WO2019064435A1 - 半導体装置の製造方法、基板処理装置およびプログラム - Google Patents
半導体装置の製造方法、基板処理装置およびプログラム Download PDFInfo
- Publication number
- WO2019064435A1 WO2019064435A1 PCT/JP2017/035242 JP2017035242W WO2019064435A1 WO 2019064435 A1 WO2019064435 A1 WO 2019064435A1 JP 2017035242 W JP2017035242 W JP 2017035242W WO 2019064435 A1 WO2019064435 A1 WO 2019064435A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dopant
- film
- containing gas
- gas
- substrate
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 47
- 238000012545 processing Methods 0.000 title claims description 94
- 238000000034 method Methods 0.000 title claims description 39
- 239000004065 semiconductor Substances 0.000 title claims description 19
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 239000002019 doping agent Substances 0.000 claims abstract description 82
- 239000002184 metal Substances 0.000 claims abstract description 43
- 229910052751 metal Inorganic materials 0.000 claims abstract description 43
- 239000012535 impurity Substances 0.000 claims abstract description 19
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 10
- 239000010703 silicon Substances 0.000 claims abstract description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 72
- 230000008569 process Effects 0.000 claims description 26
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- 229910052796 boron Inorganic materials 0.000 claims description 7
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 claims description 3
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 2
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- AJSTXXYNEIHPMD-UHFFFAOYSA-N triethyl borate Chemical compound CCOB(OCC)OCC AJSTXXYNEIHPMD-UHFFFAOYSA-N 0.000 claims description 2
- LALRXNPLTWZJIJ-UHFFFAOYSA-N triethylborane Chemical compound CCB(CC)CC LALRXNPLTWZJIJ-UHFFFAOYSA-N 0.000 claims description 2
- WRECIMRULFAWHA-UHFFFAOYSA-N trimethyl borate Chemical compound COB(OC)OC WRECIMRULFAWHA-UHFFFAOYSA-N 0.000 claims description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 239000010937 tungsten Substances 0.000 claims description 2
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 claims 1
- 238000009792 diffusion process Methods 0.000 abstract description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 9
- 239000007789 gas Substances 0.000 description 162
- 235000012431 wafers Nutrition 0.000 description 52
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 13
- 238000003860 storage Methods 0.000 description 13
- 239000011261 inert gas Substances 0.000 description 10
- 230000007246 mechanism Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 238000000354 decomposition reaction Methods 0.000 description 5
- 239000003779 heat-resistant material Substances 0.000 description 5
- 229910021334 nickel silicide Inorganic materials 0.000 description 5
- RUFLMLWJRZAWLJ-UHFFFAOYSA-N nickel silicide Chemical compound [Ni]=[Si]=[Ni] RUFLMLWJRZAWLJ-UHFFFAOYSA-N 0.000 description 5
- 238000010926 purge Methods 0.000 description 5
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000000137 annealing Methods 0.000 description 3
- 238000005430 electron energy loss spectroscopy Methods 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- ZOCHARZZJNPSEU-UHFFFAOYSA-N diboron Chemical compound B#B ZOCHARZZJNPSEU-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- -1 for example Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229910021332 silicide Inorganic materials 0.000 description 2
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- PEUPIGGLJVUNEU-UHFFFAOYSA-N nickel silicon Chemical compound [Si].[Ni] PEUPIGGLJVUNEU-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/3215—Doping the layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/22—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
- H01L21/223—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02126—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
- H01L21/02129—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being boron or phosphorus doped silicon oxides, e.g. BPSG, BSG or PSG
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02142—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing silicon and at least one metal element, e.g. metal silicate based insulators or metal silicon oxynitrides
- H01L21/0215—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing silicon and at least one metal element, e.g. metal silicate based insulators or metal silicon oxynitrides the material containing tantalum, e.g. TaSiOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02142—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing silicon and at least one metal element, e.g. metal silicate based insulators or metal silicon oxynitrides
- H01L21/02153—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing silicon and at least one metal element, e.g. metal silicate based insulators or metal silicon oxynitrides the material containing titanium, e.g. TiSiOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/0217—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28026—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
- H01L21/28035—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
- H01L21/28044—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
- H01L21/28052—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a silicide layer formed by the silicidation reaction of silicon with a metal layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/28518—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising silicides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/28556—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
- H01L21/28562—Selective deposition
Definitions
- the present invention relates to a method of manufacturing a semiconductor device, a substrate processing apparatus, and a program.
- MOSFETs Metal Oxide Semiconductor Field Effect Transistors
- various types of films are used for their manufacture (see, for example, Patent Document 1).
- an annealing (heat) process may be performed and used as a metal silicide.
- out-diffusion of impurities may occur from the silicon film to which the impurity is added to the metal film, and the impurity concentration of the silicon film to which the impurity is added may be lowered.
- An object of the present invention is to provide a technique capable of suppressing diffusion of impurities from a silicon film to which impurities are added to a metal film formed thereon.
- a dopant-containing gas containing the dopant to a metal film and a substrate on which a film other than the metal film is formed on the film to which the dopant is added; Removing the dopant-containing gas from above the substrate; And selectively adding the dopant to the metal film.
- the present invention it is possible to suppress the diffusion of the impurity from the silicon film to which the impurity is added to the metal film formed thereon.
- the decomposition of B 2 H 6 gas in accordance with the present invention is a diagram for explaining with reference to structural formulas. It is a longitudinal cross-sectional view which shows the outline of the vertical processing furnace of the substrate processing apparatus in the 1st Embodiment of this invention.
- FIG. 2 is a schematic cross-sectional view taken along line AA in FIG.
- It is a schematic block diagram of the controller of the substrate processing apparatus in the 1st Embodiment of this invention, and is a figure which shows the control system of a controller with a block diagram. It is a figure which shows the timing of the gas supply in the 1st Embodiment of this invention.
- FIG. 1 It is a diagram showing changes in amount of B in the film to the number of pulses of B 2 H 6 gas in the first embodiment of the present invention.
- the experimental result of TEM-EELS in the 1st Embodiment of this invention is shown, (A) is a figure of a cross section, (B) is a figure which shows the analysis result with respect to the depth direction. It is a cross-sectional TEM image of Ni film
- a nickel (Ni) film is formed as a metal film on a B-doped Si film to which, for example, boron (B) is added (doped) as an impurity, annealing is performed to form metal silicide such as nickel silicide (NiSi) May be used.
