WO2019058562A1 - テープフィーダ - Google Patents
テープフィーダ Download PDFInfo
- Publication number
- WO2019058562A1 WO2019058562A1 PCT/JP2017/034578 JP2017034578W WO2019058562A1 WO 2019058562 A1 WO2019058562 A1 WO 2019058562A1 JP 2017034578 W JP2017034578 W JP 2017034578W WO 2019058562 A1 WO2019058562 A1 WO 2019058562A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- angle
- sprocket
- feeder
- tape
- tape feeder
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K13/00—Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
- H05K13/08—Monitoring manufacture of assemblages
- H05K13/086—Supply management, e.g. supply of components or of substrates
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K13/00—Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
- H05K13/04—Mounting of components, e.g. of leadless components
- H05K13/0417—Feeding with belts or tapes
- H05K13/0419—Feeding with belts or tapes tape feeders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H20/00—Advancing webs
- B65H20/20—Advancing webs by web-penetrating means, e.g. pins
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K13/00—Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
- H05K13/08—Monitoring manufacture of assemblages
- H05K13/082—Integration of non-optical monitoring devices, i.e. using non-optical inspection means, e.g. electrical means, mechanical means or X-rays
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K13/00—Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
- H05K13/08—Monitoring manufacture of assemblages
- H05K13/089—Calibration, teaching or correction of mechanical systems, e.g. of the mounting head
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K13/00—Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
- H05K13/02—Feeding of components
Definitions
- the present invention relates to a tape feeder.
- a tape feeder is used for the mounting process by an electronic component mounting machine, as disclosed by patent document 1, for example.
- the tape feeder conveys the carrier tape by rotating a sprocket engaged with the carrier tape containing the electronic component, and supplies the electronic component to the electronic component mounting machine at the supply unit.
- the tape feeder is loaded with a carrier tape as a setup before being set in the electronic component placement machine.
- the miniaturization in the width direction may be restricted because the worm gear is accommodated in the case.
- the tape feeder can be downsized in the width direction, and that the occurrence of supply error of the electronic component in the ON state is suppressed even if the sprocket rotates to a certain extent in the OFF state.
- This specification aims at providing the tape feeder which can control generating of a supply mistake of electronic parts in ON state, permitting rotation of a sprocket in OFF state to some extent.
- the present specification is a tape feeder that conveys a carrier tape containing electronic components and supplies the electronic components to the electronic component placement machine, the feeder main body and the feeder main body being rotatably provided, the carrier tape A sprocket disposed with a plurality of engagement protrusions engaged with a plurality of engagement holes formed in the first and the final angle of the sprocket when interruption of power supply to the tape feeder is detected, and with respect to the tape feeder An angle sensor for detecting the current angle of the sprocket at the time of detecting the resumption of the power supply, and setting a target angle of the sprocket based on the final angle when the resumption of the power supply to the tape feeder is detected Rotating the sprocket from the current angle to the target angle And a control unit for controlling to convey to a predetermined position Yariatepu discloses a tape feeder.
- the tape feeder when the tape feeder shifts from the OFF state to the ON state, the sprocket is rotated to the target angle corresponding to the final angle. As a result, even if the sprocket is rotated to a certain extent in the OFF state, the amount of deviation is absorbed by the sprocket being rotated to the target angle. Thus, the tape feeder can reliably supply the electronic components in the supply unit. As a result, the tape feeder can suppress the occurrence of supply error of the electronic component in the ON state while allowing the rotation of the sprocket in the OFF state to some extent.
- Embodiment 1-1 Overview of Electronic Component Mounting Machine 10
- the electronic component mounting machine 10 mounts electronic components on a circuit board 90 using a tape feeder 20.
- the electronic component mounting machine will be referred to as a “component mounting machine”, the tape feeder as a “feeder”, the circuit board as a “board”, and the electronic component as a “component”.
- the component mounting machine 10 has a substrate transfer device 11, an upper slot 12, a lower slot 13, a mounting head 14, and a head moving device 15.
- the substrate transfer apparatus 11 carries in the substrate 90 into the inside of the component mounting machine 10 and positions it at a predetermined position. Further, after the mounting process by the component mounting apparatus 10 is performed, the substrate transfer apparatus 11 carries the substrate 90 out of the component mounting apparatus 10.
- the upper slot 12 is disposed at the top on the front side of the component mounting machine 10.
- the upper slot 12 operatively holds the feeder 20.
- the feeder 20 set in the upper slot 12 is controlled in operation in the mounting process by the component mounting machine 10, and supplies components at a supply portion 211 (see FIG. 2) provided at a prescribed position above the feeder 20. .
- the lower slot 13 is disposed below the upper slot 12.
- the lower slot 13 stocks the feeder 20 scheduled to be used for the mounting process by the component mounting machine 10 or the used feeder 20 used for the mounting process.
- the feeder 20 can be replaced between the upper slot 12 and the lower slot 13 by automatic replacement by a replacement robot (not shown) or by manual replacement by a worker.
- the mounting head 14 is attached with a suction nozzle (not shown) for picking up the parts supplied by the feeder 20.
- the suction nozzle is supplied with negative pressure air to suction the component.
- the mounting head 14 is attached corresponding to a component held by a chuck or the like that holds the component.
- the mounting head 14 holds the suction nozzle so as to be vertically movable and rotatable about a vertical axis.
- the head moving device 15 moves the mounting head 14 in the horizontal direction by, for example, a linear movement mechanism.
- the component mounting machine 10 configured as described above appropriately controls the operations of the mounting head 14, the head moving device 15, and the feeder 20 while the mounting process is being performed. As a result, the component placement machine 10 picks up the components supplied by the feeder 20, attaches the components to the predetermined position of the substrate 90, and produces various substrate products.
- the feeder 20 includes a feeder body 21, a drive device 30, an angle sensor 40, a detection sensor 50, and a control device 60.
- the feeder main body 21 is formed in a flat box shape as shown in FIG.
- the feeder main body 21 has a supply unit 211 that supplies components to the component mounting machine 10.
- the supply unit 211 is formed at an upper portion on the front side (lower right side in FIG. 2) of the feeder main body 21.
- the feeder main body 21 holds the tape reel 70 around which the carrier tape 80 is wound in a removable (replaceable) manner.
- the tape reel 70 is rotatably supported relative to the feeder body 21.
- the carrier tape 80 has a plurality of cavities 81 for housing components and a plurality of engagement holes 82 formed at predetermined intervals in the transport direction (longitudinal direction of the carrier tape).
- the cover tape 83 is adhered to the upper surface of the carrier tape 80, and the opening of the cavity 81 is closed.
- the portion of the carrier tape 80 which has been transported to the supply unit 211 is stripped of the cover tape 83 so that the mounting head 14 can pick up parts.
- the feeder 20 supplies the components stored in the cavities 81 so as to be able to be sampled.
- the carrier tape is referred to as "tape”.
- the plurality of cavities 81 are formed at predetermined intervals in the transport direction, similarly to the plurality of engagement holes 82.
