WO2019059017A1 - セラミック基板の製造方法、セラミック基板、及び、モジュール - Google Patents

セラミック基板の製造方法、セラミック基板、及び、モジュール Download PDF

Info

Publication number
WO2019059017A1
WO2019059017A1 PCT/JP2018/033380 JP2018033380W WO2019059017A1 WO 2019059017 A1 WO2019059017 A1 WO 2019059017A1 JP 2018033380 W JP2018033380 W JP 2018033380W WO 2019059017 A1 WO2019059017 A1 WO 2019059017A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
sintering
sheet
electrode
ceramic substrate
Prior art date
Application number
PCT/JP2018/033380
Other languages
English (en)
French (fr)
Inventor
久美子 石川
誠司 藤田
佐々木 努
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2019543556A priority Critical patent/JP7031678B2/ja
Priority to CN201880060686.XA priority patent/CN111096090B/zh
Publication of WO2019059017A1 publication Critical patent/WO2019059017A1/ja
Priority to US16/821,232 priority patent/US10854385B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/10Metal-oxide dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • the present invention relates to a method of manufacturing a ceramic substrate, a ceramic substrate, and a module.
  • a substrate such as a ceramic substrate, a resin layer provided on one main surface of the substrate, an electronic component mounted on the one main surface of the substrate, and an external connection terminal whose tip is exposed from the surface of the resin layer And modules are known.
  • the external connection terminal includes a columnar protruding electrode, and for example, a metal pin made of a conductive metal, a sintered body of particles of a conductive metal, or the like is used as the protruding electrode.
  • Patent Document 1 discloses zirconia, magnesia and alumina in terminal electrode paste in which a low resistance metal and a glass component are dispersed. It is disclosed to add at least one of them.
  • inorganic materials such as zirconia, magnesia, and alumina have low reactivity with low-resistance metals and can suppress rapid sintering reaction of low-resistance metals, so that shrinkage during sintering is alleviated. It is said that a dense terminal electrode can be obtained.
  • the present invention has been made to solve the above problems, and provides a method of manufacturing a ceramic substrate having a protruding electrode with low specific resistance, in which the occurrence of structural defects such as cracks is prevented, and a ceramic substrate.
  • the purpose is to Another object of the present invention is to provide a module comprising the above ceramic substrate.
  • a method of manufacturing a ceramic substrate according to the present invention is a method of manufacturing a ceramic substrate including a substrate main body having a ceramic layer, and a pillar-shaped protruding electrode provided on one main surface of the substrate main body.
  • a step of filling the through holes with the conductive paste, laminating the ceramic green sheet, and filling the through holes with the first conductive paste on one main surface of the ceramic green sheet laminate A process of producing a composite laminate by laminating the electrode-forming sheet, and the temperature at which the ceramic green sheet is sintered Firing the composite laminate, the first conductive powder includes a conductive metal and a sintering-suppressing ceramic that suppresses sintering of particles of the conductive metal, and the conductive It is characterized in that at least a part
  • the electrode forming sheet is a constraining sheet which does not substantially sinter at a temperature at which the ceramic green sheet sinters. In this case, after firing the composite laminate at a temperature at which the ceramic green sheet is sintered and the constraining sheet is not sintered, the remaining constraining sheet is removed.
  • the electrode forming sheet is a resin sheet which burns off at a temperature at which the ceramic green sheet is sintered.
  • the resin sheet is burned off in the step of firing the composite laminate.
  • the above-mentioned sintering inhibiting ceramic preferably contains at least one selected from the group consisting of alumina, zirconia and silica.
  • the conductive metal preferably contains at least one selected from the group consisting of copper, silver and nickel.
  • the content of the sintering-restricting ceramic in the first conductive paste is 10% by weight or less based on the total weight of the conductive metal and the sintering-restricting ceramic Is preferred.
  • content of the said sintering suppression ceramic in the said 1st conductive paste is 0.3 weight% or more with respect to the total weight of the said conductive metal and the said sintering suppression ceramic.
  • the method for producing a ceramic substrate according to the present invention includes the step of printing a second conductive paste containing a second conductive powder on the surface of the through hole, after the step of filling the through hole with the first conductive paste.
  • the second conductive powder includes the conductive metal and the sintering-suppressing ceramic, and at least a part of the surface of the conductive metal particles is covered with the sintering-inhibiting ceramic.
  • the electrode forming sheet having the second conductive paste printed on the surface of the through hole be also laminated inside.
  • content of the said sintering suppression ceramic in the said 2nd conductive paste is 10 weight% or less with respect to the total weight of the said conductive metal and the said sintering suppression ceramic. Moreover, it is preferable that content of the said sintering suppression ceramic in the said 2nd conductive paste is 0.5 weight% or more with respect to the total weight of the said conductive metal and the said sintering suppression ceramic.
  • the ceramic substrate according to the present invention is a ceramic substrate including a substrate body having a ceramic layer, and a columnar projecting electrode provided on one main surface of the substrate body, wherein the one main surface of the substrate body is A region for mounting an electronic component is provided in a region where the protruding electrode is not provided, and the protruding electrode includes a conductive metal and a sintering suppression ceramic that suppresses sintering of particles of the conductive metal.
  • the particles of the conductive metal have a porous structure in which the particles are necked.
  • the above-mentioned sintering inhibiting ceramic preferably contains at least one selected from the group consisting of alumina, zirconia and silica.
  • the conductive metal preferably contains at least one selected from the group consisting of copper, silver and nickel.
  • the content of the sintering inhibiting ceramic in the bump electrode is preferably 10% by weight or less based on the total weight of the conductive metal and the sintering inhibiting ceramic. Further, the content of the sintering-restricting ceramic in the bump electrode is preferably 0.3% by weight or more based on the total weight of the conductive metal and the sintering-restricting ceramic.
  • the ceramic substrate of the present invention at least a part of the surface of the conductive metal particles may be coated with the sintering-suppressing ceramic.
  • the bump electrode preferably has a dense layer with a lower porosity than the other portions on the surface.
  • the protruding electrode also have the dense layer inside.
  • the dense layer of the bump electrode is preferably wider than the portion other than the dense layer.
  • a module according to the present invention comprises: the ceramic substrate according to the present invention; an electronic component mounted on one main surface of the substrate main body constituting the ceramic substrate; and a resin layer provided on the first main surface of the substrate main body
  • the electronic component is disposed in the resin layer so as to be mounted in a region of the substrate main body on which the protruding electrode is not provided, and the electronic component is disposed on the one main surface of the substrate main body
  • An external connection terminal including the protruding electrode is provided, and the external connection terminal is disposed in the resin layer such that the tip is exposed from the surface of the resin layer.
  • the module of the present invention preferably, at least a part of the surface of the electronic component is exposed from the surface of the resin layer.
  • the external connection terminal preferably further includes a plating film covering at least a part of the side surface of the bump electrode.
  • the external connection terminal further includes a covering layer covering at least a part of the upper surface of the bump electrode.
  • the present invention it is possible to provide a ceramic substrate having a protruding electrode with low specific resistance, in which the occurrence of structural defects such as cracks is prevented.
  • FIG. 1 is a cross-sectional view schematically showing an example of the ceramic substrate of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing an example of a protruding electrode.
  • FIG. 3A and FIG. 3B are schematic views explaining how the particles of the conductive metal are sintered.
  • FIG. 4A, FIG. 4B and FIG. 4C are cross-sectional views schematically showing an example of a method of manufacturing a ceramic substrate using a constraining sheet.
  • 5A, 5B, and 5C are cross-sectional views schematically showing another example of a method of manufacturing a ceramic substrate using a constraining sheet.
  • 6A, 6B, and 6C are cross-sectional views schematically showing still another example of the method for manufacturing a ceramic substrate using a constraining sheet.
  • FIG. 7A and 7B are cross-sectional views schematically showing an example of a method of manufacturing a ceramic substrate using a resin sheet.
  • Fig.8 (a) is sectional drawing which shows typically an example of the module of this invention
  • FIG.8 (b) is a top view of the module shown to Fig.8 (a).
  • FIG. 9A, FIG. 9B, FIG. 9C, FIG. 9D, and FIG. 9E are sectional drawings which show typically an example of the manufacturing method of the module shown to Fig.8 (a).
  • FIG. 10 is a perspective view schematically showing a measurement sample used for the resistivity evaluation.
  • FIG. 1 is a cross-sectional view schematically showing an example of the ceramic substrate of the present invention.
  • the ceramic substrate 1 shown in FIG. 1 includes a substrate main body 10 and a pillar-shaped protruding electrode 20 provided on one main surface of the substrate main body 10.
  • the substrate body 10 has a plurality of laminated ceramic layers 11.
  • the bump electrode 20 is electrically connected to the wiring conductor (not shown) of the substrate body 10.
  • the substrate body 10 has a thickness direction of the inner conductor provided between the ceramic layers 11, the outer conductor provided on one main surface and the other main surface of the substrate body 10, and the ceramic layer 11.
  • a wiring conductor such as a via conductor penetrating therethrough, and a specific wiring conductor is electrically connected to the bump electrode 20.
  • the bump electrode 20 may be connected to an external conductor provided on the surface of the ceramic layer 11 or may be connected to a via conductor exposed on the surface of the ceramic layer 11.
  • one main surface of the substrate main body 10 has a region R 40 for mounting an electronic component in a region where the protruding electrode 20 is not provided.
  • the ceramic layer constituting the substrate body preferably contains a low temperature sintered ceramic material.
  • the low-temperature sintered ceramic material means, among ceramic materials, a material which can be sintered at a firing temperature of 1000 ° C. or less and can be co-fired with copper, silver or the like.
  • the low-temperature sintered ceramic material contained in the ceramic layer is, for example, a glass composite low-temperature sintered ceramic material formed by mixing borosilicate glass with a ceramic material such as quartz, alumina, forsterite, etc., ZnO-MgO-Al 2 O 3 -SiO 2 based crystallized glass-based low-temperature co-fired ceramic material with crystallized glass, BaO-Al 2 O 3 -SiO 2 based ceramic material and Al 2 O 3 -CaO-SiO 2 -MgO-B 2
  • Non-glass-based low-temperature sintered ceramic materials and the like using O 3 -based ceramic materials and the like can be mentioned.
  • the bump electrode functions as an external connection terminal when formed into a module.
  • the protruding electrode includes a conductive metal and a sintering suppressing ceramic that suppresses sintering of the conductive metal, and a porous structure in which particles of the conductive metal are necked It is characterized by having.
  • a porous structure means a structure having a large number of pores.
  • the term "pore” as used herein is distinguished from a large void such as a crack.
  • the porosity of the bump electrode is not particularly limited, but if the porosity is too high, the physical strength of the bump electrode itself is likely to deteriorate. Therefore, the porosity of the bump electrode is preferably 50% or less.
  • FIG. 2 is a cross-sectional view schematically showing an example of a protruding electrode.
  • the protruding electrode 20 provided on the one main surface of the substrate body 10 has a porous structure having a large number of holes 20 a. Specifically, porous portions (voids 20 a) are generated between the interfaces of the necked conductive metal 31.
  • the sintering suppression ceramic is abbreviate
  • the entire bump electrode has a porous structure.
  • the entire bump electrode has a porous structure means that the cross section of the bump electrode is equally divided into three along a line parallel to the surface of the substrate body in cross-sectional observation of the bump electrode as shown in FIG.
  • the porosity in three possible regions is determined, it means that the porosity in the three regions is almost the same (preferably, the ratio of the maximum value to the minimum value is 2 or less).
  • the porosity of the part except the dense layer is calculated
  • the porosity of the bump electrode can be determined by the following method. After the projecting electrode is impregnated with the fluorescent solution and the fluorescent solution is cured, the cross section of the projecting electrode is observed with a fluorescence microscope. At this time, the ratio of the area of the part (void) impregnated with the fluorescent liquid to the area of the part (body part) not impregnated with the fluorescent liquid is taken as the porosity.
  • a part of the plating solution may remain inside the bump electrode after the plating reflow.
  • a defect in solder explosion occurs due to the pressure when the plating solution vaporized at the time of solder reflow comes out of the bump electrode to the solder layer.
  • the entire protruding electrode has a porous structure, as compared to the case where the protruding electrode does not have a porous structure or a case where part of the protruding electrode has a porous structure. Because the pressure is relieved, defects in solder explosion are reduced.
  • the bump electrode is preferably formed using a first conductive paste containing a first conductive powder in which the surface of particles of conductive metal is coated with a sintering-inhibiting ceramic.
  • a first conductive paste containing a first conductive powder in which the surface of particles of conductive metal is coated with a sintering-inhibiting ceramic.
  • the bump electrode is preferably formed by co-firing with the substrate body.
  • a composite laminate in which a sheet for electrode formation in which the first conductive paste is filled in the through holes is laminated on the main surface of the laminate of ceramic green sheets is fired to remove the sheet for electrode formation Preferably, the bump electrode is formed.
  • a desired projecting electrode can be formed by adjusting the size and interval of the through holes formed in the electrode forming sheet.
  • the type of conductive metal contained in the bump electrode is not particularly limited, and examples thereof include metals such as copper, silver, nickel, palladium and alloys thereof.
  • the conductive metal preferably contains at least one selected from the group consisting of copper, silver and nickel, and more preferably any one selected from the group consisting of copper, silver and nickel, and more preferably copper, silver More preferably, it is any one selected from the group consisting of and nickel.
  • the kind of sintering suppression ceramic contained in a projecting electrode is not specifically limited as long as sintering of the particle
  • metal oxides such as an alumina, a zirconia, a silica
  • the sintering inhibiting ceramic preferably contains at least one selected from the group consisting of alumina, zirconia and silica, and more preferably contains any one selected from the group consisting of alumina, zirconia and silica, alumina, More preferably, it is any one selected from the group consisting of zirconia and silica.
  • the content of the sintering-inhibited ceramic in the bump electrode is not particularly limited, but from the viewpoint of lowering the specific resistance of the bump electrode, it is 10% by weight or less based on the total weight of the conductive metal and the sintering-inhibited ceramic preferable. Further, from the viewpoint of preventing the occurrence of structural defects, the content is preferably 0.3% by weight or more based on the total weight of the conductive metal and the sintering-inhibited ceramic.
  • a projection electrode contains a conductive metal and a sintering control ceramic.
  • the bump electrode contains copper as a conductive metal and alumina as a sintering inhibiting ceramic, elements of Cu, Al and O are detected.
  • a part of the surface of the conductive metal particles may be coated with the sintering inhibiting ceramic, but the sintering inhibiting ceramic may not be coated.
  • the bump electrode may contain components other than the conductive metal and the sintering-inhibited ceramic, but from the viewpoint of preventing the bump electrode from becoming a dense structure, the glass component is substantially It is preferable not to contain.
  • the height of the protruding electrodes is not particularly limited. However, when the ceramic substrate is manufactured by the manufacturing method of the present invention, it is possible to form the height of at least about 200 ⁇ m.
  • the bump electrode preferably has a dense layer with a lower porosity than the other portions on the surface.
  • the bump electrode preferably has the above-mentioned dense layer also inside.
  • the dense layer of the bump electrode may have the same width as the portion other than the dense layer, or may be narrower than the portion other than the dense layer, but it may be narrower than the portion other than the dense layer.
  • the width is preferably wide.
  • the ceramic substrate of the present invention is preferably manufactured as follows. A method of manufacturing such a ceramic substrate is also one of the present invention.
  • a ceramic green sheet to be a ceramic layer constituting the substrate body is prepared.
  • the ceramic green sheet is, as a non-sintered ceramic material, a glass ceramic which is a mixture of alumina and a borosilicate glass, or a powder which is a raw material of a Ba-Al-Si-O ceramic which forms a glass component during firing.
  • a ceramic slurry containing an organic binder and a solvent is formed into a sheet by a doctor blade method or the like.
  • the ceramic slurry may contain various additives such as a dispersant and a plasticizer.
  • a paste film to be an inner conductor or an outer conductor is formed on the specific ceramic green sheet by screen printing using a wiring conductor paste containing silver or copper, for example.
  • through holes are formed in a specific ceramic green sheet by laser or mechanical punch, and the through holes are filled with the paste to form a paste body to be a via conductor.
  • an electrode forming sheet for forming a protruding electrode is prepared.
  • the electrode forming sheet will be described later.
  • a through hole is formed in the electrode forming sheet, and the first conductive paste containing the first conductive powder is filled in the through hole.
  • a paste body to be a projecting electrode is formed.
  • the through holes can be formed, for example, by a laser or mechanical punch.
  • a solvent, an organic binder, etc. are contained in a 1st conductive paste.
  • the 2nd conductive paste containing 2nd conductive powder is preferable to print on the surface of this through-hole.
  • a paste film to be a dense layer can be formed on the surface or inside of the bump electrode.
  • the second conductive paste preferably contains a solvent, an organic binder, and the like.
  • a composite laminated body is formed by laminating an electrode forming sheet in which the first conductive paste is filled in the through holes on one main surface of the ceramic green sheet laminate. Make. At this time, the respective sheets are laminated such that the protruding electrodes obtained after firing are electrically connected to the specific wiring conductors of the substrate body.
  • the second conductive paste is printed on the surface of the through hole of the electrode forming sheet
  • the order in which the ceramic green sheet and the electrode forming sheet are laminated is not particularly limited.
  • the electrode forming sheet may be laminated after producing a ceramic green sheet laminate by laminating the ceramic green sheets.
  • the electrode forming sheet and the ceramic green sheet may be sequentially laminated.
  • the composite laminate is fired at a temperature at which the ceramic green sheets sinter.
  • the electrode forming sheet is removed, whereby the ceramic substrate having the protruding electrodes can be taken out.
  • the first conductive powder contained in the first conductive paste for forming the bump electrode suppresses the sintering of the conductive metal and the particles of the conductive metal. And at least a part of the surface of the particles of the conductive metal is coated with the sintering-suppressing ceramic.
  • a porous structure in which a conductive metal and a sintering inhibiting ceramic for suppressing sintering of the conductive metal are included, and particles of the conductive metal are necked
  • a projecting electrode can be formed.
  • the entire bump electrode has a porous structure.
  • FIG. 3A and FIG. 3B are schematic views explaining how the particles of the conductive metal are sintered.
  • the first conductive powder 30 shown in FIG. 3A when the surface of the particles of the conductive metal 31 is coated with the sintering inhibiting ceramic 32, necking of the particles of the conductive metal 31 is suppressed in the firing process. Ru.
