WO2019059190A1 - 複合酸化物、金属担持物及びアンモニア合成触媒 - Google Patents

複合酸化物、金属担持物及びアンモニア合成触媒 Download PDF

Info

Publication number
WO2019059190A1
WO2019059190A1 PCT/JP2018/034515 JP2018034515W WO2019059190A1 WO 2019059190 A1 WO2019059190 A1 WO 2019059190A1 JP 2018034515 W JP2018034515 W JP 2018034515W WO 2019059190 A1 WO2019059190 A1 WO 2019059190A1
Authority
WO
WIPO (PCT)
Prior art keywords
reduction
complex oxide
metal
group
catalyst
Prior art date
Application number
PCT/JP2018/034515
Other languages
English (en)
French (fr)
Inventor
勝俊 永岡
優太 小倉
勝俊 佐藤
Original Assignee
国立研究開発法人科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US16/648,951 priority Critical patent/US11866342B2/en
Priority to EP18859287.7A priority patent/EP3689823A4/en
Priority to CN202310826273.0A priority patent/CN117049587A/zh
Priority to JP2019543647A priority patent/JP7219474B2/ja
Priority to CN201880061162.2A priority patent/CN111183115B/zh
Application filed by 国立研究開発法人科学技術振興機構 filed Critical 国立研究開発法人科学技術振興機構
Publication of WO2019059190A1 publication Critical patent/WO2019059190A1/ja
Priority to EP19799121.9A priority patent/EP3805159A4/en
Priority to JP2020518297A priority patent/JP7376932B2/ja
Priority to PCT/JP2019/018225 priority patent/WO2019216304A1/ja
Priority to US17/053,436 priority patent/US20210246041A1/en
Priority to CN201980028367.5A priority patent/CN112041271B/zh
Priority to JP2023007620A priority patent/JP2023033614A/ja
Priority to US18/526,881 priority patent/US20240116770A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/241Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion containing two or more rare earth metals, e.g. NdPrO3 or LaNdPrO3
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0405Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
    • C01C1/0411Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/10Preparation or treatment, e.g. separation or purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/229Lanthanum oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/32Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 oxide or hydroxide being the only anion, e.g. NaCeO2 or MgxCayEuO
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/01Crystal-structural characteristics depicted by a TEM-image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/90Other crystal-structural characteristics not specified above
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention provides a complex oxide useful in the synthesis of ammonia under mild conditions, a metal support using the same, an ammonia synthesis catalyst, a method for producing the complex oxide, a method for producing the metal support, and ammonia It relates to the manufacturing method.
  • Ammonia is an important source in the modern chemical industry. Over 80% of the ammonia produced is used to produce chemical fertilizers for cropping crops. Furthermore, ammonia has attracted much attention as a carrier of energy and hydrogen. The reason is that (1) its hydrogen content is high (17.6 wt%), (2) energy density is high (12.8 GJ / m 3 ), and (3) carbon dioxide is decomposed to produce hydrogen. Is not generated. The ability to efficiently produce ammonia from renewable energy such as solar and wind power would alleviate the global problems associated with the energy and food crisis.
  • the Harbor-Bosch method which is currently used to produce ammonia, consumes a large amount of energy, which accounts for about 1-2% of the world's energy consumption. In this method, about 60% of the energy consumption is recovered and secured as the enthalpy of ammonia. However, most of the remaining energy is lost during the production of hydrogen from natural gas, during the synthesis of ammonia, and during the separation of the gas. As the ammonia synthesis by the Harbor-Bosch method is performed at very high temperatures (> 450 ° C.) and pressures (> 20 MPa), there is a great need to reduce the large amount of energy used in this method. In order to reduce global energy consumption, a catalyst that can synthesize ammonia under milder conditions (lower temperature and pressure) than the iron-based catalyst used in the Harbor Bosch method is required. It is done.
  • Patent Document 1 discloses that when a rare earth oxide is used as a support for supporting ruthenium, the amount of ruthenium used can be reduced and the reaction temperature can be lowered. However, in the ammonia production method of Patent Document 1, the ammonia yield when producing ammonia under a lower pressure condition is not sufficient.
  • Patent Document 1 various patent documents disclose ammonia synthesis catalysts in which ruthenium is supported on various rare earth oxide supports.
  • Patent documents 2 to 4 and non-patent document 1 can be mentioned as typical ones.
  • Patent Documents 2 and 4 disclose lanthanoid oxides
  • Patent Document 3 discloses praseodymium oxide
  • Non-Patent Document 1 discloses Ce oxides as a carrier.
  • Non-Patent Document 2 discloses a Ru / CeO 2 -La 2 O 3 based catalyst prepared by coprecipitating, drying and activating a hydroxide of Ru, Ce and La.
  • Patent Documents 1, 2, 4 and Non-patent Document 1 describe that Ru is present as particles on the surface of a ruthenium catalyst used for ammonia synthesis. When present as particles, there is a report that the average diameter is larger than 5 nm (see Non-Patent Document 2). Further, in Patent Document 3, Ru is described as having an eggshell structure.
  • An object of the present invention is to solve the above-mentioned problems, and to provide a composite oxide which can further enhance the ammonia synthesis activity by supporting a metal catalyst such as ruthenium, for example.
  • Another object of the present invention is to provide a metal support and a catalyst for ammonia synthesis, wherein a metal catalyst such as ruthenium is supported to further improve the ammonia synthesis activity.
  • another object of the present invention is to provide a method for producing such a composite oxide that improves the ammonia synthesis activity, a method for producing a metal support having improved ammonia synthesis activity, and a method for producing ammonia. is there.
  • complex oxide refers to a so-called solid solution in which the oxides of a plurality of elements have a uniform phase in a narrow sense, but the oxides of a plurality of elements exhibit a heterogeneous phase in a broad sense It also includes the case where the composition is an oxide of a plurality of elements.
  • A is a lanthanoid characterized in that at least part or all is in a trivalent state
  • X represents any element of the periodic table group 2 element selected from the group consisting of Ca, Sr, and Ba, or a lanthanoid, and represents an element different from the aforementioned A
  • M represents an element of periodic table group 1 element, a group 2 element selected from the group consisting of Ca, Sr, and Ba, or a lanthanoid, and represents an element different from A and X
  • A is a lanthanoid element characterized in that at least a part or all is in a trivalent state
  • X is a periodic table selected from the group consisting of Ca, Sr and Ba
  • M is any of a group 2 element selected from the group consisting of periodic table group 1 elements, Ca, Sr and Ba, or a lanthanoid element and which is different from A and X
  • An x y M m O x (1 B) (In the above general formula (1B), A is a rare earth element characterized in that at least a part is in a trivalent state, and X is any one of periodic group 2 element, group 4 element or rare earth element
  • M represents an element different from A
  • M represents an element of Group 2 of the periodic table, an element of Group 4 or a rare earth element, and represents an element different from A and X
  • n represents an element different from A and X; 0 ⁇ n ⁇ 1, y is 1 ⁇ n, m is 0 ⁇ m ⁇ 0.5, and x is the number of oxygen atoms necessary to keep the composite oxide electrically neutral.
  • [1C] A complex oxide containing a metal element represented by the composition of the general formula (1C).
  • Formula (1-1) compound oxide A n X y (1-1) two-component containing a metal element represented by the composition of the (In the above general formula (1-1), A is a lanthanoid characterized in that at least part or all is in a trivalent state, X represents any element of the periodic table group 2 element selected from the group consisting of Ca, Sr, and Ba, or a lanthanoid, and represents an element different from the aforementioned A, n is 0 ⁇ n ⁇ 1 and y is 0 ⁇ y ⁇ 1 and n + y 1).
  • A is a lanthanoid characterized in that at least part or all is in a trivalent state
  • X represents any element of the periodic table group 2 element selected from the group consisting of Ca, Sr, and Ba, or a lanthanoid, and represents an element different from the aforementioned A
  • M represents an element of periodic table group 1 element, a group 2 element selected from the group consisting of Ca, Sr, and Ba, or a lanthanoid, and represents an element different from A and X
  • the ratio (A 3+ / A total ) of the number of moles (A 3+ ) in the trivalent state to the total number of moles (A total ) of A is 0.1 ⁇ A 3+ / A total ⁇ 1.0
  • At least one of the elements A, X, and M contained in the complex oxide is a strong base having a partial negative charge of oxygen (- ⁇ O 2 ) of 0.50 or more in the oxide state
  • the complex oxide according to any one of [1] to [1K] [2] [3] which is an element.
  • the complex oxide is a mixed state of a solid solution of one of the oxides of A and X or M and the other of the oxides of X or M.
  • [7B] X in the general formulas (1), (1A), (1B), (1C), (1-1), (1-2) is Ba, and the amount of carbonate ion contained in the complex oxide is Ba [1] to [1K] [2] [3] [4-1] [4-2] [5] [6] any one of the above [1] to [1 K] [2] [3] [4] Complex oxide as described in 1).
  • A is a rare earth element characterized in that at least a part or all is in a trivalent state
  • X represents an element different from A, which is any one of periodic element group 2 elements, group 4 elements or rare earth elements
  • M represents an element different from A
  • X which is any one of periodic element group 1 elements, group 2 elements, group 4 elements or rare earth elements
  • the ratio (A 3+ / A total ) of the number of moles (A 3+ ) in the trivalent state to the total number of moles (A total ) of [8A] A is 0.1 ⁇ A 3+ / A total ⁇ 1.0
  • the complex oxide according to the above [8] which is selected from 5 Pr 0.5 O x .
  • A is a rare earth element characterized in that at least a part thereof is in a trivalent state, X represents an element different from A, which is any one of periodic element group 2 elements, group 4 elements or rare earth elements, M represents an element different from A and X, which is any one of periodic elements of group 2 element, group 4 element or rare earth element; n is 0 ⁇ n ⁇ 1 and m is 0 ⁇ m ⁇ 0.5, x represents the number of oxygen atoms required to keep the complex oxide electrically neutral).
  • [11] A metal-supported material characterized in that a transition metal excluding group 4 is supported on the complex oxide of any one of the above [1] to [9C].
  • [11A] The metal-supported product according to the above [11], wherein the transition metal is Ru.
  • [11B] The metal-supported material according to the above [11], wherein the transition metal is Co.
  • [11C] The metal-supported material according to the above [11], wherein the transition metal is at least one selected from the group consisting of Ru, Fe, Co, Ni, Rh, Pd, Os, Ir and Pt.
  • [11D] The metal-supported product according to the above [11], wherein the transition metal is Ru and / or Co.
  • N ⁇ N stretching vibration 11 of nitrogen molecules interacting in the long axis direction is observed at 2300 to 2000 cm -1 by infrared absorption spectroscopy. And / or a weakened N ⁇ N stretching vibration ⁇ 2 of nitrogen molecules interacting in the long axis direction with respect to the transition metal is observed at 1900 to 1500 cm -1.
  • transition metal is Ru
  • the average particle diameter of Ru supported on the composite oxide is 5 nm or less, according to any one of the above [11] to [14] Metal support as described.
  • transition metal is Co
  • the average particle diameter of Co supported on the composite oxide is 100 nm or less, according to any one of the above [11] to [14].
  • Metal support as described.
  • the metal support is characterized in that the amount of carbonate contained in the metal support is 10 mol% or less with respect to the element X of the periodic table group 2 selected from the group consisting of Ca, Sr, and Ba [11]
  • the metal support according to any one of to [14B].
  • [15A] The metal-supported product according to any one of [11] to [15], wherein the amount of the carbonate is 1 mol% or less.
  • [15B] The metal-supported product according to any one of [11] to [15], wherein the amount of the carbonate is 0.1 mol% or less.
  • [15C] The metal-supported product according to any one of [11] to [15], wherein the amount of the carbonate is 0.01 mol% or less.
  • a catalyst for synthesis of ammonia comprising the metal-supported product according to any one of the above [11] to [15C].
  • the ammonia yield as measured by the following ammonia activity measurement method is 0.55% or more, and the ammonia formation rate is 10.0 mmol g ⁇ 1 h ⁇ 1.
  • the catalyst for ammonia synthesis as described in 4.
  • ⁇ Ammonia activity measurement method> The pressure is increased to 1.0 MPa or 3.0 MPa by the back pressure valve at the outlet of the reaction tube while supplying Ar while maintaining the temperature of the catalyst layer for ammonia synthesis at 300 ° C., sealing of Ar is stopped and H 2 is maintained while maintaining the pressure And N2 at 90 mL / min and 30 mL / min (space velocity 72 L h-1 g-1), respectively, to a reaction atmosphere, and depending on the height of NH3 synthesis activity, 1 to 100 mM (1, 5, 5).
  • a catalyst for synthesis of ammonia comprising a metal-supported product in which a transition metal other than Group 4 is supported on a complex oxide containing a metal element represented by the composition of the general formula (1).
  • A is a lanthanoid characterized in that at least part or all is in a trivalent state
  • X represents any element of the periodic table group 2 element selected from the group consisting of Ca, Sr, and Ba, or a lanthanoid, and represents an element different from the aforementioned A
  • M represents an element of periodic table group 1 element, a group 2 element selected from the group consisting of Ca, Sr, and Ba, or a lanthanoid, and represents an element different from A and X
  • [17] A method for producing a complex oxide as described in any one of [1] to [9C] Mixing the A precursor containing A, the X precursor containing X, and the M precursor containing M to obtain a mixture; And a firing step of firing the mixture at a temperature of 600 ° C. or more.
  • [17A] The method for producing a complex oxide according to [17], wherein the firing step is to bake the mixture at a temperature of 700 ° C. or more.
  • [17B] The method for producing a complex oxide according to [17] or [17A], wherein the firing step is to bake the mixture at a temperature of 800 ° C. or less.
  • [18A] The method for producing a metal-supported product according to [18], wherein the firing step fires the mixture at a temperature of 700 ° C. or more.
  • [18B] The method for producing a metal-supported product according to [18] or [18A], wherein the firing step fires the mixture at a temperature of 800 ° C. or less.
  • [18C] The process according to any one of [18] to [18B], wherein the reduction step reduces the mixture at a temperature of 350 ° C. or more for 2 hours or more under an atmosphere containing hydrogen.
  • Method for producing metal carrier [18D] The method according to any one of [18] to [18C], wherein the reduction step is performed by sintering the reduced support at a temperature of 500 ° C.
  • A is a lanthanoid characterized in that at least part or all is in a trivalent state
  • X represents any element of the periodic table group 2 element selected from the group consisting of Ca, Sr, and Ba, or a lanthanoid, and represents an element different from the aforementioned A
  • M represents an element of periodic table group 1 element, a group 2 element selected from the group consisting of Ca, Sr, and Ba, or a lanthanoid, and represents an element different from A and X;
  • n is 0 ⁇ n ⁇ 1 and y is 0 ⁇ y ⁇ 1 and m is 0 ⁇ m ⁇ 1 and It is n
  • a process for producing ammonia characterized by
  • [19A] The process for producing ammonia according to the above [19], wherein the reaction temperature is 300 to 550 ° C., and the reaction pressure is 0.1 to 20 MPa.
  • [19B] The process for producing ammonia according to any one of the above [19] to [19A], wherein the reaction temperature is 300 to 450 ° C. and the reaction pressure is 0.1 to 10 MPa.
  • [19C] A method for producing ammonia by bringing hydrogen and nitrogen into contact with a catalyst to produce ammonia, wherein the catalyst is a complex oxide containing a metal element represented by the composition of the general formula (1) excluding Group 4 transition 1.
  • a process for producing ammonia comprising: a catalyst for ammonia synthesis using a metal support having a metal supported thereon.
  • A is a lanthanoid characterized in that at least part or all is in a trivalent state
  • X represents any element of the periodic table group 2 element selected from the group consisting of Ca, Sr, and Ba, or a lanthanoid, and represents an element different from the aforementioned A
  • M represents an element of periodic table group 1 element, a group 2 element selected from the group consisting of Ca, Sr, and Ba, or a lanthanoid, and represents an element different from A and X
  • the present invention it is possible to support a catalytic metal such as metal ruthenium to provide a composite oxide having further improved ammonia synthesis activity, and by using it as a carrier for an ammonia synthesis catalyst, the Haber-Bosch method can be obtained.
  • Ammonia can be produced with high yield under relatively mild conditions.
  • a method for producing such a complex oxide a method for producing a metal-supported product with improved ammonia synthesis activity, and a method for producing ammonia.
  • the composite oxide of the present invention is a composite oxide containing a metal element represented by the composition of the following general formula (1).
  • A is a rare earth element characterized in that at least part or all is in a trivalent state, and in particular, is a lanthanoid characterized in that at least part or all is in a trivalent state Is preferred.
  • X is an element selected from periodic group group 2 elements, group 4 elements or rare earth elements and different from A, and in particular, periodic table group 2 selected from the group consisting of Ca, Sr, and Ba An element or an element which is either a lanthanoid and is different from A is preferable.
  • M is an element selected from periodic table group 1 elements, periodic table group 2 elements, group 4 elements or rare earth elements and different from A and X, and in particular, periodic table group 1 elements, An element which is any of a Group 2 element selected from the group consisting of Ca, Sr, and Ba or a lanthanoid and which is different from A and X is preferable.
  • the composite oxide of the present invention is particularly preferably a composite oxide containing the metal element represented by the composition of the general formula (1).
  • A is a lanthanoid characterized in that at least part or all is in a trivalent state
  • X represents any element of the periodic table group 2 element selected from the group consisting of Ca, Sr, and Ba, or a lanthanoid, and represents an element different from the aforementioned A
  • M represents an element of periodic table group 1 element, a group 2 element selected from the group consisting of Ca, Sr, and Ba, or a lanthanoid, and represents an element different from A and X;
  • the composite oxide of the present invention may be a composite oxide containing the metal element represented by the general formula (1A).
  • A is a rare earth element characterized in that at least a part or all is in a trivalent state
  • X represents an element different from A, which is any one of periodic element group 2 elements, group 4 elements or rare earth elements
  • M represents an element different from A
  • X which is any one of periodic element group 1 elements, group 2 elements, group 4 elements or rare earth elements
  • the composite oxide of the present invention may be a composite oxide represented by the following general formula (2).
  • An x y M m O x (2) (In the above general formula (2), A is a rare earth element characterized in that at least a part or all is in a trivalent state, X represents an element different from A, which is any one of periodic element group 2 elements, group 4 elements or rare earth elements, M represents an element different from A and X, which is any one of periodic elements of group 2 element, group 4 element or rare earth element; n is 0 ⁇ n ⁇ 1 and y is 1-n, m is 0 ⁇ m ⁇ 0.5, x represents the number of oxygen atoms required to keep the complex oxide electrically neutral).
  • the element A is a rare earth and is at least partially or entirely in a trivalent state.
  • "at least a part or all of the state is a trivalent state” means that in the case of an element capable of having only a trivalent state, the trivalent state can be taken, and the valence number of trivalent and other (for example, a tetravalent)
  • part or all means a trivalent state. That is, the element A includes an element which can only be in the trivalent state or an element which can be in both the trivalent state and the valence state and at least a part or all of which is in the trivalent state. .
  • a part of the valence of IV is made to be trivalent by the reduction treatment described later.
  • the activity of the ammonia synthesis catalyst can be improved. It becomes possible. The outline of the mechanism is described below.
  • the basicity (Lewis basicity) of metal oxides is related to the high electron donating ability. That is, it is considered that a substance having a higher electron donating ability exhibits stronger basicity.
  • oxygen acts as an electron donor, so the amount of charge of oxygen in the oxide, that is, the partial negative charge of oxygen is useful as an indicator of basicity.
  • the value of the partial negative charge of oxygen correlates well with the acid-basicity exhibited by the oxide It is shown to do.
  • the calculation method of the partial negative charge of oxygen was referred to Non-patent literature (Saunderson "Inorganic Chemistry (top)", Kamogawa Shoten (1975) page 122, Table 6.7, pages 126 to 128).
  • the composition ratio of each element in the complex oxide is determined. For example, it is 0.5 if it is La of "Ce 0.5 La 0.5 O 1.75 ". Let this value be ni (i is the corresponding element).
  • the electronegativity of each element is ⁇ i.
  • the geometric mean of the electronegativity of all the atoms constituting the complex oxide is determined by ( ⁇ ( ⁇ i ni )) ⁇ (1 / ⁇ ni).
  • the difference between the geometric mean and the electronegativity of oxygen (5.21) is calculated to obtain from the change in the electronegativity of oxygen.
  • the change in electronegativity of oxygen is divided by the change in electronegativity ( ⁇ 4.75) when one oxygen atom acquires one electron.
  • the value of the partial negative charge of oxygen is preferably 0.52 or more.
  • the value of the partial negative charge of oxygen of the composite oxide is preferably 0.52 or more, more preferably 0.55 or more, and particularly preferably 0.57 or more.
  • the ammonia synthesis activity tends to be high.
  • the upper limit of the value of the partial negative charge of oxygen in the composite oxide is not particularly limited, but is theoretically at most about 0.70.
  • A is a trivalent element such as La
  • electrons are generated from the base point of the complex oxide (carrier), and this is back-donated to nitrogen molecules via a transition metal (such as Ru) supported on the complex oxide to weaken the nitrogen triple bond.
  • a transition metal such as Ru
  • A is an element capable of having a valency of III and IV such as Ce
  • a strong basic metal element is obtained in the case of valence III, but in the case of valence IV, the degree of basicity is higher than in the case of trivalence small.
  • Ce has a IV value, but at least a part or all can be made into a III value by a reduction treatment to be described later, etc. It can be a sex element.
  • the ammonia synthesis activity of the metal support is improved by the same mechanism as in the case where A is La.
  • the element A is a strongly basic element
  • the element X and the element M to be described later can also be strongly basic elements.
  • both elements A and X are more preferably strongly basic.
  • element M may be more basic than element A and element X.
  • the basicity tends to be higher than that of the element A (rare earth).
  • the element M when a strongly basic element, in particular, the element M is an element of Group 2 of the periodic table, it easily reacts with carbon dioxide in the atmosphere to become a metal carbonate or hydroxide, but this metal carbonate or hydroxide Is a cause of lowering the basicity of the complex oxide and reducing the ammonia synthesis activity of the catalyst.
  • Ba becomes BaCO 3 or Ba (OH) 2 in the atmosphere, which reduces the ammonia synthesis activity. Therefore, it is preferable that the amount of metal carbonate and hydroxide contained in the ammonia synthesis catalyst be as small as possible.
  • the amount of carbonate contained in the metal support is not particularly limited as long as it does not inhibit the ammonia synthesis activity, but for example, with respect to the periodic table group 2 element X selected from the group consisting of Ca, Sr, and Ba
  • the total amount is 10 mol% or less, preferably 1 mol% or less, more preferably 0.1 mol% or less, and still more preferably 0.01 mol% or less.
  • a hydrocarbon such as methane which is generated by hydrogenating carbonic acid species by heating the catalyst under hydrogen flow, mass spectrometer or hydrogen flame ionization detector
  • the amount detected as carbonate can be quantified by detecting and converting this.
  • Infrared absorption spectroscopy which is sensitive to metal carbonates, can also be used.
  • the amount of carbonate contained in the catalyst can be quantified by irradiating the catalyst with infrared light and measuring the absorption intensity of the peak of the number of fractions characteristically absorbed by the carbonate. For example, the position of the peak can be used to quantify carbonate Ba, 3000 cm around -1, 2450Cm around -1, 1750 cm around -1, 1480 cm around -1, and the like around 1060 cm -1.
  • the lower limit of the value of A 3+ / A total is 0.1 or more, preferably 0.2 or more, and more preferably 0.3 or more.
  • the upper limit of the value of A 3+ / A total is not particularly limited, and is preferably close to 1.0, but is preferably 0.8 or more, more preferably 0.9 or more, and particularly preferably 0.95 or more.
  • the performance per weight of the catalyst is excellent when used as an ammonia synthesis catalyst.
  • Ce can be mentioned.
  • a 3+ / A total 1.00.
  • La can be mentioned.
  • A is a rare earth element capable of having a valence of III and a valence (more than IV)
  • various chemical reduction methods are used to obtain the target value of A 3+ / A total. It can.
  • the most convenient method is to heat the metal support under hydrogen flow, and by changing the temperature and heating time, A 3+ / A total can be controlled to any value.
  • a 3+ / A total can be controlled to an arbitrary value by changing the concentration of hydrogen by mixing with an inert gas such as nitrogen or argon.
  • Examples of such an element A include lanthanoids, preferably Ce, Pr, Tb, and La, more preferably Ce and La, and most preferably Ce.
  • the element X constituting the complex oxide of the general formula (1) is a periodic table group 2 element, that is, Mg, Ca, Sr, Ba, or a fourth group element, that is, Ti, Zr, or Hf, or a rare earth element Selected from among the elements Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, or Lu to form a composite oxide; It is not identical to one element A, and X and M are not identical.
  • the element M is a periodic table group 2 element, it is preferably selected from Ca, Sr, and Ba.
  • the element M is preferably a lanthanoid.
  • the element M constituting the complex oxide of the general formula (1) is a periodic table group 1 element, that is, Na, K, Rb, Cs, or Fr, or a periodic table group 2 element, that is, Mg, Ca, Sr, or Ba Or Group 4 elements, ie, Ti, Zr, or Hf, or rare earth elements, ie, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm , Yb or Lu, and is not identical to another element A constituting the complex oxide, and X and M are not identical.
  • the element X is a periodic table group 2 element, it is preferably selected from Ca, Sr, and Ba.
  • the element X is preferably a rare earth, it is preferably a lanthanoid.
  • the element M is preferably Ba.
  • X and M are selected from Zr and La.
  • At least one of the elements A, X and M is a strongly basic element having a value of a partial negative charge ( ⁇ O 2 ) of oxygen in an oxide state.
  • Elements A, X and M are strongly basic elements in which any one of them has an oxygen partial negative charge (- ⁇ O 2 ) value of 0.50 or more, but at least two, especially three of them are oxygen it is preferred values of partial negative charge (- [delta O) is 0.50 or more strongly basic elements.
  • the partial negative charge (- ⁇ O ) of oxygen is the value listed in Table 12.7 of Non-Patent Document (Sunderson "Inorganic Chemistry (Top)", Kamogawa Shoten (1975) Page 276) or The thing without a value can be calculated by the calculation of the partial negative charge of oxygen mentioned above.
  • Table 12.7 of Non-Patent Document Seunderson "Inorganic Chemistry (Top)", Kamogawa Shoten (1975) Page 276) or The thing without a value can be calculated by the calculation of the partial negative charge of oxygen mentioned above.
  • representative oxides and valences of elements included in the composite oxide used in the examples, and partial negative charge ( ⁇ O 2 ) of oxygen are shown.
  • the elements A, X, and M in the case of an element such as Ba or La which has only one oxide valence number and the partial negative charge of oxygen of this oxide is 0.50 or more, these elements have a strong base Element.
  • the value of the partial negative charge (- ⁇ O ) of oxygen calculated by the proportion of the valence of the element contained in the complex oxide is It is preferable that it is 0.50 or more.
  • the value of the partial negative charge ( ⁇ O 2 ) of oxygen is 0.48.
  • the value of partial negative charge (- ⁇ O 2 ) of oxygen is 0.55, so it is preferable from the viewpoint of ammonia synthesis activity than the case of Pr (IV-valent) above.
  • the value of the partial negative charge (- ⁇ O 2 ) of oxygen in the case where valence III and valence coexist in the element can be calculated in the same manner as in the case of partial negative charge of oxygen in the above complex oxide. That is, if the ratio (composition ratio) of the trivalent element to the tetravalent element is known, the content of oxygen at which the oxide becomes electrically neutral is determined, and therefore, it can be calculated as the geometric average by formula (A).
  • the ratio of the elements of valence of III to the elements of valence in each element By using it, the content of oxygen at which the oxide becomes electrically neutral can be determined.
  • a method such as diffraction line shift by XRD or X-ray absorption spectroscopy.
  • the value of the partial negative charge (- ⁇ O 2 ) of oxygen can be calculated in the same manner for an element having a valence other than III and IV.
  • n, y, m and x in the case where the complex oxide of the present invention is represented as the general formula (1) are as follows.
  • N in the general formula (1) representing the proportion of the element A in the complex oxide is 0 ⁇ n ⁇ 1, preferably 0.05 ⁇ n ⁇ 0.95, more preferably 0.1 ⁇ n ⁇ It is 0.9, and particularly preferably 0.35 ⁇ n ⁇ 0.5.
  • Y in the general formula (1) representing the proportion of the element X in the complex oxide is 0 ⁇ y ⁇ 1, preferably 0.05 ⁇ y ⁇ 0.95, more preferably 0.1 ⁇ y ⁇ It is 0.9, and particularly preferably 0.35 ⁇ y ⁇ 0.5.
  • M in the general formula (1) which represents the proportion of the element M in the complex oxide
  • m in the general formula (2) is 0 ⁇ m ⁇ 0.5
  • m in the general formula (2) is 0 ⁇ m ⁇ 0.5
  • the complex oxide is composed of only A, X and O.
  • x is the number of oxygen atoms required to keep the composite oxide electrically neutral. Although x depends on the kinds of elements of A, X and M, it is generally in the range of 0.5 ⁇ x ⁇ 2, and particularly in the range of 1 ⁇ x ⁇ 2.