- the spacing T1 of the cavities 81 is appropriately set in accordance with the dimensions of the components to be accommodated.
- the drive device 30 has a sprocket 31 rotatably supported by the feeder body 21 as shown in FIG.
- the sprockets 31 have engaging projections 311 engageable with the engaging holes 82 of the tape 80 at equal intervals in the circumferential direction.
- the driving device 30 has a stepping motor 32 as a driving source for rotating the sprocket 31.
- the stepping motor 32 rotates the sprocket 31 in accordance with the supplied pulse power.
- the reduction gear 33 meshing with the drive gear 322 provided on the rotary shaft 321 rotates.
- the driving force output by the stepping motor 32 is transmitted to the sprocket 31 via the intermediate gear 34 engaged with the reduction gear 33.
- the intermediate gear 34 meshes with a sprocket gear 312 provided on the sprocket 31.
- the sprockets 31 rotate as the intermediate gear 34 rotates.
- spur gears are applied to the respective gears constituting the transmission path of the driving force from the stepping motor 32 as the driving source to the sprocket 31 as the driving target.
- the load applied to the sprocket 31 can be transmitted to the stepping motor 32, while the dimension in the width direction of the drive device 30 as a whole can be reduced, and the feeder 20 can be formed more flat. .
- flattening the feeders 20 it is possible to increase the number of the feeders 20 that can be arranged in the transport direction of the substrate 90 in the production line, and therefore the productivity per area can be improved.
- the angle sensor 40 detects the angle of the sprocket 31 with respect to the feeder main body 21.
- the angle sensor 40 is composed of a magnet 41 and a pair of magnetic sensors 42.
- the magnet body 41 is provided so as to rotate in conjunction with the rotation of the sprocket 31.
- the magnet body 41 is formed in a cylindrical shape and provided coaxially with the sprocket 31 so as to rotate integrally with the sprocket 31.
- the magnet body 41 is magnetized so as to have two poles in the radial direction.
- Each of the pair of magnetic sensors 42 outputs a detection signal according to the angle of the magnet body 41 with respect to the feeder main body 21. Specifically, the magnitude and direction of the magnetism emitted by the magnet body 41 are detected, and a sinusoidal detection signal is output.
- the pair of magnetic sensors 42 are spaced apart by a predetermined angle (90 degrees in the present embodiment) along the rotation direction of the magnet body 41. As a result, the detection signals output from the pair of magnetic sensors 42 are out of phase by 90 degrees.
- the angle sensor 40 calculates the angle of the sprocket 31 in which the magnet 41 was provided based on the detection signal each output by a pair of magnetic sensor 42. As shown in FIG. More specifically, the angle sensor 40 detects the angle of the sprocket 31 according to the resolution over the entire circumference.
- the control device 60 is configured to be able to recognize at which angle the engagement protrusions 311 disposed on the outer periphery of the sprocket 31 are located.
- the detection sensor 50 detects one of the plurality of engagement protrusions 311 of the sprocket 31.
- the detection sensor 50 is configured of a light emitting unit 51 and a light receiving unit 52.
- the light emitting unit 51 and the light receiving unit 52 are disposed to face each other at a radial position of the sprocket 31 on which the engaging protrusion 311 is formed, as shown in FIG.
- the detection sensor 50 receives the light emitted from the light emitting unit 51 by the light receiving unit 52.
- the detection sensor 50 recognizes that one of the plurality of engagement protrusions 311 is located between the light emitting unit 51 and the light receiving unit 52 when the light receiving state of the light receiving unit 52 transitions to the light blocking state.
- the control device 60 controls the sprocket 31 to rotate so as to transport the tape 80 to a predetermined position.
- the control device 60 becomes communicable with the component mounting machine 10.
- the control device 60 controls the operation of the drive device 30 based on a control command by the component mounting device 10 or the like.
- control device 60 supplies pulse power to the stepping motor 32 of the drive device 30 to supply the plurality of cavities 81 of the tape 80 in an operation state in which the mounting process by the component mounting device 10 is performed. It controls to position in the part 211 one by one.
- the cover tape 83 is peeled off in front of the supply unit 211. In this manner, the feeder 20 supplies the component placement machine 10 so that the component can be sampled by the feeding unit 211.
- the control device 60 includes a storage unit 61 and an angle adjustment unit 62 as shown in FIG.
- the storage unit 61 is configured by a non-volatile flash memory or the like.
- the storage unit 61 stores various programs, calibration values, and the like used to control the operation of the drive device 30.
- the angle adjustment unit 62 adjusts the angle of the sprocket 31 when detecting the resumption of the power supply to the feeder 20. Details of adjustment processing of the angle of the sprocket 31 by the angle adjustment unit 62 will be described later.
- the normal process of the above-described feeder 20 will be described with reference to FIGS. 3, 5 and 6.
- the control device 60 executes a normal process as shown in FIG. 5 in a state where power is supplied to the feeder 20 (hereinafter, referred to as “ON state”).
- the control device 60 detects the current angle Ac of the sprocket 31 by the angle sensor 40 (step 11 (hereinafter, “step” is described as “S”)).
- the controller 60 corrects the pulse power supplied to the stepping motor 32 using a calibration value corresponding to the detected current angle Ac of the sprocket 31.
- the feeder 20 rotates the sprockets 31 to sequentially position the plurality of cavities 81 in the supply unit 211.
- the spacing T1 of the cavities 81 is set to a half of the spacing T2 of the engagement holes 82.
- control device 60 monitors the supply state of the power to the feeder 20 in parallel with the detection process (S11) of the angle of the sprocket 31 as described above. Specifically, when the voltage at a predetermined location in the power supply circuit of the feeder 20 is maintained at or above the threshold (S21: Yes), the control device 60 recognizes that the feeder 20 is in the ON state. The control device 60 repeats the above determination (S21), for example, in a fixed cycle.
- the feeder 20 When the voltage at the above point in the power supply circuit falls below the predetermined value (S21: No), for example, the feeder 20 is removed from the upper slot 12 and the power supply to the feeder 20 is interrupted. It is recognized that the power supply to the feeder 20 is cut off (hereinafter, referred to as "OFF state"). In other words, as described above, the control device 60 detects the interruption of the power supply to the feeder 20 when the voltage at the predetermined place in the power supply circuit is less than the threshold.
- the control device 60 causes the storage unit 61 to store the current angle Ac of the sprocket 31 finally detected by the angle sensor 40 as the final angle Ap (S22). End the process.
- the drive device 30, the control device 60, various sensors, and the like are in a paused state.
- the feeder 20 is in a state in which the cavity 81 from which parts are collected is positioned in the supply unit 211.
- FIG. 6 shows the cavities 81 containing the parts with hatching, and the empty cavities 81 without hatching.
- the tape 81 in which the cavity 81 at one tip end side from the cavity 81 at which the component is stored first from the tip end side of the tape 80 (right side in FIG. Position is the standby position.
