. VEHICLE LIGHT

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307948A (ja) * 1987-03-09 1988-12-15 ミネソタ マイニング アンド マニユフアクチユアリング カンパニー 逆行反射性シート
JP2000154374A (ja) * 1998-11-20 2000-06-06 Daikin Ind Ltd 防曇剤及び防曇処理基材
JP2006028470A (ja) * 2004-06-14 2006-02-02 Dainichiseika Color & Chem Mfg Co Ltd 汚染防止塗料、汚染防止シートおよびその製造方法
JP2008067645A (ja) * 2006-09-14 2008-03-27 Mkv Platech Co Ltd 農業用フィルム
US20160130458A1 (en) * 2013-06-05 2016-05-12 Nicole Herbots Antifogging Molecular Films and Methods of Producing Same
JP2016130274A (ja) * 2015-01-13 2016-07-21 積水フィルム株式会社 防曇性組成物及び防曇性フィルム
WO2017217474A1 (ja) * 2016-06-17 2017-12-21 富士フイルム株式会社 膜形成用組成物、及び積層体の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307948A (ja) * 1987-03-09 1988-12-15 ミネソタ マイニング アンド マニユフアクチユアリング カンパニー 逆行反射性シート
JP2000154374A (ja) * 1998-11-20 2000-06-06 Daikin Ind Ltd 防曇剤及び防曇処理基材
JP2006028470A (ja) * 2004-06-14 2006-02-02 Dainichiseika Color & Chem Mfg Co Ltd 汚染防止塗料、汚染防止シートおよびその製造方法
JP2008067645A (ja) * 2006-09-14 2008-03-27 Mkv Platech Co Ltd 農業用フィルム
US20160130458A1 (en) * 2013-06-05 2016-05-12 Nicole Herbots Antifogging Molecular Films and Methods of Producing Same
JP2016130274A (ja) * 2015-01-13 2016-07-21 積水フィルム株式会社 防曇性組成物及び防曇性フィルム
WO2017217474A1 (ja) * 2016-06-17 2017-12-21 富士フイルム株式会社 膜形成用組成物、及び積層体の製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021141129A1 (ja) * 2020-01-10 2021-07-15 昭和電工マテリアルズ株式会社 車両用ランプ構造体の防曇方法、防曇剤及び親水化剤
JP2021111518A (ja) * 2020-01-10 2021-08-02 昭和電工マテリアルズ株式会社 車両用ランプ構造体の防曇方法、防曇剤及び親水化剤
JP7404880B2 (ja) 2020-01-10 2023-12-26 株式会社レゾナック 車両用ランプ構造体の防曇方法、防曇剤及び親水化剤
EP4144500A4 (en) * 2020-05-01 2023-10-11 Koito Manufacturing Co., Ltd. VEHICLE LIGHT
WO2022249748A1 (ja) * 2021-05-24 2022-12-01 住友精化株式会社 ゲル状組成物
WO2023176851A1 (ja) * 2022-03-16 2023-09-21 東洋紡株式会社 積層フィルム、食品包装容器用蓋材および食品包装容器
WO2023176850A1 (ja) * 2022-03-16 2023-09-21 東洋紡株式会社 積層フィルム、食品包装容器用蓋材および食品包装容器

Also Published As

Publication number Publication date
JPWO2019064973A1 (ja) 2020-04-02

Similar Documents

Publication Publication Date Title
WO2019064973A1 (ja) 防曇層積層体
WO2018092543A1 (ja) 積層体及びその製造方法、並びに、防曇コート用組成物
JP6702814B2 (ja) 防曇層形成用組成物、積層体、及び積層体の製造方法
JP4419422B2 (ja) 活性エネルギー線硬化性有機無機ハイブリッド樹脂組成物
JP6483822B2 (ja) 塗膜
EP3473685B1 (en) Film-forming composition and manufacturing method of laminate
US20190263986A1 (en) Laminate
JP2012117025A (ja) 防曇性膜被覆物品
JP2019065178A (ja) 防曇塗料及び積層体
US20070098906A1 (en) Inorganic coating composition and hydrophilic coating film
JP7200233B2 (ja) コート剤、防曇膜、防曇膜の製造方法、及び積層体
JP2016164265A (ja) 親水性膜及びその製造方法、積層体、監視カメラ用保護材、監視カメラ、並びに防曇性膜用組成物
WO2016056489A1 (ja) 防汚層付積層体、監視カメラ用保護材、及び監視カメラ
JPWO2015170647A1 (ja) ガラス物品
WO2019082768A1 (ja) コート剤、防曇膜、防曇膜の製造方法、及び積層体
JP2019202267A (ja) 防曇性積層体の製造方法および防曇性積層体
WO2017217513A1 (ja) 膜形成用組成物、積層体、及び積層体の製造方法
JP7065980B2 (ja) 積層体
JP2007177196A (ja) 防曇防汚性物品
JP6699789B2 (ja) 組成物及び塗膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861609

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019544399

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18861609

Country of ref document: EP

Kind code of ref document: A1