WO2019062368A1 - 可挠式锂电池 - Google Patents

可挠式锂电池 Download PDF

Info

Publication number
WO2019062368A1
WO2019062368A1 PCT/CN2018/100673 CN2018100673W WO2019062368A1 WO 2019062368 A1 WO2019062368 A1 WO 2019062368A1 CN 2018100673 W CN2018100673 W CN 2018100673W WO 2019062368 A1 WO2019062368 A1 WO 2019062368A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium battery
layer
conductive additive
battery according
active material
Prior art date
Application number
PCT/CN2018/100673
Other languages
English (en)
French (fr)
Inventor
杨思枬
Original Assignee
辉能科技股份有限公司
英属开曼群岛商辉能控股股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to RU2019132909A priority Critical patent/RU2717543C1/ru
Priority to JP2019548280A priority patent/JP6837156B2/ja
Priority to EP18861788.0A priority patent/EP3637521A4/en
Priority to US16/487,528 priority patent/US11196052B2/en
Priority to BR112019017436-2A priority patent/BR112019017436B1/pt
Priority to CA3053870A priority patent/CA3053870C/en
Application filed by 辉能科技股份有限公司, 英属开曼群岛商辉能控股股份有限公司 filed Critical 辉能科技股份有限公司
Priority to AU2018342379A priority patent/AU2018342379B2/en
Priority to KR1020197019208A priority patent/KR102262928B1/ko
Priority to MYPI2019004866A priority patent/MY193500A/en
Publication of WO2019062368A1 publication Critical patent/WO2019062368A1/zh
Priority to IL268762A priority patent/IL268762B/en
Priority to PH12019550150A priority patent/PH12019550150A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a battery structure, in particular to a flexible lithium battery.
  • FIG. 1 is a cross-sectional view showing the structure of a current flexible lithium battery.
  • the flexible lithium battery 10 mainly includes a first collector layer 12, a second collector layer 14, and a plastic frame 16 interposed between the first collector layer 12 and the second collector layer 14.
  • the first active material layer 20, the electrically insulating layer 22 and the second active material layer 24, the first active material layer 20 and the electrically insulating layer 22 are sequentially disposed in the enclosed space 18.
  • the electrochemical system layer 26 is formed with the second active material layer 24, and the first active material layer 20 is in contact with the first collector layer 12, and the second active material layer 24 is in contact with the second collector layer 14.
  • the flexible lithium battery 10 is characterized in that it is dynamically bendable as a whole, but the collector layers 12, 14 are extremely easily separated from the adjacent active material layers 20, 24 during bending, resulting in a short circuit.
  • the present invention has been directed to this disadvantage, and proposes a new flexible lithium battery to effectively overcome the above problems.
  • the main object of the present invention is to provide a flexible lithium battery, which is provided with a flexible adhesive layer between the collector layer and the active material layer to avoid separation of the collector layer and the active material layer when the battery is bent. Short circuit.
  • a second object of the present invention is to provide a flexible lithium battery by sealing an electrochemical system layer and a flexible adhesive layer on a first collector layer, a second collector layer, and a plastic frame. Enclosed space.
  • the present invention provides a flexible lithium battery, the battery mainly comprising a first collector layer having a first outer surface and a first inner surface; and a second collector layer having a second outer layer a surface and a second inner surface; a plastic frame sandwiched between the first inner surface and the second inner surface, the plastic frame is a closed structure and the upper and lower surfaces are respectively adhered to the first inner surface and the second inner surface, Therefore, the plastic frame, the first collector layer and the second collector layer together form an enclosing space, wherein the enclosing space has an electrochemical system layer and at least one flexible bonding layer, and the electrochemical system layer and the flexible bonding layer are adjacent to each other.
  • the electrochemical system layer includes a first active material layer, a second active material layer and an electrical insulating layer disposed between the first active material layer and the second active material layer, and the flexible adhesive layer is disposed at the first Between an inner surface and a first active material layer, and/or between a second inner surface and a second active material layer, the flexible adhesive layer is composed of an adhesive and a conductive additive mixed with an adhesive, the above-mentioned adhesive Is composed of linear structural colloids Colloidal structure composed.