- the feeder 20 sets the tape 80 in the standby position in the operation state, and feeds the tape 80 by the pitch T1 of the cavity 81 to supply the component when there is a component supply request from the component mounting machine 10. Then, when a component is collected from the cavity 81 positioned in the supply unit 211, the tape 80 is again in the state shown in the upper part of FIG.
- the feeder 20 is set on a setup jig (not shown) which is an external device of the component mounting machine 10, and is loaded with a predetermined tape 80. At this time, the feeder 20 is supplied with electric power by the setup jig and is in the ON state, and rotates the sprockets 31 according to the operation of the worker so as to set the tape 80 in the standby position. Thus, the feeder 20 is loaded with the tape 80 at the time of setup, and is removed with the tape 80 as the standby position.
- the feeder 20 executes the above-described normal processing in the ON state set in the setup jig. Therefore, when the feeder 20 is removed from the setup jig and shifted to the OFF state, as in the case where the feeder 20 is removed from the upper slot 12 of the component mounting machine 10, the sprocket 31 last detected by the angle sensor 40 in setup.
- the current angle Ac is stored in the storage unit 61 as the final angle Ap.
- the angle adjustment unit 62 of the control device 60 detects the resumption of the power supply to the feeder 20, that is, detects the transition from the OFF state of the feeder 20 to the ON state. Is adjusted based on the final angle Ap.
- the tape 80 deviates from the standby position loaded.
- the tape 80 is displaced in the backward direction of the tape 80 as shown in the middle of FIG. Further, as shown in the lower part of FIG. 6, it is assumed that the tape 80 is displaced in the forward direction of the tape 80.
- the middle and lower parts of FIG. 6 show a state where a shift amount of about three times the interval T1 of the cavities 81 is generated from the standby position of the tape 80 (see the upper part of FIG. 6).
- the engagement projections with adjacent sprockets 31 in the OFF state It is about 1.5 times the angle made by 311. If the feeder 20 in a state where such a gap of the tape 80 occurs is set in the component mounting machine 10, the feeder 20 tries to position the cavity 81 in the supply section 211, assuming that the tape 80 is in the standby position. The sprocket 31 is rotated.
- the cavity 81 may not be properly positioned in the supply unit 211, which may cause a supply error in which components are not supplied.
- Such supply errors can cause a decrease in production efficiency in the component placement machine 10 and a waste of unnecessary components. Therefore, in the present embodiment, at the timing when the feeder 20 shifts to the ON state, the adjustment process of adjusting the sprocket 31 to an appropriate angle is executed to prevent the occurrence of the supply error.
- the angle adjustment unit 62 of the control device 60 acquires the current angle Ac of the sprocket 31 detected by the angle sensor 40 (S31). Next, the angle adjustment unit 62 reads the final angle Ap stored in the storage unit 61, and calculates the difference from the current angle Ac as the amount of deviation ⁇ A (S32). Subsequently, when the deviation amount ⁇ A is not 0 (S33: Yes), the angle adjustment unit 62 recognizes that the deviation of the tape 80 has occurred in the OFF state of the feeder 20.
- the angle adjustment unit 62 rotates the sprocket 31 from the current angle Ac acquired in S31 to the target angle At to convey the tape 80 to a predetermined position.
- the angle adjustment unit 62 when the tape 80 is shifted in the forward direction (see the lower part of FIG. 6, ⁇ A> 0), the angle adjustment unit 62 reversely rotates the sprocket 31 so as to retract the tape 80. As a result, the tape 80 is returned to the standby position (see the upper stage in FIG. 6) as the feeder 20 shifts to the ON state.
- the shift amount ⁇ A calculated at S32 is 0 (S33: No)
- the angle adjustment unit 62 omits the angle adjustment (S34) of the sprocket 31 and ends the adjustment processing.
- the sprocket 31 when the feeder 20 is shifted from the OFF state to the ON state, the sprocket 31 has a target angle At corresponding to the final angle Ap (in the present embodiment, the target angle At is equal to the final angle Ap It is rotated until it is set (S34).
- the target angle At is equal to the final angle Ap It is rotated until it is set (S34).
- the control device 60 is configured to rotate the sprocket 31 by the shift amount ⁇ A with the final angle Ap as the target angle At (S34).
- the control device 60 can appropriately set the target angle At.
- the control device 60 may set the target angle At by adding a predetermined value set in advance to the final angle Ap.
- the feeder 20 reversely rotates the sprockets 31 so as to retract the tape 80 by a certain amount before being removed when the use in the mounting process by the component mounting machine 10 or the setup in the setup jig is finished.
- the control device 60 After detecting that the feeder 20 has shifted to the ON state, the control device 60 causes the sprocket 31 to forward rotate by the specified value corresponding to the above-described fixed amount, and sets the tape 80 as the standby position. .
- the control device 60 adds the specified value to the read final angle Ap as the target angle At. Set Then, the control device 60 rotates the sprocket 31 from the current angle Ac acquired in S31 to the target angle At to set the tape 80 as a standby position.
- the above-described return processing for advancing the tape 80 by a fixed amount when setting the feeder 20 is executed by a set device which is detachably set to the feeder 20 and supplies power to the feeder 20 or the execution is omitted.
- the set device is the component mounting machine 10 or the setup jig as illustrated in the embodiment, the return process is performed.
- the set device is an inspection machine of the feeder 20, for example, since a master tape for inspection is loaded, part or all of the recovery processing is omitted so as not to convey the master tape. .
- the control device 60 switches the specified value to be added to the final angle Ap according to the type of the set device (for example, when the set device is an inspection machine, the specified value is set to 0).
- the control device 60 can appropriately set the target angle At according to the type of the set device acquired by communication. Therefore, it is possible to adjust the angle of the sprocket 31 so as to rotate to the target angle At corresponding to the set device while reliably absorbing the displacement amount generated in the OFF state.
- control device 60 may set different target angles At according to the rotation direction of the sprocket 31 from the final angle Ap in the OFF state of the feeder 20 to the current angle Ac. For example, when the rotation direction of the sprocket 31 from the final angle Ap to the current angle Ac is the direction to advance the tape 80 (see the lower part of FIG. 6), the control device 60 supplies the supply portion 211 of the plurality of cavities 81. The angle of the sprocket 31 which positions one which has not passed through the supply section 211 is set as the target angle At.
- the cover tape 83 is peeled off in front of the supply unit 211. May have fallen out.
- the empty cavity 81 may be positioned at the supply portion 211 in the subsequent supply operation.
- the control device 60 does not execute the angle adjustment to return, and as described above, the supply unit 211 of the plurality of cavities 81.
- the angle of the sprocket 31 which positions one which has not passed through the supply section 211 is set as the target angle At. Thereby, the empty cavity 81 can be prevented from being positioned in the supply unit 211, and a decrease in production efficiency can be prevented.
- the control device 60 is as illustrated in the embodiment.
- the target angle At is set to the final angle Ap.