- B may diffuse from the B-doped Si film to the N film, and the B concentration of the B-doped Si film may be lowered. In order to suppress this, it is conceivable to dope B into the Ni film in advance.
- a Ni film 602 is formed on a B-doped Si film 601, and a silicon nitride film (SiN film) 603 and a silicon oxide film (SiO film) 604 are formed around it.
- SiN film silicon nitride film
- SiO film silicon oxide film
- the B—H bond is cleaved to form BH 3 . Since such BH 3 is unstable and highly reactive, B diffuses into Ni. In addition, since the diffusion coefficient of B in Ni is high, B is easily incorporated into Ni. On the other hand, the SiN film and the SiO film are insulating films and have poor electron donating ability, so that catalytic action like Ni, which is a metal, does not work. Furthermore, the diffusion coefficient of B in SiN and SiO is low, and it is difficult for B to be taken in SiN or SiO. In addition, with respect to a SiO film, crystalline boron may have a tendency to be bonded to O because it has acid resistance. Therefore, it becomes possible to selectively add B only to the Ni film.
- the substrate processing apparatus 10 is configured as an example of an apparatus used in a manufacturing process of a semiconductor device.
- the substrate processing apparatus 10 includes a processing furnace 202 provided with a heater 207 as a heating unit (heating mechanism, heating system).
- the heater 207 has a cylindrical shape and is vertically installed by being supported by a heater base (not shown) as a holding plate.
- an outer tube 203 which constitutes a reaction vessel (processing vessel) concentrically with the heater 207 is disposed.
- the outer tube 203 is made of, for example, a heat resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape whose upper end is closed and whose lower end is open.
- a manifold (inlet flange) 209 is disposed concentrically with the outer tube 203.
- the manifold 209 is made of, for example, a metal such as stainless steel (SUS), and is formed in a cylindrical shape whose upper and lower ends are open.
- an O-ring 220a as a sealing member is provided.
- the inner tube 204 which comprises a reaction container is arrange
- the inner tube 204 is made of, for example, a heat resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape whose upper end is closed and whose lower end is open.
- a processing vessel (reaction vessel) is mainly configured by the outer tube 203, the inner tube 204, and the manifold 209.
- a processing chamber 201 is formed in a cylindrical hollow portion (inner side of the inner tube 204) of the processing container.
- the processing chamber 201 is configured to be able to accommodate the wafers 200 as a substrate in a state in which the wafers 200 are horizontally arranged in multiple stages in the vertical posture by a boat 217 described later.
- a nozzle 410 is provided so as to penetrate the side wall of the manifold 209 and the inner tube 204.
- a gas supply pipe 310 as a gas supply line is connected to the nozzle 410.
- the substrate processing apparatus 10 is provided with the single nozzle 410 and the single gas supply pipe 310 so that the gas can be supplied into the processing chamber 201.
- the processing furnace 202 of this embodiment is not limited to the above-mentioned form.
- a mass flow controller (MFC) 312 which is a flow rate controller (flow rate control unit) and a valve 314 which is an on-off valve are provided in the gas supply pipe 310 sequentially from the upstream side.
- MFC mass flow controller
- a gas supply pipe 510 for supplying an inert gas is connected on the downstream side of the valve 314 of the gas supply pipe 310.
- the gas supply pipe 510 is provided with an MFC 512 which is a flow rate controller (flow rate control unit) and a valve 514 which is an on-off valve in this order from the upstream side.
- a nozzle 410 is connected and connected to the tip of the gas supply pipe 310.
- the nozzle 410 is configured as an L-shaped nozzle, and the horizontal portion thereof is provided to penetrate the side wall of the manifold 209 and the inner tube 204.
- the vertical portion of the nozzle 410 is provided inside a channel-shaped (groove-shaped) preliminary chamber 201a which protrudes radially outward of the inner tube 204 and extends in the vertical direction. In the chamber 201a, it is provided upward along the inner wall of the inner tube 204 (upward in the arrangement direction of the wafers 200).
- the nozzles 410 are provided to extend from the lower region of the processing chamber 201 to the upper region of the processing chamber 201, and a plurality of gas supply holes 410 a are provided at positions facing the wafer 200.
- the processing gas is supplied to the wafers 200 from the gas supply holes 410 a of the nozzles 410.
- a plurality of gas supply holes 410a are provided from the lower portion to the upper portion of the inner tube 204, have the same opening area, and are provided at the same opening pitch.
- the gas supply hole 410a is not limited to the above-mentioned form.
- the opening area may be gradually increased from the lower portion to the upper portion of the inner tube 204. This makes it possible to further equalize the flow rate of the gas supplied from the gas supply hole 410a.
- a plurality of gas supply holes 410 a of the nozzle 410 are provided at heights from the lower portion to the upper portion of the boat 217 described later. Therefore, the processing gas supplied from the gas supply hole 410 a of the nozzle 410 into the processing chamber 201 is supplied to the entire area of the wafers 200 accommodated from the lower part to the upper part of the boat 217, ie, the wafers 200 accommodated in the boat 217.
- the nozzle 410 may be provided so as to extend from the lower region to the upper region of the processing chamber 201, but is preferably provided so as to extend near the ceiling of the boat 217.
- a dopant-containing gas containing a dopant that is an impurity element is supplied as a processing gas into the processing chamber 201 through the MFC 312, the valve 314, and the nozzle 410.
- the dopant-containing gas for example, diborane (B 2 H 6 ) gas (5%, N 2 diluted) is used as the B-containing gas containing boron (B, boron) as a dopant, for example.
- the inert gas for example, nitrogen (N 2 ) gas is supplied from the gas supply pipe 510 into the processing chamber 201 through the MFC 512, the valve 514 and the nozzle 410.
- N 2 gas for example, argon (Ar) gas, helium (He) gas, neon (Ne)
- a rare gas such as a gas or xenon (Xe) gas may be used.
- the process gas supply system is mainly configured by the gas supply pipe 310, the MFC 312, the valve 314, and the nozzle 410, only the nozzle 410 may be considered as the process gas supply system.
- the process gas supply system can also be simply referred to as a gas supply system.