  • the linear structure colloid is composed of a linear polymer selected from the group consisting of polyvinyl difluoroethylene (PVDF) and polyvinylidene fluoride-co-trichloroethylene (PVDF-HFP).
  • PVDF polyvinyl difluoroethylene
  • PVDF-HFP polyvinylidene fluoride-co-trichloroethylene
  • PTFE Polytetrafluoroethene
  • Acrylic Acid Glue Epoxy
  • PEO Polyethylene Oxide
  • PAN Polyacrylonitrile
  • AN Sodium Carboxymethyl Cellulose
  • CMC Carboxymethyl cellulose
  • SBR styrene-butadiene
  • polymethylacrylate polyacrylamide
  • the three-dimensional structure colloid is composed of a cross-linking polymer selected from the group consisting of epoxy resin (Epoxy), acrylic resin (Acrylic acid), and polyacrylonitrile (PAN). And the above-mentioned combination of the network bridge polymer, or a ladder (bridge) polymer of polyimide (PI) and its derivatives.
  • weight ratio of the conductive additive to the adhesive is between 1:1 and 7:3.
  • weight ratio of the conductive additive to the solid structure colloid is between 5:2 and 7:3.
  • the weight ratio of the linear structure colloid to the solid structure colloid is between 3:2 and 9:1.
  • the thickness of the flexible adhesive layer is 4 to 10 ⁇ m.
  • the conductive additive has a shape of a sphere, a tube or a sheet, or a mixture thereof.
  • the conductive additive having a spherical shape is carbon black.
  • the conductive additive having a spherical shape has an average particle diameter of 40 nm.
  • the conductive additive having a spherical shape has a surface area of 60 to 300 m 2 /g.
  • the conductive additive in the shape of a tube is a carbon tube.
  • the conductive additive having a tubular shape has a diameter of 5 to 150 nm and a length of 5 to 20 ⁇ m.
  • the conductive additive having a tubular shape has a surface area of 20 to 400 m 2 /g.
  • the conductive additive in the form of a sheet is graphite, graphene, or a combination thereof.
  • the conductive additive having a shape of a sheet had an average particle diameter of 3.5 ⁇ m.
  • the surface area of the conductive additive having a surface area of 20 m 2 /g.
  • FIG. 1 is a cross-sectional view showing the structure of a current flexible lithium battery
  • FIG. 2 is a schematic structural view of an embodiment of the present invention.
  • Figure 3 is a partial enlarged view of the embodiment of Figure 2;
  • FIG. 4 is a schematic structural view of still another embodiment of the present invention.
  • the invention provides a solution to the problem that the flexible lithium battery generates a short circuit due to bending separation after the bending of the collector layer and the active material layer.
  • the flexible lithium battery 30 of the present invention mainly comprises a first collector layer 12, a second collector layer 14, a frame 16 and an electrochemical system layer 26.
  • the first collector layer 12 has a first outer surface a and a first inner surface b.
  • the second collector layer 14 has a second outer surface c and a second inner surface d.
  • the plastic frame 16 is a closed structure and is sandwiched between the first inner surface b and the second inner surface d.
  • the upper and lower surfaces of the plastic frame 16 and the first inner portion of the first collector layer 12 are respectively The surface b and the second inner surface d of the second collector layer 14 are adhered. Therefore, the bezel 16, the first collector layer 12 and the second collector layer 14 form a sealed space 18.
  • the electrochemical system layer 26 is disposed in the enclosing space 18 and adjacent to the inner surface e of the bezel 16 .
  • the electrochemical system layer 26 includes the first collector layer 12 and the second collector layer 14 in the direction of the second collector layer 14 .
  • a first flexible adhesive layer 32 is disposed between the first inner surface b and the first active material layer 20 . Similarly to the first active material layer 20 , the first flexible adhesive layer 32 is also disposed adjacent to the inner surface of the plastic frame 16 .
  • the first flexible adhesive layer 32 is composed of an adhesive and a conductive additive 34 mixed with the adhesive.
  • the subsequent agent is composed of a linear structural colloid and a solid structural colloid.
  • the sealing layer colloids, so that the electrochemical system layer 26 and the first flexible bonding layer 32 are not easily damaged after being flexed multiple times.
  • the weight ratio of the conductive additive 34 to the adhesive is from 1:1 to 7:3.
  • the weight ratio of the conductive additive 34 to the solid structure colloid is between 5:2 and 7:3.