- 10 electronic component mounting machine
- 20 tape feeder
- 21 feeder main body
- 211 feeder
- 30 drive device
- 31 sprocket
- 311 engagement projection
- 32 stepping motor
- 40 angle sensor
- 60 control Device
- 61 Memory unit
- 62 Angle adjustment unit
- 80 Carrier tape
- 81 Cavity
- 82 Engaging hole
- 90 Circuit board
- T1, T2 Interval
- Ac Current angle
- Ap Final angle
- At Target angle
- ⁇ A Deviation amount
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Operations Research (AREA)
- Supply And Installment Of Electrical Components (AREA)
Abstract
テープフィーダは、テープフィーダに対する電力供給の遮断が検出された時点におけるスプロケットの最終角度、およびテープフィーダに対する電力供給の再開を検出した時点におけるスプロケットの現在角度を検出する角度センサと、テープフィーダに対する電力供給の再開を検出した場合に、最終角度に基づいてスプロケットの目標角度を設定するとともに、現在角度から目標角度までスプロケットを回転させてキャリアテープを所定位置まで搬送するように制御する制御装置と、を備える。
Description
本発明は、テープフィーダに関するものである。
テープフィーダは、例えば特許文献1に開示されているように、電子部品装着機による装着処理に用いられる。テープフィーダは、電子部品を収納したキャリアテープに係合するスプロケットを回転させることによりキャリアテープを搬送して、供給部において電子部品装着機に電子部品を供給する。テープフィーダは、電子部品装着機にセットされる前の段取りとして、キャリアテープを装填される。
しかしながら、段取り後にテープフィーダに対する電力供給が遮断されたOFF状態で、何らかの要因によりスプロケットが回転されると、キャリアテープが装填された位置からずれる。そうすると、その後に電子部品装着機にセットされたテープフィーダが電子部品を供給しようとしても、供給部に電子部品が正常に供給されない供給ミスが発生するおそれがある。そこで、特許文献1では、ウォームギヤを用いてスプロケットを回転させる構成とすることにより、テープフィーダのOFF状態におけるスプロケットの回転を規制する。
しかしながら、スプロケットの回転にウォームギヤを用いると、ケース内にウォームギヤを収容するために幅方向の小型化に制約が生じるおそれがある。また、テープフィーダは、幅方向の小型化を可能としつつ、OFF状態においてスプロケットがある程度回転してもON状態における電子部品の供給ミスの発生を抑制することが望まれている。
本明細書は、OFF状態におけるスプロケットの回転をある程度許容しつつ、ON状態における電子部品の供給ミスの発生を抑制できるテープフィーダを提供することを目的とする。
本明細書は、電子部品を収納したキャリアテープを搬送して電子部品装着機に前記電子部品を供給するテープフィーダであって、フィーダ本体と、前記フィーダ本体に回転可能に設けられ、前記キャリアテープに形成された複数の係合穴に係合する複数の係合突起を配置されたスプロケットと、前記テープフィーダに対する電力供給の遮断が検出された時点における前記スプロケットの最終角度、および前記テープフィーダに対する電力供給の再開を検出した時点における前記スプロケットの現在角度を検出する角度センサと、前記テープフィーダに対する電力供給の再開を検出した場合に、前記最終角度に基づいて前記スプロケットの目標角度を設定するとともに、前記現在角度から前記目標角度まで前記スプロケットを回転させて前記キャリアテープを所定位置まで搬送するように制御する制御装置と、を備え、テープフィーダを開示する。
このような構成によると、テープフィーダがOFF状態からON状態に移行した場合に、スプロケットは、最終角度に応じた目標角度まで回転される。これにより、OFF状態においてスプロケットがある程度回転しても、そのずれ量は、スプロケットが目標角度まで回転されることで吸収される。よって、テープフィーダは、供給部において電子部品を確実に供給することができる。結果として、テープフィーダは、OFF状態におけるスプロケットの回転をある程度許容しつつ、ON状態における電子部品の供給ミスの発生を抑制できる。
1.実施形態
1-1.電子部品装着機10の概要
電子部品装着機10は、テープフィーダ20を用いて回路基板90に電子部品を装着する。以下では、電子部品装着機を「部品装着機」、テープフィーダを「フィーダ」、回路基板を「基板」、電子部品を「部品」と称する。部品装着機10は、図1に示すように、基板搬送装置11と、上部スロット12と、下部スロット13と、装着ヘッド14と、ヘッド移動装置15とを有する。基板搬送装置11は、部品装着機10の機内に基板90を搬入するとともに所定位置に位置決めする。また、基板搬送装置11は、部品装着機10による装着処理が実行された後に、部品装着機10の機外に基板90を搬出する。
1-1.電子部品装着機10の概要
電子部品装着機10は、テープフィーダ20を用いて回路基板90に電子部品を装着する。以下では、電子部品装着機を「部品装着機」、テープフィーダを「フィーダ」、回路基板を「基板」、電子部品を「部品」と称する。部品装着機10は、図1に示すように、基板搬送装置11と、上部スロット12と、下部スロット13と、装着ヘッド14と、ヘッド移動装置15とを有する。基板搬送装置11は、部品装着機10の機内に基板90を搬入するとともに所定位置に位置決めする。また、基板搬送装置11は、部品装着機10による装着処理が実行された後に、部品装着機10の機外に基板90を搬出する。
上部スロット12は、部品装着機10の前部側の上部に配置される。上部スロット12は、フィーダ20を動作可能に保持する。上部スロット12にセットされたフィーダ20は、部品装着機10による装着処理において動作を制御され、当該フィーダ20の上部の規定位置に設けられた供給部211(図2を参照)において部品を供給する。
下部スロット13は、上部スロット12の下方に配置される。下部スロット13は、部品装着機10による装着処理に用いられる予定のフィーダ20、または装着処理に用いられた使用済みのフィーダ20をストックする。なお、上部スロット12と下部スロット13との間でのフィーダ20の交換は、交換ロボット(図示しない)による自動交換、または作業者による手動交換によりなされる。
装着ヘッド14は、フィーダ20により供給された部品を採取する吸着ノズル(図示しない)が取り付けられる。吸着ノズルは、負圧エアを供給されて部品を吸着する。また、装着ヘッド14には、吸着ノズルに替えて、部品を把持するチャックなどが保持する部品に対応して取り付けられる。装着ヘッド14は、吸着ノズルを上下方向に移動可能に、且つ鉛直軸周りに回転可能に保持する。ヘッド移動装置15は、例えば直動機構により装着ヘッド14を水平方向に移動させる。
上記のような構成からなる部品装着機10は、装着処理の実行中において、装着ヘッド14やヘッド移動装置15、フィーダ20の動作を適宜制御する。これにより、部品装着機10は、フィーダ20により供給された部品を採取するとともに、基板90の所定位置に当該部品を装着し、種々の基板製品を生産する。
1-2.フィーダ20の構成