  • the sintering inhibiting ceramic 32 is coagulated on the surface of the particles of the conductive metal 31 to expose the conductive metal 31, and the conductive metal 31 is exposed from the exposed portion. It is believed that the necking of the particles of the metallic metal 31 starts and sinters.
  • the particles of the conductive metal 31 do not sinter in the portion coated with the sintering-restricting ceramic 32, it is considered that as a result, a porous portion is generated between the interfaces of the conductive metal 31.
  • the conductive metal particles have a porous structure in which the particles are necked, and generation of structural defects such as cracks is prevented. Can be formed.
  • the powder of the sintering suppression ceramic is added to the powder of the conductive metal.
  • the amount of the sintering inhibiting ceramic can be reduced as compared with the case of using the conventional conductive paste containing the conductive powder. Therefore, it is possible to form a protruding electrode in which the occurrence of a structural defect such as a crack is prevented without increasing the specific resistance.
  • the type of conductive metal contained in the first conductive paste is not particularly limited, and examples thereof include metals such as copper, silver, nickel, palladium and alloys thereof.
  • the conductive metal preferably contains at least one selected from the group consisting of copper, silver and nickel, and more preferably any one selected from the group consisting of copper, silver and nickel, and more preferably copper, silver More preferably, it is any one selected from the group consisting of and nickel.
  • the type of the sintering-inhibited ceramic contained in the first conductive paste is not particularly limited as long as sintering of the conductive metal particles can be suppressed, and examples thereof include metal oxides such as alumina, zirconia, and silica.
  • the sintering inhibiting ceramic preferably contains at least one selected from the group consisting of alumina, zirconia and silica, and more preferably contains any one selected from the group consisting of alumina, zirconia and silica, alumina, More preferably, it is any one selected from the group consisting of zirconia and silica.
  • the content of the sintering-inhibited ceramic in the first conductive paste is not particularly limited, but from the viewpoint of lowering the specific resistance of the bump electrode, the content is 10% by weight or less based on the total weight of the conductive metal and the sintering-inhibited ceramic. Is preferred. Further, from the viewpoint of preventing the occurrence of structural defects, the content is preferably 0.3% by weight or more based on the total weight of the conductive metal and the sintering-inhibited ceramic.
  • the second conductive powder contained in the second conductive paste is the same as the first conductive powder. It is preferable that at least a part of the surface of the conductive metal particles is coated with the sintering-suppressing ceramic, which contains the conductive metal and the sintering-inhibiting ceramic.
  • the type of conductive metal contained in the second conductive paste is not particularly limited, and examples thereof include metals such as copper, silver, nickel, palladium and alloys thereof.
  • the conductive metal contained in the second conductive paste may be different from the conductive metal contained in the first conductive paste, but is preferably the same as the conductive metal contained in the first conductive paste .
  • sintering suppression ceramic contained in a 2nd conductive paste is not specifically limited, For example, metal oxides, such as an alumina, a zirconia, a silica, are mentioned.
  • the sintering suppression ceramic contained in the second conductive paste may be different from the sintering suppression ceramic contained in the first conductive paste, but is the same as the sintering suppression ceramic contained in the first conductive paste Is preferred.
  • the content of the sintering-inhibited ceramic in the second conductive paste is not particularly limited, but from the viewpoint of densifying the bump electrode, it is 10% by weight or less based on the total weight of the conductive metal and the sintering-inhibited ceramic Is preferable, and it is preferably 0.5% by weight or more based on the total weight of the conductive metal and the sintering inhibiting ceramic.
  • An example of the electrode forming sheet is a constraining sheet which does not substantially sinter at a temperature at which the ceramic green sheet sinters. In this case, after firing the composite laminate, the remaining constraining sheet is removed, whereby the ceramic substrate having the protruding electrodes can be taken out.
  • the constraining sheet comprises an inorganic material that does not substantially sinter at the temperature at which the ceramic green sheet sinters.
  • the constraining sheet is formed by forming a slurry containing, for example, an alumina powder, an organic binder, and a solvent as the above-mentioned inorganic material into a sheet by a doctor blade method or the like.
  • the slurry may contain various additives such as dispersants and plasticizers.
  • FIG. 4A, FIG. 4B and FIG. 4C are cross-sectional views schematically showing an example of a method of manufacturing a ceramic substrate using a constraining sheet.
  • stacked on one main surface of the laminated body of the ceramic green sheet 111 is produced.
  • the constraining sheet 121 is laminated also on the other main surface of the laminate of the ceramic green sheet 111, but the constraining sheet 121 may not be laminated on the other main surface.
  • the composite laminate 200 is fired at a temperature at which the ceramic green sheet 111 is sintered and the constraining sheet 121 is not sintered. Thereby, as shown to FIG. 4B, the ceramic green sheet 111 turns into the ceramic layer 11, and the filling body of the 1st conductive paste 120 turns into the projecting electrode 20. As shown in FIG.
  • the constraining sheet 121 is not substantially sintered at the time of firing, no shrinkage occurs, and the constraining sheet 121 acts on the laminate of the ceramic green sheets 111 so as to suppress the shrinkage in the main surface direction. As a result, the dimensional accuracy of the ceramic substrate can be enhanced.
  • the remaining constraining sheet 121 is removed.
  • methods such as wet blast, sand blast, brushing, etc., can be used, for example.
  • the ceramic substrate 1 provided with the substrate main body 10 which has the ceramic layer 11, and the projection electrode 20 provided in one main surface of the substrate main body 10 is obtained.
  • 5A, 5B, and 5C are cross-sectional views schematically showing another example of a method of manufacturing a ceramic substrate using a constraining sheet.
  • a composite laminate 200A is produced in which a constraining sheet 121 on which the second conductive paste 123 is printed on the surface of the through holes is laminated. Others are similar to the composite laminate 200 shown in FIG. 4A.
  • the composite laminate 200A is fired at a temperature at which the ceramic green sheet 111 is sintered and the constraining sheet 121 is not sintered.
  • the ceramic green sheet 111 becomes the ceramic layer 11
  • the filler of the first conductive paste 120 and the film of the second conductive paste 123 become the projecting electrodes 20A.
  • the portion where the second conductive paste 123 is printed becomes the dense layer 23 having a lower porosity than the portion where the first conductive paste 120 is filled.
  • the remaining constraining sheet 121 is removed.
  • a ceramic substrate 1A provided with the substrate body 10 having the ceramic layer 11 and the bump electrodes 20A provided on one main surface of the substrate body 10 is obtained.
  • 6A, 6B, and 6C are cross-sectional views schematically showing still another example of the method for manufacturing a ceramic substrate using a constraining sheet.
  • a composite laminate 200B is produced in which the constraining sheet 121 on which the second conductive paste 123 is printed on the surface of the through hole is laminated on the surface and inside. Others are similar to the composite laminate 200A shown in FIG. 5A.
  • the composite laminate 200B is fired at a temperature at which the ceramic green sheet 111 is sintered and the constraining sheet 121 is not sintered. Thereby, as shown to FIG. 6B, the ceramic green sheet 111 turns into the ceramic layer 11, and the filling body of the 1st conductive paste 120 and the 2nd conductive paste 123 turn into the projecting electrode 20B. As in FIG. 5B, the portion where the second conductive paste 123 is printed becomes the dense layer 23 having a lower porosity than the portion where the first conductive paste 120 is filled.
  • the remaining constraining sheet 121 is removed.
  • a ceramic substrate 1B provided with the substrate main body 10 having the ceramic layer 11 and the protruding electrodes 20B provided on one main surface of the substrate main body 10 is obtained.
  • the resin sheet which burns off below at the temperature which a ceramic green sheet sinters is mentioned.
  • the ceramic substrate having the projecting electrodes can be taken out by burning away the resin sheet in the step of firing the composite laminate.
  • the resin sheet contains a resin material that burns off at a temperature at which the ceramic green sheet sinters.
  • a resin material which comprises a resin sheet acrylic resin, a polypropylene resin, etc. are mentioned, for example.
  • 7A and 7B are cross-sectional views schematically showing an example of a method of manufacturing a ceramic substrate using a resin sheet.
  • stacked on one main surface of the laminated body of the ceramic green sheet 111 is produced.
  • the resin sheet 122 is laminated also on the other main surface of the laminate of the ceramic green sheet 111, but the resin sheet 122 may not be laminated on the other main surface.
  • a constraining sheet 121 may be laminated on the other main surface of the laminate of the ceramic green sheet 111 instead of the resin sheet 122.
  • the constraining sheet 121 may be further laminated on the outside of the resin sheet 122 on the one main surface or the other main surface of the laminate of the ceramic green sheet 111.
  • the composite laminate 210 is fired at a temperature at which the ceramic green sheet 111 sinters. Thereby, as shown to FIG. 7B, the ceramic green sheet 111 turns into the ceramic layer 11, and the filling body of the 1st conductive paste 120 turns into the projecting electrode 20. As shown in FIG. 7B, the ceramic green sheet 111 turns into the ceramic layer 11, and the filling body of the 1st conductive paste 120 turns into the projecting electrode 20. As shown in FIG.
  • the resin sheet 122 is burnt away.
  • the ceramic substrate 1 provided with the substrate main body 10 having the ceramic layer 11 and the protruding electrode 20 provided on one main surface of the substrate main body 10 is obtained.
  • a composite laminate in which a resin sheet on which the second conductive paste is printed on the surface of through holes is laminated is prepared
  • a composite laminate may be produced in which a resin sheet having the second conductive paste printed on the surface of the through hole is laminated on the surface and inside.
  • the ceramic substrate of the present invention can be made into a module by mounting an electronic component such as an IC chip on one main surface of the substrate main body and further sealing with a resin layer. Such a module is also one of the present invention.
  • FIG.8 (a) is sectional drawing which shows typically an example of the module of this invention
  • FIG.8 (b) is a top view of the module shown to Fig.8 (a).
  • FIG. 8A is a cross-sectional view of the module shown in FIG. 8B along the line AA.
  • a module 100 shown in FIG. 8A includes a ceramic substrate 1, an electronic component 40 mounted on one main surface of a substrate main body 10 constituting the ceramic substrate 1, and a resin provided on one main surface of the substrate main body 10. And a layer 50.
  • the ceramic substrate 1 includes a substrate main body 10 and a columnar projecting electrode 20 provided on one main surface of the substrate main body 10.
  • the electronic component 40 is disposed in the resin layer 50 so as to be mounted in a region of the main surface of the substrate body 10 where the protruding electrode 20 is not provided.
  • An external connection terminal 25 including a protruding electrode 20 is provided on one main surface of the substrate body 10, and the external connection terminal 25 is disposed in the resin layer 50 so that the tip is exposed from the surface of the resin layer 50. .
  • the external connection terminal 25 is for connecting the module 100 to an external mother substrate or the like, and a connection member (not shown) such as a solder bump is provided at the tip of the external connection terminal 25.
  • the external connection terminal 25 includes the plating film 21 covering the side surface of the protruding electrode 20 in addition to the protruding electrode 20, and the covering layer 22 covering the upper surface of the protruding electrode 20; including. Further, as shown in FIG. 8B, a plurality of external connection terminals 25 are provided so as to surround the electronic component 40.
  • the module of the present invention comprises the ceramic substrate of the present invention described above. That is, in the module according to the present invention, the ceramic substrate includes a substrate body having a ceramic layer, and a pillar-shaped protruding electrode provided on one main surface of the substrate body, and the protruding electrode is a conductive metal. And a sintered suppressing ceramic for suppressing sintering of the particles of the conductive metal, and the conductive metal particles have a porous structure in which the particles are necked.
  • the specific configuration of the ceramic substrate including the protruding electrode is as described in [ceramic substrate].
  • an external connection terminal including a protruding electrode is provided on one main surface of the substrate body, and the external connection terminal is disposed in the resin layer such that the tip is exposed from the surface of the resin layer .
  • the tip of the external connection terminal preferably protrudes from the surface of the resin layer.
  • the external connection terminal preferably further includes a plating film covering at least a part of the side surface of the bump electrode.
  • a plating film covering at least a part of the side surface of the bump electrode.
  • one end of the plating film be on the same plane as one end of the bump electrode.
  • the external connection terminal preferably further includes a covering layer covering at least a part of the top surface of the bump electrode.
  • the protruding electrode is recessed from the surface of the resin layer, and the covering layer protrudes from the surface of the resin layer.
  • the covering layer is formed by, for example, plating, sputtering, vapor deposition, or the like.
  • the surface facing the substrate main body is referred to as “bottom surface of the bump electrode”, and the surface opposite to the bottom surface of the bump electrode is referred to as “upper surface of the bump electrode”.
  • the electronic component is disposed in the resin layer so as to be mounted in a region where the protruding electrode is not provided on the one main surface of the substrate main body which constitutes the ceramic substrate.
  • the electronic components include, for example, various ICs and electronic components such as circuit modules smaller than the module of the present invention.
  • the surface of the electronic component is exposed from the surface of the resin layer.
  • the surface of the electronic component is preferably flush with the surface of the resin layer.
  • the electronic component is preferably polished from the surface side opposite to the surface on the substrate body side after being entirely embedded in the resin layer.
  • the resin layer is formed using, for example, a resin material in which a filler such as a glass material or silica is dispersed.
  • the resin layer may be formed of a single resin material.
  • the module of the invention is preferably manufactured as follows.
  • a method of manufacturing a module according to the present invention comprises the steps of manufacturing a ceramic substrate by the method of manufacturing a ceramic substrate according to the present invention, mounting an electronic component on one main surface of the substrate main body constituting the ceramic substrate, and the substrate main body Providing a resin layer on the one main surface of the above.
  • the electronic component is mounted on a region of the main surface of the substrate main body where no protruding electrode is provided.
  • An external connection terminal including the protruding electrode is provided on the one main surface of the substrate main body.
  • the external connection terminal is disposed in the resin layer such that the electronic component is disposed in the resin layer and the tip of the external connection terminal is exposed from the surface of the resin layer Be done.
  • the resin layer after forming a plating film covering at least a part of the side surface of the protruding electrode. In this case, it is more preferable to provide the resin layer after forming a plating film that covers the side surface and the top surface of the protruding electrode.
  • a covering layer which covers at least a part of the upper surface of the protruding electrode exposed from the surface of the resin layer. In this case, it is more preferable to form a covering layer which covers at least a part of the upper surface of the protruding electrode which is recessed from the surface of the resin layer.
  • the electronic component and the resin layer are formed from the surface side opposite to the surface on the substrate main body side It is preferable to expose at least a part of the surface of the electronic component from the surface of the resin layer by polishing.
  • FIG. 9A, FIG. 9B, FIG. 9C, FIG. 9D, and FIG. 9E are sectional drawings which show typically an example of the manufacturing method of the module shown to Fig.8 (a).
  • the electronic component 40 is mounted on one main surface of the substrate main body 10 constituting the ceramic substrate 1.
  • the ceramic substrate 1 is produced by the method described in [ceramic substrate].
  • a plating film 21 covering the outer surface of the bump electrode 20 is formed.
  • the plating film 21 can be formed by an electroless plating method or the like.
  • the electronic component 40 is mounted in the area
  • the resin layer 50 is provided on one main surface of the substrate main body 10 so that the entire electronic component 40 and the bump electrode 20 coated with the plating film 21 are embedded.
  • the electronic component 40 and the bump electrode 20 coated with the plating film 21 are embedded with the resin layer 50 by a method of applying a resin material forming the resin layer 50 on one main surface of the substrate main body 10 or the like. be able to.
  • the electronic component 40 and the resin layer 50 are polished from the surface side opposite to the surface on the substrate body 10 side.
  • the thickness of the electronic component 40 is reduced from the state before being mounted on the substrate body 10, and the polished cross section of the electronic component 40, the polished cross section of the resin layer 50, and the protruding electrode covered with the plating film 21. It is preferable to make it flush with the polished cross section of 20. Polishing can be performed, for example, by a method such as lapping.
  • the polished cross section is etched so that the exposed upper surface of the protruding electrode 20 coated with the plating film 21 is recessed from the surface of the resin layer 50.
  • a covering layer 22 is formed to cover the top surface of the bump electrode 20 coated with the plating film 21. Thereby, the external connection terminal 25 is formed.
  • the covering layer 22 can be formed by an electroless plating method or the like.
  • the ceramic substrate and module of the present invention are not limited to the above embodiment, and various applications and modifications may be made within the scope of the present invention, for example, with respect to the configuration of the ceramic substrate, manufacturing conditions, etc. It is possible.
  • Ceramic Green Sheet A ceramic material containing Ba, Al and Si as main components was prepared. Each material was prepared to have a predetermined composition and calcined at 800 to 1000.degree. The obtained calcined powder was pulverized by a zirconia ball mill for 12 hours to obtain a ceramic powder. An organic solvent containing toluene and equine was added to this ceramic powder, and after mixing these, an organic binder and a plasticizer were further added, and these were mixed again to obtain a slurry. The obtained slurry was formed by a doctor blade method to prepare a 50 ⁇ m thick ceramic green sheet.
  • the average particle diameter (D50) of the conductive powder shown in Table 1 is 3 ⁇ m.
  • “0.2 wt% alumina-coated copper” means that the surface of copper particles is coated with alumina, and the content of alumina relative to the total weight of copper and alumina is 0.2 wt%. It means a certain conductive powder.
  • the crack generation evaluation was performed about the obtained ceramic substrate. Moreover, specific resistance evaluation was performed about the conductive paste for forming a projecting electrode.
  • FIG. 10 is a perspective view schematically showing a measurement sample used for evaluation of specific resistance.
  • a conductive paste 124 for forming a bump electrode was printed on an alumina substrate 125.
  • the alumina substrate on which the conductive paste was printed was fired at a suitable maximum temperature ranging from 980 to 1000 ° C.
  • the film thickness and resistance value of the fired film on the alumina substrate after firing were measured to calculate the specific resistance.
  • the content of the sintering suppression ceramic in the conductive paste is that of the conductive metal and the sintering suppression ceramic. It is considered preferable to be 10% by weight or less based on the total weight. Further, according to the results of Examples 4 to 20, from the viewpoint of preventing the occurrence of cracks, the content of the sintering inhibiting ceramic in the conductive paste is 0 with respect to the total weight of the conductive metal and the sintering inhibiting ceramic. It is considered to be preferable to be .3 wt% or more.
  • Example 21 although a crack was not generated in the bump electrode, the residue of the constraining sheet was left on the substrate because the blast discharge pressure was low. Residues of the constraining sheet may cause a decrease in electrode strength after plating.
  • Example 22 since the blast discharge pressure was high, although there was no residue of the restraint sheet, a crack was generated in the bump electrode.