  • the weight ratio of the linear structural colloid to the solid structural colloid is between 3:2 and 9:1.
  • the first flexible adhesive layer 32 has a thickness of about 4 to 10 ⁇ m.
  • the conductive additive 34 is in the form of a sphere, a tube or a sheet, or a mixture thereof.
  • the conductive additive 34 can be carbon black.
  • the conductive additive 34 having a spherical shape has an average particle diameter of about 40 nm and a surface area of about 60 to 300 m 2 /g.
  • the conductive additive 34 can be a carbon tube when the shape is tubular.
  • the conductive additive 34 having a tubular shape has a diameter of about 5 to 150 nm, a length of about 5 to 20 ⁇ m, and a surface area of about 20 to 400 m 2 /g.
  • the conductive additive 34 may be graphite, graphene, or a combination thereof.
  • the conductive additive 34 in the form of a sheet has an average particle diameter of about 3.5 ⁇ m and a surface area of about 20 m 2 /g.
  • the linear structure colloid may be composed of a linear polymer having a certain degree of softness, and the linear polymer is selected from the group consisting of polyvinyl difluoroethylene (PVDF), polyvinylidene fluoride-co-trichloroethylene (PVDF-). HFP), Polytetrafluoroethene (PTFE), Acrylic Acid Glue, Epoxy, Polyethylene Oxide (PEO), Polyacrylonitrile (PAN), Carboxymethyl Cellulose Sodium (carboxymethyl cellulose; CMC), styrene-butadiene (SBR), polymethylacrylate, polyacrylamide, polyvinylpyrrolidone (PVP), and combinations thereof.
  • PVDF polyvinyl difluoroethylene
  • PVDF- polyvinylidene fluoride-co-trichloroethylene
  • HFP Polytetrafluoroethene
  • PEO Polytetrafluoroethene
  • PAN Polyacrylonitrile
  • the bridging polymer is selected from the group consisting of epoxy resin (Epoxy), acrylic resin (Acrylic Acid), polyacrylonitrile (PAN), and the like.
  • Epoxy epoxy resin
  • Acrylic Acid acrylic resin
  • PAN polyacrylonitrile
  • the invention utilizes the characteristics that the bridging polymer has good thermal stability and heat resistance, and is used in the heat treatment of the flexible battery during the assembly process, for example, a hot pressing process, because the bridging polymer can withstand high temperature without melting, Compared with the linear polymer, the bridging polymer has more stereoscopic branches in its own polymer structure, so under high temperature (or high temperature and high pressure) process conditions, the bridging polymer can become a linear polymer.
  • the hindrance during crystallization limits the size of the crystal formed by the linear polymer and the degree of crystallization thereof to reduce steric hindrance caused by crystallization, so that the ion can pass more smoothly.
  • the conductive additive 34 further reduces the linear structure colloid and the three-dimensional structure colloid required by the presence of the conductive additive 34.
  • the space provided, for example, the space required for the linear structure colloid and the solid structure colloid to be filled will be the spacing T existing between two adjacent conductive additives 34, so that the heat treatment required for the linear structure colloid can be effectively avoided. Or the crystallization caused by the pressure treatment, and increase the flexibility, as shown in FIG.
  • the conductive additive 34 can also serve as a node when the first flexible adhesive layer 32 is subjected to an external force when the battery is subjected to external force bending. That is to say, when the scale of the conductive additive 34 is small and the amount of doping is sufficient, the number of nodes is relatively large, so that the amount of deformation between the adhesive between the two nodes is compared with that without the added conductive additive.
  • the adhesive of 34 will be significantly reduced, and the adhesion of the first flexible adhesive layer 32 to the first inner surface b of the first collector layer 12 and the first active material layer 20 will be better.
  • the conductive additive 34 and the adhesive described in the above embodiments are both present on the one-side assembly of the electrically insulating layer 22 of the flexible lithium battery 30, those skilled in the art will be aware that the electrical insulating layer 22 may also be disposed.
  • the other side of the component For example, as shown in FIG. 4, the second flexible adhesive layer 36 may be disposed separately or simultaneously between the second inner surface d and the second active material layer 24.
  • the composition and composition of the second flexible adhesive layer 36 are the same as those of the first flexible adhesive layer 32.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Primary Cells (AREA)