フィーダ20の構成を、図2-図4を参照して説明する。フィーダ20は、フィーダ本体21と、駆動装置30と、角度センサ40と、検出センサ50と、制御装置60とを備える。フィーダ本体21は、図2に示すように、扁平な箱形状に形成される。フィーダ本体21は、部品装着機10に部品を供給する供給部211を有する。供給部211は、フィーダ本体21の前部側(図2の右下側)の上部に形成されている。
フィーダ20の構成を、図2-図4を参照して説明する。フィーダ20は、フィーダ本体21と、駆動装置30と、角度センサ40と、検出センサ50と、制御装置60とを備える。フィーダ本体21は、図2に示すように、扁平な箱形状に形成される。フィーダ本体21は、部品装着機10に部品を供給する供給部211を有する。供給部211は、フィーダ本体21の前部側(図2の右下側)の上部に形成されている。
また、フィーダ本体21は、キャリアテープ80が巻回されたテープリール70を着脱可能(交換可能)に保持する。テープリール70は、フィーダ本体21に対して回転可能に支持される。キャリアテープ80は、図3に示すように、部品を収容する複数のキャビティ81と、搬送方向(キャリアテープの長手方向)に所定の間隔で形成された複数の係合穴82とを有する。
キャリアテープ80は、上面にカバーテープ83が接着され、キャビティ81の開口部が閉塞されている。キャリアテープ80のうち供給部211まで搬送された部位は、装着ヘッド14が部品を採取できるようにカバーテープ83を剥離される。換言すると、フィーダ20は、キャリアテープ80における複数のキャビティ81の一つを供給部211に位置決めすることにより、当該キャビティ81に収納された部品を採取可能に供給する。以下、キャリアテープを「テープ」と称する。
ここで、複数のキャビティ81は、複数の係合穴82と同様に、搬送方向に所定の間隔で形成される。キャビティ81の間隔T1は、収容する部品の寸法に応じて適宜設定される。例えば、キャビティ81の間隔T1は、図3に示すように、係合穴82の間隔T2の半分(T1=T2/2)に設定される。その他に、キャビティ81の間隔T1は、係合穴82の間隔T2の整数倍(T1=N・T2、Nは1以上の整数)に設定され得る。
駆動装置30は、図4に示すように、フィーダ本体21に回転可能に支持されるスプロケット31を有する。スプロケット31は、テープ80の係合穴82に係合可能な係合突起311を周方向に等間隔で配置されている。駆動装置30は、スプロケット31を回転させる駆動源としてのステッピングモータ32を有する。ステッピングモータ32は、供給されたパルス電力に応じてスプロケット31を回転させる。
具体的には、ステッピングモータ32の回転軸321が回転すると、回転軸321に設けられたドライブギヤ322に噛合する減速ギヤ33が回転する。ステッピングモータ32により出力される駆動力は、減速ギヤ33に噛合する中間ギヤ34を介してスプロケット31に伝達される。中間ギヤ34は、スプロケット31に設けられたスプロケットギヤ312に噛合する。これにより、スプロケット31は、中間ギヤ34の回転に伴って回転する。
なお、本実施形態における駆動装置30は、駆動源であるステッピングモータ32から駆動対象であるスプロケット31までの駆動力の伝達経路を構成する各ギヤに平歯車を適用されている。このような構成によると、スプロケット31に加えられた負荷がステッピングモータ32に伝達され得る一方で、駆動装置30全体として幅方向の寸法を小さくでき、フィーダ20をより扁平に形成できるというメリットがある。フィーダ20を扁平にすることにより、生産ラインにおける基板90の搬送方向に配置可能なフィーダ20の数量を増加できるので、面積あたりの生産性を向上できる。
角度センサ40は、フィーダ本体21に対するスプロケット31の角度を検出する。本実施形態において、角度センサ40は、磁石体41と、一対の磁気センサ42とにより構成される。磁石体41は、スプロケット31の回転に連動して回転するように設けられる。本実施形態において、磁石体41は、円筒状に形成され、スプロケット31と同軸上にスプロケット31と一体的に回転するように設けられる。磁石体41は、径方向に二極となるように磁化されている。
一対の磁気センサ42のそれぞれは、フィーダ本体21に対する磁石体41の角度に応じた検出信号を出力する。具体的には、磁石体41が発する磁気の大きさおよび向きを検出して、正弦波状の検出信号を出力する。一対の磁気センサ42は、磁石体41の回転方向に沿って所定の角度(本実施形態では90度)だけ離間して配置される。これにより、一対の磁気センサ42が出力する検出信号は、位相が90度ずれたものとなる。
そして、角度センサ40は、一対の磁気センサ42によりそれぞれ出力される検出信号に基づいて、磁石体41が設けられたスプロケット31の角度を算出する。より詳細には、角度センサ40は、分解能に応じたスプロケット31の角度を全周に亘って検出する。これにより、制御装置60は、スプロケット31の外周に配置された全ての係合突起311について、何れの角度にあるのかを認識可能に構成されている。
検出センサ50は、スプロケット31の複数の係合突起311の一つを検出する。本実施形態において、検出センサ50は、発光部51と、受光部52とにより構成される。発光部51および受光部52は、図4に示すように、係合突起311が形成されたスプロケット31の径方向位置に、係合突起311を挟むように対向して配置される。検出センサ50は、発光部51から照射された光を受光部52により受光する。検出センサ50は、受光部52の受光状態が遮光状態に遷移した場合に、発光部51と受光部52との間に複数の係合突起311の一つが位置すると認識する。
制御装置60は、スプロケット31を回転させてテープ80を所定位置まで搬送するように制御する。フィーダ20は、部品装着機10の上部スロット12にセットされると、コネクタ212を介して部品装着機10から電力を供給される。これにより、制御装置60は、部品装着機10との間で通信可能な状態となる。制御装置60は、部品装着機10による制御指令などに基づいて、駆動装置30の動作を制御する。
具体的には、制御装置60は、部品装着機10による装着処理が実行されている運用状態において、駆動装置30のステッピングモータ32にパルス電力を供給して、テープ80の複数のキャビティ81を供給部211に順次位置決めするように制御する。テープ80は、駆動装置30の動作によりピッチ送りされると、供給部211の手前でカバーテープ83を剥離される。このように、フィーダ20は、供給部211において部品装着機10に対して部品を採取可能に供給する。
制御装置60は、図2に示すように、記憶部61および角度調整部62を備える。記憶部61は、不揮発性のフラッシュメモリなどにより構成される。記憶部61には、駆動装置30の動作の制御に用いられる各種のプログラムや校正値などが記憶される。角度調整部62は、フィーダ20に対する電力供給の再開を検出した場合に、スプロケット31の角度を調整する。角度調整部62によるスプロケット31の角度の調整処理に詳細については後述する。
1-3.フィーダ20の通常処理
上記のフィーダ20の通常処理について、図3、図5および図6を参照して説明する。ここで、フィーダ20は、テープ80が装填された状態で、部品装着機10の上部スロット12にセットされているものとする。制御装置60は、フィーダ20に対する電力供給がされている状態(以下、「ON状態」と称する)において、図5に示すような通常処理を実行する。具体的には、制御装置60は、角度センサ40によりスプロケット31の現在角度Acを検出する(ステップ11(以下、「ステップ」を「S」と表記する))。
上記のフィーダ20の通常処理について、図3、図5および図6を参照して説明する。ここで、フィーダ20は、テープ80が装填された状態で、部品装着機10の上部スロット12にセットされているものとする。制御装置60は、フィーダ20に対する電力供給がされている状態(以下、「ON状態」と称する)において、図5に示すような通常処理を実行する。具体的には、制御装置60は、角度センサ40によりスプロケット31の現在角度Acを検出する(ステップ11(以下、「ステップ」を「S」と表記する))。