Abstract

本発明のセラミック基板の製造方法は、セラミック層を有する基板本体と、上記基板本体の一方主面に設けられた柱状の突起電極と、を備えるセラミック基板の製造方法であって、上記セラミック層となるべきセラミックグリーンシートを準備する工程と、上記突起電極を形成するための電極形成用シートを準備する工程と、上記電極形成用シートに貫通孔を形成し、第1導電性粉末を含有する第1導電性ペーストを上記貫通孔に充填する工程と、上記セラミックグリーンシートを積層するとともに、上記セラミックグリーンシートの積層体の一方主面に、上記第1導電性ペーストが上記貫通孔に充填された上記電極形成用シートを積層することにより、複合積層体を作製する工程と、上記セラミックグリーンシートが焼結する温度で、上記複合積層体を焼成する工程と、を備え、上記第1導電性粉末は、導電性金属と、上記導電性金属の粒子の焼結を抑制する焼結抑制セラミックと、を含み、かつ、上記導電性金属の粒子の表面の少なくとも一部に上記焼結抑制セラミックが被覆されていることを特徴とする。

Description

セラミック基板の製造方法、セラミック基板、及び、モジュール
本発明は、セラミック基板の製造方法、セラミック基板、及び、モジュールに関する。
従来、セラミック基板等の基板と、上記基板の一方主面に設けられた樹脂層と、上記基板の一方主面に実装された電子部品と、先端が上記樹脂層の表面から露出する外部接続端子と、を備えるモジュールが知られている。
外部接続端子は柱状の突起電極を含んでおり、例えば、導電性金属からなる金属ピンや、導電性金属の粒子の焼結体等が突起電極として用いられている。
突起電極ではなく、積層セラミックコンデンサ等の電子部品の端子電極を形成する技術として、特許文献1には、低抵抗金属とガラス成分等が分散した端子電極用ペースト中に、ジルコニア、マグネシア及びアルミナのうちの少なくとも一種類を添加することが開示されている。特許文献1によれば、ジルコニア、マグネシア、アルミナ等の無機材料は低抵抗金属との反応性が低く、低抵抗金属の急激な焼結反応を抑えることができるため、焼結時の収縮が緩和され、緻密な端子電極が得られるとされている。
特開平8-64029号公報
特許文献1に記載の端子電極用ペーストを用いて突起電極を形成しようとした場合、端子電極と異なり、一定の高さを有する柱状の電極を形成する必要があるため、焼結時の収縮を抑制するためにアルミナ等の添加量を増加せざるを得ない。しかし、アルミナ等の添加量が多くなるほど、突起電極の比抵抗が高くなってしまう。一方、突起電極の比抵抗を低くするためにアルミナ等の添加量を少なくすると、焼結時の収縮を充分に抑制することができないため、クラック等の構造欠陥が突起電極に発生してしまう。
本発明は上記の問題を解決するためになされたものであり、クラック等の構造欠陥の発生が防止され、かつ、比抵抗が低い突起電極を有するセラミック基板の製造方法、及び、セラミック基板を提供することを目的とする。本発明はまた、上記セラミック基板を備えるモジュールを提供することを目的とする。
本発明のセラミック基板の製造方法は、セラミック層を有する基板本体と、上記基板本体の一方主面に設けられた柱状の突起電極と、を備えるセラミック基板の製造方法であって、上記セラミック層となるべきセラミックグリーンシートを準備する工程と、上記突起電極を形成するための電極形成用シートを準備する工程と、上記電極形成用シートに貫通孔を形成し、第1導電性粉末を含有する第1導電性ペーストを上記貫通孔に充填する工程と、上記セラミックグリーンシートを積層するとともに、上記セラミックグリーンシートの積層体の一方主面に、上記第1導電性ペーストが上記貫通孔に充填された上記電極形成用シートを積層することにより、複合積層体を作製する工程と、上記セラミックグリーンシートが焼結する温度で、上記複合積層体を焼成する工程と、を備え、上記第1導電性粉末は、導電性金属と、上記導電性金属の粒子の焼結を抑制する焼結抑制セラミックと、を含み、かつ、上記導電性金属の粒子の表面の少なくとも一部に上記焼結抑制セラミックが被覆されていることを特徴とする。
本発明のセラミック基板の製造方法の一実施形態において、上記電極形成用シートは、上記セラミックグリーンシートが焼結する温度では実質的に焼結しない拘束シートである。この場合、上記セラミックグリーンシートが焼結し、上記拘束シートが焼結しない温度で、上記複合積層体を焼成した後、残存する上記拘束シートを除去する。
本発明のセラミック基板の製造方法の一実施形態において、上記電極形成用シートは、上記セラミックグリーンシートが焼結する温度以下で焼失する樹脂シートである。この場合、上記複合積層体を焼成する工程において、上記樹脂シートを焼失させる。
本発明のセラミック基板の製造方法において、上記焼結抑制セラミックは、アルミナ、ジルコニア及びシリカからなる群より選ばれる少なくとも1種を含むことが好ましい。
本発明のセラミック基板の製造方法において、上記導電性金属は、銅、銀及びニッケルからなる群より選ばれる少なくとも1種を含むことが好ましい。
本発明のセラミック基板の製造方法において、上記第1導電性ペースト中の上記焼結抑制セラミックの含有量は、上記導電性金属及び上記焼結抑制セラミックの合計重量に対して10重量%以下であることが好ましい。また、上記第1導電性ペースト中の上記焼結抑制セラミックの含有量は、上記導電性金属及び上記焼結抑制セラミックの合計重量に対して0.3重量%以上であることが好ましい。
本発明のセラミック基板の製造方法は、上記第1導電性ペーストを上記貫通孔に充填する工程の後、第2導電性粉末を含有する第2導電性ペーストを上記貫通孔の表面に印刷する工程をさらに備え、上記第2導電性粉末は、上記導電性金属と、上記焼結抑制セラミックと、を含み、かつ、上記導電性金属の粒子の表面の少なくとも一部に上記焼結抑制セラミックが被覆されており、上記複合積層体を作製する工程では、上記第2導電性ペーストが上記貫通孔の表面に印刷された上記電極形成用シートを表面に積層することが好ましい。
上記複合積層体を作製する工程では、上記第2導電性ペーストが上記貫通孔の表面に印刷された上記電極形成用シートを内部にも積層することが好ましい。
上記第2導電性ペースト中の上記焼結抑制セラミックの含有量は、上記導電性金属及び上記焼結抑制セラミックの合計重量に対して10重量%以下であることが好ましい。また、上記第2導電性ペースト中の上記焼結抑制セラミックの含有量は、上記導電性金属及び上記焼結抑制セラミックの合計重量に対して0.5重量%以上であることが好ましい。
本発明のセラミック基板は、セラミック層を有する基板本体と、上記基板本体の一方主面に設けられた柱状の突起電極と、を備えるセラミック基板であって、上記基板本体の上記一方主面は、上記突起電極が設けられていない領域に、電子部品を実装するための領域を有し、上記突起電極は、導電性金属と、上記導電性金属の粒子の焼結を抑制する焼結抑制セラミックと、を含み、かつ、上記導電性金属の粒子がネッキングしたポーラスな構造を有することを特徴とする。
本発明のセラミック基板において、上記焼結抑制セラミックは、アルミナ、ジルコニア及びシリカからなる群より選ばれる少なくとも1種を含むことが好ましい。
本発明のセラミック基板において、上記導電性金属は、銅、銀及びニッケルからなる群より選ばれる少なくとも1種を含むことが好ましい。
本発明のセラミック基板において、上記突起電極中の上記焼結抑制セラミックの含有量は、上記導電性金属及び上記焼結抑制セラミックの合計重量に対して10重量%以下であることが好ましい。また、上記突起電極中の上記焼結抑制セラミックの含有量は、上記導電性金属及び上記焼結抑制セラミックの合計重量に対して0.3重量%以上であることが好ましい。
本発明のセラミック基板においては、上記導電性金属の粒子の表面の少なくとも一部に上記焼結抑制セラミックが被覆されていてもよい。
本発明のセラミック基板において、上記突起電極は、他の部分よりも空隙率の低い緻密層を表面に有することが好ましい。
上記突起電極は、上記緻密層を内部にも有することが好ましい。
上記突起電極の緻密層は、緻密層以外の部分よりも幅が広いことが好ましい。
本発明のモジュールは、本発明のセラミック基板と、上記セラミック基板を構成する基板本体の一方主面に実装された電子部品と、上記基板本体の上記一方主面に設けられた樹脂層と、を備え、上記電子部品は、上記基板本体の上記一方主面のうち、突起電極が設けられていない領域に実装されるように上記樹脂層内に配置され、上記基板本体の上記一方主面には、上記突起電極を含む外部接続端子が設けられ、上記外部接続端子は、先端が上記樹脂層の表面から露出するように上記樹脂層内に配置されていることを特徴とする。
本発明のモジュールにおいては、上記電子部品の表面の少なくとも一部が、上記樹脂層の表面から露出していることが好ましい。
本発明のモジュールにおいて、上記外部接続端子は、上記突起電極の側面の少なくとも一部を被覆するめっき膜をさらに含むことが好ましい。また、上記外部接続端子は、上記突起電極の上面の少なくとも一部を被覆する被覆層をさらに含むことが好ましい。
本発明によれば、クラック等の構造欠陥の発生が防止され、かつ、比抵抗が低い突起電極を有するセラミック基板を提供することができる。
図1は、本発明のセラミック基板の一例を模式的に示す断面図である。 図2は、突起電極の一例を模式的に示す断面図である。 図3A及び図3Bは、導電性金属の粒子が焼結する様子を説明する模式図である。 図4A、図4B及び図4Cは、拘束シートを用いたセラミック基板の製造方法の一例を模式的に示す断面図である。 図5A、図5B及び図5Cは、拘束シートを用いたセラミック基板の製造方法の別の一例を模式的に示す断面図である。 図6A、図6B及び図6Cは、拘束シートを用いたセラミック基板の製造方法のさらに別の一例を模式的に示す断面図である。 図7A及び図7Bは、樹脂シートを用いたセラミック基板の製造方法の一例を模式的に示す断面図である。 図8(a)は、本発明のモジュールの一例を模式的に示す断面図であり、図8(b)は、図8(a)に示すモジュールの平面図である。 図9A、図9B、図9C、図9D及び図9Eは、図8(a)に示すモジュールの製造方法の一例を模式的に示す断面図である。 図10は、比抵抗評価に用いる測定試料を模式的に示す斜視図である。
以下、本発明のセラミック基板の製造方法、セラミック基板、及び、モジュールについて説明する。
しかしながら、本発明は、以下の構成に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。なお、以下において記載する本発明の個々の望ましい構成を2つ以上組み合わせたものもまた本発明である。
[セラミック基板]
まず、本発明のセラミック基板について説明する。
図1は、本発明のセラミック基板の一例を模式的に示す断面図である。
図1に示すセラミック基板1は、基板本体10と、基板本体10の一方主面に設けられた柱状の突起電極20と、を備える。図1に示すセラミック基板1では、基板本体10は、積層された複数のセラミック層11を有している。
突起電極20は、基板本体10の配線導体(図示せず)と電気的に接続されている。図1には示されていないが、基板本体10は、セラミック層11間に設けられた内部導体、基板本体10の一方主面及び他方主面に設けられた外部導体、セラミック層11を厚み方向に貫通するビア導体等の配線導体を有しており、特定の配線導体が突起電極20と電気的に接続されている。例えば、突起電極20は、セラミック層11の表面に設けられた外部導体と接続されていてもよいし、セラミック層11の表面に露出するビア導体と接続されていてもよい。
図1に示すセラミック基板1を用いることにより、後述する図8(a)に示すモジュール100を作製することができる。そのため、基板本体10の一方主面は、突起電極20が設けられていない領域に、電子部品を実装するための領域R40を有している。
本発明のセラミック基板において、基板本体を構成するセラミック層は、低温焼結セラミック材料を含有することが好ましい。低温焼結セラミック材料とは、セラミック材料のうち、1000℃以下の焼成温度で焼結可能であり、銅や銀等との同時焼成が可能である材料を意味する。
セラミック層に含有される低温焼結セラミック材料としては、例えば、クオーツやアルミナ、フォルステライト等のセラミック材料にホウ珪酸ガラスを混合してなるガラス複合系低温焼結セラミック材料、ZnO-MgO-Al-SiO系の結晶化ガラスを用いた結晶化ガラス系低温焼結セラミック材料、BaO-Al-SiO系セラミック材料やAl-CaO-SiO-MgO-B系セラミック材料等を用いた非ガラス系低温焼結セラミック材料等が挙げられる。
本発明のセラミック基板において、突起電極は、モジュールとした際の外部接続端子として機能するものである。
本発明のセラミック基板においては、突起電極が、導電性金属と、上記導電性金属の焼結を抑制する焼結抑制セラミックと、を含み、かつ、上記導電性金属の粒子がネッキングしたポーラスな構造を有することを特徴としている。