  • the composite oxide containing the metal element represented by the composition of the general formula (1) used in the present invention and the composite oxide of the general formula (2) are preferably tetragonal or cubic solid solutions. These crystal structures have high symmetry, and the crystal lattice has flexibility, so that the ratio of III valence in the element A changes, and the crystal structure can be maintained even when the number of oxygen atoms changes.
  • Ba has a large atomic radius compared to La and Ce.
  • the firing temperature of the raw material mixture is high, for example, when the firing temperature exceeds 1000 ° C., all elements are uniformly dissolved to form a velovskite crystal structure.
  • the sintering temperature of the raw material mixture is low, Ba is a large element, so it is difficult to easily form a solid solution with other elements.
  • the partial negative charge of oxygen of the present invention is determined, among the elements forming the complex, (a) it may be determined by the partial negative charge of oxygen in the oxide state, and (b) is included in the complex oxide
  • the following formula (A) may be used.
  • the metal support of the present invention is characterized in that the transition metal excluding the group 4 is supported on the complex oxide of the present invention.
  • the transition metal is preferably at least one selected from the group consisting of Ru, Fe, Co, Ni, Rh, Pd, Os, Ir, and Pt from the viewpoint of high catalytic activity, and Ru and / or Ru. More preferably, it is Co.
  • the ratio of transition metal to complex oxide can be determined in consideration of the catalytic activity and the cost of the transition metal, and for example, the ratio of the transition metal to the entire metal support is 0.1 to 50% by weight. The range is preferable, and the range of 5.0 to 30% by weight is more preferable.
  • the metal supporting material in which ruthenium is supported on the complex oxide of the present invention is predicted from the value of Ru dispersion degree (D ads ) determined by H 2 pulse chemical adsorption method and the average particle diameter of Ru particles determined from the TEM image It is preferable that the ratio to the value of Ru dispersion degree (D TEM ) is 0 ⁇ D ads / D TEM ⁇ 1.
  • the degree of Ru dispersion represents the ratio of the number of Ru atoms exposed on the metal support surface to the number of all Ru atoms contained in the metal support.
  • the degree of Ru dispersion can be determined from the hydrogen adsorption amount of the metal-supported material supporting Ru.
  • the number H of hydrogen atoms corresponding to the number of Ru atoms exposed on the surface of the metal support and the total number of Ru supported on the metal support The ratio (H / Ru) to the number of atoms Ru is the Ru dispersion degree.
  • the Ru dispersion degree based on the hydrogen adsorption amount is denoted as D ads .
  • the value of Ru dispersion can be geometrically determined using the average particle diameter (d, unit is nm) of Ru determined by TEM observation. (See the document "Catalyst Dictionary”).
  • the calculation method can be expressed by the general formula (4).
  • the average particle size of Ru can be calculated by randomly extracting 100 to 150 points of Ru particles from the TEM image, measuring each particle size, and averaging them.
  • the value of the Ru dispersion obtained based on the general formula (4) is denoted as D TEM .
  • D TEM 1.113 / d (4)
  • D ads / D TEM is less than 1 means that a part of Ru particles, mainly in the vicinity of the interface between the particles and the composite oxide (support) is coated on the support material and H atoms are adsorbed on the Ru particle surface Means that was blocked.
  • SMSI Strong Metal Support Interaction
  • the driving force of SMSI is reported to be the production of reduced carriers such as, for example, Ru / CeO 2-x .
  • the average particle diameter of Ru is preferably 5 nm or less. More preferably, it is 3 nm or less, more preferably 2 nm or less.
  • the lower limit of the average particle diameter of Ru is not particularly limited, but is, for example, 0.1 nm or more and 0.5 nm or more.
  • the average particle size of Co is preferably 100 nm or less. More preferably, it is 50 nm or less, still more preferably 30 nm or less.
  • the lower limit of the average particle size of Co is not particularly limited, but is, for example, 0.5 nm or more, and 1 nm or more.
  • the value of the degree of Co dispersion (D ads ) determined by the H 2 pulse chemical adsorption method and the degree of Co dispersion estimated from the average particle size of Co particles determined from the TEM image It is preferred that the ratio to the value (D TEM ) is 0 ⁇ D ads / D TEM ⁇ 1.
  • the complex oxide of the general formula (1) used in the present invention is a fine particle in which a part or all of A is trivalent and the supported catalyst Ru has an average particle size of 5 nm or less.
  • a very high ammonia synthesis rate eg, 13.4 mmol g ⁇ 1 h ⁇ 1 at 0.1 MPa at 350 ° C., or It shows 31.3 mmolg ⁇ 1 h ⁇ 1 ) at 1 MPa.
  • the composite oxide in which a part of A in the present invention is III-valent can be obtained by reduction treatment of a thermally stable composite oxide supporting a Ru catalyst at high temperature.
  • the technology for reducing Ru-supported Ce oxide has been known for a long time, but until now it was understood that the rate of ammonia synthesis of the catalyst decreased when the reduction temperature exceeded 500 ° C. (Non-patent literature) 1).
  • the inventors supported Ru on the complex oxide, including the metal support in the state in which the Ru supported La 0.5 Ce 0.5 O 1.75 was reduced. It has been found that the ammonia synthesis rate of the support is improved by the reduction treatment at high temperatures above 500 ° C. and peaks at a reduction treatment temperature of about 650 ° C. That is, it has been found that, by using a composite oxide containing Ce as a support, a catalyst having high activity can be obtained as compared to the case of using an oxide of Ce alone as a support.
  • the metal support represented by “Ru supported La 0.5 Ce 0.5 O 1.75 ” is referred to as “Ru / La 0.5 Ce 0. It is expressed as 5 O 1.75 , and the reduction treatment of the metal oxide is expressed as “Ru / La 0.5 Ce 0.5 O x ”. Similar expressions will be used for other supports.
  • x means that the molar ratio of oxygen at the time of firing, 1.75, is reduced to x as part of Ce is reduced from IV to III.
  • the complex oxide La 0.5 Ce 0.5 O x according to the present invention which is a complex oxide of CeO 2 and La 2 O 3 and which has been reduced at a high temperature of 650 ° C., has hitherto been tetragonal or cubic. Crystal solid solution.
  • the Ru catalyst supported on this composite oxide exhibits high ammonia synthesis activity which is comparable to the activity of the highest activity catalyst ever reported.
  • Such structure and state of the catalyst as a function of reduction temperature has been elucidated by a combination of various characterization techniques including scanning transmission electron microscopy (STEM) imaging and chemisorption measurements.
  • STEM scanning transmission electron microscopy
  • the specific surface area of the complex oxide obtained by reducing La 0.5 Ce 0.5 O 1.75 at 500 ° C. is 47 m 2 g ⁇ 1 and that of Ru / CeO 2 reduced at 500 ° C. and 650 ° C. It was much larger than that (24 and 20 m 2 g ⁇ 1 respectively).
  • This increase in specific surface area in La 0.5 Ce 0.5 O x is probably due to the coexistence of different cations on the surface of the composite oxide.
  • These results indicate that the number of active sites of Ru is increased by using CeO 2 / La 2 O 3 complex oxide, and Ru / La 0.5 Ce 0.5 O x is reduced at 500 ° C. It shows that a large ammonia synthesis rate is provided for the metal support.
  • the thermally stable La 0.5 Ce 0.5 O x after reduction firmly fixes the fine Ru nanoparticles and, at the same time, strongly supports the reduced support.
  • the number of interacting Ru active sites is increasing, and it is believed that these synergistic effects result in high ammonia synthesis activity.
  • Figure 2 shows HR-TEM and EDX mapping images of Ru / La 0.5 Ce 0.5 O x after reduction at different temperatures, and a histogram of Ru particle size observed by TEM of the carrier exposed to air after reduction . Also, some of the properties and results of the activity test are summarized in Table 2 below.
  • the degree of Ru dispersion represents the ratio of the number of Ru atoms exposed on the metal support surface to the number of all Ru atoms contained in the metal support.
  • the Ru dispersion degree of the metal support shown in Table 3 is obtained from the hydrogen adsorption amount of the Ru-supported metal support. Specifically, assuming that one Ru atom adsorbs one H atom, the number H of hydrogen atoms corresponding to the number of Ru atoms exposed on the surface of the metal support and the total number of Ru supported on the metal support The ratio (H / Ru) to the number of atoms Ru was taken as the degree of Ru dispersion.
  • the hydrogen adsorption amount of the metal support can be determined by H 2 pulse chemical adsorption method.
  • the Ru dispersion degree based on the hydrogen adsorption amount is denoted as D ads .
  • D ads (H / Ru) decreased from 0.46 to 0.11 as the reduction temperature increased from 500 ° C. to 800 ° C.
  • D ads decreased from 0.46 to 0.35.
  • the calculation method can be expressed by the general formula (4).
  • the average particle size can be calculated by randomly extracting 100 to 150 points of Ru particles from the TEM image, measuring each particle size, and averaging them.
  • the value of the Ru dispersion obtained based on the general formula (4) is denoted as D TEM .
  • D TEM The value of D TEM was 0.62 for reduction at 500 ° C. and 0.65 for reduction at 650 ° C., which were larger than the value of D ads obtained from the hydrogen adsorption method.
  • D ads / D TEM was 0.54.
  • an infrared absorption peak derived from nitrogen molecules ( 14 N 2 ) adsorbed to Ru particles appears at 2200 cm ⁇ 1 or less, as measured by an infrared spectrometer.
  • This absorption peak is derived from the stretching vibration mode of N 2 in which one N atom is adsorbed to Ru particles, and the metal supporting substance showing absorption in the region below this wave number is the N ⁇ N bond in the nitrogen molecule It indicates that it has a function of promoting the activation of nitrogen molecules.
  • the infrared absorption peak is described in detail below.
  • the intensity of nitrogen molecules which is considered to be the rate-limiting step in the synthesis of ammonia from nitrogen and hydrogen, can be examined by infrared absorption spectrum.
  • Nitrogen interacts with the support of the present invention, but with the support metal.
  • the interaction means that nitrogen is adsorbed to a metal or is coordinated.
  • v1 is observed in the region of 2300 to 2000 cm -1 by infrared absorption spectroscopy.
  • This region is a region in which triple bonds such as C ⁇ N and C ⁇ C are observed, and it can be confirmed by 15 N 2 that this is vibration due to nitrogen molecules used as a raw material.
  • nitrogen can also interact with the carrier, and stretching vibration is further observed at 1900 to 1500 cm -1 on the low wave number side.
  • the inventors are not bound by a particular mechanism, it is considered that the electron is received from the carrier in the empty orbital of the nitrogen molecule, and as a result, the triple bond is weakened.
  • both stretching vibrations 1 1 and 2 2 may be seen, but only one may be seen.
  • the bond of N ⁇ N is observed when there is an interaction with the support metal, but not with the carrier. Therefore, it is a factor in the case where the observed frequency shifts or only one of them is observed due to the exposed area of the metal by the SMSI effect, the kinetic problem, the electron donating property of the carrier and the supported metal, and the like.
  • the ammonia synthesis rate of the metal support obtained by reducing Ru / La 0.5 Ce 0.5 O 1.75 at 800 ° C. is as follows: Ru / La 0.5 Ce 0.5 O 1.75 at 650 ° C. It was 21 mmolg -1 h -1 smaller than that of the reduced metal support.
  • An important factor constituting the present invention is the calcination temperature of the complex oxide used as a carrier.
  • the catalyst of the present invention is activated by hydrogen reduction pretreatment at high temperature. This is because not only the transition metal such as Ru is reduced but also the electron donating ability is enhanced by reducing the cation (eg, Ce 4 + ) in the complex oxide. Also, at this time, a part of the carrier expresses an SMSI in which Ru is coated.
  • the reduction pretreatment is at a high temperature, the specific surface area increases with the sintering of the support and the metal particle diameter is enlarged, which causes a decrease in catalyst activity.
  • La 0.5 Ce 0.5 O 1.75 will be described as an example.
  • FIG. 4 shows that La 0.5 Ce 0.5 O 1.75 having a sintering temperature of 600 ° C., 500 ° C. (Example 69 described later), 650 ° C. (Example 70), 800 ° C. (Example 71)
  • the ammonia formation rate is graphed after reduction with. From this graph, it can be seen that the decrease in ammonia synthesis activity occurs with the increase of the reduction temperature, and in particular when the reduction is performed at 800 ° C., the rate of ammonia formation is greatly reduced.
  • the rate of ammonia formation decreased when the reduction was performed at 800 ° C.
  • the activity was higher than that obtained by the reduction at 800 ° C. using the carrier fired at 600 ° C.
  • changes in H / Ru, reduction in specific surface area, and Ru particle size were examined.
  • the increase of the specific surface area and the Ru particle diameter along with the increase of the reduction temperature is moderate and the aggregation of Ru is also suppressed, as compared with the case where the sintering temperature of the carrier is 600 ° C.
  • This is considered to be to reduce the damage caused by the reduction treatment by firing the support at a high temperature in advance to stabilize the structure.
  • the reduction treatment at a high temperature for expressing the SMSI is important for catalyst activation, and it is preferable to calcine the support at a temperature higher than the target reduction treatment temperature.
  • ammonia By using the metal-supported material supporting Ru according to the present invention as a catalyst, nitrogen can be reacted with hydrogen to produce ammonia.
  • the synthesis method of ammonia itself is not particularly limited, for example, ammonia can be produced by supplying a raw material gas consisting of hydrogen gas and nitrogen gas into a reaction vessel loaded with a catalyst.
  • the reaction temperature is preferably 300 to 550 ° C., more preferably 300 to 500 ° C., still more preferably 300 to 450 ° C.
  • the reaction pressure is preferably a low pressure of 0.1 to 20 MPa, more preferably 0.1 to 15 MPa, still more preferably 0.1 to 10 MPa.
  • the ammonia production rate for example at 350 °C, 31.3mmolg -1 h -1 at 13.4mmolg -1 h -1 or 1 MPa, at 0.1MPa It is. This is equal to or higher than the yield obtained by the conventional Ru-based catalyst.
  • the ammonia synthesis reaction generally tends to increase the ammonia yield as the pressure is increased by thermodynamic equilibrium, so by using the catalyst for ammonia synthesis according to the present invention, a higher yield can be obtained under high pressure conditions of, for example, about 10 MPa.
  • the composite oxide as a support contains Ba.
  • the composite oxide of the present invention can be produced by the following method.
  • the metal support of the present invention can be produced by the following method with respect to the composite oxide obtained in the above (a) and (b).
  • Step (a) corresponds to the method for producing the complex oxide of the present invention.
  • Complex oxide is a step of mixing A precursor containing A, X precursor containing X, and optionally M precursor containing M to obtain a mixture (precursor of complex oxide).
  • the complex oxide precursor can be prepared by various methods such as precipitation and complex polymerization.
  • the neutralization precipitation method of obtaining hydroxide by reacting precipitants such as ammonia, sodium hydroxide and cesium hydroxide with nitrates of A, X and M, chlorides, acetates, carbonates and sulfates It can be used.
  • a composite hydroxide which is a precursor of a composite oxide
  • the mixing molar ratio of ammonia and nitrate is preferably about 5: 1 to 2: 1, and more preferably about 3: 1.
  • the concentrations of ammonia and nitrate in aqueous ammonia and aqueous nitrate solutions are preferably 4 to 32 mol / l and 0.1 to 1 mol / l, respectively, and 8 to 16 mol / l and 0.25 to 0.5 mol / l, respectively. It is more preferable to be about 1 liter.
  • the mixing can be carried out at ambient temperature.
  • the complex oxide precursor can also be obtained by separately preparing and mixing those containing one or more of the elements A, X, and M. In this way, the compound containing A, the compound containing X, and the compound containing M are mixed to obtain a mixture.
  • step (b) is a step of firing the mixture obtained in step (a).
  • the produced mixture complex oxide precursor
  • the firing is performed at a low temperature of about 200 to 400 ° C. for about 1 to 10 hours, at an intermediate temperature of about 400 to 600 ° C., for about 1 to 10 hours, at a high temperature of about 600 to 700 ° C. for about 1 to 10 hours. Is preferred.
  • the firing temperature of the final step is most preferably 700.degree.
  • This baking can be performed under any oxygen concentration in an atmosphere containing oxygen, such as air or a mixed gas of oxygen with an inert gas.
  • step (c) will be described below.
  • the ruthenium complex source is impregnated with the complex oxide by stirring the complex oxide obtained in step (b) with the solvent in which the ruthenium source is dissolved, and Removal and subsequent decomposition of the ruthenium source provide a pre-reduction support having ruthenium supported in the form of fine particles on the composite oxide support.
  • ruthenium source various compounds containing Ru can be used.
  • organometallic compounds such as triruthenium dodecacarbonyl and ruthenium acetylacetonate can be used.
  • ruthenium sources capable of supporting ruthenium on the complex oxide, such as ruthenium chloride and ruthenium nitrosyl nitrate.
  • an organometallic compound such as triruthenium dodecacarbonyl
  • an organic solvent examples include tetrahydrofuran (THF), methanol, ethanol, hexane, toluene and the like.
  • the solid content concentration of the complex oxide and the ruthenium source per 1 liter of solvent is generally preferably about 1 to 30 g / l and about 0.1 to 3 g / l, respectively, and each is 10 to 30 g / l, 0.1 to 0.3 g It is more preferable to be about 1 / liter.
  • the stirring can be carried out at normal temperature, and the stirring time is preferably 1 to 24 hours, more preferably 6 to 12 hours.
  • the removal of the solvent can be carried out by heating by various methods, for example, it is preferable to carry out in a low pressure, low temperature atmosphere using an evaporator or the like.
  • the decomposition of the ruthenium source is carried out by heating in an inert atmosphere such as helium, argon or nitrogen atmosphere. It can also be carried out in an atmosphere containing hydrogen.
  • the heating is performed at a temperature of about 200 to 600 ° C. for about 1 to 12 hours. A more preferable heating temperature is about 300 to 500 ° C., and a more preferable heating time is about 3 to 6 hours.
  • the step (d) will be described below.
  • the reduction treatment is performed for the purpose of reduction of a metal element of IV valence contained in a composite oxide as a carrier, reduction of a transition metal such as Ru, reduction for destruction of a carbonate described later, and the like.
  • the reduction temperature is 400 ° C to 800 ° C, preferably 600 to 700 ° C.
  • the reduction time is usually 10 minutes to 40 hours, preferably about 30 minutes to 5 hours.
  • the reduction time is from 48 hours to 120 hours, preferably from 60 hours to 100 hours.
  • the reduction treatment is performed in the presence of a reducing gas such as hydrogen gas.
  • BaO reacts with carbon dioxide and the like in the air to easily form barium carbonate (Ba (CO 3 )) and barium hydroxide (Ba (OH) 2 ) when it contains strongly basic Ba. It is done. As such, when carbonates and hydroxides are formed, the partial negative charge of BaO oxygen is significantly reduced, and high basicity can not be obtained. Therefore, in order to express high ammonia synthesis activity, it is necessary to destroy this carbonate and hydroxide by appropriate processing. For example, as a method of destroying Ba carbonate to BaO, a heat treatment (reduction treatment) under hydrogen gas flow is effective. This reaction is represented by the following formula. BaCO 3 + 4H 2 ⁇ BaO + CH 4 + 2H 2 O
  • Ba carbonate By heating the catalyst under a hydrogen atmosphere, dissociation of hydrogen occurs on the surface of the supported metal species, and highly reducing hydrogen species are generated. By the action of this hydrogen species, Ba carbonate is destroyed and changed to BaO.
  • Ba carbonate can be destroyed by maintaining the catalyst under hydrogen flow at a temperature of 550 ° C. or more for about 1 h. Preferred conditions are about 600 ° C. to 800 ° C. Also, Ba carbonate can be destroyed by holding the catalyst under hydrogen flow for a long time at low temperature. Preferred conditions are 500 ° C. for about 48 hours, 450 ° C. for about 72 hours, and 400 ° C. for 120 hours or more.
  • the carbonate of Ba can be destroyed.
  • the proportion of Ba present as a carbonate in the catalyst is preferably 10 mol% or less, more preferably 1 mol% or less, still more preferably 0.1 mol% or less, based on the total amount of Ba contained in the catalyst. And particularly preferably 0.01 mol% or less.
  • the firing temperature in the firing step is most preferably 700 to 800 ° C.
  • the calcination temperature in this step is too low, excessive sintering of the support and the active metal proceeds during reduction treatment, and the particle size increases, so that the number of active points decreases and the catalyst performance decreases.
  • the calcination temperature in this step is too high, the specific surface area of the support decreases, and the dispersed state of the active metal is poor.
  • the support is preferably calcined at a temperature higher than the reduction treatment temperature.
  • the metal support according to the present invention thus obtained has better ease of handling and stability during reaction than conventional metal supports used for ammonia synthesis catalysts.
  • Y. Inoue, M. Kitano, K. Kishida, H. Abe, Y. Niwa, M. Sasase, Y. Fujita, H. Ishikawa, T. Yokoyama, M. Hara, H. Hosono, ACS Catal. , (2016) 7577-7584 describe Ru / Ca (NH 2 ) 2 as a highly active catalyst, but it is known that the component amide compound easily reacts with moisture and oxygen in the air It is done. The manufacturing process is also complicated, and it is presumed that it is very difficult to handle as an industrial catalyst.
  • the metal support loaded in the synthesis reactor and used as a catalyst is inevitable to be replaced regularly and is assumed to be used over a long period, so it is easy to handle and has excellent stability.
  • a metal support is required.
  • the metal support of the invention is advantageous in this respect.
  • the ammonia synthesis activity of the metal support was measured in a fixed bed flow reactor.
  • the metal carrier pretreated by the method described in the examples and comparative examples was allowed to cool to 300 ° C. while Ar was passed. While maintaining the temperature of the metal support layer at 300 ° C., the pressure was increased to 1.0 MPa or 3.0 MPa by the back pressure valve at the outlet of the reaction tube while supplying Ar.
  • the Ar enclosure was stopped, and H 2 and N 2 were flowed at 90 mL min -1 and 30 mL min -1 (space velocity 72 L h -1 g -1 ), respectively, while maintaining the pressure, and transferred to the reaction atmosphere.
  • the amount of generated ammonia contained in the outlet gas was quantified by measuring the change in conductivity caused by the reaction of NH 3 and sulfuric acid.
  • the temperature of the metal carrier layer was raised to 350 ° C. or 400 ° C.
  • the temperature of the metal support layer stabilized at 350 ° C. or 400 ° C., it was left for 10 minutes, and the amount of ammonia produced was quantified by the same method as described above.
  • the specific surface area of the metal support was determined by BET method from the amount of nitrogen adsorption at 77 K using BEL-sorb mini (Japanese Bell). Before measurement, vacuum heating at 300 ° C. was performed for 2 hours as pretreatment.
  • the infrared absorption spectrum was measured using a fast Fourier transform type infrared spectrophotometer (FT / IR-6600, JASCO Corporation).
  • FT / IR-6600 a fast Fourier transform type infrared spectrophotometer
  • a disc shaped catalyst with a diameter of 10 mm was placed in a glass cell filled with 80 kPa H 2 , and heated to 500 ° C. while circulating H 2 . After cooling to room temperature, the cell was evacuated and an infrared absorption spectrum was measured and used as a background. Thereafter, 8 kPa of each of 14 N 2 and 15 N 2 was introduced and adsorbed on the catalyst, and an infrared absorption spectrum was measured to obtain a difference spectrum from the background.
  • HAADF-STEM high angle scattering annular dark field scanning transmission electron microscope
  • HR-STEM high resolution scanning transmission electron microscope
  • the Ru dispersion of the metal support was determined by H 2 pulse chemisorption.
  • the metal support was heated to 500 to 800 ° C. in a flow of 60 mL min ⁇ 1 H 2 and subjected to a reduction treatment for 1 h.
  • the flow of H 2 was stopped, and Ar was flowed at 30 mL min -1 for 0.5 h. Thereafter, the temperature was cooled to ⁇ 74 ° C., a predetermined amount of H 2 was supplied in a pulse shape, and the reduction amount of hydrogen derived from the adsorption of the metal support was measured.
  • the amount of reduction of the catalyst was determined from the amount of O 2 pulse absorption.
  • the catalyst was heated to 500-800 ° C. under a flow of 60 mL min ⁇ 1 H 2 and heated at 500 ° C. for 1 h.
  • the flow of H 2 was stopped, and Ar was flowed at 30 mL min -1 for 0.5 h. Thereafter, predetermined amounts of O 2 are supplied in a pulsed manner at room temperature, 450 ° C.
  • the partial negative charge of oxygen contained in the composite oxide (support) was calculated.
  • the composition ratio of each element (Mg, Ba, Zr, La, Ce, Pr) other than oxygen contained in the carrier is determined so that the total of the composition of these elements is 1.
  • the value of electronegativity ⁇ i of each element is determined.
  • the values of Sanderson “Inorganic Chemistry (top)” Sasakawa Shoten (1967), p. 122, Table 6, Table 7 were used (this electronegativity is referred to as "Saunderson electronegativity”. ).
  • the geometric mean of electronegativity is determined. This is calculated by the equation ( ⁇ ( ⁇ i ⁇ ni)) ⁇ (1 / ( ⁇ ni)).
  • the change in electronegativity of oxygen in the carrier is determined. This is calculated by the difference between the geometric mean of the electronegativity of the composite oxide and the electronegativity of oxygen (5.21).
  • the geometric mean of electronegativity changes with composition change of the oxide accompanying valence number change of atom. For this reason, for metal oxides containing a variable number element such as Pr and Ce, the calculation method was changed depending on whether or not the ratio of each of the elements having different valences can be quantified. Specifically, when the proportion of elements of each valence number can be quantified, the electronegativity was calculated according to the proportion.
  • Example 1 ⁇ Ru / Ce 0.5 La 0.5 O x _500 °C reduction> ⁇ Preparation of Complex Oxide>
  • the Ce 0.5 La 0.5 O x composite oxide was synthesized as follows using the reverse homogeneous precipitation method.
  • La (NO 3 ) 3 .6H 2 O (Wako Pure Chemical Industries, Ltd.) was dissolved in purified water (Takasugi Seiyaku Co., Ltd.) to obtain a La (NO 3 ) 3 aqueous solution.
  • Ce (NO 3 ) 3 .6H 2 O Karlo Chemical
  • aqueous La (NO 3 ) 3 solution and an aqueous Ce (NO 3 ) 3 solution were mixed to prepare 250 mL of a carrier precursor solution containing 0.0625 mol in total of La and Ce.
  • 250 mL of a 28% aqueous solution of NH 3 (Wako Pure Chemical Industries, Ltd.) was added to a 1000 mL beaker, and while stirring with a magnetic stirrer at 320 rpm, the above carrier precursor solution was added at once, and stirring was continued for 1 hour.
  • the mixture was allowed to stand for 30 minutes, 350 mL of the supernatant was removed, 350 mL of ion exchanged water was added, and the mixture was stirred for 30 minutes.
  • Ru was loaded on Ce 0.5 La 0.5 O x by the impregnation method.
  • a 200 mL eggplant-shaped flask is prepared with a solution of tetrahydrofuran (THF) (Wako Pure Chemical Industries) in which Ru 3 (CO) 12 (furuya metal), which is a Ru precursor, is dissolved.
  • THF tetrahydrofuran
  • Ru 3 (CO) 12 furuya metal
  • the amounts of Ru 3 (CO) 12 and the support used were appropriately adjusted so that the amount of Ru contained in the catalyst after heating under an argon atmosphere was 5% by weight.
  • the suspension after stirring was evaporated to dryness under reduced pressure at 35 ° C. and 0.3 atm using a rotary evaporator, and then dried at 80 ° C. for 18 hours using an oven.
  • the carbonyl ligand in the precursor was removed by heating the obtained powder at 500 ° C. for 5 hours using a tubular electric furnace under an argon flow of 25 mL min ⁇ 1 .
  • a Ru / Ce 0.5 La 0.5 O x metal support was obtained by the above operation.
  • Pretreatment with hydrogen reduction is performed on Ru / Ce 0.5 La 0.5 O 1.75 obtained above by the following method, and a part of the Ce is converted to III valence. Changed to The powder of the metal carrier was pressurized at 20 MPa for 5 minutes to produce a disc, and then the disc was crushed in a mortar and classified with a sieve to produce a pellet. The size of the pellet was adjusted to 250 to 500 ⁇ m in diameter. Using 100 mg of the pellet, it was packed in a 7 mm diameter Inconel (registered trademark) catalytic reaction tube, and the front and back of the catalyst layer were fixed with quartz wool.
  • pretreatment also referred to simply as “pretreatment”
  • This reaction tube was placed in a fixed bed flow reactor for measuring the ammonia synthesis activity, 60 mL min -1 of H 2 was flowed through the reaction tube filled with pellets, heated at 500 ° C. for 1 h, Ru / Ce 0. A 5 La 0.5 O x _500 ° C. reduction was obtained.
  • Example 2 ⁇ Ru / Ce 0.5 La 0.5 O x _650 ° C. reduction> In Example 1, except that the holding temperature of the pretreatment and 650 ° C. performs the same operation as in Example 1 to obtain ° C. reducing Ru / Ce 0.5 La 0.5 O x _650.
  • Example 3 ⁇ Ru / Ce 0.5 La 0.5 Ox x 800 ° C. reduction>
  • Example 1 the same operation as in Example 1 was performed except that the holding temperature of the pretreatment was 800 ° C., to obtain Ru / Ce 0.5 La 0.5 O x —800 ° C. reduction.
  • Example 4 ⁇ Ru / Ce 0.5 Zr 0.5 O x _700 ° C. reduction> ⁇ Compound oxide> Ce 0.5 Zr 0.5 O x was synthesized by reverse homogeneous precipitation as follows. Dissolved ZrO (NO 3) 2 ⁇ 2H 2 O ( Wako Pure Chemical Industries, Ltd.) in purified water, ZrO (NO 3) was 2 aqueous solution. Ce (NO 3 ) 3 .6H 2 O (Kanto Chemical) was dissolved in purified water to obtain a Ce (NO 3 ) 3 aqueous solution.
  • a La (NO 3 ) 3 aqueous solution and a Ce (NO 3 ) 3 aqueous solution were mixed to prepare 300 mL of a carrier precursor solution containing 0.15 mol in total of Zr and Ce.
  • 300 mL of 28% NH 3 water (Wako Pure Chemical Industries, Ltd.) was added to a 1000 mL beaker, and the carrier precursor solution was dropped at 2 mL per minute using a pump while stirring at 320 rpm with a magnetic stirrer, and stirring was continued for 18 hours . Then it was allowed to stand for 1 hour and filtered.
  • 800 mL of ion exchanged water was added, and stirred for 2 h and allowed to stand for 1 hour. This was repeated three times, and the obtained slurry was dried at 80 ° C. for 15 hours using an oven.
  • Ce 0.5 Zr 0.5 O 2 was obtained by heating the dried powder at 700 ° C. for 5 hours under the atmosphere.
  • aqueous La (NO 3 ) 3 solution and an aqueous Pr (NO 3 ) 3 solution were mixed to prepare 250 mL of a carrier precursor solution containing 0.0625 mol in total of La and Pr.
  • 250 mL of a 28% aqueous solution of NH 3 (Wako Pure Chemical Industries, Ltd.) was added to a 1000 mL beaker, and the above carrier precursor solution was added at a stretch while stirring at 320 rpm with a magnetic stirrer, and stirring was performed for 11 h.