制御装置60は、検出されたスプロケット31の現在角度Acに応じた校正値を用いてステッピングモータ32に供給するパルス電力を補正する。これにより、フィーダ20は、スプロケット31を回転させて、複数のキャビティ81を供給部211に順次位置決めする。ここで、フィーダ20に装填されているテープ80は、図3に示すように、キャビティ81の間隔T1が係合穴82の間隔T2の半分に設定されているものとする。
また、制御装置60は、上記のようなスプロケット31の角度の検出処理(S11)に並行して、フィーダ20に対する電力の供給状態を監視する。詳細には、制御装置60は、フィーダ20の電源回路における所定箇所の電圧が閾値以上に維持されている場合には(S21:Yes)、フィーダ20がON状態であると認識する。制御装置60は、例えば一定の周期で上記の判定(S21)を繰り返す。
制御装置60は、電源回路における上記箇所の電圧が所定値を下回った場合には(S21:No)、例えばフィーダ20が上部スロット12から取り外されるなどしてフィーダ20への電力供給が遮断され、フィーダ20に対する電力供給が遮断された状態(以下、「OFF状態」と称する)であると認識する。換言すると、制御装置60は、上記のように、電源回路における所定箇所の電圧が閾値未満となったことをもって、フィーダ20に対する電力供給の遮断を検出する。
次に、制御装置60は、電源回路に蓄電された電力を用いて、角度センサ40により最後に検出されたスプロケット31の現在角度Acを最終角度Apとして記憶部61に記憶させ(S22)、通常処理を終了する。フィーダ20は、電源回路に蓄電された電力が放電されると、駆動装置30や制御装置60、各種のセンサ等が休止した状態となる。このとき、フィーダ20は、図6の上段に示すように、供給部211に部品を採取されたキャビティ81を位置決めした状態にある。図6は、部品を収納したキャビティ81を斜線付きで示し、空のキャビティ81を斜線なしで示す。
ここで、図6の上段に示すように、テープ80の先端側(図6の右側)から最初に部品を収納したキャビティ81より一つ先端側のキャビティ81を供給部211に位置決めしたテープ80の位置を待機位置とする。フィーダ20は、運用状態において、テープ80を待機位置とし、部品装着機10から部品供給の要求があった場合に、テープ80をキャビティ81の間隔T1だけピッチ送りして部品を供給する。そして、供給部211に位置決めされたキャビティ81から部品が採取されると、テープ80は、再び図6の上段に示す状態となる。
なお、フィーダ20は、部品装着機10の外部装置である段取り治具(図示しない)にセットされて、所定のテープ80を装填される。このとき、フィーダ20は、段取り治具により電力を供給されてON状態にあり、テープ80を待機位置とするように作業者の操作に応じてスプロケット31を回転させる。これにより、フィーダ20は、段取りにおいてテープ80を装填されるとともに、テープ80を待機位置として取り外される。
また、フィーダ20は、段取り治具にセットされているON状態では上記の通常処理を実行する。よって、フィーダ20は、段取り治具から取り外されてOFF状態に移行すると、部品装着機10の上部スロット12から取り外された場合と同様に、段取りにおいて角度センサ40により最後に検出されたスプロケット31の現在角度Acを最終角度Apとして記憶部61に記憶させる。
1-4.スプロケット31の角度の調整処理
制御装置60の角度調整部62は、フィーダ20に対する電力供給の再開を検出した場合に、即ちフィーダ20のOFF状態からON状態への移行を検出した場合に、スプロケット31の角度を最終角度Apに基づいて調整する。ここで、上記のようにフィーダ20が段取りされた後にOFF状態とされ、何らかの要因によりスプロケット31が回転されると、テープ80が装填された待機位置からずれる。
制御装置60の角度調整部62は、フィーダ20に対する電力供給の再開を検出した場合に、即ちフィーダ20のOFF状態からON状態への移行を検出した場合に、スプロケット31の角度を最終角度Apに基づいて調整する。ここで、上記のようにフィーダ20が段取りされた後にOFF状態とされ、何らかの要因によりスプロケット31が回転されると、テープ80が装填された待機位置からずれる。
具体的には、テープ80は、図6の中段に示すように、テープ80の後退方向にずれることが想定される。また、テープ80は、図6の下段に示すように、テープ80の前進方向にずれることが想定される。図6の中段および下段は、テープ80の待機位置(図6の上段を参照)から、キャビティ81の間隔T1の3倍程度のずれ量が発生した状態を示している。
換言すると、フィーダ20に装填されているテープ80の係合穴82の間隔T2がキャビティ81の間隔T1の半分(T2=T1/2)であれば、OFF状態においてスプロケット31が隣り合う係合突起311のなす角度の1.5倍程度回転したことになる。仮に、このようなテープ80のずれが発生した状態のフィーダ20が部品装着機10にセットされると、フィーダ20は、テープ80が待機位置にあるものとして供給部211にキャビティ81を位置決めしようとスプロケット31を回転させる。
そうすると、供給部211にキャビティ81が適正に位置決めされずに、部品が供給されない供給ミスが発生するおそれがある。このような供給ミスは、部品装着機10における生産効率の低下や、不要な部品の廃棄の原因となり得る。そこで、本実施形態では、フィーダ20がON状態へと移行したタイミングにおいて、スプロケット31を適正な角度へと調整する調整処理を実行し、供給ミスの発生の防止を図っている。
具体的には、制御装置60の角度調整部62は、図7に示すように、角度センサ40により検出されるスプロケット31の現在角度Acを取得する(S31)。次に、角度調整部62は、記憶部61に記憶されている最終角度Apを読み出し、現在角度Acとの差分をずれ量ΔAとして算出する(S32)。続いて、角度調整部62は、ずれ量ΔAが0でない場合には(S33:Yes)、フィーダ20のOFF状態においてテープ80のずれが発生したものと認識する。
そして、角度調整部62は、S31にて取得した現在角度Acから目標角度Atまでスプロケット31を回転させてテープ80を所定位置まで搬送する。本実施形態において、角度調整部62は、読み出した最終角度Apを目標角度Atとして(Ap=At)、ずれ量ΔAだけスプロケット31を回転させて角度調整を行う(S34)。つまり、角度調整部62は、テープ80が後退方向にずれていた場合には(図6の中段を参照、ΔA<0)、テープ80を前進させるようにスプロケット31を順回転させる。
また、角度調整部62は、テープ80が前進方向にずれていた場合には(図6の下段を参照、ΔA>0)、テープ80を後退させるようにスプロケット31を逆回転させる。これにより、テープ80は、フィーダ20のON状態への移行とともに、待機位置(図6の上段を参照)へと復帰される。一方で、角度調整部62は、S32にて算出したずれ量ΔAが0の場合には(S33:No)、スプロケット31の角度調整(S34)を省略して、調整処理を終了する。
上記のフィーダ20によると、フィーダ20がOFF状態からON状態に移行した場合に、スプロケット31は、最終角度Apに応じた目標角度At(本実施形態において、目標角度Atは、最終角度Apに等しく設定される)まで回転される(S34)。これにより、OFF状態においてスプロケット31がある程度回転しても、そのずれ量ΔAは、スプロケット31が目標角度Atまで回転されることで吸収される。よって、フィーダ20は、供給部211において部品を確実に供給することができる。結果として、フィーダ20は、OFF状態におけるスプロケット31の回転をある程度許容しつつ、ON状態における電子部品の供給ミスの発生を抑制できる。
2.実施形態の変形態様
2-1.目標角度Atについて