本明細書において、ポーラスな構造(porous structure)とは、多数の空孔(pore)を有する構造を意味する。なお、ここでいう空孔(pore)は、クラックのような大きな空洞(void)とは区別される。
突起電極の空隙率は特に限定されないが、空隙率が高すぎると、突起電極自体の物理的強度が劣化しやすくなる。そのため、突起電極の空隙率は、50%以下であることが好ましい。
図2は、突起電極の一例を模式的に示す断面図である。
図2に示すように、基板本体10の一方主面に設けられた突起電極20は、多数の空孔20aを有するポーラスな構造を有している。具体的には、ネッキングした導電性金属31の界面間にポーラスな部分(空孔20a)が発生している。なお、図2では、焼結抑制セラミックは省略している。
本発明のセラミック基板においては、図2に示すように、突起電極の全体がポーラスな構造を有している。
「突起電極の全体がポーラスな構造を有している」とは、図2に示すような突起電極の断面観察において、突起電極の断面を基板本体の表面に平行な線で3等分してできる3つの領域における空隙率を求めたとき、3つの領域における空隙率がほぼ同じ(好ましくは最大値と最小値の比が2以下)であることを意味する。なお、突起電極が緻密層を有する場合には、緻密層を除いた部分の空隙率を求め、3つの領域における空隙率が上記の関係にあればよい。
突起電極の空隙率は、以下の方法により求められる。
突起電極に蛍光液を含浸し、蛍光液を硬化させた後、突起電極の断面を蛍光顕微鏡により観察する。このとき、蛍光液が含浸した部分(空隙部)の面積と、蛍光液が含浸していない部分(胴体部)の面積の比を空隙率とする。
後述の図9に示すような方法でモジュールを製造する場合、めっきリフロー後に突起電極の内部に一部めっき液が残存することがある。かかる場合、はんだリフロー時に気化しためっき液が、突起電極からはんだ層に出る際の圧力で、はんだ爆ぜの不良が発生する。
しかしながら、突起電極の全体がポーラスな構造を有している場合には、突起電極がポーラスな構造を有していない場合や突起電極の一部がポーラスな構造を有している場合に比べて、圧力が軽減されるため、はんだ爆ぜの不良が少なくなる。
本発明のセラミック基板において、突起電極は、導電性金属の粒子の表面に焼結抑制セラミックが被覆された第1導電性粉末を含有する第1導電性ペーストを用いて形成されることが好ましい。この場合、後述するように、導電性金属の粒子が焼結する際、収縮が抑制された状態で導電性金属の粒子がネッキングする。その結果、得られる突起電極は、形状を維持することができる程度の強度を有するポーラスな構造となるため、クラック等の構造欠陥の発生が防止される。
本発明のセラミック基板において、突起電極は、基板本体との同時焼成によって形成されることが好ましい。例えば、後述するように、第1導電性ペーストが貫通孔に充填された電極形成用シートをセラミックグリーンシートの積層体の主面に積層した複合積層体を焼成し、電極形成用シートを除去することにより、突起電極を形成することが好ましい。
この場合、電極形成用シートに形成する貫通孔の大きさや間隔を調整することによって、所望の突起電極を形成することができる。
突起電極に含まれる導電性金属の種類は特に限定されないが、例えば、銅、銀、ニッケル、パラジウム及びこれらの合金等の金属が挙げられる。導電性金属は、銅、銀及びニッケルからなる群より選ばれる少なくとも1種を含むことが好ましく、銅、銀及びニッケルからなる群より選ばれるいずれか1種を含むことがより好ましく、銅、銀及びニッケルからなる群より選ばれるいずれか1種であることがさらに好ましい。
導電性金属の粒子の焼結を抑制することができる限り、突起電極に含まれる焼結抑制セラミックの種類は特に限定されないが、例えば、アルミナ、ジルコニア、シリカ等の金属酸化物が挙げられる。焼結抑制セラミックは、アルミナ、ジルコニア及びシリカからなる群より選ばれる少なくとも1種を含むことが好ましく、アルミナ、ジルコニア及びシリカからなる群より選ばれるいずれか1種を含むことがより好ましく、アルミナ、ジルコニア及びシリカからなる群より選ばれるいずれか1種であることがさらに好ましい。
突起電極中の焼結抑制セラミックの含有量は特に限定されないが、突起電極の比抵抗を低くする観点から、導電性金属及び焼結抑制セラミックの合計重量に対して10重量%以下であることが好ましい。また、構造欠陥の発生を防止する観点から、導電性金属及び焼結抑制セラミックの合計重量に対して0.3重量%以上であることが好ましい。
なお、突起電極が導電性金属及び焼結抑制セラミックを含むことは、突起電極の元素分析によって確認することができる。例えば、突起電極が導電性金属として銅、焼結抑制セラミックとしてアルミナを含む場合、Cu、Al及びOの各元素が検出される。
本発明のセラミック基板を構成する突起電極においては、導電性金属の粒子の表面の一部に焼結抑制セラミックが被覆されていてもよいが、焼結抑制セラミックが被覆されていなくてもよい。
本発明のセラミック基板において、突起電極は、導電性金属及び焼結抑制セラミック以外の成分を含んでもよいが、突起電極が緻密な構造となることを防止する観点からは、ガラス成分を実質的に含まないことが好ましい。
本発明のセラミック基板において、突起電極の高さは特に限定されないが、本発明の製造方法により上記セラミック基板を製造する場合、少なくとも200μm程度の突起電極の高さを形成することが可能である。
本発明のセラミック基板において、突起電極は、他の部分よりも空隙率の低い緻密層を表面に有することが好ましい。突起電極は、上記緻密層を内部にも有することが好ましい。
後述する方法により突起電極を形成する場合、拘束シートを除去する際に突起電極の表面に衝撃が加わる。そのため、突起電極の表面や内部に緻密層が設けられていると、突起電極に生じるクラック等を抑制することができる。
本発明のセラミック基板において、突起電極の緻密層は、緻密層以外の部分と同じ幅であってもよいし、緻密層以外の部分よりも幅が狭くてもよいが、緻密層以外の部分よりも幅が広いことが好ましい。
[セラミック基板の製造方法]
本発明のセラミック基板は、好ましくは、以下のように製造される。このようなセラミック基板の製造方法もまた、本発明の1つである。
まず、基板本体を構成するセラミック層となるべきセラミックグリーンシートを準備する。
セラミックグリーンシートは、未焼結のセラミック材料として、アルミナとホウケイ酸系ガラスとを混合したガラスセラミックや、焼成中にガラス成分を生成するBa-Al-Si-O系セラミックの原料となる粉末と、有機バインダと溶剤とを含有するセラミックスラリーを、ドクターブレード法等によってシート状に成形したものである。セラミックスラリーには、分散剤、可塑剤等の種々の添加剤が含有されていてもよい。
必要に応じて、特定のセラミックグリーンシート上に、例えば銀又は銅を含有する配線導体用ペーストを用いたスクリーン印刷等により、内部導体又は外部導体となるべきペースト膜を形成する。また、特定のセラミックグリーンシートに、レーザーやメカパンチにより貫通孔を形成し、該貫通孔に上記ペーストを充填することにより、ビア導体となるべきペースト体を形成する。
別途、突起電極を形成するための電極形成用シートを準備する。電極形成用シートについては後述する。
電極形成用シートに貫通孔を形成し、第1導電性粉末を含有する第1導電性ペーストを該貫通孔に充填する。これにより、突起電極となるべきペースト体を形成する。貫通孔は、例えば、レーザーやメカパンチにより形成することができる。また、第1導電性ペーストには、溶剤、有機バインダ等が含まれることが好ましい。
なお、第1導電性ペーストを電極形成用シートの貫通孔に充填した後、第2導電性粉末を含有する第2導電性ペーストを該貫通孔の表面に印刷することが好ましい。これにより、突起電極の表面や内部に緻密層となるべきペースト膜を形成することができる。第2導電性ペーストには、溶剤、有機バインダ等が含まれることが好ましい。
続いて、セラミックグリーンシートを積層するとともに、上記セラミックグリーンシートの積層体の一方主面に、第1導電性ペーストが貫通孔に充填された電極形成用シートを積層することにより、複合積層体を作製する。この際、焼成後に得られる突起電極が基板本体の特定の配線導体と電気的に接続されるように各シートを積層する。
第2導電性ペーストを電極形成用シートの貫通孔の表面に印刷する場合、第2導電性ペーストが該貫通孔の表面に印刷された電極形成用シートを表面に積層することが好ましく、内部にも積層することがより好ましい。
セラミックグリーンシート及び電極形成用シートを積層する順序は特に限定されず、例えば、セラミックグリーンシートを積層することによりセラミックグリーンシートの積層体を作製した後に電極形成用シートを積層してもよいし、電極形成用シート及びセラミックグリーンシートを順次積層してもよい。
その後、セラミックグリーンシートが焼結する温度で、複合積層体を焼成する。複合積層体を焼成した後、又は、複合積層体を焼成する工程、あるいは両方の工程において、電極形成用シートを除去することにより、突起電極を有するセラミック基板を取り出すことができる。
本発明のセラミック基板の製造方法においては、突起電極を形成するための第1導電性ペーストに含有される第1導電性粉末が、導電性金属と、上記導電性金属の粒子の焼結を抑制する焼結抑制セラミックと、を含み、かつ、上記導電性金属の粒子の表面の少なくとも一部に上記焼結抑制セラミックが被覆されていることを特徴としている。
本発明のセラミック基板の製造方法においては、導電性金属と、上記導電性金属の焼結を抑制する焼結抑制セラミックと、を含み、かつ、上記導電性金属の粒子がネッキングしたポーラスな構造を有する突起電極を形成することができる。上記突起電極の全体がポーラスな構造を有している。
図3A及び図3Bは、導電性金属の粒子が焼結する様子を説明する模式図である。
図3Aに示す第1導電性粉末30のように、導電性金属31の粒子の表面に焼結抑制セラミック32が被覆されていると、焼成過程において、導電性金属31の粒子のネッキングが抑制される。ただし、焼成過程では、図3Bに示すように、焼結抑制セラミック32が導電性金属31の粒子の表面で凝集して導電性金属31が露出し、導電性金属31が露出した部分から、導電性金属31の粒子のネッキングが開始し、焼結すると考えられる。一方、焼結抑制セラミック32が被覆された部分では、導電性金属31の粒子が焼結しないため、結果として、導電性金属31の界面間にポーラスな部分が発生すると考えられる。
このように、本発明のセラミック基板の製造方法においては、焼結時の収縮が抑制されながら、導電性金属の粒子がネッキングしたポーラスな構造を有し、クラック等の構造欠陥の発生が防止された突起電極を形成することができる。
また、導電性金属の粒子の表面に焼結抑制セラミックが被覆された第1導電性粉末を含有する第1導電性ペーストを用いる場合、導電性金属の粉末に焼結抑制セラミックの粉末が添加された導電性粉末を含有する従来の導電性ペーストを用いた場合と比べて、焼結抑制セラミックの量を少なくすることができる。そのため、比抵抗を高くすることなく、クラック等の構造欠陥の発生が防止された突起電極を形成することができる。
本発明のセラミック基板の製造方法において、第1導電性ペーストに含まれる導電性金属の種類は特に限定されないが、例えば、銅、銀、ニッケル、パラジウム及びこれらの合金等の金属が挙げられる。導電性金属は、銅、銀及びニッケルからなる群より選ばれる少なくとも1種を含むことが好ましく、銅、銀及びニッケルからなる群より選ばれるいずれか1種を含むことがより好ましく、銅、銀及びニッケルからなる群より選ばれるいずれか1種であることがさらに好ましい。
導電性金属の粒子の焼結を抑制することができる限り、第1導電性ペーストに含まれる焼結抑制セラミックの種類は特に限定されないが、例えば、アルミナ、ジルコニア、シリカ等の金属酸化物が挙げられる。焼結抑制セラミックは、アルミナ、ジルコニア及びシリカからなる群より選ばれる少なくとも1種を含むことが好ましく、アルミナ、ジルコニア及びシリカからなる群より選ばれるいずれか1種を含むことがより好ましく、アルミナ、ジルコニア及びシリカからなる群より選ばれるいずれか1種であることがさらに好ましい。
第1導電性ペースト中の焼結抑制セラミックの含有量は特に限定されないが、突起電極の比抵抗を低くする観点から、導電性金属及び焼結抑制セラミックの合計重量に対して10重量%以下であることが好ましい。また、構造欠陥の発生を防止する観点から、導電性金属及び焼結抑制セラミックの合計重量に対して0.3重量%以上であることが好ましい。
緻密層を形成するための第2導電性ペーストを電極形成用シートの貫通孔の表面に印刷する場合、第2導電性ペーストに含有される第2導電性粉末は、第1導電性粉末と同様、導電性金属と焼結抑制セラミックとを含み、かつ、導電性金属の粒子の表面の少なくとも一部に焼結抑制セラミックが被覆されていることが好ましい。