- the dopant-containing gas supply system is mainly configured by the gas supply pipe 310, the MFC 312, and the valve 314, but the nozzle 410 may be included in the dopant-containing gas supply system.
- B containing gas a dopant containing gas supply system can also be called B containing gas supply system.
- an inert gas supply system is mainly configured by the gas supply pipe 510, the MFC 512, and the valve 514.
- the inert gas supply system can also be referred to as a purge gas supply system, a dilution gas supply system, or a carrier gas supply system.
- the gas supply method according to the present embodiment is performed in the annular longitudinal space defined by the inner wall of the inner tube 204 and the ends of the plurality of wafers 200, that is, in the spare chamber 201a in the cylindrical space.
- the gas is conveyed via the nozzle 410 disposed at Then, the gas is jetted out into the inner tube 204 from the plurality of gas supply holes 410 a provided at the position facing the wafer of the nozzle 410. More specifically, the gas containing holes 410 of the nozzle 410 eject a dopant-containing gas or the like in a direction parallel to the surface of the wafer 200, that is, in a horizontal direction.
- the exhaust hole (exhaust port) 204a is a side wall of the inner tube 204 and is a through hole formed at a position opposite to the nozzle 410, that is, at a position opposite to the preliminary chamber 201a by 180 degrees. It is a slit-like through hole which is elongated. Therefore, the gas supplied from the gas supply hole 410a of the nozzle 410 into the processing chamber 201 and flowing on the surface of the wafer 200, that is, the remaining gas (residual gas) is transferred through the exhaust hole 204a to the inner tube 204 and the outer. The gas flows into the exhaust passage 206 which is a gap formed between the tube 203 and the tube 203. Then, the gas that has flowed into the exhaust path 206 flows into the exhaust pipe 231 and is exhausted out of the processing furnace 202.
- the exhaust holes 204 a are provided at positions facing the plurality of wafers 200 (preferably, positions facing the lower and upper portions of the boat 217), and are supplied from the gas supply holes 410 a to the vicinity of the wafers 200 in the processing chamber 201. After flowing in the horizontal direction, that is, in the direction parallel to the surface of the wafer 200, the gas flows into the exhaust passage 206 through the exhaust hole 204a. That is, the gas remaining in the processing chamber 201 is exhausted parallel to the main surface of the wafer 200 through the exhaust hole 204 a.
- the exhaust hole 204a is not limited to a slit-like through hole, and may be constituted by a plurality of holes.
- the manifold 209 is provided with an exhaust pipe 231 for exhausting the atmosphere in the processing chamber 201.
- a pressure sensor 245 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201
- an APC (Auto Pressure Controller) valve 243 and a vacuum pump as an evacuation device in order from the upstream side. 246 are connected.
- the APC valve 243 can perform vacuum evacuation and vacuum evacuation stop in the processing chamber 201 by opening and closing the valve in a state where the vacuum pump 246 is operated, and further, the valve in a state where the vacuum pump 246 is operated.
- the pressure in the process chamber 201 can be adjusted by adjusting the opening degree.
- An exhaust system that is, an exhaust line is mainly configured by the exhaust hole 204a, the exhaust passage 206, the exhaust pipe 231, the APC valve 243, and the pressure sensor 245.
- the vacuum pump 246 may be included in the exhaust system.
- a seal cap 219 is provided as a furnace port that can close the lower end opening of the manifold 209 in an airtight manner.
- the seal cap 219 is configured to abut on the lower end of the manifold 209 from the lower side in the vertical direction.
- the seal cap 219 is made of metal such as SUS, for example, and formed in a disk shape.
- an O-ring 220b is provided as a seal member that contacts the lower end of the manifold 209.
- a rotation mechanism 267 for rotating a boat 217 containing the wafer 200 is installed on the opposite side of the processing chamber 201 in the seal cap 219.
- the rotation shaft 255 of the rotation mechanism 267 is connected to the boat 217 through the seal cap 219.
- the rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217.
- the seal cap 219 is configured to be lifted and lowered in the vertical direction by a boat elevator 115 as a lifting and lowering mechanism installed vertically on the outside of the outer tube 203.
- the boat elevator 115 is configured to be able to carry the boat 217 into and out of the processing chamber 201 by moving the seal cap 219 up and down.
- the boat elevator 115 is configured as a transfer device (transfer mechanism) that transfers the boat 217 and the wafers 200 stored in the boat 217 into and out of the processing chamber 201.
- the boat 217 as a substrate support supports a plurality of, for example, 25 to 200 wafers 200 in a horizontal position and in a vertical direction with their centers aligned with one another, that is, It is configured to arrange at intervals.
- the boat 217 is made of, for example, a heat resistant material such as quartz or SiC.
- a heat insulating plate 218 made of a heat resistant material such as quartz or SiC is supported by multiple stages (not shown) in a horizontal posture. This configuration makes it difficult for the heat from the heater 207 to be transmitted to the seal cap 219 side.
- this embodiment is not limited to the above-mentioned form.
- a heat insulating cylinder configured as a cylindrical member made of a heat resistant material such as quartz or SiC may be provided.
- a temperature sensor 263 as a temperature detector is installed in the inner tube 204, and by adjusting the amount of current supplied to the heater 207 based on the temperature information detected by the temperature sensor 263,
- the temperature in the processing chamber 201 is configured to have a desired temperature distribution.
- the temperature sensor 263 is configured in an L-shape similar to the nozzle 410, and is provided along the inner wall of the inner tube 204.
- the controller 121 which is a control unit (control means), is configured as a computer including a central processing unit (CPU) 121a, a random access memory (RAM) 121b, a storage device 121c, and an I / O port 121d. It is done.
- the RAM 121b, the storage device 121c, and the I / O port 121d are configured to be able to exchange data with the CPU 121a via an internal bus.
- An input / output device 122 configured as, for example, a touch panel or the like is connected to the controller 121.
- the storage device 121 c is configured by, for example, a flash memory, a hard disk drive (HDD), or the like.
- the storage device 121c readably stores a control program for controlling the operation of the substrate processing apparatus, and a process recipe in which a procedure and conditions of a method of manufacturing a semiconductor device described later are described.
- the process recipe is a combination of processes so as to cause the controller 121 to execute each step (each step) in a method of manufacturing a semiconductor device to be described later so as to obtain a predetermined result, and functions as a program.