  • the mixture was allowed to stand for 30 minutes, 350 mL of the supernatant was removed, 350 mL of ion-exchanged water was added, stirring was performed six times for 30 minutes, the precipitate was filtered, and dried at 80 ° C. for 15 hours using an oven.
  • the precipitate after drying was crushed in a mortar, and the obtained powder was heated at 700 ° C. in an air atmosphere for 5 h using an electric furnace to obtain Pr 0.5 La 0.5 O 1.675 .
  • Ru was supported in the same manner as in Example 1 to obtain a Ru / Pr 0.5 La 0.5 O x metal support.
  • ⁇ Hydrogen reduction pretreatment> Ru / Pr 0.5 La 0.5 O x —800 ° C. reduction was obtained by the same operation as in Example 1 except that the holding temperature of the pretreatment was changed to 600 ° C.
  • Ba (NO 3 ) 2 ⁇ 6H 2 O (Wako Pure Chemical Industries, Ltd.) was dissolved in purified water to obtain a Ba (NO 3 ) 2 aqueous solution.
  • La (NO 3) 3 solution and Ce (NO 3) 3 aqueous solution, a mixture of Ba (NO 3) 2 solution, support precursor comprises total 0.0625mol of La and Ce and Ba solution was 250mL prepared.
  • 250 mL of a 28% aqueous solution of NH 3 (Wako Pure Chemical Industries, Ltd.) was added to a 1000 mL beaker, and the carrier precursor solution was added at a stretch while stirring at 320 rpm with a magnetic stirrer, and stirring was performed for 1 hour.
  • the mixture was then allowed to stand for 12 hours, and the precipitate (1) was separated by suction filtration.
  • the separated filtrate was collected in a 2 L beaker.
  • 350 mL of ion exchanged water was added to the separated precipitate (1), the mixture was stirred for 30 minutes to wash the precipitate, and the precipitate (1) was separated by suction filtration. This washing operation was performed three times. All the ion exchanged water used for washing was recovered, and the filtrate and the washing solution were added to a 2 L beaker and mixed.
  • the mixture solution was allowed to stand for 12 hours to generate a white precipitate (2), and the generated precipitate (2) was collected by suction filtration.
  • the precipitate (1) and the precipitate (2) were mixed and dried in an oven at 80 ° C. for 15 hours.
  • Example 1 The precipitate after drying is crushed in a mortar, and the obtained powder is heated at 700 ° C. in an air atmosphere at 700 ° C. for 5 hours to obtain Ba 0.1 La 0.45 Ce 0.45 O 1.675 . Obtained.
  • ⁇ Support of Ru> The loading of Ru was carried out in the same manner as in Example 1 to obtain a loading of Ru / Ba 0.1 La 0.45 Ce 0.45 O x metal.
  • ⁇ Hydrogen reduction pretreatment> In Example 1, Ru / Ba 0.1 La 0.45 Ce 0.45 O x —650 ° C. reduction was obtained by the same operation as in Example 1 except that the holding temperature of the pretreatment was changed to 650 ° C.
  • Example 7 ⁇ Ru / Ba 0.1 Pr 0.45 Ce 0.45 O x _650 ° C. reduction> ⁇ Preparation of Complex Oxide>
  • Pr (NO 3 ) 3. 6 H 2 O (Wako Pure Chemical Industries, Ltd.) was dissolved in purified water instead of using La (NO 3 ) 3 aqueous solution, and used as Pr (NO 3 ) 3 aqueous solution.
  • the aqueous solution was mixed in the same manner as in Example 6. Then, 250 mL of a carrier precursor solution containing a total of 0.0625 mol of Pr, Ce, and Ba was prepared, and the same operation was performed to obtain Ba 0.1 Pr 0.45 Ce 0.45 O 1.9 .
  • Example 1 The loading of Ru was carried out in the same manner as in Example 1 to obtain a loading of Ru / Ba 0.1 Pr 0.45 Ce 0.45 O 1.9 metal.
  • ⁇ Hydrogen reduction pretreatment> Ru / Ba 0.1 Pr 0.45 Ce 0.45 O x —650 ° C. reduction was obtained by the same operation as in Example 1 except that the holding temperature of the pretreatment was changed to 650 ° C.
  • Example 8 ⁇ Ru / Ba 0.3 Pr 0.35 Ce 0.35 O x _650 ° C. reduction> ⁇ Preparation of Complex Oxide> Ba 0.3 Pr 0.35 Ce 0.35 O 1.7 was obtained by the same operation as in Example 6 except that 250 mL of a carrier precursor solution containing Pr, Ce, and Ba in total was prepared. . ⁇ Support of Ru> The loading of Ru was performed in the same manner as in Example 1 to obtain a loading of Ru / Ba 0.3 Pr 0.35 Ce 0.35 O 1.7 metal. ⁇ Hydrogen reduction pretreatment> In Example 1, Ru / Ba 0.3 Pr 0.35 Ce 0.35 O x —650 ° C. reduction was obtained by the same operation as in Example 1 except that the holding temperature of the pretreatment was changed to 650 ° C.
  • Example 9 ⁇ Ru / La 0.5 Pr 0.5 O x _650 ° C. reduction> ⁇ Preparation of Complex Oxide>
  • Pr (NO 3 ) 3 .6H 2 O (Wako Pure Chemical Industries) was dissolved in purified water and used as the Pr (NO 3 ) 3 aqueous solution
  • the aqueous solution was mixed in the same manner as in Example 1 except for the following.
  • 250 mL of a carrier precursor solution containing 0.0625 mol in total of La and Pr was prepared, and further the same operation was performed to obtain La 0.5 Pr 0.5 O 1.75 .
  • Example 10 (Example 10) ⁇ Co / Ba 0.3 Ce 0.35 Pr 0.35 O x _650 ° C. reduction> ⁇ Preparation of Complex Oxide>
  • Pr (NO 3 ) 3 .6H 2 O (Wako Pure Chemical Industries) was dissolved in purified water and used as the Pr (NO 3 ) 3 aqueous solution.
  • the aqueous solution was mixed in the same manner as in Example 6 except for the following. Then, 250 mL of a carrier precursor solution containing a total of 0.0625 mol of Pr, Ce, and Ba was prepared, and the same operation was performed to obtain Ba 0.3 Ce 0.35 Pr 0.35 O 1.7 .
  • Example 1 Co / Ba 0.3 Ce 0.35 Pr 0.35 O x —650 ° C. reduction was obtained by the same operation as in Example 1 except that the holding temperature of the pretreatment was changed to 650 ° C.
  • Example 11 ⁇ Co / Ba 0.3 Ce 0.35 Pr 0.35 O x _650 ° C. reduction>
  • Co / Ba 0.3 Ce 0.35 Pr 0.35 O x —650 ° C. reduction was obtained by the same operation as in Example 10 except that the amount of Co precursor was doubled.
  • Example 12 ⁇ Co / Ba 0.3 Ce 0.35 Pr 0.35 O x _500 ° C. reduction> ⁇ Hydrogen reduction pretreatment>
  • Co / Ba 0.3 Ce 0.35 Pr 0.35 O x —500 ° C. reduction was obtained by the same operation as in Example 10 except that the holding temperature of the pretreatment was set to 500 ° C.
  • Example 13 ⁇ Co / Ba 0.3 Ce 0.35 Pr 0.35 O x _600 ° C. reduction> ⁇ Hydrogen reduction pretreatment>
  • Co / Ba 0.3 Ce 0.35 Pr 0.35 O x —600 ° C. reduction was obtained by the same operation as in Example 10 except that the holding temperature of the pretreatment was 600 ° C.
  • Example 14 ⁇ Co / Ba 0.3 Ce 0.35 Pr 0.35 O x _700 ° C. reduction> ⁇ Hydrogen reduction pretreatment>
  • Co / Ba 0.3 Ce 0.35 Pr 0.35 O x —700 ° C. reduction was obtained by the same operation as in Example 10 except that the holding temperature of the pretreatment was set to 700 ° C.
  • Example 15 ⁇ Co / Ba 0.3 Ce 0.35 Pr 0.35 O x _750 ° C. reduction> ⁇ Hydrogen reduction pretreatment>
  • Co / Ba 0.3 Ce 0.35 Pr 0.35 O x — 750 ° C. reduction was obtained by the same operation as in Example 10 except that the holding temperature of the pretreatment was set to 750 ° C.
  • Example 17 ⁇ Co / Ba 0.3 Ce 0.35 Pr 0.35 O x _700 ° C. reduction> ⁇ Preparation of complex oxide / pretreatment with hydrogen reduction>
  • Example 18 ⁇ Co / Ba 0.3 Ce 0.35 Pr 0.35 O x _650 ° C. reduction> ⁇ Hydrogen reduction pretreatment>
  • Co / Ba 0.3 Ce 0.35 Pr 0.35 O x was carried out in the same manner as in Example 10 except that the amount of Co precursor was tripled and the holding temperature of the pretreatment was 650 ° C. _650 ° C reduction was obtained.
  • Example 19 ⁇ Co / Ba 0.3 La 0.35 Pr 0.35 O x _650 ° C. reduction> ⁇ Hydrogen reduction pretreatment>
  • La (NO 3 ) 3 .6H 2 O (Wako Pure Chemical Industries, Ltd.) is dissolved in purified water and used as the La (NO 3 ) 3 aqueous solution
  • Co / Ba 0.3 Ce 0.35 Pr 0.35 O x _650 ° C. reduction was obtained by the same operation as in Example 10 except that the amount of Co precursor was doubled and the holding temperature of the pretreatment was 650 ° C. .
  • Example 20 ⁇ Ru / Ba 0.1 La 0.45 Ce 0.45 O x _500 ° C. reduction> ⁇ Preparation of Complex Oxide> La (NO 3 ) 3 .6H 2 O (Wako Pure Chemical Industries, Ltd.) was dissolved in purified water to obtain a La (NO 3 ) 3 aqueous solution. Ce (NO 3 ) 3 .6H 2 O (Kanto Chemical) was dissolved in purified water to obtain a Ce (NO 3 ) 3 aqueous solution. An aqueous La (NO 3 ) 3 solution and an aqueous Ce (NO 3 ) 3 solution were mixed to prepare 250 mL of a carrier precursor solution containing 0.0625 mol in total of La and Ce.
  • the precipitate was added to this Ba (OH) 2 aqueous solution, and stirred with a magnetic stirrer for 5 minutes.
  • the suspension after stirring was evaporated to dryness under reduced pressure at 35 ° C. and 0.3 atm using a rotary evaporator, and then dried at 80 ° C. for 15 hours using an oven.
  • the precipitate after drying is crushed in a mortar, and the obtained powder is heated at 700 ° C. in an air atmosphere at 700 ° C. for 5 hours to obtain Ba 0.1 La 0.45 Ce 0.45 O 1.675 . Obtained.
  • ⁇ Support of Ru> The Ru support was carried out in the same manner as in Example 6 to obtain a Ru / Ba 0.1 La 0.45 Ce 0.45 O 1.675 metal support.
  • Example 6 Ru / Ba 0.1 La 0.45 Ce 0.45 O x —500 ° C. reduction was obtained by the same operation as in Example 6 except that the holding temperature of the pretreatment was set to 500 ° C.
  • Example 21 ⁇ Ru / Ba 0.1 La 0.45 Ce 0.45 O x _600 ° C. Reduction> ⁇ Hydrogen reduction pretreatment>
  • a Ru / Ba 0.1 La 0.45 Ce 0.45 O x —600 ° C. reduction was obtained by the same operation as in Example 20 except that the holding temperature of the pretreatment was set to 600 ° C.
  • Example 22 ⁇ Ru / Ba 0.1 La 0.45 Ce 0.45 O x _650 ° C. reduction> ⁇ Hydrogen reduction pretreatment>
  • Ru / Ba 0.1 La 0.45 Ce 0.45 O x —650 ° C. reduction was obtained by the same operation as in Example 20 except that the holding temperature of the pretreatment was changed to 650 ° C.
  • Example 23 ⁇ Ru / Ba 0.1 La 0.45 Ce 0.45 O x _700 ° C. reduction> ⁇ Hydrogen reduction pretreatment>
  • Ru / Ba 0.1 La 0.45 Ce 0.45 O x —700 ° C. reduction was obtained by the same operation as in Example 20 except that the holding temperature of the pretreatment was 700 ° C.
  • Example 24 ⁇ Ru / Ba 0.1 La 0.45 Ce 0.45 O x _750 ° C. reduction> ⁇ Hydrogen reduction pretreatment>
  • Ru / Ba 0.1 La 0.45 Ce 0.45 O x —750 ° C. reduction was obtained by the same operation as in Example 20 except that the holding temperature of the pretreatment was set to 750 ° C.
  • a catalyst was prepared by the method described in Non-Patent Document 2. Specifically, RuCl 3 / 3H 2 O, Ce (NO 3 ) 3 / 6H 2 O, and La (NO 3 ) 3 / 6H 2 O were first dissolved in an aqueous solution to prepare a total of 300 mL of a mixed aqueous solution. A hydrogen peroxide solution was added thereto and mixed so that the molar ratio of H 2 O 2 to Ce 3+ was 1: 3.
  • the mixed aqueous solution was stirred for 30 minutes while maintaining the temperature at 60 ° C., an aqueous solution of KOH was gradually added to precipitate a precipitate, and then stirred for another 60 minutes. Thereafter, the mixed solution containing the precipitate was cooled to room temperature, and the precipitate was separated by centrifugation. The separated precipitate was washed with ion exchanged water and then dried at 120 ° C. for 24 hours.
  • the ammonia synthesis activity of the metal support obtained in each example and comparative example was examined.
  • the results are shown in Tables 2 to 3.
  • the results of measuring the physical properties of each composite oxide are shown in Table 4.
  • the reaction gas is treated in advance with a gas purification filter (MC 50-904F) manufactured by SAES, such as H 2 O, O 2, etc.
  • the impurities were supplied after being reduced to less than 100 ppt.
  • the catalysts of Comparative Example 1 and Comparative Example 2 prepared by the method described in Non-Patent Document 2 each have a ratio of trivalent Ce of 5% and 7% according to the measurement of the catalyst reduction amount.
  • the ratio of trivalent Ce in the complex oxide is determined by X-ray photoelectron spectroscopy in Non-Patent Document 2, X-ray photoelectron spectroscopy is, in principle, about the number of atoms that can penetrate X-rays.
  • Non-Patent Document 2 evaluates only the proportion of trivalent Ce on the surface, and it is considered that the proportion of trivalent Ce is overestimated when viewed as a whole of the catalyst.
  • Example 25 ⁇ Ru / Ba 0.1 La 0.45 Ce 0.45 O x _800 ° C. Reduction>
  • a Ru / Ba 0.1 La 0.45 Ce 0.45 O x —800 ° C. reduction was obtained by the same operation as in Example 20 except that the holding temperature of the pretreatment was 800 ° C.
  • Example 26 ⁇ Ru / Ba 0.05 La 0.475 Ce 0.475 O x _700 ° C. reduction> A Ru / Ba 0.1 La 0.45 Ce 0.45 O x —700 ° C. reduction was obtained by the same operation as in Example 20 except that the amount of the Ba precursor was reduced to half.
  • Example 27 ⁇ Ru / Ba 0.15 La 0.42.5 Ce 0.425 O x _700 °C reduction> Obtained in Example 20, in the same manner as in Example 20 except that the Ba precursor and 1.5 times, Ru / Ba 0.15 La 0.42.5 Ce 0.425 O x _700 °C reduced The
  • Example 28 ⁇ 10 mol% Ba / Ru / La 0.5 Ce 0.5 O x _700 ° C. reduction> ⁇ Preparation of catalyst> After preparing Ru / Ce 0.5 La 0.5 O x according to the method described in Example 1, using Ba (NO 3 ) 2 .6H 2 O as a raw material, in an amount of 10 mol% with respect to Ru Thus, Ba was supported by evaporation to dryness. Furthermore, 10 mol% Ba / Ru / La 0.5 Ce 0.5 O x —700 ° C. reduction was obtained by the same operation as in Example 1 except that the holding temperature of the pretreatment was 700 ° C.
  • Example 1 the holding temperature of the pretreatment perform the same operation as in Example 1 except that the 700 ° C., to obtain a 10mol% Ba / Ru / La 0.5 Ce 0.5 O x _700 °C reduction.
  • Example 29 ⁇ 10 mol% Ba / Ru / La 0.5 Ce 0.5 O x _500 ° C. reduction>
  • 10 mol% is obtained by the same operation as in Example 28, except that Ba (OH) 2 is used as the raw material instead of Ba (NO 3 ) 2 ⁇ 6H 2 O, and the holding temperature of the pretreatment is set to 500 ° C.
  • Ba / Ru / La 0.5 Ce 0.5 O x —500 ° C. reduction was obtained.
  • Example 30 ⁇ 10 mol% Ba / Ru / La 0.5 Ce 0.5 O x _650 ° C. reduction> In Example 29, except that the holding temperature of the pretreatment and 650 ° C. to obtain a 10mol% Ba / Ru / La 0.5 Ce 0.5 O x _650 °C reduction in the same manner as in Example 29.
  • Example 31 ⁇ 10 mol% Ba / Ru / La 0.5 Ce 0.5 O x _700 ° C. reduction> In Example 29, except that the holding temperature of the pretreatment and 700 ° C. to obtain a 10mol% Ba / Ru / La 0.5 Ce 0.5 O x _700 °C reduction in the same manner as in Example 29.
  • Example 32 ⁇ 10 mol% Ba / Ru / La 0.5 Ce 0.5 O x _800 ° C. reduction> In Example 29, except that the holding temperature of the pretreatment and 800 ° C. to obtain a 10mol% Ba / Ru / La 0.5 Ce 0.5 O x _800 °C reduction in the same manner as in Example 29.
  • Example 33 ⁇ 5 mol% Ba / Ru / La 0.5 Ce 0.5 O x _450 ° C. reduction>
  • Example 29 5 mol% Ba / Ru / La 0.5 Ce 0.5 O x — 450 ° C. in the same manner as in Example 29, except that the amount of Ba precursor is half and the holding temperature of the pretreatment is 450 ° C. I got a reduction.
  • Example 34 ⁇ 5 mol% Ba / Ru / La 0.5 Ce 0.5 O x _650 ° C. reduction> In Example 33, except that the holding temperature of the pretreatment and 650 ° C. to obtain a 5mol% Ba / Ru / La 0.5 Ce 0.5 O x _650 °C reduction in the same manner as in Example 33.
  • Example 35 ⁇ 5 mol% Ba / Ru / La 0.5 Ce 0.5 O x _700 ° C. reduction> In Example 33, except that the holding temperature of the pretreatment and 700 ° C. to obtain a 5mol% Ba / Ru / La 0.5 Ce 0.5 O x _700 °C reduction in the same manner as in Example 33.
  • Example 36 ⁇ 5 mol% Ba / Ru / La 0.5 Ce 0.5 O x _800 ° C. reduction> In Example 33, except that the holding temperature of the pretreatment and 800 ° C. to obtain a 5mol% Ba / Ru / La 0.5 Ce 0.5 O x _800 °C reduction in the same manner as in Example 33.
  • Example 37 ⁇ 1 mol% Ba / Ru / La 0.5 Ce 0.5 O x _700 ° C. reduction>
  • 1 mol% of Ba / Ru / La 0.5 Ce 0.5 O is carried out in the same manner as in Example 29, except that the amount of Ba precursor is 1/10 and the holding temperature of the pretreatment is 700 ° C. Obtained x _700 ° C. reduction.
  • Example 39 ⁇ Ru / Ba 0.1 La 0.9 O x _700 ° C. reduction>
  • Example 1 is the same as Example 1 except using Ba (NO 3 ) 2 ⁇ 6H 2 O instead of the raw material Ce (NO 3 ) 3 ⁇ 6H 2 O and setting the holding temperature of the pretreatment to 700 ° C.
  • Ru / Ba 0.1 La 0.9 O x _700 ° C. reduction was obtained by the operation of
  • Example 40 ⁇ Ru / Ba 0.1 La 0.9 O x _500 ° C. reduction>
  • Ru / Ba 0.1 La 0.9 O x —500 ° C. reduction was obtained by the same operation as in Example 29 except that the holding temperature of the pretreatment was set to 500 ° C.
  • Example 41 ⁇ Ru / Ba 0.1 La 0.9 O x _800 ° C. reduction>
  • Ru / Ba 0.1 La 0.9 O x —800 ° C. reduction was obtained by the same operation as in Example 29 except that the holding temperature of the pretreatment was 800 ° C.
  • Example 42 ⁇ Ru / Ba 0.1 La 0.9 O x _900 ° C. reduction>
  • Ru / Ba 0.1 La 0.9 O x — 900 ° C. reduction was obtained by the same operation as in Example 29 except that the holding temperature of the pretreatment was set to 900 ° C.
  • Example 39 is the same as example 39 except that Ce (NO 3 ) 3 .6H 2 O is used in place of the raw material La (NO 3 ) 3 .6H 2 O, and the holding temperature of the pretreatment is 500 ° C. Ru / Ba 0.1 Ce 0.9 O x _500 ° C. reduction was obtained by the operation of
  • Example 44 ⁇ Ru / Ba 0.1 Ce 0.9 O x _700 ° C. reduction>
  • Ru / Ba 0.1 Ce 0.9 O x _700 ° C. reduction was obtained by the same operation as in Example 43 except that the holding temperature of the pretreatment was 700 ° C.
  • Example 45 ⁇ Co / Ba 0.1 La 0.45 Ce 0.45 O x _700 ° C. reduction (Co loading: 20 wt%)>
  • Co / Ba 0.1 La 0.45 Ce 0.45 O x _700 ° C. in the same manner as in Example 20 except that Co (NO 3 ) 2 .6H 2 O was used instead of Ru. Reduction (Co loading: 20 wt%) was obtained.
  • Example 46 ⁇ Co / Ba 0.1 La 0.45 Ce 0.45 O x _700 ° C. reduction (Co loading: 20 wt%)>
  • Co acetylacetonato (II): Co (CH 3 COCHCOCH 3) is carried out except for using 2 ⁇ 2H 2 O (Wako Pure Chemical Industries, Ltd.)
  • Co / Ba 0.1 La 0.45 Ce 0.45 O x —700 ° C. reduction loading of Co: 20 wt%) was obtained.
  • Example 47 ⁇ Co / Ba 0.1 La 0.45 Ce 0.45 O x _700 ° C. reduction (Co loading: 10 wt%)>
  • Co / Ba 0.1 La 0.45 Ce 0.45 O x _700 ° C. reduction (supported amount of Co: 10 wt%) was obtained by the same operation as in Example 46 except that half amount of Co was reduced. .
  • Example 48 ⁇ Co / Ba 0.1 La 0.45 Ce 0.45 O x _700 ° C. reduction (Co loading: 30 wt%)>
  • Example 49 ⁇ Co / Ba 0.1 La 0.45 Ce 0.45 O x _500 ° C. reduction (Co loading: 20 wt%)>
  • Co acetylacetonato (II): Co (CH 3 COCHCOCH 3) is carried out except for using 2 ⁇ 2H 2 O (Wako Pure Chemical Industries, Ltd.)
  • Co / Ba 0.1 La 0.45 Ce 0.45 O x —500 ° C. reduction loading of Co: 20 wt%) was obtained.
  • Example 50 ⁇ Co / Ba 0.1 La 0.45 Ce 0.45 O x _650 ° C. reduction (Co loading: 20 wt%)>
  • Example 51 ⁇ Co / Ba 0.1 La 0.45 Ce 0.45 O x _750 ° C. reduction (Co loading: 20 wt%)>
  • Example 46 Co / Ba 0.1 La 0.45 Ce 0.45 O x _750 ° C. reduction (Co loading: 20 wt%) by the same operation as in Example 46 except that the holding temperature of the pretreatment was 750 ° C. %) Got.
  • Example 52 ⁇ Co / Ba 0.1 Ce 0.45 Pr 0.45 O x _700 ° C. reduction (Co loading: 20 wt%)>
  • the pretreatment Co / Ba 0.1 Ce 0 in the same manner as in Example 10 except that the 700 ° C.
  • Example 53 ⁇ Ru / Ce 0.85 La 0.15 O x _500 ° C. reduction>
  • Ru / Ce 0.85 La 0.15 O x —500 ° C. reduction was obtained by the same operation as in Example 1 except that the ratio of the raw materials Ce and La was changed.
  • Example 54 ⁇ Ru / Ce 0.85 La 0.15 O x _600 ° C. Reduction>
  • Ru / Ce 0.85 La 0.15 O x —600 ° C. reduction was obtained by the same operation as in Example 54 except that the holding temperature of the pretreatment was changed to 600 ° C.
  • Example 55 ⁇ Ru / Ce 0.85 La 0.15 O x _650 ° C. reduction>
  • Example 53 was obtained ° C. reducing Ru / Ce 0.85 La 0.15 O x _650 the same manner as in Example 54 except that the holding temperature of the pretreatment was 650 ° C..
  • Example 56 ⁇ Ru / Ce 0.85 La 0.15 O x _700 ° C. reduction>
  • Ru / Ce 0.85 La 0.15 O x —700 ° C. reduction was obtained by the same operation as in Example 54 except that the holding temperature of the pretreatment was 700 ° C.
  • Example 57 ⁇ Ru / Ce 0.67 La 0.33 O x _500 ° C. reduction>
  • Example 53 was obtained °C reducing Ru / Ce 0.67 La 0.33 O x _500 by except for changing the ratio of the raw material of Ce and La is the same procedure as in Example 53.
  • Example 58 ⁇ Ru / Ce 0.67 La 0.33 Ox x 600 ° C. Reduction>
  • Ru / Ce 0.67 La 0.33 O x —600 ° C. reduction was obtained by the same operation as in Example 57 except that the holding temperature of the pretreatment was 600 ° C.
  • Example 59 ⁇ Ru / Ce 0.67 La 0.33 O x _650 ° C. reduction>
  • Example 57 was obtained ° C. reducing Ru / Ce 0.67 La 0.33 O x _650 the same manner as in Example 57 except that the holding temperature of the pretreatment was 650 ° C..
  • Example 60 ⁇ Ru / Ce 0.67 La 0.33 O x _700 ° C. reduction>
  • Ru / Ce 0.67 La 0.33 O x _700 ° C. reduction was obtained by the same operation as in Example 57 except that the holding temperature of the pretreatment was 700 ° C.
  • Example 61 ⁇ Ru / Ce 0.33 La 0.67 Ox x 500 ° C. Reduction>
  • Example 53 was obtained °C reducing Ru / Ce 0.33 La 0.67 O x _500 by except for changing the ratio of the raw material of Ce and La is the same procedure as in Example 53.
  • Example 62 ⁇ Ru / Ce 0.33 La 0.67 Ox x 600 ° C. Reduction>
  • Ru / Ce 0.33 La 0.67 O x —600 ° C. reduction was obtained by the same operation as in Example 61 except that the holding temperature of the pretreatment was changed to 600 ° C.
  • Example 63 ⁇ Ru / Ce 0.33 La 0.67 Ox x 650 ° C. Reduction>
  • Example 61 was obtained ° C. reducing Ru / Ce 0.33 La 0.67 O x _650 the same manner as in Example 61 except that the holding temperature of the pretreatment was 650 ° C..
  • Example 64 ⁇ Ru / Ce 0.33 La 0.67 O x _700 ° C. reduction>
  • Ru / Ce 0.33 La 0.67 O x —700 ° C. reduction was obtained by the same operation as in Example 61 except that the holding temperature of the pretreatment was 700 ° C.
  • Example 65 ⁇ Ru / Ce 0.15 La 0.85 Ox x 500 ° C. Reduction>
  • Example 53 was obtained °C reducing Ru / Ce 0.15 La 0.85 O x _500 by except for changing the ratio of the raw material of Ce and La is the same procedure as in Example 53.
  • Example 66 ⁇ Ru / Ce 0.15 La 0.85 Ox x 600 ° C. Reduction>
  • Ru / Ce 0.15 La 0.85 O x —600 ° C. reduction was obtained by the same operation as in Example 65 except that the holding temperature of the pretreatment was 600 ° C.
  • Example 67 ⁇ Ru / Ce 0.15 La 0.85 Ox x 650 ° C. Reduction>
  • Example 65 was obtained ° C. reducing Ru / Ce 0.15 La 0.85 O x _650 the same manner as in Example 65 except that the holding temperature of the pretreatment and 650 ° C..
  • Example 68 ⁇ Ru / Ce 0.5 La 0.5 O x _700 °C reduction>
  • Ru / Ce 0.15 La 0.85 O x _700 ° C. reduction was obtained by the same operation as in Example 65 except that the holding temperature of the pretreatment was 700 ° C.
  • Example 69 ⁇ Ru / Ce 0.5 La 0.5 O x _500 °C reduction>
  • Example 53 by changing the ratio of the raw material of Ce and La, a composite oxide of adjustment stage heating (firing) in the same manner as in Example 53 except that the temperature was 600 °C Ru / Ce 0.5 La 0.5 O x — 500 ° C. reduction was obtained.
  • Example 70 ⁇ Ru / Ce 0.5 La 0.5 O x _650 ° C. reduction>
  • Ru / Ce 0.5 La 0.5 O x —650 ° C. reduction was obtained by the same operation as in Example 69 except that the holding temperature of the pretreatment was changed to 650 ° C.
  • Example 71 ⁇ Ru / Ce 0.5 La 0.5 Ox x 800 ° C. reduction>
  • Ru / Ce 0.5 La 0.5 O x —800 ° C. reduction was obtained by the same operation as in Example 69 except that the holding temperature of the pretreatment was 800 ° C.
  • La 2 O 3 was synthesized as follows using reverse homogeneous precipitation.
  • La (NO 3 ) 3 .6H 2 O (Wako Pure Chemical Industries, Ltd.) was dissolved in purified water (Takasugi Seiyaku Co., Ltd.) to obtain a La (NO 3 ) 3 aqueous solution.
  • 250 mL of a carrier precursor solution containing a total of 0.0625 mol of La was prepared.
  • CeO 2 complex oxide was synthesized as follows using the reverse homogeneous precipitation method.
  • Ce (NO 3 ) 3 .6H 2 O (Kanto Chemical) was dissolved in purified water (Takasugi Seiyaku Co., Ltd.) to obtain a Ce (NO 3 ) 3 aqueous solution.
  • a Ce (NO 3 ) 3 aqueous solution was mixed to prepare 250 mL of a carrier precursor solution containing a total of 0.0625 mol of Ce.
  • Example 75 ⁇ Ru / La 0.5 Pr 0.5 O x _450 ° C. reduction>
  • Ru / La 0.5 Pr 0.5 O x — 450 ° C. reduction was obtained by the same operation as in Example 5 except that the holding temperature of the pretreatment was changed to 450 ° C.
  • Example 76 ⁇ Ru / La 0.5 Pr 0.5 O 1.75 _500 ° C. reduction>
  • Ru / La 0.5 Pr 0.5 O x —500 ° C. reduction was obtained by the same operation as in Example 5 except that the holding temperature of the pretreatment was set to 500 ° C.
  • Example 78 ⁇ Ru / La 0.5 Pr 0.5 O x _700 ° C. reduction>
  • Ru / La 0.5 Pr 0.5 O x —700 ° C. reduction was obtained by the same operation as in Example 5 except that the holding temperature of the pretreatment was set to 700 ° C.
  • Example 1 (Comparative example 8) ⁇ Ru / MgO_700 ° C reduction>
  • Example 1 was repeated except that high purity MgO (500 A, Ube Industries) calcined at 700 ° C. for 5 hours in air was used to carry Ru in the same manner as in Example 1, and the holding temperature was 700 ° C.
  • the reduction treatment was carried out in the same manner as in to obtain Ru / MgO — 700 ° C. reduction.
  • Example 80 ⁇ 8.4 wt% Ba / 4.5 wt% Ru / MgO_500 ° C. reduction> ⁇ Preparation of catalyst> After obtaining the Ru / MgO by the method described in Comparative Example 8, using Ba (OH) 2 ⁇ 8H 2 O as raw materials with respect to Ru / MgO metal supported material, 1.37 times the material relative to Ru Ba was supported by evaporation to dryness in an amount.
  • Example 1 ⁇ Hydrogen reduction pretreatment>
  • the same operation as in Example 1 was performed except that the holding temperature of the pretreatment was 500 ° C., and 8.4 wt% Ba / 4.5 wt% Ru / MgO — 500 ° C. reduction was obtained.
  • Example 81 ⁇ 8.4 wt% Ba / 4.5 wt% Ru / MgO_700 ° C. reduction>
  • Example 80 a 8.4 wt% Ba / 4.5 wt% Ru / MgO — 700 ° C. reduction was obtained by the same operation as in Example 80 except that the holding temperature of the pretreatment was 700 ° C.
  • Example 82 ⁇ Ru / Ce 0.5 Pr 0.5 O x _500 °C reduction> Ru / Ce 0.5 Pr in the same manner as in Example 1 except that Pr (NO 3 ) 3 .6H 2 O was used in place of the raw material La (NO 3 ) 3 .6H 2 O in Example 1. 0.5 O x — 500 ° C. reduction was obtained.
  • Example 83 ⁇ Ru / Ce 0.5 Pr 0.5 O x _600 ° C. reduction>
  • Ru / Ce 0.5 Pr 0.5 O x —600 ° C. reduction was obtained by the same operation as in Example 82 except that the holding temperature of the pretreatment was 600 ° C.
  • Example 84 ⁇ Ru / Ce 0.5 Pr 0.5 O x _650 ° C. reduction>
  • the Ru / Ce 0.5 Pr 0.5 O 2 _650 ° C. reduction was obtained by the same operation as in Example 82 except that the holding temperature of the pretreatment was changed to 650 ° C.
  • Example 85 ⁇ Ru / Ce 0.5 Pr 0.5 O x _700 °C reduction>
  • Ru / Ce 0.5 Pr 0.5 O x —700 ° C. reduction was obtained by the same operation as in Example 82 except that the holding temperature of the pretreatment was 700 ° C.
  • Example 86 ⁇ Ru / Ce 0.5 Pr 0.5 O x _800 ° C. reduction>
  • Ru / Ce 0.5 Pr 0.5 O x —800 ° C. reduction was obtained by the same operation as in Example 82 except that the holding temperature of the pretreatment was 800 ° C.
  • Example 87 ⁇ Ru / Ce 0.5 La 0.5 O x _500 °C reduction>
  • Ru / Ce 0.5 was obtained by the same operation as in Example 1 except that the heating (calcination) temperature was set to 800 ° C. in the preparation step of the composite oxide and the gas purifier was used as in Example 20.
  • La 0.5 O x _500 ° C. reduction was obtained.
  • Example 87 Ru / Ce 0.5 La 0.5 O x —650 ° C. reduction was obtained by the same operation as in Example 87 except that the holding temperature of the pretreatment was changed to 650 ° C.
  • Example 89 ⁇ Ru / Ce 0.5 La 0.5 Ox x 800 ° C. reduction>
  • Ru / Ce 0.5 La 0.5 O x —800 ° C. reduction was obtained by the same operation as in Example 87 except that the holding temperature of the pretreatment was 800 ° C.
  • Example 90 ⁇ Fe / Ba 0.1 La 0.45 Ce 0.45 O x _700 ° C. Reduction>
  • tris (2,4-pentanedionato) iron (III) Fe (acac) 3
  • the holding temperature of the pretreatment is 700 ° C.
  • Fe / Ba 0.1 La 0.45 Ce 0.45 O x —700 ° C. reduction was obtained.
  • Example 91 Fe / Ba 0.1 La 0.45 Ce 0.45 O x _700 ° C. Reduction>
  • Fe / Ba 0.1 La 0.45 Ce is operated in the same manner as in Example 90 except that dodecacarbonyliron (Fe 3 (CO) 12 ) is used in place of Fe (acac) 3 as a raw material.
  • dodecacarbonyliron (Fe 3 (CO) 12 ) is used in place of Fe (acac) 3 as a raw material.
  • a 0.45 O x —700 ° C. reduction was obtained.
  • Example 92 ⁇ Co-Fe / Ba 0.1 La 0.45 Ce 0.45 O x _700 ° C. Reduction>
  • Example 90 In the same manner as in Example 90 except that Co (NO 3 ) 2 ⁇ 6 H 2 O was used in addition to Fe (acac) 3 as a raw material, Co—Fe / Ba 0.1 La 0.45 A Ce 0.45 O x _700 ° C. reduction was obtained.
  • Example 93 Co-Fe / Ba 0.1 La 0.45 Ce 0.45 O x _750 ° C. Reduction>
  • Co-Fe / Ba 0.1 La 0.45 Ce 0.45 O x _750 ° C. reduction was obtained by the same operation as in Example 92 except that the holding temperature of the pretreatment was changed to 750 ° C.
  • Example 94 ⁇ Ru / Ba 0.1 La 0.3 Ce 0.6 O x _700 ° C. reduction>
  • Example 23 was obtained °C reducing Ru / Ba 0.1 La 0.3 Ce 0.6 O x _700 the same manner as in Example 23 except for changing the amount of La and Ce.
  • Example 95 ⁇ Ru / Ba 0.1 La 0.6 Ce 0.3 O x _700 ° C. reduction>
  • Example 94 was obtained °C reducing Ru / Ba 0.1 La 0.6 Ce 0.3 O x _700 the same manner as in Example 94 except for changing the amount of La and Ce.
  • Example 96 ⁇ Ru / Ba 0.1 La 0.8 Ce 0.1 O x _700 ° C. reduction> A Ru / Ba 0.1 La 0.8 Ce 0.1 O x —700 ° C. reduction was obtained by the same operation as in Example 94 except that the blending amount of La and Ce was changed in Example 94.
  • Example 97 ⁇ Ru / Ba 0.1 La 0.45 Ce 0.45 O x _500 ° C. _ 48 hours reduction> ⁇ Hydrogen reduction pretreatment>
  • Example 20 the same operation as in Example 20 was performed except that the retention time of the pretreatment was changed to 48 hours, to obtain a reduction by Ru / Ba 0.1 La 0.45 Ce 0.45 O x — 500 ° C. for 48 hours.
  • Example 98 ⁇ Ru / Ba 0.1 La 0.45 Ce 0.45 O x _450 ° C. _72 hours reduction> ⁇ Hydrogen reduction pretreatment>
  • Ru / Ba 0.1 La 0.45 Ce 0.45 O x _450 ° C._72 by the same operation as in Example 20 except that the holding temperature of the pretreatment is 450 ° C. and the holding time is 72 hours. I got a time reduction.
  • Example 99 ⁇ Ru / Ce0.5La0.5Ox_500 ° C_48 hours reduction> ⁇ Hydrogen reduction pretreatment> A Ru / Ce0.5La0.5Ox_500 ° C. for 48 hours was obtained in the same manner as in Example 1 except that a gas generator was used and the holding time of the pretreatment was changed to 48 hours in Example 1.
  • FIG. 6 shows the XRD patterns of Ru / Ba 0.1 La 0.45 Ce 0.45 O x (Example 6) and Ru / La 0.5 Ce 0.5 O x (Example 2) It is a thing. As shown in the figure, the position of the main diffraction peak of Ba 0.1 La 0.45 Ce 0.45 O x does not change at all with that of La 0.5 Ce 0.5 O x . If part or all of Ba forms a solid solution with La or Ce, the main diffraction of Ba 0.1 La 0.45 Ce 0.45 O x is due to the presence of Ba having a large ion radius in the lattice. The position of the peak should move to the low angle side. Therefore, this means that Ba does not form a solid solution with La or Ce.
  • FIG. 7 shows the surface of the catalyst (650 ° C. reduced Ru / Ba 0.1 La 0.45 Ce 0.45 O x ) of Example 6 was analyzed by fluorescent X-ray analysis using an aberration-corrected transmission electron microscope It is a result.
  • the composition of Ba, La and Ce on the catalyst surface is analyzed, and the light and shade of the composition are shown by light and dark. That is, the higher the concentration of each element, the brighter it is displayed on the diagram.
  • La and Ce show little concentration in the catalyst particles, indicating that they are uniformly present in the catalyst particles.
  • Ba is clearly present in light and shade, and for example, the central region under the analysis field of view is particularly distributed at a high concentration. From the above results, it can be seen that Ba does not form a solid solution with La and Ce.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本発明の複合酸化物は、一般式(1)の組成で示される金属元素を含む複合酸化物である。 A (1) (前記一般式(1)において、Aは、少なくとも一部又はすべてがIII価の状態であることを特徴とするランタノイドであり、Xは、Ca,Sr,Baからなる群から選ばれる周期表第2族元素、又はランタノイドのいずれかであり、かつ前記Aと異なる元素を表し、Mは、周期表第1族元素、Ca,Sr,Baからなる群から選ばれる第2族元素、又はランタノイドのいずれかであり、かつ前記A及び前記Xと異なる元素を表し、nは0<n<1であり、yは0<y<1であり、mは0≦m<1であり、n+y+m=1である。)。