第2導電性ペーストに含まれる導電性金属の種類は特に限定されないが、例えば、銅、銀、ニッケル、パラジウム及びこれらの合金等の金属が挙げられる。第2導電性ペーストに含まれる導電性金属は、第1導電性ペーストに含まれる導電性金属と異なっていてもよいが、第1導電性ペーストに含まれる導電性金属と同じであることが好ましい。
第2導電性ペーストに含まれる焼結抑制セラミックの種類は特に限定されないが、例えば、アルミナ、ジルコニア、シリカ等の金属酸化物が挙げられる。第2導電性ペーストに含まれる焼結抑制セラミックは、第1導電性ペーストに含まれる焼結抑制セラミックと異なっていてもよいが、第1導電性ペーストに含まれる焼結抑制セラミックと同じであることが好ましい。
第2導電性ペースト中の焼結抑制セラミックの含有量は特に限定されないが、突起電極を緻密化する観点から、導電性金属及び焼結抑制セラミックの合計重量に対して10重量%以下であることが好ましく、また、導電性金属及び焼結抑制セラミックの合計重量に対して0.5重量%以上であることが好ましい。
以下、電極形成用シートの具体例について説明する。
電極形成用シートの一例として、セラミックグリーンシートが焼結する温度では実質的に焼結しない拘束シートが挙げられる。この場合、複合積層体を焼成した後、残存する拘束シートを除去することによって、突起電極を有するセラミック基板を取り出すことができる。
拘束シートは、セラミックグリーンシートが焼結する温度では実質的に焼結しない無機材料を含む。具体的には、拘束シートは、上記無機材料として、例えばアルミナ粉末と、有機バインダと溶剤とを含有するスラリーを、ドクターブレード法等によってシート状に成形したものである。上記スラリーには、分散剤、可塑剤等の種々の添加剤が含有されていてもよい。
図4A、図4B及び図4Cは、拘束シートを用いたセラミック基板の製造方法の一例を模式的に示す断面図である。
図4Aに示すように、セラミックグリーンシート111の積層体の一方主面に、第1導電性ペースト120が貫通孔に充填された拘束シート121が積層された複合積層体200を作製する。
図4Aに示す複合積層体200では、セラミックグリーンシート111の積層体の他方主面にも拘束シート121が積層されているが、他方主面には拘束シート121が積層されていなくてもよい。
セラミックグリーンシート111が焼結し、拘束シート121が焼結しない温度で、複合積層体200を焼成する。これにより、図4Bに示すように、セラミックグリーンシート111はセラミック層11となり、第1導電性ペースト120の充填体は突起電極20となる。
一方、拘束シート121は、焼成時において実質的に焼結しないので収縮が生じず、セラミックグリーンシート111の積層体に対して主面方向での収縮を抑制するように作用する。その結果、セラミック基板の寸法精度を高めることができる。
複合積層体200を焼成した後、残存する拘束シート121を除去する。拘束シートを除去する方法としては、例えば、ウェットブラスト、サンドブラスト、ブラッシング等の方法を用いることができる。
その結果、図4Cに示すように、セラミック層11を有する基板本体10と、基板本体10の一方主面に設けられた突起電極20と、を備えるセラミック基板1が得られる。
図5A、図5B及び図5Cは、拘束シートを用いたセラミック基板の製造方法の別の一例を模式的に示す断面図である。
図5Aでは、第2導電性ペースト123が貫通孔の表面に印刷された拘束シート121が表面に積層された複合積層体200Aを作製する。その他は、図4Aに示す複合積層体200と同様である。
セラミックグリーンシート111が焼結し、拘束シート121が焼結しない温度で、複合積層体200Aを焼成する。これにより、図5Bに示すように、セラミックグリーンシート111はセラミック層11となり、第1導電性ペースト120の充填体及び第2導電性ペースト123の膜は突起電極20Aとなる。第2導電性ペースト123が印刷されていた部分は、第1導電性ペースト120が充填されていた部分よりも空隙率の低い緻密層23となる。
複合積層体200Aを焼成した後、残存する拘束シート121を除去する。その結果、図5Cに示すように、セラミック層11を有する基板本体10と、基板本体10の一方主面に設けられた突起電極20Aと、を備えるセラミック基板1Aが得られる。
図6A、図6B及び図6Cは、拘束シートを用いたセラミック基板の製造方法のさらに別の一例を模式的に示す断面図である。
図6Aでは、第2導電性ペースト123が貫通孔の表面に印刷された拘束シート121が表面及び内部に積層された複合積層体200Bを作製する。その他は、図5Aに示す複合積層体200Aと同様である。
セラミックグリーンシート111が焼結し、拘束シート121が焼結しない温度で、複合積層体200Bを焼成する。これにより、図6Bに示すように、セラミックグリーンシート111はセラミック層11となり、第1導電性ペースト120の充填体及び第2導電性ペースト123は突起電極20Bとなる。図5Bと同様、第2導電性ペースト123が印刷されていた部分は、第1導電性ペースト120が充填されていた部分よりも空隙率の低い緻密層23となる。
複合積層体200Bを焼成した後、残存する拘束シート121を除去する。その結果、図6Cに示すように、セラミック層11を有する基板本体10と、基板本体10の一方主面に設けられた突起電極20Bと、を備えるセラミック基板1Bが得られる。
例えばブラスト法により拘束シートを除去する場合、ブラストの圧力が低いと、突起電極にクラックは生じないものの、拘束シートの残渣が残るおそれがある。一方、ブラストの圧力が高いと、拘束シートの残渣は残らないものの、突起電極の表面にクラックが生じやすくなる。そこで、突起電極の表面や内部に緻密層を形成することにより、拘束シートの残渣をなくすためにブラストの圧力を高くした場合であっても、突起電極に生じるクラック等を抑制することができる。
電極形成用シートの別の一例として、セラミックグリーンシートが焼結する温度以下で焼失する樹脂シートが挙げられる。この場合、複合積層体を焼成する工程において、樹脂シートを焼失させることによって、突起電極を有するセラミック基板を取り出すことができる。
樹脂シートは、セラミックグリーンシートが焼結する温度以下で焼失する樹脂材料を含む。樹脂シートを構成する樹脂材料としては、例えば、アクリル樹脂、ポリプロピレン樹脂等が挙げられる。
図7A及び図7Bは、樹脂シートを用いたセラミック基板の製造方法の一例を模式的に示す断面図である。
図7Aに示すように、セラミックグリーンシート111の積層体の一方主面に、第1導電性ペースト120が貫通孔に充填された樹脂シート122が積層された複合積層体210を作製する。
図7Aに示す複合積層体210では、セラミックグリーンシート111の積層体の他方主面にも樹脂シート122が積層されているが、他方主面には樹脂シート122が積層されていなくてもよい。セラミックグリーンシート111の積層体の他方主面には、樹脂シート122の代わりに拘束シート121が積層されていてもよい。また、セラミックグリーンシート111の積層体の一方主面又は他方主面において、樹脂シート122の外側に、さらに拘束シート121が積層されていてもよい。
セラミックグリーンシート111が焼結する温度で、複合積層体210を焼成する。これにより、図7Bに示すように、セラミックグリーンシート111はセラミック層11となり、第1導電性ペースト120の充填体は突起電極20となる。
一方、樹脂シート122は焼失する。その結果、セラミック層11を有する基板本体10と、基板本体10の一方主面に設けられた突起電極20と、を備えるセラミック基板1が得られる。
電極形成用シートとして樹脂シートを用いる場合においても、拘束シートを用いる場合と同様、第2導電性ペーストが貫通孔の表面に印刷された樹脂シートが表面に積層された複合積層体を作製してもよいし、第2導電性ペーストが貫通孔の表面に印刷された樹脂シートが表面及び内部に積層された複合積層体を作製してもよい。
[モジュール]
本発明のセラミック基板は、ICチップ等の電子部品を基板本体の一方主面に実装し、さらに、樹脂層により封止することによって、モジュールとすることができる。このようなモジュールもまた、本発明の1つである。
図8(a)は、本発明のモジュールの一例を模式的に示す断面図であり、図8(b)は、図8(a)に示すモジュールの平面図である。なお、図8(a)は、図8(b)に示すモジュールのA-A線断面図である。
図8(a)に示すモジュール100は、セラミック基板1と、セラミック基板1を構成する基板本体10の一方主面に実装された電子部品40と、基板本体10の一方主面に設けられた樹脂層50と、を備える。セラミック基板1は、図1に示したように、基板本体10と、基板本体10の一方主面に設けられた柱状の突起電極20と、を備える。
電子部品40は、基板本体10の一方主面のうち、突起電極20が設けられていない領域に実装されるように樹脂層50内に配置されている。
基板本体10の一方主面には、突起電極20を含む外部接続端子25が設けられ、外部接続端子25は、先端が樹脂層50の表面から露出するように樹脂層50内に配置されている。外部接続端子25は、モジュール100を外部のマザー基板等に接続するためのものであり、外部接続端子25の先端には、はんだバンプ等の接続部材(図示せず)が設けられる。
図8(a)に示すモジュール100では、外部接続端子25は、突起電極20に加えて、突起電極20の側面を被覆するめっき膜21と、突起電極20の上面を被覆する被覆層22と、を含む。また、図8(b)に示すように、電子部品40を囲むように、複数の外部接続端子25が設けられている。
本発明のモジュールは、上述した本発明のセラミック基板を備える。すなわち、本発明のモジュールにおいて、セラミック基板は、セラミック層を有する基板本体と、上記基板本体の一方主面に設けられた柱状の突起電極と、を備え、上記突起電極が、導電性金属と、上記導電性金属の粒子の焼結を抑制する焼結抑制セラミックと、を含み、かつ、上記導電性金属の粒子がネッキングしたポーラスな構造を有することを特徴としている。突起電極を含むセラミック基板の具体的な構成については、[セラミック基板]において説明したとおりである。
本発明のモジュールにおいて、基板本体の一方主面には、突起電極を含む外部接続端子が設けられ、外部接続端子は、先端が樹脂層の表面から露出するように樹脂層内に配置されている。外部接続端子の先端は、樹脂層の表面から突出していることが好ましい。
本発明のモジュールにおいて、外部接続端子は、突起電極の側面の少なくとも一部を被覆するめっき膜をさらに含むことが好ましい。この場合、めっき膜の一端が、突起電極の一端と同一平面上にあることがより好ましい。
突起電極の側面にめっき膜が被覆されていると、外部接続端子と樹脂層との密着性が高くなるため、例えばモジュールが加熱された場合でも、外部接続端子と樹脂層との界面における剥離の発生が抑制される。
本発明のモジュールにおいて、外部接続端子は、突起電極の上面の少なくとも一部を被覆する被覆層をさらに含むことが好ましい。この場合、突起電極が樹脂層の表面よりも窪んでおり、被覆層が樹脂層の表面から突出していることがより好ましい。被覆層は、例えば、めっき、スパッタ、蒸着等によって形成される。
突起電極の上面に被覆層が被覆されていると、はんだバンプ等の接続部材と外部接続端子との接続界面に働く応力が緩和されるため、マザー基板等の電子機器との接続信頼性が高くなる。
なお、突起電極の表面のうち、基板本体と対向する表面を「突起電極の底面」、突起電極の底面と反対側の表面を「突起電極の上面」という。
本発明のモジュールにおいて、電子部品は、セラミック基板を構成する基板本体の一方主面のうち、突起電極が設けられていない領域に実装されるように樹脂層内に配置されている。電子部品としては、例えば、各種IC、及び、本発明のモジュールよりも小型の回路モジュールのような電子部品が挙げられる。
本発明のモジュールにおいては、電子部品の表面の少なくとも一部が、樹脂層の表面から露出していることが好ましい。特に、電子部品の表面が、樹脂層の表面と面一であることが好ましい。
本発明のモジュールにおいて、電子部品は、好ましくは、全体が樹脂層により包埋された後に、基板本体側の表面と反対の表面側から研磨加工される。このようにすることで、例えば電子部品がICである場合、取り扱いの難しい薄いICを用いることなく、モジュールの低背化が図られる。
本発明のモジュールにおいて、樹脂層は、例えば、ガラス材料やシリカ等のフィラーを分散させた樹脂材料を用いて形成される。ただし、樹脂層は、樹脂材料単体で形成されてもよい。
本発明のモジュールは、好ましくは、以下のように製造される。
本発明のモジュールの製造方法は、本発明のセラミック基板の製造方法によりセラミック基板を作製する工程と、上記セラミック基板を構成する基板本体の一方主面に電子部品を実装する工程と、上記基板本体の上記一方主面に樹脂層を設ける工程と、を備える。上記電子部品は、上記基板本体の上記一方主面のうち、突起電極が設けられていない領域に実装される。上記基板本体の上記一方主面には、上記突起電極を含む外部接続端子が設けられる。上記樹脂層を設ける工程において、上記電子部品が上記樹脂層内に配置されるとともに、上記外部接続端子の先端が上記樹脂層の表面から露出するように上記外部接続端子が上記樹脂層内に配置される。