- the process recipe, the control program and the like are generically referred to simply as a program.
- the RAM 121 b is configured as a memory area (work area) in which programs and data read by the CPU 121 a are temporarily stored.
- the I / O port 121 d is connected to the MFCs 312 and 512, the valves 314 and 514, the pressure sensor 245, the APC valve 243, the vacuum pump 246, the heater 207, the temperature sensor 263, the rotation mechanism 267, and the boat elevator 115 etc. .
- the CPU 121a is configured to read out and execute the control program from the storage device 121c, and to read out a recipe or the like from the storage device 121c in response to an input of an operation command from the input / output device 122 or the like.
- the CPU 121a adjusts the flow rates of various gases by the MFCs 312 and 512, opens and closes the valves 314 and 514, opens and closes the APC valve 243, and adjusts the pressure based on the pressure sensor 245 by the APC valve 243 in accordance with the contents of the read recipe.
- temperature adjustment operation of heater 207 based on temperature sensor 263, start and stop of vacuum pump 246, rotation operation of boat 217 by rotation mechanism 267 and rotation operation adjustment operation of boat 217 by boat elevator 115, movement to boat 217
- the storage operation of the wafer 200 is controlled.
- the controller 121 is stored in an external storage device (for example, a magnetic tape, a magnetic disk such as a flexible disk or hard disk, an optical disk such as a CD or DVD, a magnetooptical disk such as MO, a semiconductor memory such as a USB memory or memory card)
- the above-described program can be configured by installing it on a computer.
- the storage device 121 c and the external storage device 123 are configured as computer readable recording media. Hereinafter, these are collectively referred to simply as recording media.
- the recording medium may include only the storage device 121 c alone, may include only the external storage device 123 alone, or may include both of them.
- the program may be provided to the computer using communication means such as the Internet or a dedicated line without using the external storage device 123.
- Substrate processing process film forming process
- An example of the step of selectively adding B to the Ni film will be described with reference to FIG.
- the step of selectively adding B to the Ni film is performed using the processing furnace 202 of the substrate processing apparatus 10 described above. In the following description, the operation of each part constituting the substrate processing apparatus 10 is controlled by the controller 121.
- Wafer 200 in which a metal film (Ni film) and a film (SiN film, SiO film) other than the metal film (Ni film) are formed on the film (B-doped Si film) to which the dopant (B) is added Supplying a dopant-containing gas (B 2 H 6 gas) containing a dopant (B) with Removing the dopant-containing gas (B 2 H 6 gas) from the wafer 200; And selectively add the dopant (B) to the metal film (Ni film).
- a dopant-containing gas B 2 H 6 gas
- B 2 H 6 gas Removing the dopant-containing gas
- wafer when the word "wafer” is used, it means “wafer itself” or “laminate (aggregate) of a wafer and a predetermined layer or film or the like formed on the surface”. (That is, when a predetermined layer or film formed on the surface is referred to as a wafer).
- surface of wafer when the term “surface of wafer” is used in this specification, it means “surface (exposed surface) of wafer itself” or “surface of a predetermined layer or film or the like formed on a wafer” That is, it may mean “the outermost surface of the wafer as a laminate”.
- substrate when the word “substrate” is used in this specification, it is synonymous with the case where the word "wafer” is used.
- the vacuum pump 246 evacuates the processing chamber 201 to a desired pressure (degree of vacuum). At this time, the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 243 is feedback-controlled based on the measured pressure information (pressure adjustment). The vacuum pump 246 keeps operating at all times at least until the processing on the wafer 200 is completed.
- the heater 207 heats the inside of the processing chamber 201 to a desired temperature. At this time, the amount of current supplied to the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 (temperature adjustment) so that the interior of the processing chamber 201 has a desired temperature distribution. Heating of the processing chamber 201 by the heater 207 is continuously performed at least until processing of the wafer 200 is completed.
- the step of selectively adding B to the Ni film of the wafer 200 is performed.
- the B 2 H 6 gas is intermittently (pulsed) supplied to the wafer 200 (pulsed supply).
- the valve 314 is opened to flow the B 2 H 6 gas which is a dopant-containing gas into the gas supply pipe 310.
- the flow rate of the B 2 H 6 gas is adjusted by the MFC 312, supplied from the gas supply hole 410 a of the nozzle 410 into the processing chamber 201, and exhausted from the exhaust pipe 231.
- the B 2 H 6 gas is supplied to the wafer 200.
- the valve 514 may be simultaneously opened to flow an inert gas such as N 2 gas into the gas supply pipe 510.
- the flow rate of the N 2 gas flowing in the gas supply pipe 510 is adjusted by the MFC 512, and is supplied into the processing chamber 201 together with the B 2 H 6 gas and exhausted from the exhaust pipe 231.
- the APC valve 243 is adjusted to set the pressure in the processing chamber 201 to, for example, a pressure in the range of 40 to 1000 Pa.
- the pressure is lower than 40 Pa, the B 2 H 6 gas is decomposed to reduce the concentration of B deposited on the surface.
- B is introduced into Ni due to the diffusion phenomenon, since the diffusion rate is proportional to the concentration gradient, the rate of B entering Ni may be significantly reduced if B concentration is low.
- the pressure is higher than 1000 Pa, collisions between B 2 H 6 gas molecules frequently occur in the gas phase, which causes the B 2 H 6 gas to be decomposed.
- the selectivity of B doping the Ni surface in B 2 H 6 surface of SiO or SiN gas decomposes has occurred due to the B 2 H 6 gas is not decomposed. Therefore, if the B 2 H 6 gas is decomposed in the gas phase reaction, the decomposition product BH 3 may be supplied to any of Ni, SiO, SiN, etc., and the selectivity may be deteriorated.
- the supply flow rate of the B 2 H 6 gas controlled by the MFC 312 is, for example, a flow rate within the range of 0.3 to 1.0 slm. If the flow rate is less than 0.3 slm, the flow rate of the B 2 H 6 gas becomes slow, and the B 2 H 6 gas tends to be retained on the surface and is likely to be physically adsorbed. The higher the physical adsorption density, the more easily the B 2 H 6 gas is pyrolyzed, but this decomposition occurs regardless of the film type and can also occur on the surface of the SiO film or SiN film, so the selectivity of B doping is degraded there is a possibility.