Description

複合酸化物、金属担持物及びアンモニア合成触媒
 本発明は、温和な条件下でのアンモニアの合成において有用な複合酸化物、これを用いた金属担持物及びアンモニア合成触媒並びに該複合酸化物の製造方法、該金属担持物の製造方法及びアンモニアの製造方法に関する。
 アンモニアは、現代の化学産業における重要な原料である。生産されるアンモニアの80%以上は、耕作物用の化学肥料を製造するのに使用されている。さらに、アンモニアは、エネルギーと水素のキャリヤとして多くの注目を集めている。そのわけは、(1)その水素含有量が多く(17.6wt%)、(2)エネルギー密度が高く(12.8GJ/m)、(3)水素を製造するため分解した際に二酸化炭素が発生しないからである。太陽エネルギーや風力などの再生可能エネルギーから効率的にアンモニアを製造することが可能になれば、エネルギー及び食糧危機に関連した地球規模の問題が軽減されよう。
 現在、アンモニアを製造するのに用いられているハーバー・ボッシュ法は、エネルギーを大量に消費しており、その量は世界のエネルギー消費量の約1~2%を占めている。この方法では、消費エネルギーの約60%が回収されて、アンモニアのエンタルピーとして確保される。しかし、残りのエネルギーの大部分は、天然ガスからの水素の製造時、アンモニアの合成時、及びガスの分離時に失われている。ハーバー・ボッシュ法によるアンモニア合成は非常に高い温度(>450℃)と圧力(>20MPa)で行われるので、この方法で使われる大量のエネルギーを低減することが大いに求められている。地球規模のエネルギー消費量を抑制するには、ハーバー・ボッシュ法で用いられている鉄ベースの触媒よりも温和な条件(より低い温度と圧力)下でアンモニアを合成することができる触媒が必要とされている。
 近年、1MPa(10気圧)程度の低圧条件下でアンモニアを製造する方法が知られている。アンモニア製造に用いられるルテニウム触媒は、一般に担体に担持される。例えば、特許文献1には、ルテニウムを担持させる担体として希土類酸化物を用いると、ルテニウムの使用量を低減でき、かつ反応温度を低くできることが開示されている。しかし、特許文献1のアンモニア製造方法では、より低圧条件下においてアンモニアを製造する場合のアンモニア収率が十分なものではなかった。
 特許文献1以外にも、種々の希土類酸化物担体にルテニウムを担持させたアンモニア合成触媒が様々な特許文献に開示されている。代表的なものとして、特許文献2~4、非特許文献1を挙げることができる。特許文献2と特許文献4にはランタノイド酸化物が、特許文献3には酸化プラセオジムが、非特許文献1にはCe酸化物が、担体として開示されている。非特許文献2には、Ru,Ce,Laの水酸化物を共沈させ、乾燥、活性化させて製造した、Ru/CeOーLa系の触媒が開示されている。
 特許文献1,2,4、非特許文献1を含む従来技術の文献には、アンモニア合成に用いられるルテニウム触媒はその担体表面にRuが粒子として存在することが記載されている。粒子として存在する場合、その平均直径は5nmより大きいとの報告がある(非特許文献2参照)。また、特許文献3においては、Ruはエッグシェル構造であると記載されている。
 合成触媒には一般に高い合成活性が求められる。開発途上にあるアンモニア合成用のルテニウム触媒に関して言えば、より高い収率を可能にする高活性のものが引き続き求められている。
 また、触媒は合成反応器に装填されて使用され定期的に交換する必要があることから、その取り扱いが容易であることも求められる。アンモニア合成用のルテニウム触媒に関しても、取り扱いやすさの向上がやはり引き続き求められている。
特開平6-079177号公報 特開2013-111562号公報 国際公開第2016/133213号 特開2017-018907号公報
Y. Niwa and K. Aika, Chemistry Letters, (1996) 3-4 X. Luo et al. Catalysis Letters 133, 382 (2009)
 本発明は、上記の課題を解決して、例えばルテニウムなどの金属触媒を担持させて、アンモニア合成活性を更に向上させることができる複合酸化物を提供することを目的とする。また、本発明の他の目的は、ルテニウムなどの金属触媒を担持させてアンモニア合成活性を更に向上させた金属担持物及びアンモニア合成用触媒を提供することにある。さらに、本発明の他の目的は、このようなアンモニア合成活性を向上させる複合酸化物の製造方法と、アンモニア合成活性を向上させた金属担持物の製造方法やアンモニアの製造方法を提供することにある。
 本発明者らは上記の課題を解決するために、複合酸化物を担体とした金属担持物において、複合酸化物を構成する金属酸化物が特定の価数の状態の時に良好な触媒活性を示すこと、及び複合酸化物の酸素の部分負電荷が触媒活性に影響することを見出し、以下の発明をした。
 なお、本発明において「複合酸化物」とは、狭義には複数の元素の酸化物が均一相を有する、いわゆる固溶体をいうが、広義には複数の元素の酸化物が不均一相を示している場合や、複数の元素の酸化物の組成物である場合も含むものとする。
 〔1〕一般式(1)の組成で示される金属元素を含む複合酸化物
        A  (1)
  (前記一般式(1)において、
    Aは、少なくとも一部又はすべてがIII価の状態であることを特徴とするランタノイドであり、
    Xは、Ca,Sr,Baからなる群から選ばれる周期表第2族元素、又はランタノイドのいずれかであり、かつ前記Aと異なる元素を表し、
    Mは、周期表第1族元素、Ca,Sr,Baからなる群から選ばれる第2族元素、又はランタノイドのいずれかであり、かつ前記A及び前記Xと異なる元素を表し、
    nは0<n<1であり、
    yは0<y<1であり、
    mは0≦m<1であり、
    n+y+m=1である。)。
 〔1A〕一般式(1A)の組成で示される金属元素を含み、式(A)で規定される酸素の部分負電荷が0.52以上である複合酸化物。
        A  (1A)
        ((Πχini1/Σni-5.21)/-4.75  ・・(A)
(前記一般式(1A)において、Aは少なくとも一部又はすべてがIII価の状態であることを特徴とするランタノイド元素であり、Xは、Ca,Sr及びBaからなる群から選ばれる周期表第2族元素であり、Mは、周期表第1族元素、Ca,Sr及びBaからなる群から選ばれる第2族元素、又はランタノイド元素のいずれかであり、かつ前記A及び前記Xと異なる元素を表し、nは0<n<1であり、yは0<y<1であり、mは0≦m<1であり、n+y+m=1であり、
 前記式(A)において、複合酸化物に含まれる各元素を添字i(i=A、X、M、Oを少なくとも含む)で表したとき、各元素の組成比をniで示し、各元素のサンダーソン電気陰性度をχiで示す。)
 〔1B〕下記一般式(1B)で表される複合酸化物。
        A  (1B)
(前記一般式(1B)において、Aは少なくとも一部がIII価の状態であることを特徴とする希土類元素であり、Xは、周期表第2族元素、第4族元素又は希土類元素のいずれかであり、かつ前記Aと異なる元素を表し、Mは、周期表第2族元素、第4族元素又は希土類元素のいずれかであり、かつ前記A及び前記Xと異なる元素を表し、nは0<n<1であり、yは1―nであり、mは0≦m≦0.5であり、xは複合酸化物が電気的に中性を保つのに必要な酸素原子の数を表わす)。
 〔1C〕一般式(1C)の組成で示される金属元素を含む複合酸化物。
        A  (1C)
(前記一般式(1C)において、Aは少なくとも一部がIII価の状態であることを特徴とする希土類元素であり、Xは、周期表第2族元素、第4族元素又は希土類元素のいずれかであり、かつ前記Aと異なる元素を表し、Mは、周期表第1族元素、第2族元素、第4族元素又は希土類元素のいずれかであり、かつ前記A及び前記Xと異なる元素を表し、nは0<n<1であり、yは0<y<1であり、mは0≦m<1であり、n+y+m=1である。)
 〔1D〕CeLa、PrLa、及びCePr(ただし、n=0.1~0.9、y=0.1~0.9、n+y=1とする。)から選択されることを特徴とする前記〔1〕〔1A〕〔1B〕〔1C〕のいずれか1つに記載の複合酸化物。
 〔1E〕CeBaLa、LaBaPr、及びPrBaCe(ただし、n=0.1~0.99、y=0.01~0.3、m=0~0.9、n+y+m=1とする。)から選択されることを特徴とする前記〔1〕〔1A〕〔1B〕〔1C〕のいずれか1つに記載の複合酸化物。
 〔1F〕Ce0.5La0.5、Pr0.5La0.5、Ce0.5Pr0.5x、Ce0.85La0.15、Ce0.67La0.33、Ce0.33La0.67、及びCe0.15La0.85から選択されることを特徴とする前記〔1〕に記載の複合酸化物。
 〔1G〕Ba0.1La0.45Ce0.45、Ba0.3Pr0.35Ce0.35、Ba0.3Ce0.35Pr0.35、Ba0.3La0.35Ce0.35、Ba0.1La0.3Ce0.6、Ba0.1La0.6Ce0.3、Ba0.1La0.8Ce0.1、Ba0.05La0.475Ce0.475、Ba0.15La0.425Ce0.425、Ba0.1Pr0.45Ce0.45、及びBa0.3La0.35Pr0.35から選択されることを特徴とする前記〔1〕に記載の複合酸化物。
 〔1H〕一般式(1-1)の組成で示される金属元素を含む二元系の複合酸化物
        A  (1-1)
  (前記一般式(1-1)において、
    Aは、少なくとも一部又はすべてがIII価の状態であることを特徴とするランタノイドであり、
    Xは、Ca,Sr,Baからなる群から選ばれる周期表第2族元素、又はランタノイドのいずれかであり、かつ前記Aと異なる元素を表し、
    nは0<n<1であり、
    yは0<y<1であり、
    n+y=1である)。
 〔1K〕一般式(1-2)の組成で示される金属元素を含む三元系の複合酸化物
        A  (1-2)
  (前記一般式(1-2)において、
    Aは、少なくとも一部又はすべてがIII価の状態であることを特徴とするランタノイドであり、
    Xは、Ca,Sr,Baからなる群から選ばれる周期表第2族元素、又はランタノイドのいずれかであり、かつ前記Aと異なる元素を表し、
    Mは、周期表第1族元素、Ca,Sr,Baからなる群から選ばれる第2族元素、又はランタノイドのいずれかであり、かつ前記A及び前記Xと異なる元素を表し、
    nは0<n<1であり、
    yは0<y<1であり、
    mは0<m<1であり、
    n+y+m=1である。)。
 〔2〕Aの総モル数(Atotal)に対するIII価の状態のモル数(A3+)の割合(A3+/Atotal)が、0.1≦A3+/Atotal≦1.0であることを特徴とする前記〔1〕~〔1K〕のいずれか1つに記載の複合酸化物。
 〔3〕前記複合酸化物が、正方晶又は立方晶の、固溶体を含む、前記〔1〕~〔1K〕〔2〕のいずれか1つに記載の複合酸化物。
 〔4-1〕複合酸化物に含まれる各元素A、X、Mの少なくとも1つは、酸化物の状態における酸素の部分負電荷(-δ)の値が0.50以上の強塩基性元素である、〔1〕~〔1K〕〔2〕〔3〕のいずれか1つに記載の複合酸化物。
 〔4-2〕複合酸化物に含まれる各元素の組成比をni(i=A、X、M、Oを含む複合酸化物中の全元素を示す)とし、各元素のサンダーソン電気陰性度をχi(i=A、X、M、Oを含む複合酸化物中の全元素を示す)としたときに、下記式(A)で示される酸素の部分負電荷の値(-δ)が0.52以上である、前記〔1〕~〔1K〕〔2〕〔3〕のいずれか1つに記載の複合酸化物。
 ((Π(χini))^(1/Σni)―5.21)/-4.75  ・・式(A)
 〔5〕前記一般式(1)が下記一般式(1-1)で示される二元系の複合酸化物であり、
  A  (1-1)
(A、X、n、yは前記〔1H〕で定義したとおりである。)
 前記複合酸化物が、前記A及びXの固溶体であることを特徴とする前記〔2〕〔3〕〔4-1〕〔4-2〕のいずれか1つに記載の複合酸化物。
 〔6〕前記一般式(1)が下記一般式(1-2)で示される三元系の複合酸化物であり、
  A  (1-2)
(A、X、M、n、y、mは前記〔1K〕で定義したとおりである。)
 前記複合酸化物が、前記A及びX又はMの片方の酸化物の固溶体と、前記 X又はMの他方の酸化物との混合状態であることを特徴とする前記〔2〕〔3〕〔4-1〕〔4-2〕のいずれか1つに記載の複合酸化物。
 〔7〕前記一般式(1)(1A)(1B)(1C)(1-1)(1-2)におけるXはBaであって、前記複合酸化物に含まれる炭酸イオンの量が、Baに対して10mol%以下であることを特徴とする、前記〔1〕~〔1K〕〔2〕〔3〕〔4-1〕〔4-2〕〔5〕〔6〕のいずれか1つに記載の複合酸化物。
 〔7A〕前記一般式(1)(1A)(1B)(1C)(1-1)(1-2)におけるXはBaであって、前記複合酸化物に含まれる炭酸イオンの量が、Baに対して1mol%以下であることを特徴とする、前記〔1〕~〔1K〕〔2〕〔3〕〔4-1〕〔4-2〕〔5〕〔6〕のいずれか1つに記載の複合酸化物。
 〔7B〕前記一般式(1)(1A)(1B)(1C)(1-1)(1-2)におけるXはBaであって、前記複合酸化物に含まれる炭酸イオンの量が、Baに対して0.1mol%以下であることを特徴とする、前記〔1〕~〔1K〕〔2〕〔3〕〔4-1〕〔4-2〕〔5〕〔6〕のいずれか1つに記載の複合酸化物。
 〔7C〕前記一般式(1)(1A)(1B)(1C)(1-1)(1-2)におけるXはBaであって、前記複合酸化物に含まれる炭酸イオンの量が、Baに対して0.01mol%以下であることを特徴とする、前記〔1〕~〔1K〕〔2〕〔3〕〔4-1〕〔4-2〕〔5〕〔6〕のいずれか1つに記載の複合酸化物。
 〔8〕一般式(1A)で表される金属元素を含む複合酸化物。
        A  (1A)
  (前記一般式(1A)において、
    Aは少なくとも一部又はすべてがIII価の状態であることを特徴とする希土類元素であり、
    Xは、周期表第2族元素、第4族元素又は希土類元素のいずれかであり、かつ前記Aと異なる元素を表し、
    Mは、周期表第1族元素、第2族元素、第4族元素又は希土類元素のいずれかであり、かつ前記A及び前記Xと異なる元素を表し、
    nは0<n<1であり、
    yは0<y<1であり、
    mは0≦m<1であり、
    n+y+m=1である。)。
 〔8A〕Aの総モル数(Atotal)に対するIII価の状態のモル数(A3+)の割合(A3+/Atotal)が、0.1≦A3+/Atotal≦1.0であることを特徴とする上記〔8〕に記載の複合酸化物。
 〔8B〕m=0である、上記〔8〕に記載の複合酸化物。
 〔8C〕Ce0.5La0.5、Ce0.5Zr0.5、Pr0.5La0.5、Pr0.5Zr0.5及びCe0.5Pr0.5から選択されることを特徴とする上記〔8〕に記載の複合酸化物。
 〔8D〕Ba0.1La0.45Ce0.45、Ba0.3Pr0.35Ce0.35、Ba0.3Ce0.35Pr0.35、及びBa0.3La0.35Ce0.35から選択されることを特徴とする前記〔8〕に記載の複合酸化物。
 〔9〕下記一般式(2)で表されることを特徴とする複合酸化物。
        A1-n  (2)
  (前記一般式(2)において、
    Aは少なくとも一部がIII価の状態であることを特徴とする希土類元素であり、
    Xは、周期表第2族元素、第4族元素又は希土類元素のいずれかであり、かつ前記Aと異なる元素を表し、
    Mは、周期表第2族元素、第4族元素又は希土類元素のいずれかであり、かつ前記A及び前記Xと異なる元素を表し、
    nは0<n<1であり、
    mは0≦m≦0.5であり、
xは複合酸化物が電気的に中性を保つのに必要な酸素原子の数を表わす)。
 〔9A〕m=0である、前記〔9〕に記載の複合酸化物。
 〔9B〕Ce0.5La0.5から選択されることを特徴とする前記〔9〕に記載の複合酸化物。
 〔9C〕0.5<x≦2であることを特徴とする前記〔9〕に記載の複合酸化物。
 〔11〕前記〔1〕~〔9C〕のいずれか1つの複合酸化物に第4族を除く遷移金属が担持されたことを特徴とする金属担持物。
 〔11A〕前記遷移金属がRuである前記〔11〕に記載の金属担持物。
 〔11B〕前記遷移金属がCoである前記〔11〕に記載の金属担持物。
 〔11C〕前記遷移金属がRu,Fe,Co,Ni,Rh,Pd,Os,Ir,Ptからなる群より選択される1種類以上である前記〔11〕に記載の金属担持物。
 〔11D〕前記遷移金属がRu及び/又はCoである前記〔11〕に記載の金属担持物。
 〔11E〕一般式(1)の組成で示される金属元素を含む複合酸化物に第4族を除く遷移金属が担持されたことを特徴とする金属担持物。
        A  (1)
  (前記一般式(1)において、
    Aは、少なくとも一部又はすべてがIII価の状態であることを特徴とするランタノイドであり、
    Xは、Ca,Sr,Baからなる群から選ばれる周期表第2族元素、又はランタノイドのいずれかであり、かつ前記Aと異なる元素を表し、
    Mは、周期表第1族元素、Ca,Sr,Baからなる群から選ばれる第2族元素、又はランタノイドのいずれかであり、かつ前記A及び前記Xと異なる元素を表し、
    nは0<n<1であり、
    yは0<y<1であり、
    mは0≦m<1であり、
    n+y+m=1である。)。
 〔12〕前記金属担持物において、Hパルス化学吸着法により求めた前記4族を除く遷移金属の分散度の値(Dads)と、 TEM像から求めた遷移金属粒子の平均粒子径から期待される遷移金属分散度の値(DTEM)との比が、
      0<Dads/DTEM<1
であることを特徴とする前記〔11〕~〔11E〕のいずれか1つに記載の金属担持物。
 〔12A〕Hパルス化学吸着法により求めたRu分散度の値(Dads)と、 TEM像から求めたRu粒子の平均粒子径から期待されるRu分散度の値(DTEM)との比が、
      0<Dads/DTEM<1
であることを特徴とする前記〔11A〕に記載の金属担持物。
 〔12B〕Hパルス化学吸着法により求めたCo分散度の値(Dads)と、 TEM像から求めたCo粒子の平均粒子径から期待されるCo分散度の値(DTEM)との比が、
      0<Dads/DTEM<1
であること特徴とする前記〔11B〕に記載の金属担持物。
 〔13〕担持された前記遷移金属に窒素吸着をさせたとき、長軸方向に相互作用している窒素分子のN≡N伸縮振動ν1が赤外吸収スペクトル法により2300~2000cm-1に観測され、及び/又は、前記遷移金属に対して長軸方向に相互作用している窒素分子の弱められたN≡N伸縮振動ν2が1900~1500cm-1に観測されることを特徴とする、前記〔11〕~〔12B〕のいずれか1つに記載の金属担持物。
 〔13A〕 前記ν1が2100~2000cm-1であり、ν2が1700~1900cm-1であることを特徴とする前記〔11〕~〔12B〕のいずれか1つに記載の金属担持物。
 〔13B〕 前記遷移金属がRuであることを特徴とする前記〔11〕~〔12B〕のいずれか1つに記載の金属担持物。
 〔13C〕窒素吸着をさせ、赤外分光計にて測定をした際に、吸着した窒素分子に由来する吸収ピークが2200cm-1以下に出現することを特徴とする、前記〔11〕~〔12B〕のいずれか1つに記載の金属担持物。
 〔13D〕さらに吸収ピークが1900~1700cm-1に出現することを特徴とする、前記〔11〕~〔12B]のいずれか1つに記載の金属担持物。
 〔14〕前記複合酸化物上に担持された前記遷移金属の平均粒子径が100nm以下であることを特徴とする、前記〔11〕~〔13D〕のいずれか1つに記載の金属担持物。
 〔14A〕前記遷移金属がRuであり、前記複合酸化物上に担持されたRuの平均粒子径が5nm以下であることを特徴とする、前記〔11〕~〔14〕のいずれか1つに記載の金属担持物。
 〔14B〕前記遷移金属がCoであり、前記複合酸化物上に担持されたCoの平均粒子径が100nm以下であることを特徴とする、前記〔11〕~〔14〕のいずれか1つに記載の金属担持物。
 〔15〕金属担持物に含まれる炭酸塩の量が、Ca,Sr,Baからなる群から選ばれる周期表第2族元素Xに対して10モル%以下であることを特徴とする〔11〕~〔14B〕のいずれか1つに記載の金属担持物。
 〔15A〕前記炭酸塩の量が1モル%以下であることを特徴とする〔11〕~〔15〕のいずれか1つに記載の金属担持物。
 〔15B〕前記炭酸塩の量が0.1モル%以下であることを特徴とする〔11]~〔15〕のいずれか1つに記載の金属担持物。
 〔15C〕 前記炭酸塩の量が0.01モル%以下であることを特徴とする〔11〕~〔15〕のいずれか1つに記載の金属担持物。
 〔16〕前記〔11〕~〔15C〕のいずれか1つに記載の金属担持物を用いたことを特徴とするアンモニア合成用触媒。
 〔16A〕下記のアンモニア活性測定法で測定したときのアンモニア収率が0.55%以上であり、アンモニア生成速度が10.0mmol g-1 -1であることを特徴とする前記〔16〕に記載のアンモニア合成用触媒。
<アンモニア活性測定法>
 アンモニア合成用触媒層の温度を300℃に保ちながら、Arを供給しながら反応管出口の背圧弁によって圧力を1.0MPaあるいは3.0MPaまで加圧し、Arの封入を止め、圧力を保ちながらH2、N2をそれぞれ90mL/min、30mL/min(空間速度72L h-1 g-1)で流通させ、反応雰囲気へと移行させ、NH3合成活性の高さに応じて1~100mM(1,5,10,25,100mM)の硫酸水溶液200mLを、電気伝導度計を接続した三口フラスコに加え、反応管出口から流出する水素、窒素、NH3を含む混合ガスを硫酸水溶液にバブリングさせ、NH3と硫酸の反応によっておきる電導度の変化を測定することで、出口ガス中に含まれるアンモニア生成量を定量する方法。
 〔16B〕一般式(1)の組成で示される金属元素を含む複合酸化物に第4族を除く遷移金属が担持された金属担持物を用いたことを特徴とするアンモニア合成用触媒。
        A  (1)
  (前記一般式(1)において、
    Aは、少なくとも一部又はすべてがIII価の状態であることを特徴とするランタノイドであり、
    Xは、Ca,Sr,Baからなる群から選ばれる周期表第2族元素、又はランタノイドのいずれかであり、かつ前記Aと異なる元素を表し、
    Mは、周期表第1族元素、Ca,Sr,Baからなる群から選ばれる第2族元素、又はランタノイドのいずれかであり、かつ前記A及び前記Xと異なる元素を表し、
    nは0<n<1であり、
    yは0<y<1であり、
    mは0≦m<1であり、
    n+y+m=1である。)。
 〔17〕前記〔1〕~〔9C〕のいずれか1つに記載の複合酸化物の製造方法であって、
 前記Aを含むA前駆体、前記Xを含むX前駆体、及び前記Mを含むM前駆体を混合して混合物を得る混合工程と、
 該混合物を600℃以上の温度で焼成する焼成工程と、を含むことを特徴とする複合酸化物の製造方法。
 〔17A〕前記焼成工程が、前記混合物を700℃以上の温度で焼成することを特徴とする前記〔17〕に記載の複合酸化物の製造方法。
 〔17B〕前記焼成工程が、前記混合物を800℃以下の温度で焼成することを特徴とする前記〔17〕又は〔17A〕に記載の複合酸化物の製造方法。
 〔17C〕一般式(1)の組成で示される金属元素を含む複合酸化物の製造方法であって、
        A  (1)
  (前記一般式(1)において、
    Aは、少なくとも一部又はすべてがIII価の状態であることを特徴とするランタノイドであり、
    Xは、Ca,Sr,Baからなる群から選ばれる周期表第2族元素、又はランタノイドのいずれかであり、かつ前記Aと異なる元素を表し、
    Mは、周期表第1族元素、Ca,Sr,Baからなる群から選ばれる第2族元素、又はランタノイドのいずれかであり、かつ前記A及び前記Xと異なる元素を表し、
    nは0<n<1であり、
    yは0<y<1であり、
    mは0≦m<1であり、
    n+y+m=1である。)
 前記Aを含むA前駆体、前記Xを含むX前駆体、及び前記Mを含むM前駆体を混合して混合物を得る混合工程と、
 該混合物を600℃以上の温度で焼成する焼成工程と、を含むことを特徴とする複合酸化物の製造方法。
 〔18〕前記〔11〕~〔15C〕のいずれか1つに記載の金属担持物の製造方法であって、
 前記Aを含むA前駆体,前記Xを含むX前駆体及び前記Mを含むM前駆体を混合して混合物を得る混合工程と、
 前記混合物を600℃以上の温度で焼成して複合酸化物からなる担体を得る焼成工程と、
 前記複合酸化物に前記遷移金属を含む化合物を担持させて還元処理前担持物を調製する担持工程と、
 前記還元処理前担持物を400℃以上の温度で還元処理する還元工程と、を含むことを特徴とする金属担持物の製造方法。
 〔18A〕前記焼成工程が、前記混合物を700℃以上の温度で焼成することを特徴とする前記〔18〕に記載の金属担持物の製造方法。
 〔18B〕前記焼成工程が、前記混合物を800℃以下の温度で焼成することを特徴とする前記〔18〕又は〔18A〕に記載の金属担持物の製造方法。
 〔18C〕前記還元工程が、前記混合物を350℃以上の温度で2時間以上水素を含む雰囲気下で還元処理することを特徴とする前記〔18〕~〔18B〕のいずれか1つに記載の金属担持物の製造方法。
 〔18D〕前記還元工程が、前記還元処理担持物を500℃以上の温度で2時間以上水素を含む雰囲気下で焼成することを特徴とする前記〔18〕~〔18C〕のいずれか1つに記載の金属担持物の製造方法。
 〔18E〕一般式(1)の組成で示される金属元素を含む複合酸化物に第4族を除く遷移金属が担持された金属担持物の製造方法であって、
        A  (1)
  (前記一般式(1)において、
    Aは、少なくとも一部又はすべてがIII価の状態であることを特徴とするランタノイドであり、
    Xは、Ca,Sr,Baからなる群から選ばれる周期表第2族元素、又はランタノイドのいずれかであり、かつ前記Aと異なる元素を表し、
    Mは、周期表第1族元素、Ca,Sr,Baからなる群から選ばれる第2族元素、又はランタノイドのいずれかであり、かつ前記A及び前記Xと異なる元素を表し、
    nは0<n<1であり、
    yは0<y<1であり、
    mは0≦m<1であり、
    n+y+m=1である。)
 前記Aを含むA前駆体,前記Xを含むX前駆体及び前記Mを含むM前駆体を混合して混合物を得る混合工程と、
 前記混合物を600℃以上の温度で焼成して複合酸化物からなる担体を得る焼成工程と、
 前記複合酸化物に前記遷移金属を含む化合物を担持させて還元処理前担持物を調製する担持工程と、
 前記還元処理前担持物を400℃以上の温度で還元処理する還元工程と、を含むことを特徴とする金属担持物の製造方法。
 〔19〕水素と窒素を触媒と接触させて、アンモニアを製造する方法であって、前記触媒が、前記〔16〕~〔16B〕のいずれか1つに記載のアンモニア合成用触媒であることを特徴とするアンモニアの製造方法。
 〔19A〕反応温度が300~550℃、反応圧力が0.1~20MPaであることを特徴とする前記〔19〕に記載のアンモニアの製造方法。
 〔19B〕反応温度が300~450℃、反応圧力が0.1~10MPaであることを特徴とする前記〔19〕~〔19A〕のいずれか1つに記載のアンモニアの製造方法。
 〔19C〕水素と窒素を触媒と接触させて、アンモニアを製造する方法であって、前記触媒が、一般式(1)の組成で示される金属元素を含む複合酸化物に第4族を除く遷移金属が担持された金属担持物を用いたアンモニア合成用触媒であることを特徴とするアンモニアの製造方法。
        A  (1)
  (前記一般式(1)において、
    Aは、少なくとも一部又はすべてがIII価の状態であることを特徴とするランタノイドであり、
    Xは、Ca,Sr,Baからなる群から選ばれる周期表第2族元素、又はランタノイドのいずれかであり、かつ前記Aと異なる元素を表し、
    Mは、周期表第1族元素、Ca,Sr,Baからなる群から選ばれる第2族元素、又はランタノイドのいずれかであり、かつ前記A及び前記Xと異なる元素を表し、
    nは0<n<1であり、
    yは0<y<1であり、
    mは0≦m<1であり、
    n+y+m=1である。)。
 本発明によれば、金属ルテニウムなどの触媒金属を担持させてアンモニア合成活性が更に向上した複合酸化物の提供が可能となり、それをアンモニア合成用触媒の担体として用いることによって、ハーバー・ボッシュ法に比べて温和な条件下に高収率でアンモニアを製造することが可能となる。また、本発明によれば、金属ルテニウムなどの触媒金属を担持させてアンモニア合成活性が更に向上した金属担持物及びアンモニア合成用触媒を提供することができる。さらに、本発明によれば、このような複合酸化物の製造方法やアンモニア合成活性を向上させた金属担持物の製造方法やアンモニアの製造方法を提供することが可能となる。
異なるRu担持複合酸化物のXRDパターンである。 Ru/La0.5Ce0.51.75を異なる温度で還元後に空気曝露したRu担持複合酸化物のHR-TEM及びEDXマッピング画像と、Ru粒子径のヒストグラムであり、 (a)はLaCeO_500℃redのSTEM像、(b)はLaCeO_500℃redのEDXマッピング、(c)はLaCeO_500℃redのヒストグラム、(d)はLaCeO_650℃redのSTEM像、(e)はLaCeO_650℃redのEDXマッピング、(f)はLaCeO_650℃redのヒストグラム、(g)はLaCeO_800℃redのSTEM像、(h)はLaCeO_800℃redのEDXマッピング、(i)はLaCeO_800℃redのヒストグラムである。 還元処理した金属担持物の室温でN添加後のIRスペクトルである。 アンモニア生成速度と還元処理温度の関係を示すグラフである。 複合酸化物の焼成温度と金属担持体の還元処理温度の違いによる、アンモニア生成速度H/Ru、比表面積の減少度、Ru粒子径の変化の関係を示す表である。 Ru/Ba0.1La0.45Ce0.45とRu/La0.5Ce0.5のXRDパターンである。 Ru/Ba0.1La0.45Ce0.45の表面を収差補正型透過電子顕微鏡を用い、蛍光X線分析によって分析した画像である。
 本発明の複合酸化物は、下記の一般式(1)の組成で示される金属元素を含む複合酸化物である。
        A  (1)
 この複合酸化物においては、
 (1)Aは少なくとも一部又はすべてがIII価の状態であることを特徴とする希土類元素であり、特に、少なくとも一部又はすべてがIII価の状態であることを特徴とするランタノイドであることが好ましい。
 (2)Xは、周期表第2族元素、第4族元素又は希土類元素から選ばれ、かつAと異なる元素であり、特に、Ca,Sr,Baからなる群から選ばれる周期表第2族元素、又はランタノイドのいずれかであり、かつ前記Aと異なる元素が好ましい。
 (3)Mは、周期表第1族元素、周期表第2族元素、第4族元素又は希土類元素から選ばれ、かつA及びXと異なる元素であり、特に、周期表第1族元素、Ca,Sr,Baからなる群から選ばれる第2族元素、又はランタノイドのいずれかであり、かつ前記A及び前記Xと異なる元素が好ましい。
 (4)nは0<n<1であり、yは0<y<1であり、mは0≦m<1であり、n+y+m=1である。
 本発明の複合酸化物は、特に、一般式(1)の組成で示される金属元素を含む複合酸化物であることが好ましい。
        A  (1)
  (前記一般式(1)において、
    Aは、少なくとも一部又はすべてがIII価の状態であることを特徴とするランタノイドであり、
    Xは、Ca,Sr,Baからなる群から選ばれる周期表第2族元素、又はランタノイドのいずれかであり、かつ前記Aと異なる元素を表し、
    Mは、周期表第1族元素、Ca,Sr,Baからなる群から選ばれる第2族元素、又はランタノイドのいずれかであり、かつ前記A及び前記Xと異なる元素を表し、
    nは0<n<1であり、
    yは0<y<1であり、
    mは0≦m<1であり、
    n+y+m=1である。)。
 あるいは、本発明の複合酸化物は、一般式(1A)で表される金属元素を含む複合酸化物であってもよい。
        A  (1A)
  (前記一般式(1A)において、
    Aは少なくとも一部又はすべてがIII価の状態であることを特徴とする希土類元素であり、
    Xは、周期表第2族元素、第4族元素又は希土類元素のいずれかであり、かつ前記Aと異なる元素を表し、
    Mは、周期表第1族元素、第2族元素、第4族元素又は希土類元素のいずれかであり、かつ前記A及び前記Xと異なる元素を表し、
    nは0<n<1であり、
    yは0<y<1であり、
    mは0≦m<1であり、
    n+y+m=1である)。
 さらに、本発明の複合酸化物は、下記一般式(2)で表される複合酸化物であってもよい。
        A  (2)
  (前記一般式(2)において、
    Aは少なくとも一部又はすべてがIII価の状態であることを特徴とする希土類元素であり、