Abstract

本发明提供一种可挠式锂电池,其包括第一集电层与第二集电层,第一集电层具有第一外表面与第一内表面,第二集电层具有第二外表面与第二内表面,第一内表面与第二内表面间夹设有胶框,以形成封围空间,此封围空间内容设电化学系统层,其包括第一活性材料层、第二活性材料层与设置于第一活性材料层与第二活性材料层间的电性绝缘层,第一内表面与第一活性材料层间,以及/或是第二内表面与第二活性材料层间设置有柔性黏合层,此柔性黏合层是由接着剂与导电添加物所组成,上述的接着剂是由线性结构胶体与立体结构胶体所组成。

Description

可挠式锂电池 技术领域
本发明涉及一种电池结构,特别是指一种可挠式锂电池。
背景技术
在人性科技需求下,各种穿戴式电子装置相应而生,为使各种穿戴式电子装置更符合轻薄的趋势,电子装置内的空间分配成为一重要课题,而可设置在非平面的可挠曲式电池为此课题带来解决策略之一。请参阅图1,其是目前可挠式锂电池的结构剖视图。如图所示,此种可挠式锂电池10主要包括第一集电层12、第二集电层14、夹设于第一集电层12与第二集电层14间的胶框16,以形成封围空间18,此封围空间18内依序设有第一活性材料层20、电性绝缘层22与第二活性材料层24,第一活性材料层20、电性绝缘层22与第二活性材料层24构成电化学系统层26,且第一活性材料层20与第一集电层12接触,第二活性材料层24与第二集电层14接触。此可挠式锂电池10的特性在于整体可动态弯曲,但在弯曲过程中集电层12、14却极容易与其邻接的活性材料层20、24分离,而导致短路。
有鉴于上述因素,本发明遂针对此缺点,提出一种崭新的可挠曲式锂电池,以有效克服上述的这些问题。
发明内容
本发明的主要目的在于提供一种可挠式锂电池,其借由集电层与活性材料层间设置有柔性黏合层,以避免电池弯折时,集电层与活性材料层因分离而产生短路。
本发明的次一目的在于提供一种可挠式锂电池,其借由将电化学系统层与柔性黏合层均封合在由第一集电层、第二集电层与胶框所形成的封围空间内。
为达上述的目的,本发明提供一种可挠式锂电池,此电池主要包括第一集电层,其具有第一外表面与第一内表面;第二集电层,其具有第二外表面与第二内表面;夹设于第一内表面与第二内表面之间的胶框,胶框为封闭的结构且其上、下表面分别与第一内表面、第二内表面黏着,故胶框、第一集电层与第二集电层共同形成封围空间,此封围空间内容设电化学系统层及至少一个柔性黏合层,且电化学系统层与柔性黏合层邻设于胶框的内侧表面,电化学系统层包括第一活性材料层、第二活性材料层与设置于第一活性材料层与第二活性材料层间的电性绝缘层,柔性黏合层则设置在第一内表面与第一活性材料层间,以及/或是第二内表面与第二活性材料层 间,此柔性黏合层由接着剂与混合于接着剂的导电添加物所组成,上述的接着剂是由线性结构胶体与立体结构胶体所组成。
其中,该线性结构胶体是由线性高分子(linear polymer)所组成,线性高分子选自聚二氟乙烯(Polyvinylidene fluoride;PVDF)、聚偏二氟乙烯-共-三氯乙烯(PVDF-HFP)、聚四氟乙烯(Polytetrafluoroethene;PTFE)、亚克力酸胶(Acrylic Acid Glue)、环氧树脂(Epoxy)、聚氧化乙烯(PEO)、聚丙烯腈(polyacrylonitrile;PAN)、羧甲基纤维素钠(carboxymethyl cellulose;CMC)、苯乙烯丁二烯橡胶(styrene-butadiene;SBR)、聚丙烯酸甲酯(polymethylacrylate)、聚丙烯酰胺(polyacrylamide)、聚乙烯吡咯烷酮(polyvinylpyrrolidone;PVP)及上述组合。
其中,该立体结构胶体是由架桥高分子(cross-linking polymer)所组成,该架桥高分子选自环氧树脂(Epoxy)、亚克力树脂(Acrylic Acid)、聚丙烯腈(polyacrylonitrile;PAN)及上述组合的网络式架桥高分子,或者是聚酰亚胺(polyimide;PI)及其衍生物的梯状(ladder)架桥高分子。
其中,该导电添加物与该接着剂的重量比介于1:1至7:3。
其中,该导电添加物与该立体结构胶体的重量比介于5:2至7:3。
其中,该线性结构胶体与该立体结构胶体的重量比介于3:2至9:1。
其中,该柔性黏合层的厚度为4~10μm。
其中,该导电添加物的形状是球状、管状或片状,或其混合。
其中,形状为球状的该导电添加物是碳黑。
其中,形状为球状的该导电添加物的平均粒径为40纳米。
其中,该形状为球状的该导电添加物的表面积为60~300m 2/g。
其中,形状为管状的该导电添加物是碳管。
其中,形状为管状的该导电添加物的管径为5~150纳米,长度为5~20μm。
其中,该形状为管状的该导电添加物的表面积为20~400m 2/g。
其中,形状为片状的该导电添加物是石墨、石墨烯,或其组合。
其中,形状为片状的该导电添加物的平均粒径为3.5μm。
其中,该形状为片状的该导电添加物的表面积为20m 2/g。
附图说明
图1为目前可挠式锂电池的结构剖视图;
图2为本发明的一种实施例的结构示意图;
图3为图2的实施例的局部放大示意图;
图4为本发明的又一种实施例的结构示意图。
附图标记说明
(现有技术)
10   可挠式锂电池
12   第一集电层
14   第二集电层
16   胶框
18   封围空间
20   第一活性材料层
22   电性绝缘层
24   第二活性材料层
26   电化学系统层
(本发明)
30   可挠式锂电池
12   第一集电层
14   第二集电层
16   胶框
18   封围空间
20   第一活性材料层
22   电性绝缘层