- the time for supplying the B 2 H 6 gas to the wafer 200 is, eg, a time within the range of 8 to 12 seconds.
- the temperature of the heater 207 is set such that the temperature of the wafer 200 is, for example, a temperature within the range of 100 to 300 ° C., preferably a temperature within the range of 160 to 220 ° C. If the temperature is lower than 100 ° C., the reaction may not occur because activation energy is required for the decomposition reaction of B 2 H 6 gas by the catalytic action of Ni. Also, if the temperature is lower than 100 ° C., the diffusion of B in Ni is delayed or hardly occurred, so that B may not enter Ni or it may take a very long time to enter. .
- the B 2 H 6 gas may be decomposed by itself (thermally), the selectivity may be broken, and B may enter or deposit in the SiN film or the SiO film.
- the gases flowing into the processing chamber 201 are only B 2 H 6 gas and N 2 gas, and B is added to the Ni film formed on the surface of the wafer 200 by the supply of the B 2 H 6 gas. Be done.
- the valve 314 is closed to stop the supply of B 2 H 6 gas.
- the inside of the processing chamber 201 is evacuated by the vacuum pump 246 and B 2 H 6 after contributing to unreacted or B remaining remaining in the processing chamber 201
- the gas is removed from the processing chamber 201.
- the valve 514 is kept open to maintain the supply of N 2 gas into the processing chamber 201.
- the N 2 gas acts as a purge gas, and the effect of removing the B 2 H 6 gas remaining in the processing chamber 201 from the inside of the processing chamber 201 after contributing to unreacted or B addition can be enhanced.
- a predetermined depth (for example, 4 nm) can be formed in the Ni film on the wafer 200 by performing the cycle of performing the B 2 H 6 gas supply step and the residual gas removal step in order one or more times (predetermined number of B is added to ⁇ 5 nm to form a B-doped Ni film.
- the addition of B is the diffusion of B into the Ni film, which saturates up to the above-mentioned depth, and is not added to a further depth.
- the cycle described above is preferably repeated multiple times.
- N 2 gas is supplied into the processing chamber 201 from each of the gas supply pipes 510 and exhausted from the exhaust pipe 231.
- the N 2 gas acts as a purge gas, whereby the inside of the processing chamber 201 is purged with the inert gas, and the gas and byproducts remaining in the processing chamber 201 are removed from the inside of the processing chamber 201 (after purge).
- the atmosphere in the processing chamber 201 is replaced with the inert gas (inert gas substitution), and the pressure in the processing chamber 201 is returned to normal pressure (atmospheric pressure recovery).
- the seal cap 219 is lowered by the boat elevator 115, and the lower end of the reaction tube 203 is opened. Then, the processed wafer 200 is carried out (boat unloading) from the lower end of the reaction tube 203 to the outside of the reaction tube 203 while being supported by the boat 217. Thereafter, the processed wafers 200 are taken out of the boat 217 (wafer discharging).
- the amount of B (B count (XRF) in each film with respect to the number of pulses (Numer of B2H6 pulse) of B 2 H 6 gas is shown, and from FIG. It can be seen that B is not added to the SiO film (SiO 2 film) and the SiN film, and the amount of B added in the Ni film decreases as the number of times increases, and the addition amount becomes saturated. I understand.
- FIG. 8 shows the results of analysis of elements contained in the Ni film by TEM (Transmission Electron Microscope) -EELS (Electron Energy-Loss Spectroscopy).
- the Ni-B layer (A layer) containing B becomes about 2 to 6.3 nm deep from the surface of the Ni film.
- the Ni layer (B layer) substantially free of B is contained up to around 6.3 to 10.4 nm, and the SiO layer (SiO 2 layer) deeper than that is also substantially B included. It can be seen that Particularly in the A layer, B is significantly added to the vicinity of 4 to 5 nm.
- one of the reasons for annealing the Ni film in a later step to form NiSi is to add Si to Ni to form NiSi in order to eliminate the Schottky junction (because conduction occurs through traps) , Schottky junction disappears).
- the impurity concentration in NiSi may be increased, and ohmic conduction may be able to be increased. That is, it is as if the work function has disappeared.
- the processing time can be shortened by continuously supplying B 2 H 6 gas (throughput improvement).
- B-containing gas Two types of gases are used as the B-containing gas.
- B 2 H 6 gas first dopant-containing gas
- BCl 3 gas second dopant gas
- the B 2 H 6 gas supply step and the residual gas removal step are performed in the same procedure as in the first embodiment, and this cycle is performed n times. That is, BCl 3 gas and B 2 H 6 gas are alternately supplied to the wafer 200 so as not to be mixed with each other (alternate supply).
- the present invention is not limited thereto.
- the formation of the Ni film and the addition of B are alternately repeated to form the B-doped Ni film. It is also good.
- the formation of the Ni film and the addition of B may be performed in the same processing chamber (in-situ).
- the double-tube reaction vessel configured of the outer tube 203 and the inner tube 204 is used as the reaction vessel of the substrate processing apparatus, but the invention is not limited thereto.
- one reaction tube is used. You may use the reaction container comprised with a heavy pipe.
- B 2 H 6 gas or BCl 3 gas is used as the B-containing gas
- the present invention is not limited thereto, and diborane, boron trichloride, triethylboron, trisdimethylaminoboron, trisdiethylamino Boron, triethoxy boron, trimethoxy boron or the like may be used.
- the Ni film is used as the film to be selectively doped preferentially.
- the present invention is not limited thereto.
- a metal film such as a cobalt (Co) film or a silicon (Si) film may be used. Good.
- the SiN film or the SiO film is used as the film (non-selective doped film) different from the film to be selectively doped, but the present invention is not limited thereto.
- silicon, tantalum film (Ta film), tantalum A nitride film (TaN film), a titanium film (Ti film), a titanium nitride film (TiN film), a tungsten film (W film) or the like may be used.
- the present invention it is possible to suppress the diffusion of the impurity from the silicon film to which the impurity is added to the metal film formed thereon.