    Xは、周期表第2族元素、第4族元素又は希土類元素のいずれかであり、かつ前記Aと異なる元素を表し、
    Mは、周期表第2族元素、第4族元素又は希土類元素のいずれかであり、かつ前記A及び前記Xと異なる元素を表し、
    nは0<n<1であり、
    yは1-nであり、
    mは0≦m≦0.5であり、
xは複合酸化物が電気的に中性を保つのに必要な酸素原子の数を表わす)。
 また、一般式(1)の組成で示される金属元素を含む複合酸化物を構成する元素A、X、Mの少なくとも1つは、酸化物の状態における酸素の部分負電荷(-δ)の値が0.50以上の強塩基性元素であることが好ましい。
 元素Aは、希土類であって、少なくとも一部又はすべてがIII価の状態である。ここで、「少なくとも一部又はすべてがIII価の状態」とは、III価のみ取りうる元素の場合はそのIII価の状態を、III価とそれ以外(例えばIV価)の価数を取りうる元素の場合は一部又はすべてがIII価の状態を意味する。すなわち、元素Aとしては、III価の状態しかとりえない元素か、III価とIV価の両方の状態をとりうる元素であって少なくとも一部又はすべてがIII価の状態であるものが含まれる。III価とIV価の両方の状態をとりうる元素を、少なくとも一部をIII価の状態とするためには、後述する還元処理によってIV価の一部をIII価とする。
 本発明では、触媒中に含まれる元素A、X、Mのいずれか少なくとも1つが、酸化物の状態において高い塩基性を示す強塩基性元素であるため、アンモニア合成触媒の活性を向上させることが可能となる。以下に、そのメカニズムの概要を説明する。
 金属酸化物の塩基性(ルイス塩基性)は電子供与能の高さと関係する。すなわち、電子供与能が高い物質ほど強い塩基性を示すと考えられる。基本的に酸化物においては酸素が電子供与体として作用するため、酸化物中の酸素がもつ電荷の量、すなわち酸素の部分負電荷が塩基性の指標として有用である。実際、非特許文献(サンダースン 「無機化学(上)」 廣川書店 (1975年) 第276頁表12.7)では、酸素の部分負電荷の値が、酸化物の示す酸塩基性とよく相関することが示されている。
 酸素の部分負電荷の計算方法は、非特許文献(サンダースン 「無機化学(上)」 廣川書店 (1975年) 第122頁表6.7、126~128頁)を参考にした。まず、複合酸化物中の各元素の組成比を求める。たとえば、「Ce0.5La0.51.75」のLaであれば0.5である.この値をni(iは対応する元素)とする。また、それぞれの元素の電気陰性度をχiとする。そして、複合酸化物を構成する全原子の電気陰性度の幾何平均を(Π(χini))^(1/Σni)によって求める。次に、酸素の電気陰性度の変化から求めるため、前記幾何平均と酸素の電気陰性度(5.21)との差をとる。最後に、酸素の電気陰性度の変化から酸素1原子が1つの電子を取得した場合の電気陰性度の変化(-4.75)で割る。以上の計算によって、複合酸化物が示す酸素の部分負電荷を計算することができる。詳細は後述する実施例を参照することができる。
 上記をまとめると、複合酸化物の酸素の部分負電荷の値は、該複合酸化物に含まれる各元素の組成比をni(i=A、X、M、Oを少なくとも含む複合酸化物中の全元素を示す)とし、各元素の電気陰性度をχi(i=A、X、M、Oを少なくとも含む複合酸化物中の全元素を示す)としたときに、下記式(A)で示される酸素の部分負電荷の値が0.52以上であることが好ましい。
 ((Π(χini))^(1/Σni)―5.21)/-4.75  ・・式(A)
 複合酸化物の酸素の部分負電荷の値は、0.52以上が好ましく、0.55以上がより好ましく、0.57以上が特に好ましい。複合酸化物の酸素の部分負電荷の値が0.52以上であると、アンモニア合成活性が高くなる傾向がある。複合酸化物の酸素の部分負電荷の値の上限は、特に限定されないが、理論上は最大で約0.70である。
 AがLaのようなIII価をとる元素の場合、これらは強塩基性の金属元素である。このため、複合酸化物(担体)の塩基点から電子が生じ、これが該複合酸化物に担持された遷移金属(Ruなど)を経由して窒素分子に逆供与され、窒素三重結合を弱める。これにより、アンモニア合成反応の律速段階である窒素分子の三重結合の切断のエネルギーを低下させ、金属担持物(触媒)のアンモニア合成活性が向上する。
 AがCeのようなIII価とIV価とをとりうる元素の場合、III価の場合は強塩基性の金属元素となるが、IV価の場合は塩基性の度合いがIII価の場合よりも小さい。後述するように、原料を混合し、焼成して複合酸化物とした時点ではCeはIV価であるが、後述する還元処理などによって少なくとも一部又は全部をIII価とすることができ、強塩基性元素とすることができる。これにより、上記のAがLaの場合と同様のメカニズムで金属担持物のアンモニア合成活性が向上する。さらに、IV価の元素をIII価に還元することで当該元素がIV価に再酸化されることによって供与可能な電子が生じ、これが遷移金属(Ruなど)を経由して窒素分子に逆供与されることでも、金属担持物のアンモニア合成活性が向上する。
 上記は元素Aが強塩基性元素となる場合について説明したが、後述する元素Xや元素Mについても同様に、強塩基性元素となりうる。特に、元素A、Xからなる二元系の複合酸化物の場合は、元素A、Xともに強塩基性であることがより好ましい。また、元素A、X、Mからなる三元系の複合酸化物の場合、元素A、Xよりも元素Mのほうが塩基性の強い場合がある。特に、元素X及び/又はMがCa,Sr,Baから選ばれる周期表第2族の元素の場合、元素A(希土類)よりも塩基性が高い傾向にある。
 なお、強塩基性元素、特に元素Mが周期表第2族の元素の場合、大気中の二酸化炭素と反応して金属炭酸塩や水酸化物になりやすいが、この金属炭酸塩および水酸化物は複合酸化物の塩基性を低下させ、触媒のアンモニア合成活性を低下させる原因となる。例えば、Baは大気中でBaCOやBa(OH)となり、これがアンモニア合成活性を低下させる。このため、アンモニア合成触媒中に含まれる金属炭酸塩や水酸化物は極力少ない方がよい。炭酸塩を少なくするためには、後述するように還元処理することが好ましく、これにより触媒に含まれる炭酸塩や水酸化物を分解し、塩基性の低下を防ぐことができる。金属担持物に含まれる炭酸塩の量は、アンモニア合成活性を阻害しない範囲であれば特に制限はないが、例えば、Ca,Sr,Baからなる群から選ばれる周期表第2族元素Xに対して10モル%以下、好ましくは1モル%以下、より好ましくは0.1モル%以下、さらに好ましくは0.01モル%以下である。
 炭酸塩として存在する金属の量を定量する方法としては、水素流通下で触媒を加熱することにより、炭酸種が水素化され発生するメタンなどの炭化水素を、質量分析計もしくは水素炎イオン化検出器などで検出し、これを換算することで炭酸塩としての存在量を定量することができる。
 また、金属の炭酸塩に対して感度が高い、赤外吸収分光法を用いることもできる。触媒に対して赤外光を照射し、炭酸塩が特徴的に吸収する端数のピークの吸収強度を測定することで、触媒中に含まれる炭酸塩の量を定量することができる。たとえば、炭酸Baの定量に使用できるピークの位置としては、3000cm-1付近、2450cm-1付近、1750cm-1付近、1480cm-1付近、1060cm-1付近などである。
 AがIII価とそれよりも多い価数(IV価以上)を取りうる希土類元素の場合は、Aの総モル数(Atotal)に対するIII価の状態のモル数(A3+)の割合(A3+/Atotal)が、0.1≦A3+/Atotal≦1.0であることが好ましい。A3+/Atotalの値の下限は、0.1以上であり、好ましくは0.2以上であり、より好ましくは0.3以上である。A3+/Atotalの値の上限は、特に制限はなく、1.0に近いほうが好ましいが、0.8以上が好ましく、0.9以上がより好ましく、0.95以上が特に好ましい。A3+/Atotalの値が0.1以上0.95以下であれば、アンモニア合成触媒としたときに触媒重量あたりの性能に優れる。このような希土類元素としては、Ceを挙げることができる。
 一方、AがIII価しか取り得ない希土類元素の場合は、A3+/Atotal=1.00である。このような希土類としては、Laを挙げることができる。
 AがIII価とそれよりも多い価数(IV価以上)を取りうる希土類元素の場合に、目的とするA3+/Atotalの値を得るためには、種々の化学的な還元法が使用できる。最も簡便な方法は、金属担持物を水素の流通下で加熱することであり、温度、加熱時間を変えることによってA3+/Atotalを任意の値に制御することができる。また、窒素やアルゴンなどの不活性ガスと混合して水素の濃度を変化させることでも、A3+/Atotalを任意の値に制御することができる。
 このような元素Aとしては、ランタノイドを挙げることができ、好ましくはCe、Pr、Tb、Laであり、Ce、Laがより好ましく、Ceが最も好ましい。
 一般式(1)の複合酸化物を構成する元素Xは、周期表第2族元素、すなわちMg、Ca、Sr、Baか、第4族元素、すなわち、Ti、Zr、又はHfか、あるいは希土類元素、すなわち、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、又はLu、のうちから選ばれ、複合酸化物を構成するもう一つの元素Aと同一でなく、かつXとMどうしも同一でない。元素Mが周期表第2族元素の場合、Ca,Sr,Baから選択されることが好ましい。また、元素Mが希土類の場合、ランタノイドであることが好ましい。
 一般式(1)の複合酸化物を構成する元素Mは、周期表第1族元素、すなわちNa、K、Rb、Cs、Frか、周期表第2族元素、すなわちMg、Ca、Sr、Baか、第4族元素、すなわち、Ti、Zr、又はHfか、あるいは希土類元素、すなわち、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、又はLu、のうちから選ばれ、複合酸化物を構成するもう一つの元素Aと同一でなく、かつXとMどうしも同一でない。元素Xが周期表第2族元素の場合、Ca,Sr,Baから選択されることが好ましい。また、元素Xが希土類の場合、ランタノイドであることが好ましい。特に、アンモニア合成活性の観点からは、元素MはBaであることが好ましい。
 好ましくは、XとMは、ZrとLaから選ばれる。本発明における複合酸化物は、X及びMとして周期表第4族元素又は希土類元素を2種類含むか、Xとして周期表第4族元素又は希土類元素を1種類のみ含んでもよい(一般式(1)においてm=0)。
 元素A、X、Mのいずれか少なくとも1つは、酸化物の状態における酸素の部分負電荷(-δ)の値が0.50以上の強塩基性元素であることが好ましい。元素A、X、Mは、これらのうちいずれか1つが酸素の部分負電荷(-δ)の値が0.50以上の強塩基性元素であるが、2つ以上、特に3つとも酸素の部分負電荷(-δ)の値が0.50以上の強塩基性元素であることが好ましい。
 ここで、酸素の部分負電荷(-δ)は、非特許文献(サンダースン 「無機化学(上)」 廣川書店 (1975年) 第276頁)の表12.7に掲載されている値や、値がないものは上記の酸素の部分負電荷の計算によって算出することができる。下記の表に、実施例で使用される複合酸化物に含まれる元素の代表的な酸化物と価数、酸素の部分負電荷(-δ)を示す。
Figure JPOXMLDOC01-appb-T000001
 元素A、X、Mにおいて、酸化物の価数が1種類しかなく、この酸化物の酸素の部分負電荷が0.50以上であるBaやLaなどの元素の場合、これらの元素は強塩基性元素である。CeやPrやTbなど酸化物の価数が2種類以上をとる元素の場合、複合酸化物中に含まれる元素の価数の割合によって算出した酸素の部分負電荷(-δ)の値が0.50以上であることが好ましい。例えば、Prにおいて、複合酸化物中に含まれるPrが完全にIV価の場合は、酸素の部分負電荷(-δ)の値が0.48である。一方、Prが完全にIII価の場合は、酸素の部分負電荷(-δ)の値が0.55であるため、上記のPr(IV価)の場合よりもアンモニア合成活性の点から好ましい。元素にIII価とIV価が共存する場合における酸素の部分負電荷(-δ)の値は、上記の複合酸化物における酸素の部分負電荷の場合と同様に算出することができる。すなわち、III価の元素とIV価の元素の比率(組成比)がわかれば、酸化物が電気的に中性となる酸素の含有量が定まるので、式(A)により幾何平均として算出できる。また、例えば、CeとPrからなる複合酸化物のようにIII価とIV価が共存する元素が2種類以上含まれる場合にも、それぞれの元素におけるIII価の元素とIV価の元素の比率を用いることで、酸化物が電気的に中性となる酸素の含有量を定めることができる。それぞれの元素におけるIII価の元素とIV価の元素の比率を求めるには、XRDによる回折線シフトや、X線吸収分光などの方法を用いることができる。III価とIV価以外の価数が存在する元素についても、同様の方法で酸素の部分負電荷(-δ)の値を算出することができる。
 本発明の複合酸化物を一般式(1)として表される場合のn、y、m、xの範囲は以下のとおりである。
 複合酸化物中の元素Aの割合を表す一般式(1)中のnは、0<n<1であり、好ましくは0.05<n<0.95、より好ましくは0.1<n<0.9であり、特に好ましくは0.35≦n≦0.5である。
 複合酸化物中の元素Xの割合を表す一般式(1)中のyは、0<y<1であり、好ましくは0.05<y<0.95、より好ましくは0.1<y<0.9であり、特に好ましくは0.35≦y≦0.5である。
 複合酸化物中の元素Mの割合を表す、一般式(1)中のmは、0≦m<1であり、一般式(2)中のmは、0≦m≦0.5であり、(1)(2)式とも、好ましくは0<m<0.5、より好ましくは0.05≦m≦0.45であり、特に好ましくは0.1≦m≦0.3である。m=0の場合、複合酸化物はA、X、Oのみで構成される。
 複合酸化物中の酸素Oの割合を表す一般式(2)中のxは、複合酸化物が電気的に中性を保つのに必要な酸素原子の数である。xは、A、X、Mの元素の種類にもよるが、一般に0.5<x≦2の範囲内であり、特に1<x≦2の範囲内である。
 本発明で用いる一般式(1)の組成で示される金属元素を含む複合酸化物、及び一般式(2)の複合酸化物は、正方晶又は立方晶の、固溶体であることが好ましい。これらの結晶構造は対称性が高く、結晶格子が柔軟性を有するため、元素A中のIII価の割合が変化し、酸素原子の数が変化した場合にも結晶構造を維持できる。
 例えばLa0.5Ce0.51.75のように2つの金属元素を含む二元系の担体の場合、これらの元素がランタイノド系元素の複合体の場合は、均一の固溶した固溶体となる場合が多い。そして、Ru粒子はその表面と直接接触する。Ceが還元された場合は、LaとCeはいずれも酸化物の状態で強塩基性元素であるため、Ruとの活性点が多く、アンモニア合成活性が高くなると推測される。
 一方、例えばBa0.1La0.45Ce0.45のように3つの金属元素を含む三元系の担体の場合、La、Ceと比較してBaは原子半径が大きい。この場合において、原料混合物の焼成温度が高い場合、例えば焼成温度が1000℃を超える場合は、すべての元素が均一に固溶し、ベロブスカイト型の結晶構造となる。一方、原料混合物の焼成温度が低い場合はBaは大きな元素であることから、容易には他の元素と固溶しにくい。このため、LaとCeの固溶した固溶体にBaが不均一に混合した状態の構造となり、LaとCeの固溶体の表面にBaの一部が表出する。BaはLa、Ceと比較して酸素の部分負電荷の値がより高い強塩基性元素であるため、Baが不均一に表出した担体では、BaとRuとの接触面積が増加し、活性点が増える。このため、アンモニア合成活性が高くなると推測される。
 本発明の酸素の部分負電荷を求める場合は、複合体を形成する元素のうち、(a)酸化物の状態における酸素の部分負電荷により求めて良いし、(b)複合酸化物に含まれる各元素の組成比をni(i=A、X、M、Oを含む複合酸化物中の全元素を示す)とし、各元素のサンダーソン電気陰性度をχi(i=A、X、M、Oを含む複合酸化物中の全元素を示す)としたときに、下記式(A)により求めても良い。
 ((Π(χini))^(1/Σni)―5.21)/-4.75  ・・式(A)
 本発明の複合酸化物が均一な複合酸化物を形成している場合は(b)の方法により好ましく、本発明の複合酸化物が不均一な複合酸化物を形成している場合は(a)の方法により行うことが好ましく、その場合は個別元素の酸素の部分負電荷のうち最も絶対値の大きな元素の結果が用いられる。本明細書において、複合酸化物の酸素の部分負電荷の値は、上記の(b)の方法で計算している。
 本発明の金属担持物は、本発明の複合酸化物に第4族を除く遷移金属が担持されたことを特徴とする。遷移金属としては、触媒活性が高いという観点から、Ru,Fe,Co,Ni,Rh,Pd,Os,Ir,Ptからなる群から選択される1種以上であることが好ましく、Ru及び/又はCoであることがより好ましい。遷移金属と複合酸化物との量比は、触媒活性と遷移金属のコストとを考慮して決めることができ、例えば、遷移金属の金属担持物全体に対する割合が0.1~50重量%となる範囲が好ましく、5.0~30重量%となる範囲がより好ましい。
 本発明の複合酸化物にルテニウムを担持させた金属担持物は、Hパルス化学吸着法により求めたRu分散度の値(Dads)と、TEM像から求めたRu粒子の平均粒子径から予想されるRu分散度の値(DTEM)との比が、0<Dads/DTEM<1であることが好ましい。
 Ru分散度とは、金属担持物表面に露出しているRuの原子数と、金属担持物中に含まれるすべてのRu原子数との比を表す。Ru分散度は、Ruを担持した金属担持物の水素吸着量から求めることができる。
 具体的には、1つのRu原子が1つのH原子を吸着すると仮定して、金属担持物表面に露出したRu原子数に相当する水素原子数Hと、金属担持物に担持させたRuの全原子数Ruとの比(H/Ru)が、Ru分散度である。本発明ではこの水素吸着量に基づくRu分散度をDadsと表記する。同一量(同一原子数)のRuを担持させた金属担持物を比較することで、Ru分散度の高いものほど触媒活性点数が多いと見なすことができる。
 また、Ru粒子の形態を立方体であると仮定すると、TEM観察により求めたRuの平均粒子径(d、単位はnm)を用いてRu分散度の値を幾何学的に求めることができることが知られている(文献「触媒の辞典」参照)。その計算方法は、一般式(4)で表すことができる。Ruの平均粒子径はTEM像の中から100~150点のRu粒子を無作為に抽出し、それぞれの粒子径を計測したうえでそれらを平均することで算出することができる。本発明では一般式(4)にもとづいて求めたRu分散度の値をDTEMと表記する。
     DTEM = 1.113/d      (4)
 したがって、Dads/DTEMが1を下回ることは、Ru粒子の一部、主には粒子と複合酸化物(担体)の界面付近が担体材料に被覆され、Ru粒子表面へのH原子の吸着が妨げられたことを意味する。この様な現象はStrong Metal Support Interaction(SMSI)現象として知られており、担持金属と担体の間に強力な相互作用が存在する場合に発現する。SMSIの推進力は、例えばRu/CeO2-xなどの、還元された担体の生成であると報告されている。
 前記複合酸化物に金属ルテニウムを担持してなる本発明の金属担持物において、Ruの平均粒子径は5nm以下である事が好ましい。より好ましくは3nm以下,さらに好ましくは2nm以下である。Ruの粒子径が小さいほどアンモニア合成触媒として用いた場合に活性点数が多くなるため有利である。Ruの平均粒子径の下限は、特に制限はないが、例えば0.1nm以上であり、0.5nm以上である。
 また、前記複合酸化物が金属コバルトを担持する場合、Coの平均粒子径は100nm以下である事が好ましい。より好ましくは50nm以下,さらに好ましくは30nm以下である。Coの粒子径が小さいほどアンモニア合成触媒として用いた場合に活性点数が多くなるため有利である。Coの平均粒子径の下限は、特に制限はないが、例えば0.5nm以上であり、1nm以上である。Coの場合もRuの場合と同様に、Hパルス化学吸着法により求めたCo分散度の値(Dads)と、TEM像から求めたCo粒子の平均粒子径から予想されるCo分散度の値(DTEM)との比が、0<Dads/DTEM<1であることが好ましい。
 本発明で用いる一般式(1)の複合酸化物は、Aの一部又はすべてがIII価であることと、担持している触媒Ruが平均粒子径5nm以下の微粒子である。これによって、温和なアンモニア合成条件(300~500℃、0.1~20MPa)下において、非常に高いアンモニア合成速度(例えば、350℃において、0.1MPaで13.4mmolg-1-1、あるいは1MPaで31.3mmolg-1-1)を示す。
 本発明のAの一部がIII価である複合酸化物は、Ru触媒を担持した熱的に安定な複合酸化物を高温で還元処理することにより得られる。Ruを担持したCe酸化物を還元処理する技術は、以前から知られているが、これまでは還元処理温度が500℃を超えると触媒のアンモニア合成速度が低下すると理解されていた(非特許文献1)。
 これに対して、発明者らは、Ruを担持したLa0.5Ce0.51.75が還元された状態にある金属担持物を始めとする、複合酸化物上にRuを担持した担持物のアンモニア合成速度が、500℃を超える高温での還元処理により向上し、約650℃の還元処理温度でピークに達することを見いだした。すなわち、Ceを含む複合酸化物を担体とすることで、Ceのみの酸化物を担体とした場合と比べて高活性を示す触媒が得られることを見いだした。
 なお、本明細書では、表現を簡潔にするため、「Ruを担持したLa0.5Ce0.51.75」で表される金属担持物を「Ru/La0.5Ce0.51.75」と表し、該金属酸化物が還元処理されたものを「Ru/La0.5Ce0.5」で表すことにする。他の担持物についても同様の表現を用いることにする。ここでxは、Ceの一部がIV価からIII価に還元されたことに伴い、焼成時の酸素のモル比である1.75がxに低下したことを意味している。
 例えば、CeOとLaの複合酸化物であり、従来にない650℃の高温で還元処理された本発明の複合酸化物La0.5Ce0.5は、正方晶又は立方晶の固溶体である。そして、この複合酸化物に担持されたRu触媒は、これまでに報告されている最も高活性の触媒の活性に匹敵する高いアンモニア合成活性を示す。還元温度の作用による触媒のこのような構造と状態は、走査型透過電子顕微鏡(STEM)画像処理と化学吸着量測定を含む種々の特性評価手法の組み合わせにより解明された。
 表2に示すように、Ru/La0.5Ce0.51.75を500℃で還元した金属担持物(Ru/La0.5Ce0.5)の1.0MPa及び350℃でのアンモニア合成速度は、Ru/Laを500℃で還元したもの(Ru/La)及びRu/CeOを500℃で還元したもの(Ru/CeO)よりも1.7倍以上大きかった。これは、LaとCeOとの複合酸化物を使用することによりアンモニア合成速度が上昇したことを示している。
 図1に示したように、Ru/LaについてのXRDパターンにおいては、LaOOHとLa(OH)に由来するたくさんのピークが、Laに起因する小さなピークに加えて観測された。その一方、Ru/La0.5Ce0.5のXRDパターンでは、CeOよりも小さな結晶格子を有する立方晶構造に由来するピークが観測され、LaOOHやLa(OH)等の不純物に由来する他のピークは認められなかった。これらの結果は、還元前のLa0.5Ce0.51.75複合酸化物の生成がLaへの水の吸着と、酸性の担体の結晶成長とを妨げたことを示している。実際に、La0.5Ce0.51.75を500℃で還元した複合酸化物の比表面積は47m-1であり、Ru/CeOを500℃及び650℃で還元したもののそれ(それぞれ24及び20m-1)よりはるかに大きかった。La0.5Ce0.5においてこのように比表面積が増加しているのは、恐らくは複合酸化物の表面に異なるカチオンが共存していることによる。これらの結果は、CeOとLaとの複合酸化物を用いることで、Ruの活性部位の数が増加し、そしてRu/La0.5Ce0.5を500℃で還元した金属担持物について大きなアンモニア合成速度がもたらされたことを示している。
 このように、本発明による金属担持物では、還元後の熱安定性La0.5Ce0.5が微細なRuのナノ粒子をしっかりと固定しているとともに、還元された担体と強く相互作用するRuの活性部位の数が増加しており、これらの相乗効果により高いアンモニア合成活性が得られるものと考えられる。
 図2に、異なる温度で還元後のRu/La0.5Ce0.5のHR-TEM及びEDXマッピング画像と、還元後に空気曝露した担体のTEMで観察したRu粒子径のヒストグラムを示す。また、それらの一部の特性と活性試験の結果を要約して表2に示す。
 また、表3に示すように、還元温度を500℃から650℃に上昇させても、Ru粒子の平均径はほとんど同一(1.8nm又は1.7nm)であった。ところが、還元温度を650℃から800℃へ更に上昇させると、Ru粒子径が1,7nmから2.7nmに大きくなり、比表面積が42m-1から21m-1に減少した。
 Ru分散度とは、金属担持物表面に露出しているRuの原子数と、金属担持物中に含まれるすべてのRu原子数との比を表す。表3に示す金属担持物のRu分散度は、Ruを担持した金属担持物の水素吸着量から求めたものである。具体的には、1つのRu原子が1つのH原子を吸着すると仮定して、金属担持物表面に露出したRu原子数に相当する水素原子数Hと、金属担持物に担持させたRuの全原子数Ruとの比(H/Ru)を、Ru分散度とした。金属担持物の水素吸着量は、Hパルス化学吸着法により求めることができる。本発明ではこの水素吸着量に基づくRu分散度をDadsと表記する。同一量(同一モル数)のRuを担持させた金属担持物を比較することで、Ru分散度の高いものほど触媒活性点数が多いと見なすことができる。
 表3に示したように、Dads(H/Ru)は、還元温度が500℃から800℃に上昇するにつれ0.46から0.11へと低下した。還元温度が500℃から650℃に上昇した場合には、Dadsは0.46から0.35に低下した。
 このとき、Ru粒子の形態を立方体であると仮定すると、TEM観察により求めたRuの平均粒子径(d、単位はnm)を用いてRu分散度の値を幾何学的に求めることができ、その計算方法は一般式(4)で表すことができる。平均粒子径はTEM像の中から100~150点のRu粒子を無作為に抽出し、それぞれの粒子径を計測したうえでそれらを平均することで算出することができる。本発明では一般式(4)にもとづいて求めたRu分散度の値をDTEMと表記する。
 DTEMの値を求めると、500℃還元の場合が0.62、650℃還元の場合が0.65となり、水素吸着法から求めたDadsの値よりも大きな値となった。例えば、650℃還元の場合、Dads/DTEM =0.54であった。
 これらの結果は、少なくとも650℃での還元後に、Ru粒子表面のRu原子の5割程度が担体材料により覆われたこと、すなわちSMSI現象が起きたことを示している。SMSIの推進力は、例えばRu/CeO2-xなどの、還元された担体の生成であると報告されている。
 表3に、Ru/La0.5Ce0.51.75を500℃で還元後の金属担持物Ru/La0.5Ce0.5(Ru/La0.5Ce0.5_500℃と略記)と、650℃で還元後の金属担持物Ru/La0.5Ce0.5(Ru/La0.5Ce0.5_650℃と略記)の比表面積と分散度との関係を示す。
 Ru/La0.5Ce0.51.75を還元した後の金属担持物について、Ce4+の還元(Ce4+→Ce3+)の度合いを、還元後のRu/La0.5Ce0.5への酸素(O)の吸収容量により推定すると、500℃及び650℃で還元後にそれぞれ23%及び43%であった。すなわち、この結果から、SMSIの発生と、より高い温度でその関与が強くなることとが明らかになった。さらに、800℃での還元後には、Ru粒子の焼結に加えてSMSIが目立つようになり、これはH/Ru比が0.11へと大幅に低下し、そしてCe4+の還元度が63%に増大したことにより説明される。このようにSMSIが発生すると、RuのTOF(触媒回転頻度)が上昇して、すなわち500℃還元時の0.027s-1から650℃還元時及び800℃還元時のそれぞれ0.051s-1及び0.108s-1に上昇する。これは、Ru粒子の一部がCe4+に比べて電子が富化したCe3+を含んだ還元された担体で覆われることによる。ここでの還元後の金属担持物の酸素吸収容量は、次の方法で求めた。金属担持物を60mL min-1のH流通下で500~800℃まで昇温させ、500℃で1h加熱した。Hの流通を止め、Arを30mL min-1で0.5h流通させた。その後、室温、450℃、800℃でそれぞれOパルス吸収測定を行った。
 本発明で用いるRu金属担持物は、赤外分光計で測定したときに、Ru粒子に吸着した窒素分子(14)に由来する赤外吸収ピークが2200cm-1以下に出現する。この吸収ピークは、片方のN原子がRu粒子に吸着したNの伸縮振動モードに由来するものであり、この波数以下の領域に吸収を示す金属担持物は、窒素分子内のN≡N結合を弱めている、すなわち、窒素分子の活性化を促進する機能を有することを示している。
 また、本発明で用いるRu金属担持物のうち、Ru粒子に吸着した窒素分子(14)に由来する赤外吸収ピークが1900~1700cm-1に出現するものは、窒素分子内のN≡N結合を弱める効果をもつことを示している。このため、N≡N結合の活性化が律速段階であるアンモニア合成反応に対して触媒として用いた場合には特に高い活性を示す。
 以下、赤外吸収ピークについて詳細に説明する。本発明の金属担持物においては、窒素と水素からアンモニアを合成する場合の律速段階であるとされる窒素分子の強度について赤外吸収スペクトルにより調べることができる。窒素は、本発明の担体とは相互作用するが、担持金属とは相互作用する。相互作用とは、窒素が金属に吸着されたり、配位結合をしたりすることをいう。窒素は、長軸方向で担持金属に接近し相互作用している状態においては赤外吸収スペクトル法により2300~2000cm-1の領域にν1が観測される。この領域は、C≡N、C≡Cなどの三重結合が観測される領域であり、これが原料として用いられている窒素分子による振動であることは15により確認することができる。また、窒素は担体とも相互作用することができ、低波数側の1900~1500cm-1にさらに伸縮振動が観測される。この領域は、C=C,C=O,C=N,N=Oなどの二重結合の官能基が観測される領域であり、この振動が原料として用いられている窒素分子による振動であることは15により確認することができる。発明者らは、特定のメカニズムにとらわれているわけではないが、窒素分子の空軌道に担体から電子を受け取り、結果として三重結合が弱まっている状態であることが考えられる。本発明において、伸縮振動ν1、ν2の両方が見られる場合もあるが、片方しか見られない場合もある。N≡Nの結合は、担持金属との相互作用がある場合に観測され、担体と相互作用しているものは観測されない。したがって、SMSI効果による金属の露出面積や、速度論的な問題、担体や担持金属の電子供与性などにより、観測される振動数がシフトしたり、いずれか一方しか観測されない場合の要因となる。
 Ru/La0.5Ce0.51.75について、アンモニア合成の律速段階であるN分子の活性化に及ぼす還元温度の影響を理解するために、発明者らは吸着された14の状態をFT-IR技術により調べた。Ru/La0.5Ce0.51.75を500℃及び650℃で還元処理した金属担持物に室温でNを添加後のIRスペクトルを、図3に示す。両方の触媒のIRスペクトルが、2164cm-1にピークを示し、またほぼ1700~1900cm-1に幅広のピークを示した。幅広のピークは、還元温度が500℃から650℃に上昇すると、1883cm-1からより低い波数の1844cm-1にシフトしたことが注目される。15を吸着させた場合のスペクトルでは、500℃で還元したRu/La0.5Ce0.5の吸収ピークはより低い波数(2093cm-1及び1818cm-1)へシフトした。これは、同位体効果から予測された波数(2164cm-1×(14/15)1/2=2091cm-1、及び1885cm-1×(14/15)1/2=1821cm-1)と十分一致していた。同じように、650℃で還元したRu/La0.5Ce0.5について15を吸着したスペクトルでも、同位体効果によるピークの低波数へのシフトが観測された。したがって、全てのピークは、片方のN原子がRu粒子に吸着したNの伸縮振動モードによるものであった。還元温度とは無関係に、高い方の波数2164cm-1のところに現れたピークは、還元された担体と弱く相互作用するRu原子に吸着されたNによるものであった。その一方、1700~1900cm-1のところの幅広のピークは、SMSIによって形成された還元された担体と直接相互作用するRu原子に吸着されたNによるものであった。すなわち、500℃での還元後でもSMSIが寄与することで、NのN≡N結合が弱められることが明らかになった。