24   第二活性材料层
26   电化学系统层
32   第一柔性黏合层
34   导电添加物
36   第二柔性黏合层
a    第一外表面
b    第一内表面
c    第二外表面
d    第二内表面
e    内侧表面
T    间距
具体实施方式
本发明是针对可挠式锂电池在弯折后集电层与活性材料层因为弯折分离而产生短路的问题提出解决方法。
请参阅图2,如图所示,本发明的可挠式锂电池30主要包括第一集电 层12、第二集电层14、胶框16以及电化学系统层26。第一集电层12具有第一外表面a与第一内表面b。第二集电层14具有第二外表面c与第二内表面d。胶框16为封闭的结构并夹设于第一内表面b与第二内表面d之间,更详细来说,胶框16的上、下表面分别与第一集电层12的第一内表面b、第二集电层14的第二内表面d黏着,因此,胶框16、第一集电层12与第二集电层14形成封围空间18。电化学系统层26设置于封围空间18内并邻设于胶框16的内侧表面e,电化学系统层26由第一集电层12往第二集电层14的方向上依序包括第一活性材料层20、第二活性材料层24,以及设置于第一活性材料层20与第二活性材料层24间的电性绝缘层22。第一内表面b与第一活性材料层20间设置有第一柔性黏合层32,与第一活性材料层20相同的是,第一柔性黏合层32也邻设于胶框16的内侧表面e,第一柔性黏合层32是由接着剂与混合于此接着剂的导电添加物34所组成。接着剂是由线性结构胶体与立体结构胶体所组成。
由于电化学系统层26与第一柔性黏合层32均完全地封合在第一集电层12、第二集电层14与胶框16内,且胶框16在经过熟化反应后仍为软性的封合胶体,因此电化学系统层26与第一柔性黏合层32在经过多次地挠曲仍不容易受到破坏。
该导电添加物34与该接着剂的重量比为介于1:1至7:3。该导电添加物34与该立体结构胶体的重量比为介于5:2至7:3。该线性结构胶体与该立体结构胶体的重量比为介于3:2至9:1。第一柔性黏合层32的厚度约为4~10μm。
该导电添加物34的形状是球状、管状或片状,或其混合。举例来说,当形状是呈现球状时,该导电添加物34可以是碳黑。形状为球状的该导电添加物34的平均粒径约为40纳米,表面积约为60~300m 2/g。当形状是呈现管状时,该导电添加物34可以是碳管。形状为管状的该导电添加物34的管径约为5~150纳米,长度约为5~20μm,表面积约为20~400m 2/g。当形状是呈现片状时,该导电添加物34可以是石墨、石墨烯,或其组合。形状为片状的该导电添加物34的平均粒径约为3.5μm,表面积约为20m 2/g。
线性结构胶体可由具有一定的柔软度的线性高分子(linear polymer)所组成,线性高分子选自聚二氟乙烯(Polyvinylidene fluoride;PVDF)、聚偏二氟乙烯-共-三氯乙烯(PVDF-HFP)、聚四氟乙烯(Polytetrafluoroethene;PTFE)、亚克力酸胶(Acrylic Acid Glue)、环氧树脂(Epoxy)、聚氧化乙烯(PEO)、聚丙烯腈(polyacrylonitrile;PAN)、羧甲基纤维素钠(carboxymethyl cellulose;CMC)、苯乙烯丁二烯橡胶(styrene-butadiene;SBR)、聚丙烯酸甲酯(polymethylacrylate)、聚丙烯酰胺(polyacrylamide)、聚乙烯吡咯烷酮(polyvinylpyrrolidone;PVP)及上述组合。
当立体结构胶体是由架桥高分子(cross-linking polymer)所组成时,架桥高分子选自环氧树脂(Epoxy)、亚克力树脂(Acrylic Acid)、聚丙烯腈(polyacrylonitrile;PAN)及上述组合的网络式架桥高分子,或者是聚酰亚胺(polyimide;PI)及其衍生物的梯状(ladder)架桥高分子。
本发明利用架桥高分子具有良好热稳定性及热耐受性的特性,在可挠电池进行组设过程的热处理时,例如:热压工艺,由于架桥高分子能够承受高温而不熔化,且与线性高分子相较,架桥高分子在本身的高分子结构上具有更多的立体支链,故在高温(或高温高压)的工艺条件下,架桥高分子可以成为线性高分子形成结晶时的阻碍,限制线性高分子所形成结晶的尺寸及其结晶的程度,以降低结晶所造成的立体障碍,以使离子能更顺畅的通过。
而导电添加物34除了改善第一活性材料层20与第一集电层12间的电性传导特性外,借由导电添加物34的存在更进一步缩小了线性结构胶体与立体结构胶体所需填设的空间,举例来说,线性结构胶体与立体结构胶体所需填设的空间将是存在于两个相邻导电添加物34的间距T,如此能有效避免线性结构胶体因工艺所需的热处理或加压处理而导致的结晶,而增加可挠曲能力,如图3所示。
再参阅图3,在电池承受外力弯折时,导电添加物34还可以作为第一柔性黏合层32承受外力时的节点。也就是说当导电添加物34的尺度小且掺杂数量够多时,将使得节点数量相对较多,如此一来任两个节点间的接着剂所承受得变形量相较于无添加导电添加物34的接着剂将显着减小,鉴此,第一柔性黏合层32与第一集电层12的第一内表面b以及第一活性材料层20的黏着状态将更佳完善。
虽然上述实施例说明的导电添加物34与接着剂都是存在于可挠式锂电池30的电性绝缘层22的单侧组件上,但本领域技术人员当知也可设置在电性绝缘层22的另一侧组件。举例来说,如图4所示,第二内表面d与第二活性材料层24间也可单独或同时设置有第二柔性黏合层36。第二柔性黏合层36的成分与组成与第一柔性黏合层32相同。
但以上所述,仅为本发明的较佳实施例而已,并非用来限定本发明的专利保护范围。故即凡依本发明专利保护范围所述的特征及精神所作的均等变化或修饰,均应包括于本发明的权利要求书内。