実施形態において、制御装置60は、最終角度Apを目標角度Atとしてずれ量ΔAだけスプロケット31を回転させて角度調整を行う構成とした(S34)。これに対して、制御装置60は、スプロケット31の角度の調整処理において、目標角度Atを適宜設定し得る。具体的には、制御装置60は、最終角度Apに予め設定された規定値を加算して目標角度Atを設定してもよい。
2-1.目標角度Atについて
実施形態において、制御装置60は、最終角度Apを目標角度Atとしてずれ量ΔAだけスプロケット31を回転させて角度調整を行う構成とした(S34)。これに対して、制御装置60は、スプロケット31の角度の調整処理において、目標角度Atを適宜設定し得る。具体的には、制御装置60は、最終角度Apに予め設定された規定値を加算して目標角度Atを設定してもよい。
ここで、フィーダ20は、部品装着機10による装着処理での使用や、段取り治具における段取りが終了した場合に、取り外される前に一定量だけテープ80を後退させるようにスプロケット31を逆回転させることがある。このような場合に、制御装置60は、フィーダ20がON状態に移行したことを検出した後に、上記の一定量に対応する規定値だけスプロケット31を順回転させて、テープ80を待機位置とする。
そこで、制御装置60は、スプロケット31の角度の調整処理において、算出したずれ量ΔAが0でない場合には(S33:Yes)、読み出した最終角度Apに規定値を加算した角度を目標角度Atに設定する。そして、制御装置60は、S31にて取得した現在角度Acから目標角度Atまでスプロケット31を回転させてテープ80を待機位置とする。
なお、上記のようなフィーダ20のセットに際してテープ80を一定量だけ前進させる復帰処理は、フィーダ20を着脱可能にセットされてフィーダ20に電力を供給するセット機器によって実行されたり、実行を省略されたりする。具体的には、セット機器が実施形態にて例示したように、部品装着機10または段取り治具である場合には、復帰処理が実行される。一方で、セット機器がフィーダ20の検査機である場合には、例えば検査用のマスターテープが装填されていることから、当該マスターテープを搬送しないように復帰処理の一部または全部が省略される。
そこで、制御装置60は、セット機器の種別に応じて最終角度Apに加算する規定値を切り換える(例えば、セット機器が検査機の場合には、規定値を0とする)。このような構成によると、制御装置60は、フィーダ20がセット機器にセットされた場合に、通信により取得されるセット機器の種別に応じた目標角度Atを適宜設定することができる。よって、OFF状態において発生したずれ量を確実に吸収しつつ、セット機器に応じた目標角度Atまで回転するようにスプロケット31の角度を調整できる。
また、制御装置60は、フィーダ20のOFF状態における最終角度Apから現在角度Acへのスプロケット31の回転方向に応じて互いに異なる目標角度Atを設定してもよい。例えば、制御装置60は、最終角度Apから現在角度Acへのスプロケット31の回転方向がテープ80を前進させる方向の場合には(図6の下段を参照)、複数のキャビティ81のうち供給部211を通過していない一つを供給部211に位置決めするスプロケット31の角度を目標角度Atに設定する。
ここで、フィーダ20のOFF状態においてテープ80が前進するようにずれ量が発生した場合には、供給部211の手前でカバーテープ83が剥離されるため、供給部211を通過したキャビティ81から部品が脱落しているおそれがある。このような場合に、例えば最終角度Apを目標角度Atに設定してスプロケット31を逆転させて角度調整すると、その後の供給動作において空のキャビティ81が供給部211に位置決めされるおそれがある。
そこで、制御装置60は、フィーダ20のOFF状態においてテープ80が前進するようにずれた場合には、戻すような角度調整を実行せず、上記のように、複数のキャビティ81のうち供給部211を通過していない一つを供給部211に位置決めするスプロケット31の角度を目標角度Atに設定する。これにより、空のキャビティ81が供給部211に位置決めされることを防止でき、生産効率の低下を防止できる。
一方で、制御装置60は、最終角度Apから現在角度Acへのスプロケット31の回転方向がキャリアテープを後退させる方向の場合には(図6の中段を参照)、実施形態にて例示したように、目標角度Atを最終角度Apに設定する。このように、フィーダ20のOFF状態におけるスプロケット31の回転方向に応じて異なる目標角度Atを設定することにより、ON状態における部品の供給ミスの発生を確実に抑制できる。
10:電子部品装着機、 20:テープフィーダ、 21:フィーダ本体、 211:供給部、 30:駆動装置、 31:スプロケット、 311:係合突起、 32:ステッピングモータ、 40:角度センサ、 60:制御装置、 61:記憶部、 62:角度調整部、 80:キャリアテープ、 81:キャビティ、 82:係合穴、 90:回路基板、 T1,T2:間隔、 Ac:現在角度、 Ap:最終角度、 At:目標角度、 ΔA:ずれ量
Claims (8)
- 電子部品を収納したキャリアテープを搬送して電子部品装着機に前記電子部品を供給するテープフィーダであって、
フィーダ本体と、
前記フィーダ本体に回転可能に設けられ、前記キャリアテープに形成された複数の係合穴に係合する複数の係合突起を配置されたスプロケットと、
前記テープフィーダに対する電力供給の遮断が検出された時点における前記スプロケットの最終角度、および前記テープフィーダに対する電力供給の再開が検出された時点における前記スプロケットの現在角度を検出する角度センサと、
前記テープフィーダに対する電力供給の再開を検出した場合に、前記最終角度に基づいて前記スプロケットの目標角度を設定するとともに、前記現在角度から前記目標角度まで前記スプロケットを回転させて前記キャリアテープを所定位置まで搬送するように制御する制御装置と、
を備えるテープフィーダ。 - 前記制御装置は、前記テープフィーダに対する電力供給の再開を検出した場合に、前記最終角度と前記現在角度との差分をずれ量として算出するとともに、前記最終角度を前記目標角度として前記ずれ量だけ前記スプロケットを回転させる、請求項1に記載のテープフィーダ。
- 前記制御装置は、前記最終角度に予め設定された規定値を加算して前記目標角度を設定する、請求項1または2に記載のテープフィーダ。
- 前記規定値は、前記テープフィーダを着脱可能にセットされて前記テープフィーダに電力を供給するセット機器の種別に応じて設定される、請求項3に記載のテープフィーダ。
- 前記制御装置は、前記最終角度から前記現在角度への前記スプロケットの回転方向に応じて互いに異なる前記目標角度を設定する、請求項1-4の何れか一項に記載のテープフィーダ。
- 前記フィーダ本体は、前記電子部品装着機に前記電子部品を供給する供給部を有し、
前記キャリアテープは、搬送方向に所定の間隔で形成され前記電子部品を収納する複数のキャビティを有し、
前記制御装置は、前記最終角度から前記現在角度への前記スプロケットの回転方向が前記キャリアテープを前進させる方向の場合には、複数の前記キャビティのうち前記供給部を通過していない一つを前記供給部に位置決めする前記スプロケットの角度を前記目標角度に設定する、請求項5に記載のテープフィーダ。 - 前記制御装置は、前記最終角度から前記現在角度への前記スプロケットの回転方向が前記キャリアテープを後退させる方向の場合には、前記目標角度を前記最終角度に設定する、請求項5または6に記載のテープフィーダ。
- 前記フィーダ本体は、前記電子部品装着機に前記電子部品を供給する供給部を有し、
前記キャリアテープは、搬送方向に所定の間隔で形成され前記電子部品を収納する複数のキャビティを有し、
前記目標角度は、前記キャリアテープの先端側から最初に前記電子部品を収納した前記キャビティより一つ先端側の前記キャビティを前記供給部に位置決めする前記スプロケットの角度である、請求項1-7の何れか一項に記載のテープフィーダ。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17926268.8A EP3691430B1 (en) | 2017-09-25 | 2017-09-25 | Tape feeder |