 これらの結果から、本発明の金属担持物においては、該金属担持物に窒素〔14〕を吸着させた後の赤外線吸収スペクトルにおける吸収ピークの波数が2200cm-1以下であれば、N分子の活性化が促進され、触媒のアンモニア合成活性が上昇するものと推測される。さらに、1900~1700cm-1にも吸収ピークを示す触媒は特に高活性であり、2200cm-1付近の吸収ピークがあまり見られず、1900~1700cm-1のピークが特徴的に観測される場合もある。
 還元温度が650℃に更に上昇すると、SMSIが強く起こり、還元された担体から金属Ruへの電子の移動がたくさん発生し、その電子がNの反結合性π軌道に移動して、還元された担体と強く相互作用しているRu原子上のN≡N結合が更に弱められる。高波数の方のピーク面積の低波数の方のピーク面積に対する比が還元温度が500℃から650℃に増加するとともに低下する事実は、SMSIの増加とよく一致している。
 これらの結果から、金属担持物を高温で還元することにより、SMSIが誘発され、そしてTOFが上昇したが、還元された複合酸化物(担体)によってRu表面が部分的に覆われることによってRuの活性部位の数は減少した、ということが実証された。結果として、650℃での還元後には、Ruの活性部位が増えて(TOF=0.051 s-1、H/Ru=0.35)、Ru/La0.5Ce0.51.75を650℃で還元処理した金属担持物は、31.3mmolg-1-1という高いアンモニア合成速度を示した。その一方、800℃での還元後では、Ru部位は非常に活性が高い(TOF=0.108s-1)ものであるが、活性Ru部位の数が少ない(H/Ru=0.11)。そのため、Ru/La0.5Ce0.51.75を800℃で還元処理した金属担持物のアンモニア合成速度は、Ru/La0.5Ce0.51.75を650℃で還元処理した金属担持物のそれよりも小さく、21mmolg-1-1であった。比較のため、Ru/CeOを650℃で還元処理した場合には、比表面積はわずか20m-1、Ru粒子の平均径は2.7nm、H/Ruは0.17であり、Ru粒子が焼結していることが示された。それに対し、Ru/La0.5Ce0.51.75を650℃で還元処理した場合には、焼結はうまく抑制されて、触媒の高いH/Ru比が保持された。
<アンモニア合成活性に対する焼成温度・還元温度の影響>
 本発明を構成する重要な要素として、担体として用いる複合酸化物の焼成温度が挙げられる。
 本発明の触媒は、高温で水素還元前処理することによって活性化される。これは、Ru等の遷移金属が還元されるのみならず、複合酸化物中のカチオン(例えばCe4+)を還元させることで、電子供与能が高まるためである。また、この時担体の一部がRuを被覆するSMSIが発現する。
一般に還元前処理が高温であると,担体の焼結にともなう比表面積の増加、及び金属粒子径の肥大化が起き、触媒活性の低下が引き起こされる。
 La0.5Ce0.51.75を例に説明する。図4は、焼成温度が600℃のLa0.5Ce0.51.75を用い、500℃(後述する実施例69)、650℃(実施例70)、800℃(実施例71)で還元した後にアンモニア生成速度をグラフにしたものである。このグラフから、還元温度の上昇に伴いアンモニア合成活性の低下が起こり、特に800℃で還元した場合にアンモニア生成速度は大きく低下することがわかる。
 このときのH/Ru、比表面積の減少度、Ru粒子径の変化を調べた。その結果を図5に示す。還元温度が650℃から800℃に上昇した際に,比表面積が特に大きく減少していることがわかる。また、この時、Ru粒子径が増大し、Ru粒子の焼結も進んでいることが明らかとなり。H/Ruも減少していた。これは、担体の焼成温度が低く、構造の安定性が十分でない触媒を、担体の焼成温度以上の高温で還元処理したためであると考えられる。
 すなわち、還元温度が高くなるとアンモニア生成速度が低下する理由として、担体の粒子が焼結肥大化することによって比表面積が低下しRuの焼結が進んだこと、担体表面の不安定さによりSMSIが過剰に発現してRu粒子の表面が覆われ、活性点数が減少したことが考えられる。
 これに対して、焼成温度が700℃のLa0.5Ce0.51.75を用い、500℃(実施例1)、650℃(実施例2)、800℃(実施例3)で還元した後に活性を測定したところ(図4)、500℃から650℃に還元温度を上げた際、特に劇的な活性の向上が見られた。図5を参照すると、Ru粒子径は変化せず、H/Ruは低下していることから、SMSI現象の発現により担体の電子供与性が向上し、N≡Nの反結合性π軌道に電子が注入され律速段階であるNの吸着・解離が促進されたためである。
 一方、800℃で還元した場合にアンモニア生成速度が低下したが、その活性は、600℃焼成の担体を用い、800℃還元をした場合よりも高いという結果であった。この時H/Ru、比表面積の減少度、Ru粒子径の変化を調べた。
 その結果、担体の焼成温度が600℃のときと比べ、還元温度の上昇に伴う比表面積、Ru粒子径の増大は緩やかになっており、Ruの凝集も抑えられることがわかった。これは、予め高い温度で担体を焼成し、構造を安定化させておくことで、還元処理によって引き起こされるダメージを低減させるためであると考えられる。
 特に本複合酸化物では、SMSIを発現させるための高温での還元処理が触媒活性化にとって重要であり、目的の還元処理温度よりも高温で担体を焼成しておくことが好ましい。
 本発明によるRuを担持した金属担持物を触媒として用いることで、窒素と水素とを反応させてアンモニアを製造することができる。アンモニアの合成方法自体は特に限定されないが、例えば、触媒を装填した反応容器内に、水素ガスと窒素ガスとからなる原料ガスを供給することによりアンモニアを製造することができる。反応温度は、300~550℃が好ましく、より好ましくは300~500℃、更に好ましくは300~450℃である。反応圧力は、低圧である0.1~20MPaが好ましく、より好ましくは0.1~15MPa、更に好ましくは0.1~10MPaである。
 本発明によるRuを担持した金属担持物を触媒として用いる場合、アンモニア生成速度は、例えば350℃において、0.1MPaで13.4mmolg-1-1、あるいは1MPaで31.3mmolg-1-1である。これは、従来のRu系触媒で得られる収率と同等、又はそれ以上である。アンモニア合成反応は、一般に熱力学平衡によって高圧であるほどアンモニア収率が増加する傾向があるので、本発明によるアンモニア合成用触媒を用いることにより、例えば10MPa程度の高圧条件で更に高い収率が得られることが期待される。
 本発明によるCoを担持した金属担持物を触媒として用いる場合、担体となる複合酸化物にBaを含むことが、触媒活性の観点から好ましい。この組み合わせにより、Ruより安価なCoを用いても、本発明によるRuを担持した金属担持物ほどではないが、十分なアンモニア合成活性を発揮する。
<金属酸化物・金属担持物の製造方法>
 次に、本発明の複合酸化物及び金属担持物の製造方法について説明する。本発明の複合酸化物は、次の方法により製造することができる。
(a)元素Aを含むA前駆体,元素Xを含むX前駆体及び元素Mを含むM前駆体を混合して混合物を得る混合工程と、
(b)この混合物を焼成する焼成工程と、を含む。
 本発明の金属担持物は、上記(a)及び(b)で得られた複合酸化物に対して、さらに以下の方法により製造することができる。
(c)複合酸化物に遷移金属を含む化合物を担持させて還元処理前担持物を調製する担持工程と、
(d)この還元処理前担持物を還元処理する還元工程を含む。
 以下、工程(a)について説明する。工程(a)は本発明の複合酸化物の製造方法に該当する。複合酸化物は、Aを含むA前駆体、Xを含むX前駆体、必要に応じてMを含むM前駆体を混合して混合物(複合酸化物の前駆体)を得る工程である。
 複合酸化物の前駆体は沈殿法、錯体重合法などの種々の方法によって調製することができる。例えば、アンモニア、水酸化ナトリウム、水酸化セシウムなどの沈殿剤と、A、X、Mの硝酸塩,塩化物,酢酸塩,炭酸塩,硫酸塩を反応させて水酸化物を得る中和沈殿法を用いることができる。
 好ましくは、まず、複合酸化物の前駆体である複合水酸化物を、アンモニア水と硝酸塩水溶液を混合して調製する。アンモニアと硝酸塩の混合モル比は、5:1~2:1程度が好ましく、3:1程度がより好ましい。アンモニア水と硝酸塩水溶液におけるアンモニア及び硝酸塩の濃度は、それぞれ4~32モル/リットル、0.1~1モル/リットル程度が好ましく、それぞれ8~16モル/リットル、0.25~0.5モル/リットル程度であるのがより好ましい。混合は、常温で行うことができる。
 複合酸化物の前駆体はA、X、Mの元素のうち1種類以上を含むものを個別に調製し、混合することによっても得ることができる。このようにして、Aを含む化合物、Xを含む化合物、及びMを含む化合物を混合して混合物を得る。
 次に、工程(b)について説明する。本工程は、工程(a)で得られた混合物を焼成する工程である。これにより、生成した混合物(複合酸化物前駆体)を、焼成により高比表面積の複合酸化物に変える。
 焼成は、200~400℃程度の低温で、約1~10時間、400~600℃程度の中間温度で、約1~10時間、600~700℃程度の高温で、約1~10時間行うのが好ましい。最終工程の焼成温度としては700℃が最も好ましい。この焼成は、空気中や、不活性ガスとの酸素の混合ガスなど、酸素を含む雰囲気下であれば任意の酸素濃度下で行うことができる。
 以下、工程(c)について説明する。工程(c)では、工程(b)で得られた複合酸化物を、ルテニウム供給源を溶解させた溶媒とともに撹拌することによって、ルテニウム供給源を複合酸化物に含浸させた後、加熱による溶媒の除去とこれに続くルテニウム供給源の分解を行うことで、複合酸化物担体上にルテニウムが微細な粒子状に担持された還元処理前担持物が得られる。
 ルテニウム供給源としては、Ruを含有する種々の化合物を使用することができる。好ましくは、トリルテニウムドデカカルボニルやルテニウムアセチルアセトナトなどの有機金属化合物を用いることができる。複合酸化物にルテニウムを担持させることができるこれ以外のルテニウム供給源、例えば塩化ルテニウムやニトロシル硝酸ルテニウムなどを使用することも可能である。
 トリルテニウムドデカカルボニルのような有機金属化合物をルテニウム供給源として使用する場合は、溶媒としては有機溶媒を使用するのが有利である。有機溶媒の例として、テトラヒドロフラン(THF)、メタノール、エタノール、ヘキサン、トルエンなどを挙げることができる。これらの溶媒は一般的な市販品であれば特に前処理を行わなくとも使用できるが,精製、脱水等を行ったものを使用することがより好ましい。溶媒1リットルに対する複合酸化物とルテニウム供給源の固形分濃度は、一般にそれぞれ1~30g/リットル、0.1~3g/リットル程度が好ましく、それぞれ10~30g/リットル、0.1~0.3g/リットル程度であるのがより好ましい。撹拌は、常温で行うことができ、撹拌時間は1~24時間が好ましく、6~12時間がより好ましい。溶媒の除去は種々の方法による加熱によって行うことができるが、例えばエバポレーターなどを利用した減圧、低温の雰囲気で行うことが好ましい。ルテニウム供給源の分解は、不活性雰囲気、例えばヘリウム、アルゴン又は窒素雰囲気中での加熱によっておこなう。水素を含む雰囲気中でも実施することができる。加熱は、200~600℃程度の温度で約1~12時間行う。より好ましい加熱温度は300~500℃程度、より好ましい加熱時間は約3~6時間である。
 以下、工程(d)について説明する。次に、こうして得られた還元処理前担持物に対して還元処理する。還元処理は、担体である複合酸化物に含まれるIV価の金属元素の還元、Ruなどの遷移金属の還元、後述する炭酸塩の破壊のための還元などを目的として行う。還元温度は、400℃~800℃であり、600~700℃が好ましい。還元温度が500℃超の高温の場合は通常は、還元時間は10分から40時間であり、30分~5時間程度が好ましい。還元温度が低温の場合は、還元時間は48時間から120時間であり、60時間から100時間が好ましい。還元処理は、水素ガスなどの還元性ガスの存在下で行われる。
 強塩基性のBaを含む場合、BaOは空気中の二酸化炭素等と反応し、容易に炭酸バリウム(Ba(CO))や水酸化バリウム(Ba(OH)))を形成することが知られている。この様に炭酸塩や水酸化物を形成するとBaOの酸素の部分負電荷が著しく減少し、高い塩基性を得られなくなる。そのため、高いアンモニア合成活性を発現するためには、適切な処理によってこの炭酸塩や水酸化物を破壊する必要がある。たとえば、炭酸Baを破壊してBaOにする方法としては、水素ガス流通下での加熱処理(還元処理)が有効である。この反応は、下記の式で表される。
   BaCO + 4H → BaO +CH + 2H
 水素雰囲気下で触媒を加熱することによって担持された金属種の表面で水素の解離がおこり、還元力の強い水素種が発生する。この水素種が作用することによって炭酸Baが破壊されBaOへと変化する。
 炭酸Baを破壊する方法としては、550℃以上の温度で1h程度、水素流通下で触媒を保持することで、炭酸Baを破壊することができる。好ましい条件としては600℃から800℃程度である。
 また,低温で長時間、水素流通下で触媒を保持することでも炭酸Baを破壊することができる。好ましい条件としては500℃で48時間程度、450℃で72時間程度、400℃で120時間以上である。
 この様な方法を用いることでBaの炭酸塩を破壊することができる。Baの塩基特性を発現させるためには、炭酸塩として存在するBaの割合をできるだけ下げることが望ましい。触媒中に炭酸塩として存在するBaの割合として、触媒に含まれるBa全体の量に対して、好ましくは10mol%以下であり、より好ましくは1mol%以下であり、更に好ましくは0.1mol%以下であり、特に好ましくは0.01mol%以下である。
 焼成工程での焼成温度としては、700~800oCが最も好ましい。この工程の焼成温度が低すぎると、還元処理時に担体及び活性金属の過度な焼結が進み、粒子径が大きくなることで活性点数が減少して触媒性能が低下する。
 一方、この工程の焼成温度が高すぎると、担体の比表面積が小さくなるため、活性金属の分散状態が悪く、粒子径が大きくなることで活性点数が減少して、触媒性能が低下する。
 焼成温度と還元温度の関係について、上記のように、アンモニア合成活性の観点から、還元処理温度よりも高い温度で担体を焼成することが好ましい。
 こうして得られた本発明による金属担持物は、アンモニア合成用触媒に用いられてきたこれまでの金属担持物に比べ、取り扱いやすさと反応中の安定性が良好である。
 たとえば、Y. Inoue, M. Kitano, K. Kishida, H. Abe, Y. Niwa, M. Sasase, Y. Fujita, H. Ishikawa, T. Yokoyama, M. Hara, H. Hosono, ACS Catal., (2016) 7577-7584には、Ru/Ca(NHが高活性触媒として記載されているが、構成成分であるアミド化合物は大気中の水分や酸素と容易に反応することが知られている。製造工程も複雑であり,工業触媒として取り扱うのは非常に困難であると推察される。
 なお、複合酸化物中にBaなどが含まれる場合、製造時に触媒が酸化状態であっても、大気に晒すとCOを吸収して炭酸塩となりやすい。このため、上記の還元処理によって炭酸Baを分解した後は、触媒の使用までCOにさらさないようにとり扱う必要があり、例えば不活性ガスなどを充填した容器に触媒を密封するなどして保存することが好ましい。また、担体が炭酸塩になった場合は水素化して分解することで、炭酸塩を低減させてアンモニア合成活性を回復させることができる。
 また、既報の酸化物担持ルテニウム触媒、例えばRu/MgOは、アンモニア合成活性を高めるためにCsなどのアルカリ金属を添加する必要があり、このアルカリ金属が反応中に融点の水酸化物へと変化することで反応管の腐食を引き起こすことが懸念されている(J. G. van Ommen, W. J. Bolink, J. Prasad and P. Mars, J. Catal., 1975, 38, 120-127)。
 さらに、一部のプロセスで工業的に利用されているBa-Ru/活性炭触媒は、担体の活性炭が反応中に徐々にメタン化することで活性が低下することが報告されている(B. Lin, Y. Guo, J. Lin, J. Ni, J. Lin, L. Jiang, Y. Wang, Appl. Catal., A, 541 (2017) 1-7)。
 合成反応器に装填して触媒として用いられる金属担持物は、定期的な交換が不可避であり、また長期間に渡って使用されると想定されることから、取扱いが容易で安定性に優れた金属担持物が求められる。本発明の金属担持物は、この点において有利である。
 次に、実施例により本発明を更に説明する。言うまでもなく、本発明はこれらの実施例に限定されない。
<アンモニア合成活性の測定>
 固定床流通式反応装置で金属担持物のアンモニア合成活性の測定を行った。実施例及び比較例記載の方法で前処理した金属担持物にArを流通させながら300℃になるまで放冷させた。金属担持物層の温度を300℃に保ちながら、Arを供給しながら反応管出口の背圧弁によって圧力を1.0MPaあるいは3.0MPaまで加圧した。Arの封入を止め、圧力を保ちながらH、Nをそれぞれ90mL min-1、30mL min-1(空間速度72L h-1 g-1)で流通させ、反応雰囲気へと移行させた。NH合成活性の高さに応じて1~100mM(1,5,10,25,100mM)の硫酸水溶液200mLを、電気伝導度計を接続した三口フラスコに加え、反応管出口から流出する水素(純度、99.995%、福岡酸素製)、窒素(純度、99.995%、福岡酸素製)、NHを含む混合ガスを硫酸水溶液にバブリングさせた。また、水分や酸素などの不純物を除去する場合にはガス精製器(ガス精製フィルターMC50-904F、SAES社製)を用い、純度99.99999999以上とした。このとき、NHと硫酸の反応によっておきる電導度の変化を測定することで、出口ガス中に含まれるアンモニア生成量を定量した。次に金属担持物層の温度を350℃、あるいは400℃になるまで昇温を行った。金属担持物層の温度が350℃、あるいは400℃で安定したら、10分放置し、アンモニア生成量を前記と同様の方法で定量した。
<粉末X線回折>
 SmartLab x-ray diffractometer(リガク)により金属担持物(触媒)の粉末X線回折パターンを測定した。
<比表面積測定>
 金属担持物の比表面積は、BEL-sorp mini(日本ベル)を用いて、77Kにおける窒素吸着量からBET法により求めた。測定前には前処理として300℃の真空加熱を2時間行った。
<赤外吸収スペクトル測定>
 赤外吸収スペクトルは、高速フーリエ変換型の赤外分光光度計(FT/IR-6600、日本分光)を用いて測定した。80kPaのHを封入したガラスセルに直径10mmのディスク状に成形した触媒をいれ、Hを循環させながら500℃に加熱した。室温まで放冷後、セルを真空に引き、赤外吸収スペクトルを測定してこれをバックグラウンドとした。その後1415をそれぞれ8kPa導入して触媒に吸着させ、赤外吸収スペクトルを測定して、バックグラウンドとの差スペクトルを求めた。
<透過電子顕微鏡像観察>
 高角散乱環状暗視野走査型透過電子顕微鏡(HAADF-STEM)像及び高解像度走査型透過電子顕微鏡(HR-STEM)像をJEM-ARM200F原子分解能顕微鏡(日本電子)によって得た。観察用のサンプルは、金属担持物を500℃もしくは650℃で水素還元したものを大気下で粉砕、エタノール水溶液に分散させたものを銅製のグリッドに滴下、乾燥させることで作製した。
<Ru分散度測定>
 金属担持物のRu分散度をHパルス化学吸着法により求めた。金属担持物を60mL min-1のH流通下で500~800℃まで昇温させ、1hの還元処理を行った。Hの流通を止め、Arを30mL min-1で0.5h流通させた。その後、-74℃に冷やして所定量のHをパルス状に供給し、金属担持物の吸着に由来する水素の減少量を測定した。
<触媒還元量測定>
 触媒の還元量はOパルス吸収量から求めた。触媒を60mL min-1のH流通下で500~800℃まで昇温させ、500℃で1h加熱した。Hの流通を止め、Arを30mL min-1で0.5h流通させた。その後、室温、450℃,800℃でそれぞれ所定量のOをパルス状に供給し、触媒の酸化に由来するOの吸収量、すなわち、金属状態のRuがRuOへと酸化される消費されるO量と、Ce3+がCe4+へと酸化される際に必要とするOの量を測定した。なお、ここでは金属状態のRuがRuOに酸化されるものと想定し、Ruの酸化に消費されるOの量を差し引いた値を、担体の複合酸化物が吸収したO量とした。このO吸収量を換算することでCe4+の還元度合い(すなわち、Ce3+の割合)を求めた。
 なお、同様の方法によって、Ce以外の+3価と+4価の価数変化が起きうる元素、たとえばPrやTbなどの、Pr4+やTb4+の還元度合いを求めることが可能である。
<酸素の部分負電荷>
 複合酸化物(担体)に含まれる酸素の部分負電荷を計算により算出した。まず、担体に含まれる酸素以外のそれぞれの元素(Mg、Ba、Zr、La、Ce、Pr)の組成比を、これらの元素の組成の合計が1となるように決める。たとえば、Ru/Ba0.1La0.45Ce0.45の場合、各元素の組成比は、Ba=0.1、La=0.45、Ce=0.45である。酸素はO=1.675(BaをII価、LaをIII価、Ceは完全に還元された状態であるIII価と完全に酸化された状態であるIV価の間)としてあつかう。この値をni(i=Mg、Ba、Zr、La、Ce、Pr、O)とする。
 次に、それぞれの元素(Mg、Ba、Zr、La、Ce、Pr、C、O)の電気陰性度χiの値を決める。電気陰性度の値は、サンダーソン 「無機化学(上)」 廣川書店(1967年)第122頁の表6、表7の値を使用した(この電気陰性度を「サンダーソン電気陰性度」という)。
 次に、電気陰性度の幾何平均を求める。これは、式(Π(χi^ni))^(1/(Σni))によって算出する。
 続いて、担体中の酸素の電気陰性度の変化を求める。これは、複合酸化物の電気陰性度の幾何平均と酸素の電気陰性度(5.21)との差で算出する。なお、電気陰性度の幾何平均は原子の価数変動にともなう酸化物の組成変化によって変化する。このため、PrやCeなどの価数可変元素を含む金属酸化物については、それぞれの価数の元素が含まれる割合が定量できている場合とそうでない場合とで計算方法を変更した。具体的には、それぞれの価数の元素が含まれる割合が定量できている場合は、その割合に応じて電気陰性度を算出した。一方、価数可変元素のそれぞれの価数の元素が含まれる割合が定量できていない場合、元素が完全に酸化された場合と、完全に還元された場合を独立に計算した。さらに、強塩基性のBaが含まれている場合は、Baが大気中の二酸化炭素と反応してBaCOとなる可能性を想定し、これを酸素の部分負電荷がもっとも小さくなる場合とした。
 最後に、担体酸素の部分負電荷「-δ」を求める。これは、酸素の電気陰性度の変化を「-4.75」で割った値である。この-4.75は、酸素1原子が1つの電子を取得した場合の電気陰性度の変化であり、値は上記のサンダースン「無機化学(上)」 の表6、表7から抜粋した。数値に範囲があるものは、価数可変元素のそれぞれの価数の元素が含まれる割合が定量できていない場合であり、数値の小さい方が全く還元されない場合、数値の大きい方が完全に還元された場合を示す。-δは担体酸素の部分負電荷に相当する。この値と触媒のNH合成活性に相関が見られる。
(実施例1)
<Ru/Ce0.5La0.5_500℃還元>
<複合酸化物の調製>
 Ce0.5La0.5複合酸化物は逆均一沈殿法を用いて次のように合成した。La(NO・6HO(和光純薬工業)を精製水(高杉製薬)に溶解させ、La(NO水溶液とした。Ce(NO・6HO(関東化学)を精製水に溶解させ、Ce(NO水溶液とした。La(NO水溶液とCe(NO水溶液を混合し、LaとCeを合計0.0625mol含む担体前駆体溶液を250mL調製した。28%NH水溶液(和光純薬工業)を1000mLビーカーに250mL加え、マグネッティクスターラで320rpmで攪拌しながら、上記担体前駆体溶液を一気に加え、攪拌を1時間続けた。その後30分静置し、上澄み液を350mL取り除き、イオン交換水を350mL加えた後、30分攪拌をおこなった。一連の操作を4回行い、沈殿をろ過し、オーブンを用いて80℃で15時間乾燥させた。乾燥後の沈殿を乳鉢で粉砕し、得られた粉体を電気炉を用いて700℃で5時間、大気雰囲気下で加熱することでCe0.5La0.51.75を得た。
<Ruの担持>
 含浸法によりCe0.5La0.5に対してRu担持を行った。Ru前駆体であるRu(CO)12(フルヤ金属)が溶解したテトラヒドロフラン(THF)(和光純薬工業)溶液を200mLナスフラスコに調製し、ここに担体を5g加え、攪拌を18時間以上行った。なお、使用するRu(CO)12と担体の量は、アルゴン雰囲気下で加熱した後の触媒中に含まれるRuの量が5重量%になるように適宜調節した。撹拌後の懸濁液をロータリーエバポレーターを用いて35℃、0.3atmの条件で減圧乾固を行った後、オーブンを用いて80℃で18時間乾燥させた。得られた粉体を500℃で5時間、25mL min-1のアルゴン流通下で管状電気炉を用いて加熱することにより、前駆体中のカルボニル配位子を除去した。以上の操作によりRu/Ce0.5La0.5金属担持物を得た。
<水素還元前処理>
 上記で得たRu/Ce0.5La0.51.75に対して以下の方法で水素還元前処理(単に「前処理」ともいう。)処理を行い、Ceの一部をIII価に変化させた。金属担持物の粉体を20MPaで5min加圧してディスクを作製した後、このディスクを乳鉢で粉砕し、篩で分級してペレットを作製した。ペレットの大きさは直径で250~500μmに調整した。ペレット100mgを用い、直径7mmのインコネル(商標)製触媒反応管に充填し、触媒層の前後を石英ウールで固定した。この反応管をアンモニア合成活性測定用の固定床流通式反応装置に設置し、ペレットを充填した反応管に60mL min-1のHを流通させ、500℃で1h加熱し、Ru/Ce0.5La0.5_500℃還元を得た。
(実施例2)
<Ru/Ce0.5La0.5_650℃還元>
 実施例1において、前処理の保持温度を650℃とした以外は実施例1と同じ操作を行い、Ru/Ce0.5La0.5_650℃還元を得た。
(実施例3)
<Ru/Ce0.5La0.5_800℃還元>
 実施例1において、前処理の保持温度を800℃とした以外は実施例1と同じ操作を行いRu/Ce0.5La0.5_800℃還元を得た。
(実施例4)
<Ru/Ce0.5Zr0.5_700℃還元>
<複合酸化物>
 Ce0.5Zr0.5は逆均一沈殿法で以下のとおりに合成した。ZrO(NO・2HO(和光純薬工業)を精製水に溶解させ、ZrO(NO水溶液とした。Ce(NO・6HO(関東化学)を精製水に溶解させ、Ce(NO水溶液とした。La(NO水溶液とCe(NO水溶液を混合し、ZrとCeを合計0.15mol含む担体前駆体溶液を300mL調製した。28%NH水(和光純薬工業)を1000mLビーカーに300mL加え、マグネッティクスターラで320rpmで攪拌しながら、上記担体前駆体溶液をポンプを用いて毎分2mLで滴下、攪拌を18時間続けた。その後1時間静置しろ過を行った。ろ紙に残った泥漿に800mLのイオン交換水を加え、2h攪拌、1時間静置した。これを3回繰り返し、得られた泥漿をオーブンを用いて80℃で15時間乾燥させた。その後、乾燥した粉体を700℃で5時間大気雰囲気下で加熱することでCe0.5Zr0.5を得た。
<Ruの担持>
 Ruの担持は実施例1と同様の操作によりRu/Ce0.5Zr0.5金属担持物を得た。
<水素還元前処理>
 実施例1において、保持温度を700℃とした以外は実施例1と同じ操作を行い、Ru/Ce0.5Zr0.51.75_700℃還元を得た。
(実施例5)
<Ru/Pr0.5La0.5_600℃還元>
<複合酸化物>
 Pr0.5La0.51.675は逆均一沈殿法を用いて次のように合成した。La(NO・6HO(和光純薬工業)を精製水に溶解させ、La(NO水溶液とした。Pr(NO・6HO(関東化学)を精製水に溶解させ、Pr(NO水溶液とした。La(NO水溶液とPr(NO水溶液を混合し、LaとPrを合計0.0625mol含む担体前駆体溶液を250mL調製した。28%NH水溶液(和光純薬工業)を1000mLビーカーに250mL加え、マグネッティクスターラで320rpmで攪拌しながら、上記担体前駆体溶液を一気に加え、攪拌を11h行った。その後30分静置し、上澄み液を350mL取り除き、イオン交換水を350mL加えた後、30分の攪拌を6回行い、沈殿をろ過し、オーブンを用いて80℃で15時間乾燥させた。乾燥後の沈殿を乳鉢で粉砕し、得られた粉体を電気炉を用いて700℃で5h大気雰囲気下で加熱することでPr0.5La0.51.675を得た。
<Ruの担持>
 Ruの担持は実施例1と同様の方法により、Ru/Pr0.5La0.5金属担持物を得た。
<水素還元前処理>
 実施例1において、前処理の保持温度を600℃とした以外は実施例1と同じ操作により、Ru/Pr0.5La0.5_800℃還元を得た。
(実施例6)
<Ru/Ba0.1La0.45Ce0.45_650℃還元>
<複合酸化物の調製>
 Ba0.1La0.45Ce0.451.675は逆均一沈殿法を用いて次のように合成した。La(NO・6HO(和光純薬工業)を精製水に溶解させ、La(NO水溶液とした。Ce(NO・6HO(関東化学)を精製水に溶解させ、Ce(NO水溶液とした。Ba(NO・6HO(和光純薬工業)を精製水に溶解させ、 Ba(NO水溶液とした。La(NO水溶液とCe(NO水溶液、 Ba(NO水溶液を混合し、LaとCeとBaを合計0.0625mol含む担体前駆体溶液を250mL調製した。28%NH水溶液(和光純薬工業)を1000mLビーカーに250mL加え、マグネッティクスターラで320rpmで攪拌しながら、上記担体前駆体溶液を一気に加え、攪拌を1時間行った。その後12時間静置し、吸引ろ過によって沈殿物(1)を分離した。分離したろ液は2Lビーカーに回収した。分離した沈殿物(1)にイオン交換水350mLを加え、30分間撹拌して沈殿を洗浄し、吸引ろ過によって沈殿物(1)を分離した。この洗浄の操作を3回おこなった。洗浄に使用したイオン交換水はすべて回収し、ろ液と洗浄液を2Lビーカーに加えて混合した.この混合溶液を12時間放置することで白色の沈殿物(2)を発生させ、発生した沈殿物(2)は吸引ろ過によって回収した。沈殿物(1)と沈殿物(2)を混合し、オーブンを用いて80℃で15時間乾燥させた。乾燥後の沈殿を乳鉢で粉砕し、得られた粉体を電気炉を用いて700℃で5h大気雰囲気下で加熱することでBa0.1La0.45Ce0.451.675を得た。
<Ruの担持>
 Ruの担持は実施例1と同様の操作により、Ru/Ba0.1La0.45Ce0.45金属担持物を得た。
<水素還元前処理>
 実施例1において、前処理の保持温度を650℃とした以外は実施例1と同様の操作によりRu/Ba0.1La0.45Ce0.45_650℃還元を得た。
(実施例7)
<Ru/Ba0.1Pr0.45Ce0.45_650℃還元>
<複合酸化物の調製>
 実施例6において、La(NO水溶液を用いる代わりにPr(NO・6HO(和光純薬工業)を精製水に溶解させ、Pr(NO水溶液として用いた以外は、実施例6と同様に水溶液を混合した。そして、PrとCeとBaを合計0.0625mol含む担体前駆体溶液を250mL調製し、さらに同様の操作を行ないBa0.1Pr0.45Ce0.451.9を得た。
<Ruの担持>
 Ruの担持は実施例1と同様の操作により、Ru/Ba0.1Pr0.45Ce0.451.9金属担持物を得た。
<水素還元前処理>
 実施例1において、前処理の保持温度を650℃とした以外は実施例1と同様の操作によりRu/Ba0.1Pr0.45Ce0.45_650℃還元を得た。
(実施例8)
<Ru/Ba0.3Pr0.35Ce0.35_650℃還元>
<複合酸化物の調製>
 PrとCeとBaを合計0.0625mol含む担体前駆体溶液を250mL調製した以外は、実施例6と同様な操作により、Ba0.3Pr0.35Ce0.351.7を得た。
<Ruの担持>
 Ruの担持は実施例1と同様の操作を行い、Ru/Ba0.3Pr0.35Ce0.351.7金属担持物を得た。
<水素還元前処理>
 実施例1において、前処理の保持温度を650℃とした以外は実施例1と同様の操作によりRu/Ba0.3Pr0.35Ce0.35_650℃還元を得た。
(実施例9)
<Ru/La0.5Pr0.5_650℃還元>
<複合酸化物の調製>
 実施例1において、Ce(NO水溶液を用いる代わりに、Pr(NO・6HO(和光純薬工業)を精製水に溶解させ、Pr(NO水溶液として用いた以外は、実施例1と同様に水溶液を混合した。そして、LaとPrを合計0.0625mol含む担体前駆体溶液を250mL調製し、さらに同様の操作を行ないLa0.5Pr0.51.75を得た。
<Ruの担持>
 Ruの担持は実施例1と同様の操作により、Ru/La0.5Pr0.51.75金属担持物を得た。
<水素還元前処理>
 実施例1において、前処理の保持温度を650℃とした以外は実施例1と同様の操作によりRu/La0.5Pr0.5_650℃還元を得た。