- controller 200 wafer (substrate) 201 processing room
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Vapour Deposition (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
ドーパントが添加された膜の上に、金属膜と、当該金属膜以外の膜が形成された基板に対して、前記ドーパントを含むドーパント含有ガスを供給する工程と、
前記基板上から前記ドーパント含有ガスを除去する工程と、
を行い、前記金属膜に前記ドーパントを選択添加する技術が提供される。
<本発明の第1の実施形態>
以下、本発明の第1の実施形態について、図3~5を参照しながら説明する。基板処理装置10は半導体装置の製造工程において使用される装置の一例として構成されている。
基板処理装置10は、加熱手段(加熱機構、加熱系)としてのヒータ207が設けられた処理炉202を備える。ヒータ207は円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられている。
半導体装置(デバイス)の製造工程の一工程として、Bが添加された膜(BドープドSi膜)の上にNi膜とNi膜以外の膜(SiN膜、SiO膜)が形成されたウエハ200のNi膜にBを選択添加する工程の一例について、図6を用いて説明する。Ni膜にBを選択添加する工程は、上述した基板処理装置10の処理炉202を用いて実行される。以下の説明において、基板処理装置10を構成する各部の動作はコントローラ121により制御される。
ドーパント(B)が添加された膜(BドープドSi膜)の上に、金属膜(Ni膜)と、当該金属膜(Ni膜)以外の膜(SiN膜、SiO膜)が形成されたウエハ200に対して、ドーパント(B)を含むドーパント含有ガス(B2H6ガス)を供給する工程と、
ウエハ200上からドーパント含有ガス(B2H6ガス)を除去する工程と、
を行い、金属膜(Ni膜)にドーパント(B)を選択添加する。
BドープドSi膜の上にNi膜とNi膜以外の膜(SiN膜、SiO膜)が形成された複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内に搬入(ボートロード)される。この状態で、シールキャップ219はOリング220を介して反応管203の下端開口を閉塞した状態となる。
処理室201内が所望の圧力(真空度)となるように真空ポンプ246によって真空排気される。この際、処理室201内の圧力は、圧力センサ245で測定され、この測定された圧力情報に基づき、APCバルブ243がフィードバック制御される(圧力調整)。真空ポンプ246は、少なくともウエハ200に対する処理が完了するまでの間は常時作動させた状態を維持する。また、処理室201内が所望の温度となるようにヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電量がフィードバック制御される(温度調整)。ヒータ207による処理室201内の加熱は、少なくともウエハ200に対する処理が完了するまでの間は継続して行われる。
バルブ314を開き、ガス供給管310内にドーパント含有ガスであるB2H6ガスを流す。B2H6ガスは、MFC312により流量調整され、ノズル410のガス供給孔410aから処理室201内に供給され、排気管231から排気される。このとき、ウエハ200に対してB2H6ガスが供給されることとなる。このとき同時にバルブ514を開き、ガス供給管510内にN2ガス等の不活性ガスを流してもよい。ガス供給管510内を流れたN2ガスは、MFC512により流量調整され、B2H6ガスと一緒に処理室201内に供給され、排気管231から排気される。
Ni膜中にBが添加された後、バルブ314を閉じ、B2H6ガスの供給を停止する。このとき、排気管231のAPCバルブ243は開いたままとして、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくはB添加に寄与した後のB2H6ガスを処理室201内から排除する。このときバルブ514は開いたままとして、N2ガスの処理室201内への供給を維持する。N2ガスはパージガスとして作用し、処理室201内に残留する未反応もしくはB添加に寄与した後のB2H6ガスを処理室201内から排除する効果を高めることができる。
上記したB2H6ガス供給工程、残留ガス除去工程を順に行うサイクルを1回以上(所定回数(n回))行うことにより、ウエハ200上のNi膜中に、所定の深さ(たとえば4~5nm)までBを添加して、BドープドNi膜とする。なお、B添加はNi膜中へのBの拡散であり上述の深さあたりまでで飽和し、それ以上の深さへは添加されない。上述のサイクルは、複数回繰り返すのが好ましい。
ガス供給管510のそれぞれからN2ガスを処理室201内へ供給し、排気管231から排気する。N2ガスはパージガスとして作用し、これにより処理室201内が不活性ガスでパージされ、処理室201内に残留するガスや副生成物が処理室201内から除去される(アフターパージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰)。
その後、ボートエレベータ115によりシールキャップ219が下降されて、反応管203の下端が開口される。そして、処理済ウエハ200がボート217に支持された状態で反応管203の下端から反応管203の外部に搬出(ボートアンロード)される。その後、処理済のウエハ200は、ボート217より取り出される(ウエハディスチャージ)。
本実施形態によれば、以下に示す1つまたは複数の効果を得ることができる。
(a)Bが添加された膜(BドープドSi膜)の上にNi膜と、Ni膜以外の膜が形成された基板に対して、
B含有ガスを自己分解しない温度で供給することで、マスクを使用せずに、Ni膜にBを選択的に添加することが可能となる。
(b)B含有ガスをパルス供給することにより、Ni膜中へ添加されるB量の均一性を向上させることができる。
(c)Ni膜にBを添加することで、Ni膜の結晶性が変わり、エッチング耐性を向上させることができる性質を有する結晶性構造へ変化させることができる。
(d)あらかじめNi膜にBを添加しておくことで、後の工程で形成されるNiSi(すなわちBドープドNiSi)中の不純物濃度を上げることができ、オーミック伝導を上げることができる。
次に、本発明の第2の実施形態について説明する。第1の実施形態と異なる箇所について主に説明し、第1の実施形態と同様の箇所については説明を省略する。第2の実施形態では、B2H6ガス供給工程を1回のみ行う(n=1)点で第1の実施形態と異なる。すなわち、B2H6ガスをパルス供給せず、連続的に供給する(連続供給)。
(e)B2H6ガスを連続供給することにより、処理時間を短縮することができる(スループット向上)。
次に、本発明の第3の実施形態について説明する。第1の実施形態と異なる箇所について主に説明し、第1の実施形態と同様の箇所については説明を省略する。B含有ガスとして、2種類のガスを使用する。たとえば、B含有ガスとしてB2H6ガス(第1のドーパント含有ガス)とBCl3ガス(第2のドーパントガス)を使用する。まず、第1の実施形態のB2H6ガス供給工程と同様の手順でBCl3ガスをウエハ200へ供給するBCl3ガス供給工程を行い、第1の実施形態と同様の手順で残留ガス除去工程を行った後、第1の実施形態と同様の手順でB2H6ガス供給工程、残留ガス除去工程を行い、このサイクルをn回行う。すなわち、BCl3ガスとB2H6ガスとを互いに混合しないよう交互にウエハ200へ供給する(交互供給)。
(f)BCl3ガスとB2H6ガスを交互供給することにより、Ni膜中に進入したBに結合する互いのリガンドを反応させることができ、意図せぬ不純物(Cl、H)がNi膜中に残ることを抑制することができる。すなわち、BCl3ガスのClと、B2H6ガスのHとが反応してHClとなり、膜から除去されて、Ni膜中にはBが優先的に残る。