Claims (17)

  1. 一种可挠式锂电池,其包括:
    第一集电层,其具有第一外表面与第一内表面;
    第二集电层,其具有第二外表面与第二内表面;
    胶框,其为封闭的,并夹设于该第一内表面与该第二内表面之间,该胶框的上、下表面分别与该第一内表面、该第二内表面黏着,该胶框、该第一集电层与该第二集电层形成封围空间;以及
    电化学系统层,其设置于该封围空间内,并邻设于该胶框的内侧表面,该电化学系统层包括第一活性材料层、第二活性材料层与设置于该第一活性材料层与该第二活性材料层间的电性绝缘层;
    其特征在于:该第一内表面与该第一活性材料层间,以及/或者是该第二内表面与该第二活性材料层间设置有柔性黏合层,该柔性黏合层邻设于该胶框的该内侧表面,且包括接着剂与至少一种导电添加物,该接着剂是由线性结构胶体与立体结构胶体所组成,该导电添加物混合于该接着剂中。
  2. 如权利要求1所述的锂电池,其特征在于,该线性结构胶体是由线性高分子所组成,该线性高分子选自聚二氟乙烯、聚偏二氟乙烯-共-三氯乙烯、聚四氟乙烯、亚克力酸胶、环氧树脂、聚氧化乙烯、聚丙烯腈、羧甲基纤维素钠、苯乙烯丁二烯橡胶、聚丙烯酸甲酯、聚丙烯酰胺、聚乙烯吡咯烷酮及上述组合。
  3. 如权利要求1所述的锂电池,其特征在于,该立体结构胶体是由架桥高分子所组成,该架桥高分子选自环氧树脂、亚克力树脂、聚丙烯腈及上述组合的网络式架桥高分子,或者是聚酰亚胺及其衍生物的梯状架桥高分子。
  4. 如权利要求1所述的锂电池,其特征在于,该导电添加物与该接着剂的重量比介于1:1至7:3。
  5. 如权利要求1所述的锂电池,其特征在于,该导电添加物与该立体结构胶体的重量比介于5:2至7:3。
  6. 如权利要求1所述的锂电池,其特征在于,该线性结构胶体与该立体结构胶体的重量比介于3:2至9:1。
  7. 如权利要求1所述的锂电池,其特征在于,该柔性黏合层的厚度为4~10μm。
  8. 如权利要求1所述的锂电池,其特征在于,该导电添加物的形状是球状、管状或片状,或其混合。
  9. 如权利要求8所述的锂电池,其特征在于,形状为球状的该导电添加物是碳黑。
  10. 如权利要求8或9所述的锂电池,其特征在于,形状为球状的该导电添加物的平均粒径为40纳米。
  11. 如权利要求10所述的锂电池,其特征在于,该形状为球状的该导电添加物的表面积为60~300m 2/g。
  12. 如权利要求8所述的锂电池,其特征在于,形状为管状的该导电添加物是碳管。
  13. 如权利要求8或12所述的锂电池,其特征在于,形状为管状的该导电添加物的管径为5~150纳米,长度为5~20微米。
  14. 如权利要求13所述的锂电池,其特征在于,该形状为管状的该导电添加物的表面积为20~400m 2/g。
  15. 如权利要求8所述的锂电池,其特征在于,形状为片状的该导电添加物是石墨、石墨烯,或其组合。
  16. 如权利要求8或15所述的锂电池,其特征在于,形状为片状的该导电添加物的平均粒径为3.5微米。
  17. 如权利要求16所述的锂电池,其特征在于,该形状为片状的该导电添加物的表面积为20m 2/g。
PCT/CN2018/100673 2017-09-29 2018-08-15 可挠式锂电池 WO2019062368A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2019548280A JP6837156B2 (ja) 2017-09-29 2018-08-15 可撓性リチウム電池
EP18861788.0A EP3637521A4 (en) 2017-09-29 2018-08-15 SOFT LITHIUM BATTERY
US16/487,528 US11196052B2 (en) 2017-09-29 2018-08-15 Flexible lithium battery
BR112019017436-2A BR112019017436B1 (pt) 2017-09-29 2018-08-15 Bateria de lítio flexível
CA3053870A CA3053870C (en) 2017-09-29 2018-08-15 Flexible lithium battery
RU2019132909A RU2717543C1 (ru) 2017-09-29 2018-08-15 Гибкая литиевая батарея
AU2018342379A AU2018342379B2 (en) 2017-09-29 2018-08-15 Flexible lithium battery
KR1020197019208A KR102262928B1 (ko) 2017-09-29 2018-08-15 가요성 리튬 배터리
MYPI2019004866A MY193500A (en) 2017-09-29 2018-08-15 Flexible lithium battery
IL268762A IL268762B (en) 2017-09-29 2019-08-18 Flexible lithium battery
PH12019550150A PH12019550150A1 (en) 2017-09-29 2019-08-22 Flexible lithium battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710908081.9 2017-09-29
CN201710908081.9A CN109585904B (zh) 2017-09-29 2017-09-29 可挠式锂电池