(実施例10)
<Co/Ba0.3Ce0.35Pr0.35_650℃還元>
<複合酸化物の調製>
 実施例6において、La(NO水溶液を用いる代わりに、Pr(NO・6HO(和光純薬工業)を精製水に溶解させ、Pr(NO水溶液として用いた以外は、実施例6と同様に水溶液を混合した。そして、PrとCeとBaを合計0.0625mol含む担体前駆体溶液を250mL調製し、さらに同様の操作を行ないBa0.3Ce0.35Pr0.351.7を得た。
<Coの担持>
 Coの担持は蒸発乾固法によっておこなった。Co前駆体としてCo(NO・6HO(和光純薬)を使用し、精製水に溶解して250mLの水溶液を調製した。ここに、Ba0.3Ce0.35Pr0.35をくわえ、12時間撹拌したのち、ホットスターラーを用いて水溶液を加熱しながら撹拌し、水分を除去した。なお、使用するCo(NO・6HOと担体の量は、空気雰囲気下で加熱した後の触媒中に含まれるCoの量が10重量%になるように適宜調節した。乾燥した粉末を回収し、70℃の乾燥機で12時間乾燥した。その後、300mL min-1の空気流通下で、500℃、5時間保持することで、硝酸塩の除去を行い、Co/Ba0.3Ce0.35Pr0.351.7を得た。
<水素還元前処理>
 実施例1において、前処理の保持温度を650℃とした以外は実施例1と同様の操作によりCo/Ba0.3Ce0.35Pr0.35_650℃還元を得た。
(実施例11)
<Co/Ba0.3Ce0.35Pr0.35_650℃還元>
 実施例10において、Co前駆体を倍量とした以外は実施例10と同様の操作によりCo/Ba0.3Ce0.35Pr0.35_650℃還元を得た。
(実施例12)
<Co/Ba0.3Ce0.35Pr0.35_500℃還元>
<水素還元前処理>
 実施例10において、前処理の保持温度を500℃とした以外は実施例10と同様の操作によりCo/Ba0.3Ce0.35Pr0.35_500℃還元を得た。
(実施例13)
<Co/Ba0.3Ce0.35Pr0.35_600℃還元>
<水素還元前処理>
 実施例10において、前処理の保持温度を600℃とした以外は実施例10と同様の操作によりCo/Ba0.3Ce0.35Pr0.35_600℃還元を得た。
(実施例14)
<Co/Ba0.3Ce0.35Pr0.35_700℃還元>
<水素還元前処理>
 実施例10において、前処理の保持温度を700℃とした以外は実施例10と同様の操作によりCo/Ba0.3Ce0.35Pr0.35_700℃還元を得た。
(実施例15)
<Co/Ba0.3Ce0.35Pr0.35_750℃還元>
<水素還元前処理>
 実施例10において、前処理の保持温度を750℃とした以外は実施例10と同様の操作によりCo/Ba0.3Ce0.35Pr0.35_750℃還元を得た。
(実施例17)
<Co/Ba0.3Ce0.35Pr0.35_700℃還元>
<複合酸化物の調製・水素還元前処理>
 実施例10において、Co前駆体を倍量とし、前処理の保持温度を700℃とした以外は実施例10と同様の操作によりCo/Ba0.3Ce0.35Pr0.35_700℃還元を得た。
(実施例18)
<Co/Ba0.3Ce0.35Pr0.35_650℃還元>
<水素還元前処理>
 実施例10において、Co前駆体を3倍量とし、前処理の保持温度を650℃とした以外は実施例10と同様の操作によりCo/Ba0.3Ce0.35Pr0.35_650℃還元を得た。
(実施例19)
<Co/Ba0.3La0.35Pr0.35_650℃還元>
<水素還元前処理>
 実施例10において、Ce(NO水溶液を用いる代わりに、La(NO・6HO(和光純薬工業)を精製水に溶解させ、La(NO水溶液として用い、Co前駆体を倍量とし、前処理の保持温度を650℃とした以外は実施例10と同様の操作によりCo/Ba0.3Ce0.35Pr0.35_650℃還元を得た。
(実施例20)
<Ru/Ba0.1La0.45Ce0.45_500℃還元>
<複合酸化物の調製>
 La(NO・6HO(和光純薬工業)を精製水に溶解させ、La(NO水溶液とした。Ce(NO・6HO(関東化学)を精製水に溶解させ、Ce(NO水溶液とした。La(NO水溶液とCe(NO水溶液を混合し、LaとCeを合計0.0625mol含む担体前駆体溶液を250mL調製した。28%NH水溶液(和光純薬工業)を1000mLビーカーに250mL加え、マグネッティクスターラで320rpmで攪拌しながら、上記担体前駆体溶液を一気に加え、攪拌を1時間行った。その後30分静置し、上澄み液を350mL取り除き、イオン交換水を350mL加えた後、30分攪拌を4回行い、沈殿物をろ過した。Ba(OH)(和光純薬工業)を精製水に溶解させ、Ba(OH)水溶液とした。このBa(OH)水溶液に沈殿物を加え、マグネティックスターラーで5分撹拌した。撹拌後の懸濁液をロータリーエバポレーターを用いて35℃、0.3atmの条件で減圧乾固を行った後、オーブンを用いて80℃で15時間乾燥させた。乾燥後の沈殿を乳鉢で粉砕し、得られた粉体を電気炉を用いて700℃で5h大気雰囲気下で加熱することでBa0.1La0.45Ce0.451.675を得た。
<Ruの担持>
 Ruの担持は実施例6と同様の操作により、Ru/Ba0.1La0.45Ce0.451.675金属担持物を得た。
<水素還元前処理>
 実施例6において、前処理の保持温度を500℃とした以外は実施例6と同様の操作によりRu/Ba0.1La0.45Ce0.45_500℃還元を得た。
(実施例21)
<Ru/Ba0.1La0.45Ce0.45_600℃還元>
<水素還元前処理>
 実施例20において、前処理の保持温度を600℃とした以外は実施例20と同様の操作によりRu/Ba0.1La0.45Ce0.45_600℃還元を得た。
(実施例22)
<Ru/Ba0.1La0.45Ce0.45_650℃還元>
<水素還元前処理>
 実施例20において、前処理の保持温度を650℃とした以外は実施例20と同様の操作によりRu/Ba0.1La0.45Ce0.45_650℃還元を得た。
(実施例23)
<Ru/Ba0.1La0.45Ce0.45_700℃還元>
<水素還元前処理>
 実施例20において、前処理の保持温度を700℃とした以外は実施例20と同様の操作によりRu/Ba0.1La0.45Ce0.45_700℃還元を得た。
(実施例24)
<Ru/Ba0.1La0.45Ce0.45_750℃還元>
<水素還元前処理>
 実施例20において、前処理の保持温度を750℃とした以外は実施例20と同様の操作によりRu/Ba0.1La0.45Ce0.45_750℃還元を得た。
(比較例1)
<従来法で調製したRu/Ce0.9La0.1_450℃還元>
 比較例として、非特許文献2に記載されている方法で、触媒を調製した。具体的には、まず、RuCl/3HO、Ce(NO/6HO、La(NO/6HOを水溶液に溶解させ、合計300mLの混合水溶液を調製した。ここに過酸化水素水を加え、HとCe3+のモル比が1:3となるように混合した。この混合水溶液を60℃に保ちながら30分間撹拌し、KOHの水溶液を徐々に添加して沈殿物を析出させたのち、更に60分間の撹拌をおこなった。その後、沈殿を含む混合溶液を室温まで冷却し、沈殿物を遠心分離法で分離させた。分離した沈殿はイオン交換水で洗浄したのち、120℃で24時間乾燥させた。前処理時に反応管に45mL min-1のHと15mL min-1のNを同時に流通させ、保持温度を450℃とした以外は実施例1と同様の操作により、従来法で調製したRu/Ce0.9La0.1_450℃還元を得た。
(比較例2)
<従来法で調製したRu/Ce0.9La0.1_500℃還元>
 比較例1において、前処理の保持温度を500℃とした以外は比較例1と同様の操作により、従来法で調製したRu/Ce0.9La0.1_500℃還元を得た。
 各実施例、比較例で得られた金属担持物についてのアンモニア合成活性を調べた。その結果を表2~表3に示す。また、各複合酸化物の物性を測定した結果を表4に示す。なお、表中でガス精製器使用の有無が「○」となっている場合は、反応ガスを予めSAES社製のガス精製フィルター(MC50-904F)で処理し、HO、Oなどの不純物を100ppt未満まで低減させた後に供給した。
[規則26に基づく補充 09.11.2018] 
Figure WO-DOC-TABLE-2
[規則26に基づく補充 09.11.2018] 
Figure WO-DOC-TABLE-3
[規則26に基づく補充 09.11.2018] 
Figure WO-DOC-TABLE-4
 この結果から、実施例と比較例とを比べると、高い温度での焼成を行っておらず、かつIII価の割合が少ない比較例では、アンモニア合成活性(アンモニア収率とアンモニア生成速度)に劣ることがわかった。
 なお、非特許文献2に記載の方法で調製した比較例1と比較例2の触媒は、触媒還元量測定によるとIII価のCeの割合が、それぞれ5%、7%である。なお、非特許文献2では複合酸化物中のIII価のCeの割合をX線光電子分光分析によって求めているが、X線光電子分光法は原理上X線の侵入する事ができる原子数層程度のごく表面のみしか分析することができない。通常、触媒の還元はもっぱら還元剤(例えば本発明で用いる水素ガス)との接触の問題で触媒粒子の表面付近から進行する。したがって、非特許文献2に記載の値は表面におけるIII価のCeの割合のみを評価しており、触媒全体でみた場合はIII価のCeの割合を過剰に評価していると考えられる。
(実施例25)
<Ru/Ba0.1La0.45Ce0.45_800℃還元>
 実施例20において、前処理の保持温度を800℃とした以外は実施例20と同様の操作によりRu/Ba0.1La0.45Ce0.45_800℃還元を得た。
(実施例26)
<Ru/Ba0.05La0.475Ce0.475_700℃還元>
 実施例20において、Ba前駆体を半量とした以外は実施例20と同様の操作により、Ru/Ba0.1La0.45Ce0.45_700℃還元を得た。
(実施例27)
<Ru/Ba0.15La0.42.5Ce0.425_700℃還元>
 実施例20において、Ba前駆体を1.5倍量とした以外は実施例20と同様の操作により、Ru/Ba0.15La0.42.5Ce0.425_700℃還元を得た。
(実施例28)
<10mol%Ba/Ru/La0.5Ce0.5_700℃還元>
<触媒の調製>
 実施例1に記載の方法でRu/Ce0.5La0.5を調製したのち、原料としてBa(NO・6HOを用いて、Ruに対して10mol%の量になるように、蒸発乾固法にてBaを担持した。さらに、前処理の保持温度を700℃とした以外は実施例1と同じ操作を行い、10mol%Ba/Ru/La0.5Ce0.5_700℃還元を得た。
<水素還元前処理>
 実施例1において、前処理の保持温度を700℃とした以外は実施例1と同じ操作を行い、10mol%Ba/Ru/La0.5Ce0.5_700℃還元を得た。
(実施例29)
<10mol%Ba/Ru/La0.5Ce0.5_500℃還元>
 実施例28において、原料としてBa(NO・6HOではなくBa(OH)を使用し、前処理の保持温度を500℃とした以外は実施例28と同様の操作により10mol%Ba/Ru/La0.5Ce0.5_500℃還元を得た。
(実施例30)
<10mol%Ba/Ru/La0.5Ce0.5_650℃還元>
 実施例29において、前処理の保持温度を650℃とした以外は実施例29と同様の操作により10mol%Ba/Ru/La0.5Ce0.5_650℃還元を得た。
(実施例31)
<10mol%Ba/Ru/La0.5Ce0.5_700℃還元>
 実施例29において、前処理の保持温度を700℃とした以外は実施例29と同様の操作により10mol%Ba/Ru/La0.5Ce0.5_700℃還元を得た。
(実施例32)
<10mol%Ba/Ru/La0.5Ce0.5_800℃還元>
 実施例29において、前処理の保持温度を800℃とした以外は実施例29と同様の操作により10mol%Ba/Ru/La0.5Ce0.5_800℃還元を得た。
(実施例33)
<5mol%Ba/Ru/La0.5Ce0.5_450℃還元>
 実施例29において、Ba前駆体を半量とし、前処理の保持温度を450℃とした以外は実施例29と同様の操作により5mol%Ba/Ru/La0.5Ce0.5_450℃還元を得た。
(実施例34)
<5mol%Ba/Ru/La0.5Ce0.5_650℃還元>
 実施例33において、前処理の保持温度を650℃とした以外は実施例33と同様の操作により5mol%Ba/Ru/La0.5Ce0.5_650℃還元を得た。
(実施例35)
<5mol%Ba/Ru/La0.5Ce0.5_700℃還元>
 実施例33において、前処理の保持温度を700℃とした以外は実施例33と同様の操作により5mol%Ba/Ru/La0.5Ce0.5_700℃還元を得た。
(実施例36)
<5mol%Ba/Ru/La0.5Ce0.5_800℃還元>
 実施例33において、前処理の保持温度を800℃とした以外は実施例33と同様の操作により5mol%Ba/Ru/La0.5Ce0.5_800℃還元を得た。
(実施例37)
<1mol%Ba/Ru/La0.5Ce0.5_700℃還元>
 実施例29において、Ba前駆体を1/10量とし、前処理の保持温度を700℃とした以外は実施例29と同様の操作により1mol%Ba/Ru/La0.5Ce0.5_700℃還元を得た。
(実施例39)
<Ru/Ba0.1La0.9_700℃還元>
 実施例1において、原料のCe(NO・6HOに替えてBa(NO・6HOを用い、前処理の保持温度を700℃とした以外は実施例1と同様の操作によりRu/Ba0.1La0.9_700℃還元を得た。
(実施例40)
<Ru/Ba0.1La0.9_500℃還元>
 実施例39において、前処理の保持温度を500℃とした以外は実施例29と同様の操作によりRu/Ba0.1La0.9_500℃還元を得た。
(実施例41)
<Ru/Ba0.1La0.9_800℃還元>
 実施例39において、前処理の保持温度を800℃とした以外は実施例29と同様の操作によりRu/Ba0.1La0.9_800℃還元を得た。
(実施例42)
<Ru/Ba0.1La0.9_900℃還元>
 実施例39において、前処理の保持温度を900℃とした以外は実施例29と同様の操作によりRu/Ba0.1La0.9_900℃還元を得た。
(実施例43)
<Ru/Ba0.1Ce0.9_500℃還元>
 実施例39において、原料のLa(NO・6HOに替えてCe(NO・6HOを用い、前処理の保持温度を500℃とした以外は実施例39と同様の操作によりRu/Ba0.1Ce0.9_500℃還元を得た。
(実施例44)
<Ru/Ba0.1Ce0.9_700℃還元>
 実施例43において、前処理の保持温度を700℃とした以外は実施例43と同様の操作によりRu/Ba0.1Ce0.9_700℃還元を得た。
 各実施例で得られた金属担持物について、アンモニア合成活性や物性などを測定した。その結果を下記表に示す。
[規則26に基づく補充 09.11.2018] 
Figure WO-DOC-TABLE-5
(実施例45)
<Co/Ba0.1La0.45Ce0.45_700℃還元(Co担持量:20wt%)>
 実施例20において、Ruに替えてCo(NO・6HOを用いた以外は実施例20と同様の操作によりCo/Ba0.1La0.45Ce0.45_700℃還元(Co担持量:20wt%)を得た。
(実施例46)
<Co/Ba0.1La0.45Ce0.45_700℃還元(Co担持量:20wt%)>
 実施例45において、Co(NO・6HOに替えてCoアセチルアセトナト(II):Co(CHCOCHCOCH・2HO(和光純薬工業)を用いた以外は実施例45と同様の操作によりCo/Ba0.1La0.45Ce0.45_700℃還元(Co担持量:20wt%)を得た。
(実施例47)
<Co/Ba0.1La0.45Ce0.45_700℃還元(Co担持量:10wt%)>
 実施例46において、Coを半量とした以外は実施例46と同様の操作によりCo/Ba0.1La0.45Ce0.45_700℃還元(Co担持量:10wt%)を得た。
(実施例48)
<Co/Ba0.1La0.45Ce0.45_700℃還元(Co担持量:30wt%)>
 実施例46において、Coを1.5倍量とした以外は実施例46と同様の操作によりCo/Ba0.1La0.45Ce0.45_700℃還元(Co担持量:30wt%)を得た。
(実施例49)
<Co/Ba0.1La0.45Ce0.45_500℃還元(Co担持量:20wt%)>
 実施例45において、Co(NO・6HOに替えてCoアセチルアセトナト(II):Co(CHCOCHCOCH・2HO(和光純薬工業)を用いた以外は実施例45と同様の操作によりCo/Ba0.1La0.45Ce0.45_500℃還元(Co担持量:20wt%)を得た。
(実施例50)
<Co/Ba0.1La0.45Ce0.45_650℃還元(Co担持量:20wt%)>
 実施例46において、前処理の保持温度を650℃とした以外は実施例46と同様の操作によりCo/Ba0.1La0.45Ce0.45_650℃還元(Co担持量:20wt%)を得た。
(実施例51)
<Co/Ba0.1La0.45Ce0.45_750℃還元(Co担持量:20wt%)>
 実施例46において、前処理の保持温度を750℃とした以外は実施例46と同様の操作によりCo/Ba0.1La0.45Ce0.45_750℃還元(Co担持量:20wt%)を得た。
(実施例52)
<Co/Ba0.1Ce0.45Pr0.45_700℃還元(Co担持量:20wt%)>
 実施例10において、Ruに替えてCo(NO・6HOを用い、前処理の保持温度を700℃とした以外は実施例10と同様の操作によりCo/Ba0.1Ce0.45Pr0.45_700℃還元(Co担持量:20wt%)を得た。
(実施例53)
<Ru/Ce0.85La0.15_500℃還元>
 実施例1において、原料のCeとLaの比率を変更した以外は実施例1と同様の操作によりRu/Ce0.85La0.15_500℃還元を得た。
(実施例54)
<Ru/Ce0.85La0.15_600℃還元>
 実施例53において、前処理の保持温度を600℃とした以外は実施例54と同様の操作によりRu/Ce0.85La0.15_600℃還元を得た。
(実施例55)
<Ru/Ce0.85La0.15_650℃還元>
 実施例53において、前処理の保持温度を650℃とした以外は実施例54と同様の操作によりRu/Ce0.85La0.15_650℃還元を得た。
(実施例56)
<Ru/Ce0.85La0.15_700℃還元>
 実施例53において、前処理の保持温度を700℃とした以外は実施例54と同様の操作によりRu/Ce0.85La0.15_700℃還元を得た。
(実施例57)
<Ru/Ce0.67La0.33_500℃還元>
 実施例53において、原料のCeとLaの比率を変更した以外は実施例53と同様の操作によりRu/Ce0.67La0.33_500℃還元を得た。
(実施例58)
<Ru/Ce0.67La0.33_600℃還元>
 実施例57において、前処理の保持温度を600℃とした以外は実施例57と同様の操作によりRu/Ce0.67La0.33_600℃還元を得た。
(実施例59)
<Ru/Ce0.67La0.33_650℃還元>
 実施例57において、前処理の保持温度を650℃とした以外は実施例57と同様の操作によりRu/Ce0.67La0.33_650℃還元を得た。
(実施例60)
<Ru/Ce0.67La0.33_700℃還元>
 実施例57において、前処理の保持温度を700℃とした以外は実施例57と同様の操作によりRu/Ce0.67La0.33_700℃還元を得た。
(実施例61)
<Ru/Ce0.33La0.67_500℃還元>
 実施例53において、原料のCeとLaの比率を変更した以外は実施例53と同様の操作によりRu/Ce0.33La0.67_500℃還元を得た。
(実施例62)
<Ru/Ce0.33La0.67_600℃還元>
 実施例61において、前処理の保持温度を600℃とした以外は実施例61と同様の操作によりRu/Ce0.33La0.67_600℃還元を得た。
(実施例63)
<Ru/Ce0.33La0.67_650℃還元>
 実施例61において、前処理の保持温度を650℃とした以外は実施例61と同様の操作によりRu/Ce0.33La0.67_650℃還元を得た。
(実施例64)
<Ru/Ce0.33La0.67_700℃還元>
 実施例61において、前処理の保持温度を700℃とした以外は実施例61と同様の操作によりRu/Ce0.33La0.67_700℃還元を得た。
(実施例65)
<Ru/Ce0.15La0.85_500℃還元>
 実施例53において、原料のCeとLaの比率を変更した以外は実施例53と同様の操作によりRu/Ce0.15La0.85_500℃還元を得た。
(実施例66)
<Ru/Ce0.15La0.85_600℃還元>
 実施例65において、前処理の保持温度を600℃とした以外は実施例65と同様の操作によりRu/Ce0.15La0.85_600℃還元を得た。
(実施例67)
<Ru/Ce0.15La0.85_650℃還元>
 実施例65において、前処理の保持温度を650℃とした以外は実施例65と同様の操作によりRu/Ce0.15La0.85_650℃還元を得た。
(実施例68)
<Ru/Ce0.5La0.5_700℃還元>
 実施例65において、前処理の保持温度を700℃とした以外は実施例65と同様の操作によりRu/Ce0.15La0.85_700℃還元を得た。
(実施例69)
<Ru/Ce0.5La0.5_500℃還元>
 実施例53において、原料のCeとLaの比率を変更し、複合酸化物の調整段階で加熱(焼成)温度を600℃とした以外は実施例53と同様の操作によりRu/Ce0.5La0.5_500℃還元を得た。
(実施例70)
<Ru/Ce0.5La0.5_650℃還元>
 実施例69において、前処理の保持温度を650℃とした以外は実施例69と同様の操作によりRu/Ce0.5La0.5_650℃還元を得た。
(実施例71)
<Ru/Ce0.5La0.5_800℃還元>
 実施例69において、前処理の保持温度を800℃とした以外は実施例69と同様の操作によりRu/Ce0.5La0.5_800℃還元を得た。
 各実施例、比較例で得られた金属担持物について、アンモニア合成活性や物性などを測定した。その結果を下記表に示す。
[規則26に基づく補充 09.11.2018] 
Figure WO-DOC-TABLE-6
[規則26に基づく補充 09.11.2018] 
Figure WO-DOC-TABLE-7
[規則26に基づく補充 09.11.2018] 
Figure WO-DOC-TABLE-8
(比較例4)
<Ru/La_500℃還元>
 Laは逆均一沈殿法を用いて次のように合成した。La(NO・6HO(和光純薬工業)を精製水(高杉製薬)に溶解させ、La(NO水溶液とした。Laを合計0.0625mol含む担体前駆体溶液を250mL調製した。28%NH水溶液(和光純薬工業)を1000mLビーカーに250mL加え、マグネッティクスターラで320rpmで攪拌しながら、上記担体前駆体溶液を一気に加え、攪拌を1時間続けた。その後30分静置し、上澄み液を350mL取り除き、イオン交換水を350mL加えた後、30分攪拌をおこなった。一連の操作を4回行い、沈殿をろ過し、オーブンを用いて80℃で15時間乾燥させた。乾燥後の沈殿を乳鉢で粉砕し、得られた粉体を電気炉を用いて700℃で5時間、大気雰囲気下で加熱することでLaを得た。実施例1と同様の操作でRuを担持し、実施例1と同様の操作で還元処理をおこなって、Ru/La_500℃還元を得た。
(比較例5)
<Ru/CeO_500℃還元>
 CeO複合酸化物は逆均一沈殿法を用いて次のように合成した。Ce(NO・6HO(関東化学)を精製水(高杉製薬)に溶解させ、Ce(NO水溶液とした。Ce(NO水溶液を混合し、Ceを合計0.0625mol含む担体前駆体溶液を250mL調製した。28%NH水溶液(和光純薬工業)を1000mLビーカーに250mL加え、マグネッティクスターラで320rpmで攪拌しながら、上記担体前駆体溶液を一気に加え、攪拌を1時間続けた。その後30分静置し、上澄み液を350mL取り除き、イオン交換水を350mL加えた後、30分攪拌をおこなった。一連の操作を4回行い、沈殿をろ過し、オーブンを用いて80℃で15時間乾燥させた。乾燥後の沈殿を乳鉢で粉砕し、得られた粉体を電気炉を用いて700℃で5時間、大気雰囲気下で加熱することでCeOを得た。実施例1と同様の操作でRuを担持し、実施例1と同様の操作で還元処理をおこなって、Ru/CeO_500℃還元を得た。
(比較例6)
<Ru/CeO_650℃還元>
 比較例5において、前処理の保持温度を650℃とした以外は比較例5と同様の操作によりRu/CeO_650℃還元を得た。
(実施例75)
<Ru/La0.5Pr0.5_450℃還元>
 実施例5において、前処理の保持温度を450℃とした以外は実施例5と同様の操作によりRu/La0.5Pr0.5_450℃還元を得た。
(実施例76)
<Ru/La0.5Pr0.51.75_500℃還元>
 実施例5において、前処理の保持温度を500℃とした以外は実施例5と同様の操作によりRu/La0.5Pr0.5_500℃還元を得た。
(実施例78)
<Ru/La0.5Pr0.5_700℃還元>
 実施例5において、前処理の保持温度を700℃とした以外は実施例5と同様の操作によりRu/La0.5Pr0.5_700℃還元を得た。
(比較例8)
<Ru/MgO_700℃還元>
 高純度MgO(500A、宇部興産)を700℃、5時間、空気中で焼成したものを用い、実施例1と同様の操作でRuを担持し、保持温度を700℃とした以外は実施例1と同様の操作で還元処理をおこなって、Ru/MgO_700℃還元を得た。
(実施例80)
<8.4wt%Ba/4.5wt%Ru/MgO_500℃還元>
<触媒の調製>
 比較例8に記載の方法でRu/MgOを得た後、Ru/MgO金属担持物に対して原料としてBa(OH)・8HOを用いて、Ruに対して1.37倍の物質量になるように、蒸発乾固法にてBaを担持した。
<水素還元前処理>
 実施例1において、前処理の保持温度を500℃とした以外は実施例1と同じ操作を行い、8.4wt%Ba/4.5wt%Ru/MgO_500℃還元を得た。
(実施例81)
<8.4wt%Ba/4.5wt%Ru/MgO_700℃還元>
 実施例80において、前処理の保持温度を700℃とした以外は実施例80と同様の操作により8.4wt%Ba/4.5wt%Ru/MgO_700℃還元を得た。
(実施例82)
<Ru/Ce0.5Pr0.5_500℃還元>
 実施例1において、原料のLa(NO・6HOに替えてPr(NO・6HOを用いた以外は実施例1と同様の操作によりRu/Ce0.5Pr0.5_500℃還元を得た。
(実施例83)
<Ru/Ce0.5Pr0.5_600℃還元>
 実施例82において、前処理の保持温度を600℃とした以外は実施例82と同様の操作によりRu/Ce0.5Pr0.5_600℃還元を得た。
(実施例84)
<Ru/Ce0.5Pr0.5_650℃還元>
 実施例82において、前処理の保持温度を650℃とした以外は実施例82と同様の操作によりRu/Ce0.5Pr0.5_650℃還元を得た。
(実施例85)
<Ru/Ce0.5Pr0.5_700℃還元>
 実施例82において、前処理の保持温度を700℃とした以外は実施例82と同様の操作によりRu/Ce0.5Pr0.5_700℃還元を得た。
(実施例86)
<Ru/Ce0.5Pr0.5_800℃還元>
 実施例82において、前処理の保持温度を800℃とした以外は実施例82と同様の操作によりRu/Ce0.5Pr0.5_800℃還元を得た。
(実施例87)
<Ru/Ce0.5La0.5_500℃還元>
 実施例1において、複合酸化物の調整段階で加熱(焼成)温度を800℃とし、実施例20と同様にガス精製器を使用した以外は実施例1と同様の操作によりRu/Ce0.5La0.5_500℃還元を得た。
(実施例88)
<Ru/Ce0.5La0.5_650℃還元>
 実施例87において、前処理の保持温度を650℃とした以外は実施例87と同様の操作によりRu/Ce0.5La0.5_650℃還元を得た。
(実施例89)
<Ru/Ce0.5La0.5_800℃還元>
 実施例87において、前処理の保持温度を800℃とした以外は実施例87と同様の操作によりRu/Ce0.5La0.5_800℃還元を得た。
(実施例90)
<Fe/Ba0.1La0.45Ce0.45_700℃還元>
 実施例20において、原料としてRuに替えてトリス(2,4-ペンタンジオナト)鉄(III)(Fe(acac))を使用し、前処理の保持温度を700℃とした以外は実施例20と同様の操作によりFe/Ba0.1La0.45Ce0.45_700℃還元を得た。
(実施例91)
<Fe/Ba0.1La0.45Ce0.45_700℃還元>
 実施例90において、原料としてFe(acac)に替えてドデカカルボニル鉄(Fe(CO)12)を使用した以外は実施例90と同様の操作によりFe/Ba0.1La0.45Ce0.45_700℃還元を得た。
(実施例92)
<Co-Fe/Ba0.1La0.45Ce0.45_700℃還元>
 実施例90において、原料としてFe(acac)に加えてCo(NO・6HOを使用した以外は実施例90と同様の操作によりCo-Fe/Ba0.1La0.45Ce0.45_700℃還元を得た。
(実施例93)
<Co-Fe/Ba0.1La0.45Ce0.45_750℃還元>
 実施例92において、前処理の保持温度を750℃とした以外は実施例92と同様の操作によりCo-Fe/Ba0.1La0.45Ce0.45_750℃還元を得た。
(実施例94)
<Ru/Ba0.1La0.3Ce0.6_700℃還元>
 実施例23において、LaとCeの配合量を変更した以外は実施例23と同様の操作によりRu/Ba0.1La0.3Ce0.6_700℃還元を得た。
(実施例95)
<Ru/Ba0.1La0.6Ce0.3_700℃還元>
 実施例94において、LaとCeの配合量を変更した以外は実施例94と同様の操作によりRu/Ba0.1La0.6Ce0.3_700℃還元を得た。
(実施例96)
<Ru/Ba0.1La0.8Ce0.1_700℃還元>
 実施例94において、LaとCeの配合量を変更した以外は実施例94と同様の操作によりRu/Ba0.1La0.8Ce0.1_700℃還元を得た。
(実施例97)
<Ru/Ba0.1La0.45Ce0.45_500℃_48時間還元>
<水素還元前処理>
 実施例20において、前処理の保持時間を48時間とした以外は実施例20と同様の操作によりRu/Ba0.1La0.45Ce0.45_500℃_48時間還元を得た。
(実施例98)
<Ru/Ba0.1La0.45Ce0.45_450℃_72時間還元>
<水素還元前処理>
 実施例20において、前処理の保持温度を450oCとし、保持時間を72時間とした以外は実施例20と同様の操作によりRu/Ba0.1La0.45Ce0.45_450℃_72時間還元を得た。
(実施例99)
<Ru/Ce0.5La0.5Ox_500℃_48時間還元>
<水素還元前処理>
 実施例1において、ガス生成器を使用し、前処理の保持時間を48時間とした以外は実施例1と同様の操作によりRu/Ce0.5La0.5Ox_500℃_48時間還元を得た。
 各実施例、比較例で得られた金属担持物について、アンモニア合成活性や物性などを測定した。その結果を下記表に示す。
[規則26に基づく補充 09.11.2018] 
Figure WO-DOC-TABLE-9
[規則26に基づく補充 09.11.2018] 
Figure WO-DOC-TABLE-10
[規則26に基づく補充 09.11.2018] 
Figure WO-DOC-TABLE-11
<担体の固溶状態の確認>
 図6は、Ru/Ba0.1La0.45Ce0.45(実施例6)と、Ru/La0.5Ce0.5(実施例2)のXRDパターンを示したものである。図に示したとおり、Ba0.1La0.45Ce0.45の主回折ピークの位置はLa0.5Ce0.5のそれと全く変化がない。Baの一部又は全部がLaやCeと固溶体を形成しているとすると、イオン半径の大きなBaが格子内に存在するためにBa0.1La0.45Ce0.45の主回折ピークの位置が低角度側に移動するはずである。したがって、このことは、BaがLaやCeと固溶体を形成していないことを意味している。
 図7は、実施例6の触媒(650℃還元Ru/ Ba0.1La0.45Ce0.45)の表面を、収差補正型透過電子顕微鏡を用い、蛍光X線分析によって分析した結果である。ここでは触媒表面の、Ba、La、Ceの組成を分析し、その濃淡を明暗で示してある。すなわち、各元素が高濃度に存在するほど、図上では明るく表示されている。図から明らかなように、LaとCeは触媒粒子でほとんど濃淡がなく、触媒粒子中に均一に存在することを示している。
 一方で、Baは明らかに濃淡をもって存在しており、例えば分析視野下中央の領域は特に高濃度に分布していることがわかる。以上の結果から、BaはLa及びCeと固溶体を形成していないことがわかる。
 