(g)BCl3ガスを、B2H6ガスより先に流すことにより、互いのリガンドが反応して形成されるHClがNi膜中へ取り込まれてしまうことを抑制することができる。
121 コントローラ
200 ウエハ(基板)
201 処理室
Claims (14)
- ドーパントが添加された膜の上に、金属膜と、当該金属膜以外の膜が形成された基板に対して、前記ドーパントを含むドーパント含有ガスを供給する工程と、
前記基板上から前記ドーパント含有ガスを除去する工程と、
を行い、前記金属膜に前記ドーパントを選択添加する半導体装置の製造方法。 - 前記ドーパントは、ホウ素である請求項1に記載の半導体装置の製造方法。
- 前記ドーパント含有ガスは、ジボラン、三塩化ホウ素、トリエチルボロン、トリスジメチルアミノボロン、トリスジエチルアミノボロン、トリエトキシボロン、トリメトキシボロンのいずれかである請求項2に記載の半導体装置の製造方法。
- 前記金属膜はニッケル膜である請求項1~3のいずれかに記載の半導体装置の製造方法。
- 前記金属膜以外の膜は、シリコン、シリコン酸化膜、シリコン窒化膜、タンタル膜、タンタル窒化膜、チタン膜、チタン窒化膜、タングステン膜のいずれかである請求項1~4のいずれかに記載の半導体装置の製造方法。
- 前記ドーパント含有ガスを供給する工程と前記ドーパント含有ガスを除去する工程と、交互に複数回繰り返し行う請求項1~5のいずれかに記載の半導体装置の製造方法。
- 前記ドーパント含有ガスはジボランである請求項6に記載の半導体装置の製造方法。
- 前記不純物含有ガスを供給する工程と前記ドーパント含有ガスを除去する工程とは、1回ずつ行う請求項1~5のいずれかに記載の半導体装置の製造方法。
- ドーパントが添加された膜の上に、金属膜と、当該金属膜以外の膜が形成された基板に対して、前記ドーパントを含む第1のドーパント含有ガスを供給する工程と、
前記基板上から前記第1のドーパント含有ガスを除去する工程と、
前記基板上に前記ドーパントを含む第2のドーパント含有ガスを供給する工程と、
前記基板上から前記第2のドーパント含有ガスを除去する工程と、
を順に複数回繰り返し行い、前記金属膜に前記ドーパントを選択添加する半導体装置の製造方法。 - 前記ドーパントはホウ素であり、前記第1のドーパント含有ガスと前記第2のドーパント含有ガスの一方はジボランであり、他方は三塩化ホウ素である請求項9に記載の半導体装置の製造方法。
- 基板を収容する処理室と、
前記処理室に、ドーパントを含むドーパント含有ガスを供給するガス供給系と、
前記処理室を排気する排気系と、
前記ガス供給系および前記排気系を制御して、前記ドーパントが添加された膜の上に、金属膜と、当該金属膜以外の膜が形成された基板を収容した前記処理室に、前記ドーパント含有ガスを供給する処理と、前記処理室から前記ドーパント含有ガスを排気する処理と、を行い、前記金属膜に前記ドーパントを選択添加するよう構成される制御部と、
を有する基板処理装置。 - 基板を収容する処理室と、
前記処理室に、ドーパントを含む第1のドーパント含有ガス、前記第1のドーパント含有ガスとは異なり前記ドーパントを含む第2のドーパント含有ガスを供給するガス供給系と、
前記処理室を排気する排気系と、
前記ガス供給系および前記排気系を制御して、前記ドーパントが添加された膜の上に、金属膜と、当該金属膜以外の膜が形成された基板を収容した前記処理室に、前記第1のドーパント含有ガスを供給する処理と、前記処理室から前記第1のドーパント含有ガスを排気する処理と、前記処理室に前記第2のドーパント含有ガスを供給する処理と、前記処理室から前記第2のドーパント含有ガスを排気する処理と、を順に複数回繰り返し行い、前記金属膜に前記ドーパントを選択添加するよう構成される制御部と、
を有する基板処理装置。 - 基板処理装置の処理室内に収容された、ドーパントが添加された膜の上に、金属膜と、当該金属膜以外の膜が形成された基板に対して、前記ドーパントを含むドーパント含有ガスを供給する手順と、
前記基板上から前記ドーパント含有ガスを除去する手順と、
を行い、前記金属膜に前記ドーパントを選択添加する手順をコンピュータにより前記基板処理装置に実行させるプログラム。 - 基板処理装置の処理室内に収容された、ドーパントが添加された膜の上に、金属膜と、当該金属膜以外の膜が形成された基板に対して、前記ドーパントを含む第1のドーパント含有ガスを供給する手順と、
前記基板上から前記第1のドーパント含有ガスを除去する手順と、
前記基板上に前記ドーパントを含む第2のドーパント含有ガスを供給する手順と、
前記基板上から前記第2のドーパント含有ガスを除去する手順と、
を順に複数回繰り返し行い、前記金属膜に前記ドーパントを選択添加する手順をコンピュータにより前記基板処理装置に実行させるプログラム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019545496A JP6925430B2 (ja) | 2017-09-28 | 2017-09-28 | 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム |
PCT/JP2017/035242 WO2019064435A1 (ja) | 2017-09-28 | 2017-09-28 | 半導体装置の製造方法、基板処理装置およびプログラム |
KR1020207007335A KR102392389B1 (ko) | 2017-09-28 | 2017-09-28 | 반도체 장치의 제조 방법, 기판 처리 방법, 기판 처리 장치 및 프로그램 |
US16/818,865 US11562905B2 (en) | 2017-09-28 | 2020-03-13 | Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/035242 WO2019064435A1 (ja) | 2017-09-28 | 2017-09-28 | 半導体装置の製造方法、基板処理装置およびプログラム |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/818,865 Continuation US11562905B2 (en) | 2017-09-28 | 2020-03-13 | Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019064435A1 true WO2019064435A1 (ja) | 2019-04-04 |
Family
ID=65901088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/035242 WO2019064435A1 (ja) | 2017-09-28 | 2017-09-28 | 半導体装置の製造方法、基板処理装置およびプログラム |
Country Status (4)
Country | Link |
---|---|
US (1) | US11562905B2 (ja) |
JP (1) | JP6925430B2 (ja) |
KR (1) | KR102392389B1 (ja) |
WO (1) | WO2019064435A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009004495A (ja) * | 2007-06-20 | 2009-01-08 | Toshiba Corp | 半導体装置の製造方法および半導体装置 |
JP2012199333A (ja) * | 2011-03-18 | 2012-10-18 | Tokyo Electron Ltd | 基板処理方法 |