本発明のモジュールの製造方法では、上記突起電極の側面の少なくとも一部を被覆するめっき膜を形成した後、上記樹脂層を設けることが好ましい。この場合、上記突起電極の側面及び上面を被覆するめっき膜を形成した後、上記樹脂層を設けることがより好ましい。
本発明のモジュールの製造方法では、上記樹脂層の表面から露出した上記突起電極の上面の少なくとも一部を被覆する被覆層を形成することが好ましい。この場合、上記樹脂層の表面よりも窪んだ上記突起電極の上面の少なくとも一部を被覆する被覆層を形成することがより好ましい。
本発明のモジュールの製造方法では、上記電子部品の全体が包埋されるように上記樹脂層を設けた後、上記電子部品及び上記樹脂層を、上記基板本体側の表面と反対の表面側から研磨加工することにより、上記電子部品の表面の少なくとも一部を、上記樹脂層の表面から露出させることが好ましい。
図9A、図9B、図9C、図9D及び図9Eは、図8(a)に示すモジュールの製造方法の一例を模式的に示す断面図である。
図9Aでは、セラミック基板1を構成する基板本体10の一方主面に電子部品40を実装する。
セラミック基板1は、[セラミック基板]において説明した方法によって作製される。図9Aでは、セラミック基板1を作製した後、突起電極20の外表面を被覆するめっき膜21が形成されている。めっき膜21は、無電解めっき法等により形成することができる。電子部品40は、基板本体10の一方主面のうち、めっき膜21が被覆された突起電極20が設けられていない領域に実装される。
図9Bでは、電子部品40、及び、めっき膜21が被覆された突起電極20の全体が包埋されるように、樹脂層50を基板本体10の一方主面に設ける。
例えば、樹脂層50を形成する樹脂材料を基板本体10の一方主面に塗工する方法等によって、電子部品40、及び、めっき膜21が被覆された突起電極20を樹脂層50により包埋することができる。
図9Cでは、電子部品40及び樹脂層50を、基板本体10側の表面と反対の表面側から研磨加工する。
その際、電子部品40の厚みが基板本体10に実装される前の状態から減少し、かつ、電子部品40の研磨断面と、樹脂層50の研磨断面と、めっき膜21が被覆された突起電極20の研磨断面とが面一となるようにすることが好ましい。研磨加工は、例えば、ラップ研磨等の方法によって行うことができる。
図9Dでは、めっき膜21が被覆された突起電極20の露出した上面が樹脂層50の表面よりも窪むように、研磨断面をエッチングする。
図9Eでは、めっき膜21が被覆された突起電極20の上面を被覆する被覆層22を形成する。これにより、外部接続端子25が形成される。被覆層22は、無電解めっき法等により形成することができる。
以上により、図8(a)に示すモジュール100が得られる。
本発明のセラミック基板、及び、モジュールは、上記実施形態に限定されるものではなく、例えば、セラミック基板の構成、製造条件等に関し、本発明の範囲内において、種々の応用、変形を加えることが可能である。
以下、本発明のセラミック基板の製造方法をより具体的に開示した実施例を示す。なお、本発明は、これらの実施例のみに限定されるものではない。
(実施例1~20及び比較例1~5)
[セラミック基板の作製]
(1)セラミックグリーンシートの作製
Ba、Al及びSiを主たる成分とするセラミック材料を用意した。各材料を所定の組成になるよう調合し、800~1000℃で仮焼した。得られた仮焼粉末をジルコニアボールミルで12時間粉砕し、セラミック粉末を得た。
このセラミック粉末に、トルエン及びエキネンを含む有機溶剤を加え、これらを混合した後、さらに、有機バインダ及び可塑剤を加え、再びこれらを混合することにより、スラリーを得た。
得られたスラリーをドクターブレード法により成形し、厚さ50μmのセラミックグリーンシートを作製した。
(2)拘束シートの作製
粒径0.5μm~5.0μmのアルミナ粉末とアクリル系有機バインダを混合することにより、スラリーを得た。得られたスラリーをドクターブレード法により成形し、厚さ100μmの拘束シートを作製した。
(3)突起電極用の導電性ペーストの作製
表1に示す割合となるように、各種導電性粉末、有機バインダ、及び、必要に応じて添加物を混合し、3本ロールで分散させることにより、突起電極用の導電性ペーストL1~L25を作製した。
表1に示す導電性粉末の平均粒径(D50)は、いずれも3μmである。また、表1において、例えば「0.2wt%アルミナコート銅」とは、銅の粒子の表面にアルミナが被覆されており、銅及びアルミナの合計重量に対するアルミナの含有量が0.2重量%である導電性粉末を意味する。
Figure JPOXMLDOC01-appb-T000001
表1において、導電性ペーストL21~L25は、本発明の範囲外のものである。
(4)貫通孔の形成と導電性ペーストの充填
それぞれの導電性ペーストに対して、上記拘束シートに、レーザー加工により直径200μmの貫通孔を形成した後、各導電性ペーストを貫通孔に充填した。
(5)複合積層体の作製
上記セラミックグリーンシートを積層し、さらに、両主面に、各導電性ペーストが充填された拘束シートを2枚積層させて圧着することにより、図4Aに示すような複合積層体を得た。
(6)複合積層体の焼成
得られた複合積層体を、980~1000℃の範囲にある適当な最高温度で焼成することにより、図4Bに示すような焼成体を得た。
焼成にあたっては、銅が酸化しない酸素濃度となるように、焼成炉の雰囲気を、N/H/HOを用いて制御を行った。
(7)拘束シートの除去
アルミナ砥粒と水から構成された洗浄液を用いて、上記焼成体を洗浄することにより、拘束シートを除去した。
以上より、図4Cに示すような突起電極が形成されたセラミック基板を得た。
[特性評価]
得られたセラミック基板について、クラック発生評価を行った。また、突起電極を形成するための導電性ペーストについて、比抵抗評価を行った。
(1)クラック発生評価
各セラミック基板をエポキシ樹脂に埋め、硬化させた。硬化後、研磨によって、突起電極の断面を露出させて観察し、クラックの有無を確認した。表2の「クラック発生」に、クラックの有無を示す。表2中、「可能性あり」とは、アルミナコート銅のアルミナ含有量が非常に少ない場合、例えば0.2重量%以下の場合、クラック発生の可能性があることを意味する。
(2)比抵抗評価
図10は、比抵抗評価に用いる測定試料を模式的に示す斜視図である。
図10に示すように、突起電極を形成するための導電性ペースト124をアルミナ基板125に印刷した。導電性ペーストが印刷されたアルミナ基板を、980~1000℃の範囲にある適当な最高温度で焼成した。焼成後のアルミナ基板上の焼成膜の膜厚と抵抗値を測定し、比抵抗を計算した。
表2の「比抵抗」では、比抵抗が3μΩ・cm未満のものを◎(優)、比抵抗が3μΩ・cm以上5μΩ・cm未満のものを○(良)、比抵抗が5μΩ・cm以上7μΩ・cm未満のものを△(可)、比抵抗が7μΩ・cm以上のものを×(不良)と判定した。
(3)総合評価
表2中、クラックの発生がなく、かつ比抵抗評価で「○」のものを、良好な突起電極と判定し、総合評価欄に「○」と表記し、また、クラックの発生がなく、かつ比抵抗評価で「◎」のものを、より良好な突起電極を判定し、総合評価欄に「◎」と表記した。一方、クラックの発生があるか、又は比抵抗評価で「×」のいずれか1つを満たすものを、不良な突起電極と判定し、総合評価欄に「×」と表記した。また、クラック発生の可能性があるか、又は比抵抗評価で「△」のいずれか1つを満たすものについては、総合評価欄に「△」と表記した。
Figure JPOXMLDOC01-appb-T000002
表1及び表2より、導電性金属である銅の粒子の表面に焼結抑制セラミックであるアルミナ、ジルコニア又はシリカが被覆された導電性粉末を含有する導電性ペーストL1~L20を用いた実施例1~20では、突起電極に発生するクラックが防止されており、また、突起電極の比抵抗が低かった。
特に、実施例1~13及び15~20の結果より、突起電極の比抵抗を低くする観点からは、導電性ペースト中の焼結抑制セラミックの含有量が、導電性金属及び焼結抑制セラミックの合計重量に対して10重量%以下であることが好ましいと考えられる。また、実施例4~20の結果より、クラックの発生を防止する観点からは、導電性ペースト中の焼結抑制セラミックの含有量が、導電性金属及び焼結抑制セラミックの合計重量に対して0.3重量%以上であることが好ましいと考えられる。
これに対し、導電性金属である銅の粉末に焼結抑制セラミックであるアルミナの粉末が添加された導電性粉末を含有する導電性ペーストL21~L25を用いた比較例1~5のうち、導電性ペースト中の焼結抑制セラミックの含有量が少ない比較例1及び2では突起電極にクラックが発生し、導電性ペースト中の焼結抑制セラミックの含有量が多い比較例3~5では突起電極の比抵抗が高かった。
(実施例21~29)
[セラミック基板の作製]
(1)セラミックグリーンシートの作製
上記と同様の方法により、厚さ30μmのセラミックグリーンシートを作製した。
(2)拘束シートの作製
上記と同様の方法により、厚さ100μmの拘束シートを作製した。
(3)突起電極用の導電性ペーストの作製
表3に示す割合となるように、各種導電性粉末、及び、有機バインダを混合し、3本ロールで分散させることにより、突起電極用の導電性ペーストS1~S3を作製した。表3に示す導電性粉末の平均粒径(D50)は、いずれも3μmである。
Figure JPOXMLDOC01-appb-T000003
(4)貫通孔の形成と導電性ペーストの充填及び印刷
それぞれの導電性ペーストに対して、上記拘束シートに、レーザー加工により直径200μmの貫通孔を形成した。その後、表4に示すように、各導電性ペーストを貫通孔に充填した。必要に応じて、導電性ペーストが充填された貫通孔の表面に各導電性ペーストを印刷した。
(5)複合積層体の作製
上記セラミックグリーンシートを積層し、さらに、両主面に、各導電性ペーストが充填された拘束シートを2枚積層させて圧着することにより、図4A(実施例21及び22)、図5A(実施例23~25及び実施例27~29)又は図6A(実施例26)に示すような複合積層体を得た。
(6)複合積層体の焼成
得られた複合積層体を、980~1000℃の範囲にある適当な最高温度で焼成することにより、図4B、図5B又は図6Bに示すような焼成体を得た。
焼成にあたっては、銅が酸化しない酸素濃度となるように、焼成炉の雰囲気を、N/H/HOを用いて制御を行った。
(7)拘束シートの除去
アルミナ砥粒と水から構成された洗浄液を用いて、上記焼成体に湿式でブラスト照射することにより、拘束シートを除去した。ブラスト圧力を表4に示す。
以上より、図4C、図5C又は図6Cに示すような突起電極が形成されたセラミック基板を得た。
[特性評価]
得られたセラミック基板について、拘束シートの残渣評価、及び、突起電極のクラック発生評価を行った。また、突起電極を形成するための導電性ペーストについて、比抵抗評価を行った。
(1)拘束シートの残渣評価、及び、突起電極のクラック発生評価
拘束シートの残渣、及び、突起電極のクラックの有無について、10倍の実体顕微鏡を用いて確認した。表4では、有りの場合を×、無しの場合を○とした。
(2)比抵抗評価
比抵抗の評価方法は、上記と同様である。
表4の「比抵抗」では、比抵抗が7μΩ・cm未満のものを○(良)、比抵抗が7μΩ・cm以上のものを×(不良)と判定した。
(3)総合評価
表4中、全ての項目で「○」のものを総合評価欄に「○」と表記し、「×」の項目が1つのものを総合評価欄に「△」と表記し、「×」の項目が2つ以上のものを総合評価欄に「×」と表記した。
Figure JPOXMLDOC01-appb-T000004
実施例21においては、突起電極にクラックは発生していないものの、ブラスト吐出圧力が低いため、拘束シートの残渣が基板上に残っていた。拘束シートの残渣は、めっき後の電極強度低下を招くおそれがある。
実施例22においては、ブラスト吐出圧力が高いため、拘束シートの残渣は無いものの、突起電極にクラックが発生した。
一方、実施例23~29においては、突起電極自体にクラックが発生せず、さらに、突起電極に緻密層が形成されているため、耐ブラスト性を有し、突起電極にクラックが発生せず、比抵抗の上昇も発生しなかった。
1,1A,1B セラミック基板
10  基板本体
11  セラミック層
20,20A,20B 突起電極
20a 空孔
21  めっき膜
22  被覆層
23  緻密層
25  外部接続端子
30  第1導電性粉末
31  導電性金属
32  焼結抑制セラミック
40  電子部品
50  樹脂層
100 モジュール
111 セラミックグリーンシート
120 第1導電性ペースト
121 拘束シート
122 樹脂シート
123 第2導電性ペースト
124 導電性ペースト
125 アルミナ基板
200,200A,200B,210 複合積層体
40 電子部品を実装するための領域