Claims (17)

  1. 一般式(1)の組成で示される金属元素を含む複合酸化物
            A  (1)
      (前記一般式(1)において、
        Aは、少なくとも一部又はすべてがIII価の状態であることを特徴とするランタノイドであり、
        Xは、Ca,Sr,Baからなる群から選ばれる周期表第2族元素、又はランタノイドのいずれかであり、かつ前記Aと異なる元素を表し、
        Mは、周期表第1族元素、Ca,Sr,Baからなる群から選ばれる第2族元素、又はランタノイドのいずれかであり、かつ前記A及び前記Xと異なる元素を表し、
        nは0<n<1であり、
        yは0<y<1であり、
        mは0≦m<1であり、
        n+y+m=1である。)。
  2. Aの総モル数(Atotal)に対するIII価の状態のモル数(A3+)の割合(A3+/Atotal)が、0.1≦A3+/Atotal≦1.0である、請求項1に記載の複合酸化物。
  3. 前記複合酸化物が、正方晶又は立方晶の、固溶体を含む、請求項1に記載の複合酸化物。
  4. 複合酸化物に含まれる各元素A、X、Mの少なくとも1つは、酸化物の状態における酸素の部分負電荷(-δ)の値が0.50以上の強塩基性元素である、請求項1に記載の複合酸化物。
  5. 複合酸化物に含まれる各元素の組成比をni(i=A、X、M、Oを含む複合酸化物中の全元素を示す)とし、各元素のサンダーソン電気陰性度をχi(i=A、X、M、Oを含む複合酸化物中の全元素を示す)としたときに、下記式(A)で示される酸素の部分負電荷の値(-δ)が0.52以上である、請求項1に記載の複合酸化物。
     ((Π(χini))^(1/Σni)―5.21)/-4.75  ・・式(A)
  6. 前記一般式(1)が下記一般式(1-1)で示される二元系の複合酸化物であり、
      A  (1-1)
    (A、X、n、yは請求項1で定義したとおりである。)
     前記複合酸化物が、前記A及びXの固溶体であることを特徴とする請求項1に記載の複合酸化物。
  7. 前記一般式(1)が下記一般式(1-2)で示される三元系の複合酸化物であり、
      A  (1-2)
    (A、X、M、n、y、mは請求項1で定義したとおりである。)
     前記複合酸化物が、前記A及びX又はMの片方の酸化物の固溶体と、前記 X又はMの他方の酸化物との混合状態であることを特徴とする請求項1に記載の複合酸化物。
  8. 前記一般式(1)におけるXはBaであって、前記複合酸化物に含まれる炭酸イオンの量が、Baに対して10mol%以下であることを特徴とする、請求項1に記載の複合酸化物。
  9. 下記一般式(2)で表されることを特徴とする複合酸化物。
            A1-n  (2)
      (前記一般式(2)において、
        Aは少なくとも一部がIII価の状態であることを特徴とする希土類元素であり、
        Xは、周期表第2族元素、第4族元素又は希土類元素のいずれかであり、かつ前記Aと異なる元素を表し、
        Mは、周期表第2族元素、第4族元素又は希土類元素のいずれかであり、かつ前記A及び前記Xと異なる元素を表し、
        nは0<n<1であり、
        mは0≦m<0.5であり、
    xは複合酸化物が電気的に中性を保つのに必要な酸素原子の数を表わす)。
  10. 請求項1~9のいずれか1項に記載の複合酸化物に第4族を除く遷移金属が担持されたことを特徴とする金属担持物。
  11. パルス化学吸着法により求めたRu分散度の値(Dads)と、 TEM像から求めたRu粒子の平均粒子径から期待されるRu分散度の値(DTEM)との比が、
          0<Dads/DTEM<1
    であること特徴とする請求項10に記載の金属担持物。
  12. 担持された前記遷移金属に窒素吸着をさせたとき、長軸方向に相互作用している窒素分子のN≡N伸縮振動ν1が赤外吸収スペクトル法により2300~2000cm-1に観測され、及び/又は、前記遷移金属に対して長軸方向に相互作用している窒素分子の弱められたN≡N伸縮振動ν2が1900~1500cm-1に観測されることを特徴とする、請求項10に記載の金属担持物。
  13. 前記複合酸化物上に担持された前記遷移金属の平均粒子径が100nm以下であることを特徴とする、請求項10に記載の金属担持物。
  14. 請求項10に記載の金属担持物を用いたことを特徴とするアンモニア合成用触媒。
  15. 請求項1に記載の複合酸化物の製造方法であって、
     前記Aを含むA前駆体,前記Xを含むX前駆体及び前記Mを含むM前駆体を混合して混合物を得る混合工程と、
     該混合物を600℃以上の温度で焼成する焼成工程と、を含むことを特徴とする金属担持物の製造方法。
  16. 請求項10に記載の金属担持物の製造方法であって、
     前記Aを含むA前駆体,前記Xを含むX前駆体及び前記Mを含むM前駆体を混合して混合物を得る混合工程と、
     前記混合物を600℃以上の温度で焼成して複合酸化物からなる担体を得る焼成工程と、
     前記複合酸化物に前記遷移金属を含む化合物を担持させて還元処理前担持物を調製する担持工程と、
     前記還元処理前担持物を400oC以上の温度で還元処理する還元工程と、を含むことを特徴とする金属担持物の製造方法。
  17. 水素と窒素を触媒と接触させて、アンモニアを製造する方法であって、前記触媒が、請求項14に記載のアンモニア合成用触媒であることを特徴とするアンモニアの製造方法。 
PCT/JP2018/034515 2017-09-25 2018-09-18 複合酸化物、金属担持物及びアンモニア合成触媒 WO2019059190A1 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
US16/648,951 US11866342B2 (en) 2017-09-25 2018-09-18 Composite oxide, metal-supported material, and ammonia synthesis catalyst
EP18859287.7A EP3689823A4 (en) 2017-09-25 2018-09-18 COMPOSITE OXIDE, METAL SUPPORT MATERIAL AND AMMONIA SYNTHESIS CATALYST
CN202310826273.0A CN117049587A (zh) 2017-09-25 2018-09-18 复合氧化物、金属担载物以及氨合成催化剂
JP2019543647A JP7219474B2 (ja) 2017-09-25 2018-09-18 複合酸化物、金属担持物及びアンモニア合成触媒
CN201880061162.2A CN111183115B (zh) 2017-09-25 2018-09-18 复合氧化物、金属担载物以及氨合成催化剂
EP19799121.9A EP3805159A4 (en) 2018-05-07 2019-05-07 COMPOSITE OXIDE, METAL-BACKED MATERIAL AND AMMONIA SYNTHESIS CATALYST
CN201980028367.5A CN112041271B (zh) 2018-05-07 2019-05-07 复合氧化物、金属担载物以及氨合成催化剂
JP2020518297A JP7376932B2 (ja) 2018-05-07 2019-05-07 複合酸化物、金属担持物及びアンモニア合成触媒
PCT/JP2019/018225 WO2019216304A1 (ja) 2018-05-07 2019-05-07 複合酸化物、金属担持物及びアンモニア合成触媒
US17/053,436 US20210246041A1 (en) 2018-05-07 2019-05-07 Composite Oxide, Metal-Supported Material, and Ammonia Synthesis Catalyst
JP2023007620A JP2023033614A (ja) 2017-09-25 2023-01-20 複合酸化物、金属担持物及びアンモニア合成触媒
US18/526,881 US20240116770A1 (en) 2017-09-25 2023-12-01 Metal-Supported Material and Ammonia Synthesis Catalyst

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-183215 2017-09-25
JP2017183215 2017-09-25
JP2018089516 2018-05-07
JP2018-089516 2018-05-07

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/648,951 A-371-Of-International US11866342B2 (en) 2017-09-25 2018-09-18 Composite oxide, metal-supported material, and ammonia synthesis catalyst
US18/526,881 Continuation US20240116770A1 (en) 2017-09-25 2023-12-01 Metal-Supported Material and Ammonia Synthesis Catalyst

Publications (1)

Publication Number Publication Date
WO2019059190A1 true WO2019059190A1 (ja) 2019-03-28

Family

ID=65810841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034515 WO2019059190A1 (ja) 2017-09-25 2018-09-18 複合酸化物、金属担持物及びアンモニア合成触媒

Country Status (5)

Country Link
US (2) US11866342B2 (ja)
EP (1) EP3689823A4 (ja)
JP (2) JP7219474B2 (ja)
CN (2) CN117049587A (ja)
WO (1) WO2019059190A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019216304A1 (ja) * 2018-05-07 2019-11-14 国立研究開発法人科学技術振興機構 複合酸化物、金属担持物及びアンモニア合成触媒
JP2020179331A (ja) * 2019-04-24 2020-11-05 国立大学法人京都大学 水素製造用触媒の製造方法
WO2021153738A1 (ja) 2020-01-31 2021-08-05 国立研究開発法人科学技術振興機構 アンモニア合成触媒
WO2023085185A1 (ja) 2021-11-09 2023-05-19 国立研究開発法人科学技術振興機構 触媒組成物、触媒活性促進方法、触媒組成物の製造方法、及び触媒組成物を用いるアンモニア合成方法
WO2024005062A1 (ja) * 2022-06-28 2024-01-04 株式会社豊田中央研究所 アンモニア合成触媒、その製造方法、及びそれを用いたアンモニアの合成方法
US11866342B2 (en) 2017-09-25 2024-01-09 Japan Science And Technology Agency Composite oxide, metal-supported material, and ammonia synthesis catalyst
EP4159311A4 (en) * 2020-05-28 2024-07-10 Korea Res Inst Chemical Tech AMMONIA CRACKING CATALYST AND METHOD FOR CRACKING AMMONIA AND GENERATING HYDROGEN USING SAME

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3897976A4 (en) * 2018-12-21 2022-10-19 Council of Scientific & Industrial Research MIXED METAL OXIDE CATALYSED AND CAVITATION-INFLUENCED PROCESS FOR HYDRATING NITRILE
JP2022061257A (ja) * 2020-10-06 2022-04-18 株式会社豊田中央研究所 アンモニア合成触媒、アンモニア合成触媒の製造方法、及び、アンモニアの合成方法
CN112058277B (zh) * 2020-10-10 2021-09-24 福州大学 一种用于氨合成的高活性催化剂及其制备方法
CN113072091B (zh) * 2021-03-25 2022-05-20 南昌航空大学 一种五元铈钕钇基高熵稀土氧化物及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0679177A (ja) 1992-09-02 1994-03-22 Mitsui Toatsu Chem Inc アンモニア合成触媒および合成方法
JPH08141399A (ja) * 1994-11-24 1996-06-04 Mitsui Toatsu Chem Inc アンモニア合成触媒およびその調製法
JP2001179092A (ja) * 1999-12-24 2001-07-03 Mitsui Mining & Smelting Co Ltd 排ガス浄化用触媒
JP2007008799A (ja) * 2005-06-01 2007-01-18 Asahi Glass Co Ltd 希土類元素ドープCeO2微粒子の製造方法
JP2013111562A (ja) 2011-11-30 2013-06-10 Sumitomo Chemical Co Ltd 組成物及び該組成物を用いたアンモニア製造方法
CN103706360A (zh) * 2014-01-22 2014-04-09 福州大学 一种Ru/BaCeO3氨合成催化剂及其制备方法
JP2014171916A (ja) * 2013-03-06 2014-09-22 Nippon Shokubai Co Ltd アンモニア合成用触媒
JP2016112538A (ja) * 2014-12-17 2016-06-23 トヨタ自動車株式会社 排ガス浄化用触媒およびその製造方法
WO2016133213A1 (ja) 2015-02-20 2016-08-25 国立大学法人大分大学 アンモニア合成触媒とその製造方法
JP2017018907A (ja) 2015-07-13 2017-01-26 国立大学法人 大分大学 アンモニア合成触媒用組成物およびその製造方法、ならびにアンモニアの合成方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6044644A (en) 1994-12-06 2000-04-04 Engelhard Corporation Close coupled catalyst
DE19838282A1 (de) 1998-08-24 2000-03-02 Degussa Stickoxid-Speichermaterial und daraus hergestellter Stickoxid-Speicherkatalysator
US6350421B1 (en) 1998-08-24 2002-02-26 Dmc2 Degussa Metals Catalysts Cerdec Ag Nitrogen oxide storage material and nitrogen oxide storing catalyst prepared therefrom
US7507690B2 (en) 2002-04-30 2009-03-24 Uchicago Argonne, Llc. Autothermal reforming catalyst having perovskite structure
JP4464670B2 (ja) 2003-12-05 2010-05-19 株式会社ノリタケカンパニーリミテド 複合材料の製造方法
EP2000201A4 (en) 2006-03-30 2009-11-11 Daihatsu Motor Co Ltd CATALYST COMPOSITION
US8133463B1 (en) 2008-04-14 2012-03-13 The United States Of America As Represented By The Department Of Energy Pyrochlore-type catalysts for the reforming of hydrocarbon fuels
JP2012185994A (ja) 2011-03-04 2012-09-27 Ube Material Industries Ltd プラズマディスプレイパネル用の前面板
EP2949625B1 (en) 2013-01-22 2022-09-07 Nippon Shokubai Co., Ltd. Ammonia synthesis method
US9034786B2 (en) 2013-03-18 2015-05-19 Enerkem, Inc. Catalysts for producing hydrogen and synthesis gas
CN103357406B (zh) 2013-08-02 2016-05-04 福州大学 一种稀土元素掺杂的钙钛矿型负载钌氨合成催化剂
CN108472632A (zh) 2015-12-25 2018-08-31 国立研究开发法人科学技术振兴机构 过渡金属担载金属间化合物、担载金属催化剂以及氨的制造方法
US11866342B2 (en) 2017-09-25 2024-01-09 Japan Science And Technology Agency Composite oxide, metal-supported material, and ammonia synthesis catalyst
JP7376932B2 (ja) 2018-05-07 2023-11-09 国立研究開発法人科学技術振興機構 複合酸化物、金属担持物及びアンモニア合成触媒

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0679177A (ja) 1992-09-02 1994-03-22 Mitsui Toatsu Chem Inc アンモニア合成触媒および合成方法
JPH08141399A (ja) * 1994-11-24 1996-06-04 Mitsui Toatsu Chem Inc アンモニア合成触媒およびその調製法
JP2001179092A (ja) * 1999-12-24 2001-07-03 Mitsui Mining & Smelting Co Ltd 排ガス浄化用触媒
JP2007008799A (ja) * 2005-06-01 2007-01-18 Asahi Glass Co Ltd 希土類元素ドープCeO2微粒子の製造方法
JP2013111562A (ja) 2011-11-30 2013-06-10 Sumitomo Chemical Co Ltd 組成物及び該組成物を用いたアンモニア製造方法
JP2014171916A (ja) * 2013-03-06 2014-09-22 Nippon Shokubai Co Ltd アンモニア合成用触媒
CN103706360A (zh) * 2014-01-22 2014-04-09 福州大学 一种Ru/BaCeO3氨合成催化剂及其制备方法
JP2016112538A (ja) * 2014-12-17 2016-06-23 トヨタ自動車株式会社 排ガス浄化用触媒およびその製造方法
WO2016133213A1 (ja) 2015-02-20 2016-08-25 国立大学法人大分大学 アンモニア合成触媒とその製造方法
JP2017018907A (ja) 2015-07-13 2017-01-26 国立大学法人 大分大学 アンモニア合成触媒用組成物およびその製造方法、ならびにアンモニアの合成方法

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
B. LINY. GUOJ. LINJ. NIJ. LINL. JIANGY. WANG, APPL. CATAL., A, vol. 541, 2017, pages 1 - 7
BELLIERE, V. ET AL.: "Phase segregation in cerium-lanthanum solid solution", THE JOURNAL OF PHYSICAL CHEMISTRY B, vol. 110, 5 March 2006 (2006-03-05), pages 9984 - 9990, XP055584131 *
ITOH, M. ET AL.: "Magnetic properties of Ba1-,LaxPrO3 and PrLu1-yMgyO3 with x and y ? 0.075", JOURNAL OF SOLID STATE CHEMISTRY, vol. 145, June 1999 (1999-06-01), pages 104 - 109, XP055689615 *
IVANOVA, A. S. ET AL.: "New Y(La)-M-0 binary systems (M=Ca, Sr, or Ba): synthesis, physicochemical characterization, and application as the supports of ruthenium catalysts for ammonia synthesis", KINETICS AND CATALYSIS, vol. 45, July 2004 (2004-07-01), pages 541 - 546, XP055651233 *
J. G. VAN OMMENW. J. BOLINKJ. PRASADP. MARS, J. CATAL., vol. 38, 1975, pages 122,126 - 127
L UO, X. ET AL.: "Effect of La2O3 on Ru/CeO2-La2O3 catalyst for ammonia synthesis", CATALYSIS LETTERS, vol. 133, no. 3-4, 14 October 2009 (2009-10-14), pages 382 - 387, XP019746890, ISSN: 1011-372X, DOI: 10.1007/s10562-009-0177-7 *
SANDERSON, INORGANIC CHEMISTRY, vol. 1
SANDERSON: "Inorganic chemistry", vol. 1, 1967, HIROKAWA PUBLISHING CO., pages: 122
VENKATASUBRAMANIAN, A. ET AL.: "Synthesis and characterization of electrolytes based on BaO-CeO2- GdO1.5 system for intermediate temperature solid oxide fuel cells", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, vol. 35, 1 April 2010 (2010-04-01), pages 4597 - 4605, XP027028444 *
X. LUO ET AL., CATALYSIS LETTERS, vol. 133, 2009, pages 382
Y. INOUEM. KITANOK. KISHIDAH. ABEY. NIWAM. SASASEY. FUJITAH. ISHIKAWAT. YOKOYAMAM. HARA, ACS CATAL., 2016, pages 7577 - 7584
Y. NIWAK. AIKA, CHEMISTRY LETTERS, 1996, pages 3 - 4
ZHANG, L. ET AL.: "Highly efficient Ru/Sm2O3-CeO2 catalyst for ammonia synthesis", CATALYSIS COMMUNICATIONS, vol. 15, no. 1, 9 August 2011 (2011-08-09), pages 23 - 26, XP028322232 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11866342B2 (en) 2017-09-25 2024-01-09 Japan Science And Technology Agency Composite oxide, metal-supported material, and ammonia synthesis catalyst
WO2019216304A1 (ja) * 2018-05-07 2019-11-14 国立研究開発法人科学技術振興機構 複合酸化物、金属担持物及びアンモニア合成触媒
JPWO2019216304A1 (ja) * 2018-05-07 2021-07-26 国立研究開発法人科学技術振興機構 複合酸化物、金属担持物及びアンモニア合成触媒
JP7376932B2 (ja) 2018-05-07 2023-11-09 国立研究開発法人科学技術振興機構 複合酸化物、金属担持物及びアンモニア合成触媒
JP2020179331A (ja) * 2019-04-24 2020-11-05 国立大学法人京都大学 水素製造用触媒の製造方法
JP7161664B2 (ja) 2019-04-24 2022-10-27 国立大学法人京都大学 水素製造用触媒の製造方法
WO2021153738A1 (ja) 2020-01-31 2021-08-05 国立研究開発法人科学技術振興機構 アンモニア合成触媒
EP4159311A4 (en) * 2020-05-28 2024-07-10 Korea Res Inst Chemical Tech AMMONIA CRACKING CATALYST AND METHOD FOR CRACKING AMMONIA AND GENERATING HYDROGEN USING SAME
WO2023085185A1 (ja) 2021-11-09 2023-05-19 国立研究開発法人科学技術振興機構 触媒組成物、触媒活性促進方法、触媒組成物の製造方法、及び触媒組成物を用いるアンモニア合成方法
WO2024005062A1 (ja) * 2022-06-28 2024-01-04 株式会社豊田中央研究所 アンモニア合成触媒、その製造方法、及びそれを用いたアンモニアの合成方法

Also Published As

Publication number Publication date
JP2023033614A (ja) 2023-03-10
US11866342B2 (en) 2024-01-09
JPWO2019059190A1 (ja) 2020-12-17
EP3689823A1 (en) 2020-08-05
CN117049587A (zh) 2023-11-14
CN111183115A (zh) 2020-05-19
JP7219474B2 (ja) 2023-02-08
CN111183115B (zh) 2023-07-25
EP3689823A4 (en) 2021-06-30
US20200247682A1 (en) 2020-08-06
US20240116770A1 (en) 2024-04-11

Similar Documents

Publication Publication Date Title
JP7219474B2 (ja) 複合酸化物、金属担持物及びアンモニア合成触媒
Li et al. Efficient defect engineering in Co-Mn binary oxides for low-temperature propane oxidation
JP6680919B2 (ja) 担持金属触媒
Muhammad et al. Template free synthesis of graphitic carbon nitride nanotubes mediated by lanthanum (La/g-CNT) for selective photocatalytic CO2 reduction via dry reforming of methane (DRM) to fuels
JP6675619B2 (ja) アンモニア合成用触媒の製造方法及びアンモニアの製造方法
Li et al. Effects of CeO2 support facets on VOx/CeO2 catalysts in oxidative dehydrogenation of methanol
JP7376932B2 (ja) 複合酸化物、金属担持物及びアンモニア合成触媒
Tang et al. Enhanced CO2 methanation activity over Ni/CeO2 catalyst by one-pot method
Tabakova et al. CO-free hydrogen production over Au/CeO2–Fe2O3 catalysts: Part 1. Impact of the support composition on the performance for the preferential CO oxidation reaction
Takayama et al. The KCaSrTa 5 O 15 photocatalyst with tungsten bronze structure for water splitting and CO 2 reduction
Camposeco et al. Behavior of Lewis and Brönsted surface acidity featured by Ag, Au, Ce, La, Fe, Mn, Pd, Pt, V and W decorated on protonated titanate nanotubes
Liu et al. Morphology effect of ceria on the ammonia synthesis activity of Ru/CeO 2 catalysts
Tomer et al. Mixed oxides supported low-nickel formulations for the direct amination of aliphatic alcohols with ammonia
Han et al. La2Ce2O7 supported ruthenium as a robust catalyst for ammonia synthesis
CN115485233A (zh) 用于氨分解的催化剂组合物
EP2240273A1 (en) Low temperature water gas shift catalyst
Huang et al. Inhibited hydrogen poisoning for enhanced activity of promoters-Ru/Sr2Ta2O7 nanowires for ammonia synthesis
Ma et al. Preparation of LaXCoO3 (X= Mg, Ca, Sr, Ce) catalysts and their performance for steam reforming of ethanol to hydrogen
Safdar et al. CO2 methanation on Ni/YMn1-xAlxO3 perovskite catalysts
Andreeva et al. Gold supported on ceria doped by Me3+ (Me= Al and Sm) for water gas shift reaction: Influence of dopant and preparation method
Pham et al. Influence of synthesis routes on the performance of Ni nano-sized catalyst supported on CeO2-Al2O3 in the dry reforming of methane
Yang et al. Tuning of oxygen species and active Pd2+ species of supported catalysts via morphology and Mn doping in oxidative carbonylation of phenol
Sastre et al. Effect of low-loading of Ni on the activity of La0. 9Sr0. 1FeO3 perovskites for chemical looping dry reforming of methane
Sancheti et al. CuO-ZnO-MgO as sustainable and selective catalyst towards synthesis of cyclohexanone by dehydrogenation of cyclohexanol over monovalent copper
AU2012258290B2 (en) Nickel based catalysts for hydrocarbon reforming

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18859287

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019543647

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018859287

Country of ref document: EP

Effective date: 20200428