Publications (1)

Publication Number Publication Date
WO2019062368A1 true WO2019062368A1 (zh) 2019-04-04

Family

ID=65900723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100673 WO2019062368A1 (zh) 2017-09-29 2018-08-15 可挠式锂电池

Country Status (13)

Country Link
US (1) US11196052B2 (zh)
EP (1) EP3637521A4 (zh)
JP (1) JP6837156B2 (zh)
KR (1) KR102262928B1 (zh)
CN (1) CN109585904B (zh)
AU (1) AU2018342379B2 (zh)
BR (1) BR112019017436B1 (zh)
CA (1) CA3053870C (zh)
IL (1) IL268762B (zh)
MY (1) MY193500A (zh)
PH (1) PH12019550150A1 (zh)
RU (1) RU2717543C1 (zh)
WO (1) WO2019062368A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060228627A1 (en) * 2003-04-24 2006-10-12 Akira Nakayama Binder for electrode of lithium ion secondary battery
CN101682031A (zh) * 2007-02-09 2010-03-24 原子能委员会 用于电化学体系的电极的粘合剂、包含该粘合剂的电极,和包含该电极的电化学体系
CN103247768A (zh) * 2012-02-07 2013-08-14 辉能科技股份有限公司 一种电能供应单元及其陶瓷隔离层
CN105576280A (zh) * 2014-10-09 2016-05-11 东莞新能源科技有限公司 柔性电池及其制备方法
CN106784993A (zh) * 2016-12-29 2017-05-31 中国电子科技集团公司第十八研究所 一种柔性聚合物薄型锂离子电池及其制备方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0494055A (ja) * 1990-08-09 1992-03-26 Yuasa Corp 薄形電池
JP2007294696A (ja) * 2006-04-25 2007-11-08 Sony Chemical & Information Device Corp 電気化学セルの製造方法
CN101212029A (zh) * 2006-12-30 2008-07-02 比亚迪股份有限公司 一种锂离子电池的包装方法
TWI560928B (en) * 2012-01-20 2016-12-01 Prologium Technology Co Ltd Electricity supply system and ceramic separator thereof
US9570728B2 (en) * 2007-05-30 2017-02-14 Prologium Holding Inc. Electricity supply element and ceramic separator thereof
CN101373826B (zh) * 2007-08-24 2010-10-06 比亚迪股份有限公司 硅负极和包括该负极的锂离子二次电池及它们的制备方法
JP2010073421A (ja) * 2008-09-17 2010-04-02 Nissan Motor Co Ltd 双極型電極およびその製造方法
WO2010147070A1 (ja) * 2009-06-15 2010-12-23 味の素株式会社 樹脂組成物及び有機電解液電池
KR101439716B1 (ko) * 2010-02-10 2014-09-12 고쿠리츠다이가쿠호진 미에다이가쿠 고체 전해질용 조성물, 고체 전해질, 리튬 이온 2차 전지 및 리튬 이온 2차 전지의 제조방법
US20130135800A1 (en) * 2010-10-29 2013-05-30 Prologium Holding Inc. Package structure of electronic modules with silicone sealing frame
WO2012077707A1 (ja) * 2010-12-08 2012-06-14 財団法人三重県産業支援センター リチウム二次電池の製造方法、積層電池の製造方法及び複合体の製造方法
JP5754002B2 (ja) * 2011-03-25 2015-07-22 国立研究開発法人産業技術総合研究所 耐熱可撓性電池、および耐熱可撓性電池の製造方法
RU2524572C1 (ru) * 2011-07-21 2014-07-27 Ниссан Мотор Ко., Лтд. Биполярный электрод, биполярная аккумуляторная батарея с его использованием и способ изготовления биполярного электрода
JP5871302B2 (ja) * 2011-08-03 2016-03-01 昭和電工株式会社 二次電池用負極および二次電池
JP2014120199A (ja) * 2012-12-12 2014-06-30 Samsung R&D Institute Japan Co Ltd 固体電池
JP2014182873A (ja) * 2013-03-18 2014-09-29 Toyo Ink Sc Holdings Co Ltd 非水二次電池電極形成材料、非水二次電池電極、及び非水二次電池
US9564660B2 (en) * 2013-06-27 2017-02-07 QingHong Technology Co., Ltd. Electric core for thin film battery
CN104681762B (zh) * 2013-10-22 2017-05-17 万向一二三股份公司 一种锂离子电池复合隔膜的制备方法
WO2015110715A1 (fr) * 2014-01-27 2015-07-30 Hutchinson Electrode pour système de stockage de l'énergie électrique avec collecteur comportant une couche conductrice de protection et procédé de fabrication correspondant
CN105990610B (zh) * 2015-02-05 2018-07-10 东莞新能源科技有限公司 柔性电芯
US9991550B2 (en) * 2015-02-27 2018-06-05 Verily Life Sciences Llc Methods and devices associated with bonding of solid-state lithium batteries
FR3034571B1 (fr) * 2015-03-31 2017-05-05 Commissariat Energie Atomique Dispositif electrochimique, tel qu’une microbatterie ou un systeme electrochrome, recouvert par une couche d’encapsulation comprenant un film barriere et un film adhesif, et procede de realisation d’un tel dispositif.
US20180102542A1 (en) * 2015-04-22 2018-04-12 Toagosei Co., Ltd. Binder for nonaqueous electrolyte secondary battery electrode, and use thereof
KR102415749B1 (ko) * 2015-08-05 2022-07-01 삼성에스디아이 주식회사 플렉시블 전지
KR102160398B1 (ko) * 2015-09-30 2020-09-28 가부시끼가이샤 구레하 바인더 조성물, 비수 전해질 이차전지용 전극 및 비수 전해질 이차전지
CN106935901A (zh) * 2015-12-31 2017-07-07 东莞新能源科技有限公司 锂离子电池及其阴极极片
CN107204421B (zh) * 2016-03-18 2020-03-10 东莞新能源科技有限公司 负极片及锂离子电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060228627A1 (en) * 2003-04-24 2006-10-12 Akira Nakayama Binder for electrode of lithium ion secondary battery
CN101682031A (zh) * 2007-02-09 2010-03-24 原子能委员会 用于电化学体系的电极的粘合剂、包含该粘合剂的电极,和包含该电极的电化学体系
CN103247768A (zh) * 2012-02-07 2013-08-14 辉能科技股份有限公司 一种电能供应单元及其陶瓷隔离层
CN105576280A (zh) * 2014-10-09 2016-05-11 东莞新能源科技有限公司 柔性电池及其制备方法
CN106784993A (zh) * 2016-12-29 2017-05-31 中国电子科技集团公司第十八研究所 一种柔性聚合物薄型锂离子电池及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3637521A4 *