JP2017069313A (ja) * | 2015-09-29 | 2017-04-06 | 株式会社日立国際電気 | 半導体装置の製造方法、基板処理装置、ガス供給システムおよびプログラム |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05179425A (ja) | 1991-12-26 | 1993-07-20 | Tama Electric Co Ltd | ボロンを添加したニッケル金属皮膜 |
US6770113B2 (en) * | 1996-02-21 | 2004-08-03 | Mykrolis Corporation | Method for forming anisotrophic metal particles |
JP4486622B2 (ja) * | 1996-12-20 | 2010-06-23 | 三菱電機株式会社 | 太陽電池の製造方法 |
JP2000004495A (ja) * | 1998-06-16 | 2000-01-07 | Oki Electric Ind Co Ltd | 複数マイク自由配置による複数話者位置推定方法 |
US6180469B1 (en) * | 1998-11-06 | 2001-01-30 | Advanced Micro Devices, Inc. | Low resistance salicide technology with reduced silicon consumption |
US20050069641A1 (en) * | 2003-09-30 | 2005-03-31 | Tokyo Electron Limited | Method for depositing metal layers using sequential flow deposition |
KR20090007053A (ko) * | 2007-07-13 | 2009-01-16 | 매그나칩 반도체 유한회사 | 고전압 소자 및 그 제조방법 |
US9318644B2 (en) * | 2009-05-05 | 2016-04-19 | Solexel, Inc. | Ion implantation and annealing for thin film crystalline solar cells |
JP5774822B2 (ja) | 2009-05-25 | 2015-09-09 | 株式会社日立国際電気 | 半導体デバイスの製造方法及び基板処理装置 |
-
2017
- 2017-09-28 KR KR1020207007335A patent/KR102392389B1/ko active IP Right Grant
- 2017-09-28 JP JP2019545496A patent/JP6925430B2/ja active Active
- 2017-09-28 WO PCT/JP2017/035242 patent/WO2019064435A1/ja active Application Filing
-
2020
- 2020-03-13 US US16/818,865 patent/US11562905B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009004495A (ja) * | 2007-06-20 | 2009-01-08 | Toshiba Corp | 半導体装置の製造方法および半導体装置 |
JP2012199333A (ja) * | 2011-03-18 | 2012-10-18 | Tokyo Electron Ltd | 基板処理方法 |
JP2017069313A (ja) * | 2015-09-29 | 2017-04-06 | 株式会社日立国際電気 | 半導体装置の製造方法、基板処理装置、ガス供給システムおよびプログラム |
Also Published As
Publication number | Publication date |
---|---|
KR20200035148A (ko) | 2020-04-01 |
JPWO2019064435A1 (ja) | 2020-05-28 |
JP6925430B2 (ja) | 2021-08-25 |
US11562905B2 (en) | 2023-01-24 |
KR102392389B1 (ko) | 2022-05-02 |
US20200219727A1 (en) | 2020-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI819348B (zh) | 半導體裝置之製造方法、基板處理方法、基板處理裝置及程式 | |
JP5541223B2 (ja) | 成膜方法及び成膜装置 | |
KR20200078423A (ko) | 텅스텐 막에서의 결함들을 감소시키거나 제거하는 방법들 | |
JPWO2018179354A1 (ja) | 半導体装置の製造方法、基板処理装置およびプログラム | |
US10276393B2 (en) | Method of manufacturing semiconductor device | |
TWI830125B (zh) | 基板處理裝置、基板處理方法、半導體裝置之製造方法及程式 | |
JP7539480B2 (ja) | 基板処理方法、プログラム、基板処理装置及び半導体装置の製造方法 | |
JP6925430B2 (ja) | 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム | |
WO2022064550A1 (ja) | 半導体装置の製造方法、記録媒体及び基板処理装置 | |
JP7101204B2 (ja) | 半導体装置の製造方法、プログラム、基板処理装置及び基板処理方法 | |
TW202417669A (zh) | 半導體裝置的製造方法,程式,基板處理方法及基板處理裝置 | |
TW202228190A (zh) | 半導體裝置的製造方法、基板處理裝置及程式 | |
JP6630237B2 (ja) | 半導体装置の製造方法、基板処理装置及びプログラム | |
TWI830089B (zh) | 基板處理方法、半導體裝置之製造方法、程式及基板處理裝置 | |
TWI848304B (zh) | 基板處理方法、基板處理裝置、程式及半導體裝置的製造方法 | |
WO2022059170A1 (ja) | 半導体装置の製造方法、記録媒体及び基板処理装置 | |
WO2023037452A1 (ja) | 半導体装置の製造方法、基板処理方法、基板処理装置および記録媒体 | |
JP6652652B2 (ja) | 半導体装置の製造方法および基板処理装置 | |
EP4357481A1 (en) | Method of processing substrate, method of manufacturing semiconductor device, program, and substrate processing apparatus | |
CN117758231A (zh) | 衬底处理方法、半导体器件的制造方法、衬底处理装置及记录介质 | |
TW202430687A (zh) | 基板處理方法,半導體裝置的製造方法,基板處理裝置及程式 | |
KR20230136556A (ko) | 기판 처리 방법, 반도체 장치의 제조 방법, 프로그램 및 기판 처리 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17926714 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019545496 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20207007335 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17926714 Country of ref document: EP Kind code of ref document: A1 |