Claims (24)

  1. セラミック層を有する基板本体と、前記基板本体の一方主面に設けられた柱状の突起電極と、を備えるセラミック基板の製造方法であって、
    前記セラミック層となるべきセラミックグリーンシートを準備する工程と、
    前記突起電極を形成するための電極形成用シートを準備する工程と、
    前記電極形成用シートに貫通孔を形成し、第1導電性粉末を含有する第1導電性ペーストを前記貫通孔に充填する工程と、
    前記セラミックグリーンシートを積層するとともに、前記セラミックグリーンシートの積層体の一方主面に、前記第1導電性ペーストが前記貫通孔に充填された前記電極形成用シートを積層することにより、複合積層体を作製する工程と、
    前記セラミックグリーンシートが焼結する温度で、前記複合積層体を焼成する工程と、を備え、
    前記第1導電性粉末は、導電性金属と、前記導電性金属の粒子の焼結を抑制する焼結抑制セラミックと、を含み、かつ、前記導電性金属の粒子の表面の少なくとも一部に前記焼結抑制セラミックが被覆されていることを特徴とするセラミック基板の製造方法。
  2. 前記電極形成用シートは、前記セラミックグリーンシートが焼結する温度では実質的に焼結しない拘束シートであり、
    前記セラミックグリーンシートが焼結し、前記拘束シートが焼結しない温度で、前記複合積層体を焼成した後、残存する前記拘束シートを除去する請求項1に記載のセラミック基板の製造方法。
  3. 前記電極形成用シートは、前記セラミックグリーンシートが焼結する温度以下で焼失する樹脂シートであり、
    前記複合積層体を焼成する工程において、前記樹脂シートを焼失させる請求項1に記載のセラミック基板の製造方法。
  4. 前記焼結抑制セラミックは、アルミナ、ジルコニア及びシリカからなる群より選ばれる少なくとも1種を含む請求項1~3のいずれか1項に記載のセラミック基板の製造方法。
  5. 前記導電性金属は、銅、銀及びニッケルからなる群より選ばれる少なくとも1種を含む請求項1~4のいずれか1項に記載のセラミック基板の製造方法。
  6. 前記第1導電性ペースト中の前記焼結抑制セラミックの含有量は、前記導電性金属及び前記焼結抑制セラミックの合計重量に対して10重量%以下である請求項1~5のいずれか1項に記載のセラミック基板の製造方法。
  7. 前記第1導電性ペースト中の前記焼結抑制セラミックの含有量は、前記導電性金属及び前記焼結抑制セラミックの合計重量に対して0.3重量%以上である請求項6に記載のセラミック基板の製造方法。
  8. 前記第1導電性ペーストを前記貫通孔に充填する工程の後、第2導電性粉末を含有する第2導電性ペーストを前記貫通孔の表面に印刷する工程をさらに備え、
    前記第2導電性粉末は、前記導電性金属と、前記焼結抑制セラミックと、を含み、かつ、前記導電性金属の粒子の表面の少なくとも一部に前記焼結抑制セラミックが被覆されており、
    前記複合積層体を作製する工程では、前記第2導電性ペーストが前記貫通孔の表面に印刷された前記電極形成用シートを表面に積層する請求項1~7のいずれか1項に記載のセラミック基板の製造方法。
  9. 前記複合積層体を作製する工程では、前記第2導電性ペーストが前記貫通孔の表面に印刷された前記電極形成用シートを内部にも積層する請求項8に記載のセラミック基板の製造方法。
  10. 前記第2導電性ペースト中の前記焼結抑制セラミックの含有量は、前記導電性金属及び前記焼結抑制セラミックの合計重量に対して10重量%以下である請求項8又は9に記載のセラミック基板の製造方法。
  11. 前記第2導電性ペースト中の前記焼結抑制セラミックの含有量は、前記導電性金属及び前記焼結抑制セラミックの合計重量に対して0.5重量%以上である請求項10に記載のセラミック基板の製造方法。
  12. セラミック層を有する基板本体と、前記基板本体の一方主面に設けられた柱状の突起電極と、を備えるセラミック基板であって、
    前記基板本体の前記一方主面は、前記突起電極が設けられていない領域に、電子部品を実装するための領域を有し、
    前記突起電極は、導電性金属と、前記導電性金属の粒子の焼結を抑制する焼結抑制セラミックと、を含み、かつ、前記導電性金属の粒子がネッキングしたポーラスな構造を有することを特徴とするセラミック基板。
  13. 前記焼結抑制セラミックは、アルミナ、ジルコニア及びシリカからなる群より選ばれる少なくとも1種を含む請求項12に記載のセラミック基板。
  14. 前記導電性金属は、銅、銀及びニッケルからなる群より選ばれる少なくとも1種を含む請求項12又は13に記載のセラミック基板。
  15. 前記突起電極中の前記焼結抑制セラミックの含有量は、前記導電性金属及び前記焼結抑制セラミックの合計重量に対して10重量%以下である請求項12~14のいずれか1項に記載のセラミック基板。
  16. 前記突起電極中の前記焼結抑制セラミックの含有量は、前記導電性金属及び前記焼結抑制セラミックの合計重量に対して0.3重量%以上である請求項15に記載のセラミック基板。
  17. 前記導電性金属の粒子の表面の少なくとも一部に前記焼結抑制セラミックが被覆されている請求項12~16のいずれか1項に記載のセラミック基板。
  18. 前記突起電極は、他の部分よりも空隙率の低い緻密層を表面に有する請求項12~17のいずれか1項に記載のセラミック基板。
  19. 前記突起電極は、前記緻密層を内部にも有する請求項18に記載のセラミック基板。
  20. 前記突起電極の緻密層は、緻密層以外の部分よりも幅が広い請求項18又は19に記載のセラミック基板。
  21. 請求項12~20のいずれか1項に記載のセラミック基板と、
    前記セラミック基板を構成する基板本体の一方主面に実装された電子部品と、
    前記基板本体の前記一方主面に設けられた樹脂層と、を備え、
    前記電子部品は、前記基板本体の前記一方主面のうち、突起電極が設けられていない領域に実装されるように前記樹脂層内に配置され、
    前記基板本体の前記一方主面には、前記突起電極を含む外部接続端子が設けられ、
    前記外部接続端子は、先端が前記樹脂層の表面から露出するように前記樹脂層内に配置されていることを特徴とするモジュール。
  22. 前記電子部品の表面の少なくとも一部が、前記樹脂層の表面から露出している請求項21に記載のモジュール。
  23. 前記外部接続端子は、前記突起電極の側面の少なくとも一部を被覆するめっき膜をさらに含む請求項21又は22に記載のモジュール。
  24. 前記外部接続端子は、前記突起電極の上面の少なくとも一部を被覆する被覆層をさらに含む請求項21~23のいずれか1項に記載のモジュール。
PCT/JP2018/033380 2017-09-20 2018-09-10 セラミック基板の製造方法、セラミック基板、及び、モジュール WO2019059017A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019543556A JP7031678B2 (ja) 2017-09-20 2018-09-10 セラミック基板の製造方法、セラミック基板、及び、モジュール
CN201880060686.XA CN111096090B (zh) 2017-09-20 2018-09-10 陶瓷基板的制造方法、陶瓷基板以及模块
US16/821,232 US10854385B2 (en) 2017-09-20 2020-03-17 Method for producing ceramic substrate, ceramic substrate, and module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017180249 2017-09-20
JP2017-180249 2017-09-20
JP2018023074 2018-02-13
JP2018-023074 2018-02-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/821,232 Continuation US10854385B2 (en) 2017-09-20 2020-03-17 Method for producing ceramic substrate, ceramic substrate, and module