Also Published As

Publication number Publication date
JP6837156B2 (ja) 2021-03-03
KR20200081332A (ko) 2020-07-07
CN109585904B (zh) 2021-11-23
MY193500A (en) 2022-10-17
AU2018342379A1 (en) 2019-09-05
CN109585904A (zh) 2019-04-05
AU2018342379B2 (en) 2020-07-09
RU2717543C1 (ru) 2020-03-24
BR112019017436B1 (pt) 2021-12-21
CA3053870C (en) 2022-02-15
IL268762B (en) 2022-06-01
JP2020510974A (ja) 2020-04-09
US20200058943A1 (en) 2020-02-20
IL268762A (en) 2019-10-31
KR102262928B1 (ko) 2021-06-09
EP3637521A4 (en) 2021-03-03
EP3637521A1 (en) 2020-04-15
PH12019550150A1 (en) 2020-06-08
BR112019017436A2 (pt) 2020-03-31
CA3053870A1 (en) 2019-04-04
US11196052B2 (en) 2021-12-07

Similar Documents

Publication Publication Date Title
JP6592290B2 (ja) 熱界面素材及びその製作方法
CN107452928B (zh) 电能供应系统及其陶瓷隔离层
WO2013174149A1 (zh) 锂离子电池
US9269959B2 (en) Lithium ion battery electrode
JPH11297360A (ja) シート型電極・電解質構造体の製造方法
JP2013197230A (ja) 熱伝導体
TW201327989A (zh) 電能供應系統及其電能供應單元
JP3228671U (ja) フレキシブル電池
WO2019062368A1 (zh) 可挠式锂电池
TWI658636B (zh) 可撓式鋰電池
CN212684919U (zh) 一种高导热石墨散热膜
WO2014069390A1 (ja) 高分子アクチュエータ素子
AU2020100433A4 (en) Flexible Battery
RU2737952C1 (ru) Гибкая батарея
TWI664253B (zh) 可撓電池
CN217377780U (zh) 一种耐磨型导热硅橡胶片
TWI639270B (zh) 可撓電池
CN216450682U (zh) 锂离子电池极片
CN105261409A (zh) 一种聚酰亚胺粉云母带缠包铜扁线
JP2010251018A (ja) 電池用電極の製造方法および製造装置
CN117239144A (zh) 集流体、极片和电池
JP2024057296A (ja) 電極の製造方法
JP2011086833A (ja) 電気化学デバイス及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861788

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3053870

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019017436

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019548280

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018342379

Country of ref document: AU

Date of ref document: 20180815

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018861788

Country of ref document: EP

Effective date: 20200106

ENP Entry into the national phase

Ref document number: 112019017436

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190821

NENP Non-entry into the national phase

Ref country code: DE