Publications (1)

Publication Number Publication Date
WO2019059017A1 true WO2019059017A1 (ja) 2019-03-28

Family

ID=65810739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033380 WO2019059017A1 (ja) 2017-09-20 2018-09-10 セラミック基板の製造方法、セラミック基板、及び、モジュール

Country Status (4)

Country Link
US (1) US10854385B2 (ja)
JP (1) JP7031678B2 (ja)
CN (1) CN111096090B (ja)
WO (1) WO2019059017A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138744A1 (ja) * 2020-12-25 2022-06-30 株式会社村田製作所 電子部品、電子部品の製造方法及び回路モジュール
WO2023100517A1 (ja) * 2021-12-01 2023-06-08 株式会社村田製作所 回路モジュール

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113225941B (zh) * 2021-05-12 2023-02-07 四川锐宏电子科技有限公司 盲孔多层高密度电路板制备工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0888470A (ja) * 1994-09-16 1996-04-02 Taiyo Yuden Co Ltd 電子部品実装用セラミック多層基板及びその製造方法
JP2002343904A (ja) * 2001-05-21 2002-11-29 Matsushita Electric Ind Co Ltd 半導体装置
JP2005197663A (ja) * 2003-12-08 2005-07-21 Matsushita Electric Ind Co Ltd セラミック基板の製造方法及びセラミック基板を用いた電子部品モジュール
WO2007049458A1 (ja) * 2005-10-26 2007-05-03 Murata Manufacturing Co., Ltd. 積層型電子部品、電子装置および積層型電子部品の製造方法
JP2012049187A (ja) * 2010-08-24 2012-03-08 Murata Mfg Co Ltd セラミック多層基板およびその製造方法
WO2014188760A1 (ja) * 2013-05-21 2014-11-27 株式会社村田製作所 モジュール

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3772748A (en) * 1971-04-16 1973-11-20 Nl Industries Inc Method for forming electrodes and conductors
DE69531980T2 (de) * 1994-08-23 2004-07-29 At & T Corp. Metallisierung von keramischen Materialien durch Auftrag einer haftenden reduzierbaren Schicht
JPH0864029A (ja) * 1994-08-25 1996-03-08 Tokin Corp 端子電極用ペースト
JP3889856B2 (ja) * 1997-06-30 2007-03-07 松下電器産業株式会社 突起電極付きプリント配線基板の製造方法
JP4038611B2 (ja) 2002-06-04 2008-01-30 株式会社村田製作所 セラミックス基板
US7378049B2 (en) 2003-12-08 2008-05-27 Matsushita Electric Industrial Co., Ltd. Method for producing ceramic substrate and electronic component module using ceramic substrate
JP4416551B2 (ja) * 2004-03-29 2010-02-17 日本碍子株式会社 多孔質電極及びそれを用いてなる電気化学的セル並びにNOxセンサ素子
JP2007123448A (ja) * 2005-10-26 2007-05-17 Murata Mfg Co Ltd セラミック基板の製造方法
CN1968569A (zh) * 2005-11-14 2007-05-23 Tdk株式会社 复合配线基板及其制造方法
TW200920215A (en) * 2007-10-17 2009-05-01 Murata Manufacturing Co Multilayer ceramic substrate and process for producing the multilayer ceramic
US20110250122A1 (en) * 2008-11-07 2011-10-13 The Regents Of The University Of California Core-Shell Nanocatalyst For High Temperature Reactions
WO2010058534A1 (ja) * 2008-11-19 2010-05-27 三洋電機株式会社 コンデンサ用電極体、コンデンサ、コンデンサ用電極体の製造方法、およびコンデンサの製造方法
JP5527048B2 (ja) 2010-06-29 2014-06-18 株式会社村田製作所 セラミック多層基板
JP4834170B1 (ja) * 2010-07-12 2011-12-14 田中貴金属工業株式会社 電極形成用の導電微粒子及び金属ペースト並びに電極
CN104160567B (zh) * 2012-02-29 2016-01-20 株式会社村田制作所 Esd保护器件及其制造方法
TWI666656B (zh) * 2012-10-29 2019-07-21 阿爾發裝配解決方案公司 燒結粉末
WO2014181613A1 (ja) 2013-05-08 2014-11-13 株式会社村田製作所 Esd保護装置
JP6491602B2 (ja) * 2013-10-30 2019-03-27 株式会社カネカ 太陽電池の製造方法、および太陽電池モジュールの製造方法
CN110024498B (zh) * 2016-12-08 2021-12-31 株式会社村田制作所 多层陶瓷基板以及电子装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0888470A (ja) * 1994-09-16 1996-04-02 Taiyo Yuden Co Ltd 電子部品実装用セラミック多層基板及びその製造方法
JP2002343904A (ja) * 2001-05-21 2002-11-29 Matsushita Electric Ind Co Ltd 半導体装置
JP2005197663A (ja) * 2003-12-08 2005-07-21 Matsushita Electric Ind Co Ltd セラミック基板の製造方法及びセラミック基板を用いた電子部品モジュール
WO2007049458A1 (ja) * 2005-10-26 2007-05-03 Murata Manufacturing Co., Ltd. 積層型電子部品、電子装置および積層型電子部品の製造方法
JP2012049187A (ja) * 2010-08-24 2012-03-08 Murata Mfg Co Ltd セラミック多層基板およびその製造方法
WO2014188760A1 (ja) * 2013-05-21 2014-11-27 株式会社村田製作所 モジュール

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138744A1 (ja) * 2020-12-25 2022-06-30 株式会社村田製作所 電子部品、電子部品の製造方法及び回路モジュール
WO2023100517A1 (ja) * 2021-12-01 2023-06-08 株式会社村田製作所 回路モジュール

Also Published As

Publication number Publication date
CN111096090A (zh) 2020-05-01
US10854385B2 (en) 2020-12-01
JP7031678B2 (ja) 2022-03-08
JPWO2019059017A1 (ja) 2020-10-01
US20200219652A1 (en) 2020-07-09
CN111096090B (zh) 2023-04-21

Similar Documents

Publication Publication Date Title
JP4507012B2 (ja) 多層セラミック基板
JP7031678B2 (ja) セラミック基板の製造方法、セラミック基板、及び、モジュール
JP6113664B2 (ja) 抵抗体内蔵多層ガラスセラミック基板
CN109076709B (zh) 多层陶瓷基板
KR101716992B1 (ko) 도체 페이스트 및 그것을 사용한 세라믹 기판
US8231961B2 (en) Low temperature co-fired ceramic material, low temperature co-fired ceramic body, and multilayer ceramic substrate
JP4549210B2 (ja) 積層セラミックコンデンサ及びその製造方法
JP2012186269A (ja) セラミック多層基板
CN108029203B (zh) 陶瓷多层基板
JP4782397B2 (ja) 導体ペーストおよびそれを用いた配線基板の製造方法
JP4844317B2 (ja) セラミック電子部品およびその製造方法
KR100800509B1 (ko) 도전성 페이스트 및 다층 세라믹 기판
JP3630372B2 (ja) 多層セラミック基板およびその製造方法
JP5122935B2 (ja) 電子部品検査治具用多層セラミック基板の製造方法
JP5184924B2 (ja) 多層セラミック基板及びその製造方法
US8241449B2 (en) Method for producing ceramic body
JP2007221115A (ja) 導体ペースト及び多層セラミック基板の製造方法
JP2007142223A (ja) セラミック基板の製造方法
JPH0795630B2 (ja) 複合積層セラミック部品
JP2004259897A (ja) 積層セラミックコンデンサおよびその製法
JP4885749B2 (ja) セラミックス積層基板の製造方法
JP2019057708A (ja) 多層セラミック基板の製造方法、及び、多層セラミック基板
JP2005026722A (ja) 多層セラミック基板およびその製造方法
JP2004260040A (ja) 積層電子部品
JP2005179097A (ja) 多層セラミック基板の製造方法およびこれにより得られた多層セラミック基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18858105

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019543556

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18858105

Country of ref document: EP

Kind code of ref document: A1