CN201780094990.1A CN111108820B (zh) | 2017-09-25 | 2017-09-25 | 带式供料器 |
JP2019542958A JP6909300B2 (ja) | 2017-09-25 | 2017-09-25 | テープフィーダ |
PCT/JP2017/034578 WO2019058562A1 (ja) | 2017-09-25 | 2017-09-25 | テープフィーダ |
US16/644,735 US20200267879A1 (en) | 2017-09-25 | 2017-09-25 | Tape feeder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/034578 WO2019058562A1 (ja) | 2017-09-25 | 2017-09-25 | テープフィーダ |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019058562A1 true WO2019058562A1 (ja) | 2019-03-28 |
Family
ID=65810679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/034578 WO2019058562A1 (ja) | 2017-09-25 | 2017-09-25 | テープフィーダ |
Country Status (5)
Country | Link |
---|---|
US (1) | US20200267879A1 (ja) |
EP (1) | EP3691430B1 (ja) |
JP (1) | JP6909300B2 (ja) |
CN (1) | CN111108820B (ja) |
WO (1) | WO2019058562A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2022009298A1 (ja) * | 2020-07-07 | 2022-01-13 | ||
EP4030882A4 (en) * | 2019-09-13 | 2022-09-21 | Fuji Corporation | FEED DEVICE AND COMPONENT ASSEMBLY DEVICE |
JP7527825B2 (ja) | 2020-03-31 | 2024-08-05 | ヤマハ発動機株式会社 | 部品載置装置および部品搬送装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112875383A (zh) * | 2020-12-29 | 2021-06-01 | 合肥安迅精密技术有限公司 | 一种用于贴片机供料的飞达 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001127489A (ja) * | 1999-10-29 | 2001-05-11 | Shibaura Mechatronics Corp | 部品実装装置 |
JP2005228970A (ja) * | 2004-02-13 | 2005-08-25 | Hitachi High-Tech Instruments Co Ltd | 部品供給装置 |
JP2011082500A (ja) | 2009-09-09 | 2011-04-21 | Juki Corp | 部品供給装置 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030086619A (ko) * | 2001-03-30 | 2003-11-10 | 지멘스 악티엔게젤샤프트 | 테이핑된 전기 부품을 공급하기 위한 장치 및 방법 |
CN100438743C (zh) * | 2001-10-16 | 2008-11-26 | 松下电器产业株式会社 | 运送带送带器和电子部件安装装置及电子部件输送方法 |
KR100970296B1 (ko) * | 2002-02-19 | 2010-07-15 | 파나소닉 주식회사 | 부품 공급 유닛, 부품 공급 장치 및 부품 공급 방법, 및부품 실장 장치 |
DE10224998A1 (de) * | 2002-06-05 | 2004-01-08 | Siemens Ag | Bauelementegurt-Transportrad, Bauelementegurt-Transportsystem und Verfahren zum Betreiben eines Bauelementegurt-Transportsystems |
JP4341302B2 (ja) * | 2003-06-09 | 2009-10-07 | パナソニック株式会社 | 電子部品実装装置および電子部品実装方法 |
US7073696B2 (en) * | 2003-11-24 | 2006-07-11 | Tyco Electronics Corporation | High repeatability tape feeder for electronic component carrier tapes |
JP4672491B2 (ja) * | 2005-09-05 | 2011-04-20 | ヤマハ発動機株式会社 | テープフィーダおよび表面実装機 |
DE102006024733B3 (de) * | 2006-05-26 | 2007-09-06 | Maxon Motor Ag | Feedereinschub für Bestückungsmaschinen von Leiterplatten |
US20080047652A1 (en) * | 2006-06-20 | 2008-02-28 | Charles Gutentag | Component handling using adhesive-backed carrier tape |
JP4829031B2 (ja) * | 2006-08-08 | 2011-11-30 | ヤマハ発動機株式会社 | テープフィーダの送り量データ設定装置 |
WO2008023757A1 (fr) * | 2006-08-23 | 2008-02-28 | Yamaha Motor Co., Ltd. | Dispositif d'alimentation de bande et appareil de montage |
JP5283982B2 (ja) * | 2008-06-13 | 2013-09-04 | ヤマハ発動機株式会社 | テープフィーダ監視装置、テープフィーダ、表面実装機、およびテープフィーダ監視装置の制御方法 |
CN102026533B (zh) * | 2009-09-09 | 2015-01-28 | Juki株式会社 | 部件供给装置 |
KR101602444B1 (ko) * | 2009-12-10 | 2016-03-16 | 한화테크윈 주식회사 | 개선된 호밍 구조를 갖는 전동 피더 |
JP5748284B2 (ja) * | 2011-11-01 | 2015-07-15 | 富士機械製造株式会社 | テープフィーダ |
JP6334538B2 (ja) * | 2013-08-21 | 2018-05-30 | 株式会社Fuji | フィーダ部品種決定方法およびフィーダ部品種決定装置 |
JP6271562B2 (ja) * | 2013-08-26 | 2018-01-31 | 富士機械製造株式会社 | フィーダ |
US10059552B2 (en) * | 2014-05-30 | 2018-08-28 | Fuji Corporation | Feeder |
JP2017085826A (ja) * | 2015-10-30 | 2017-05-18 | キヤノン株式会社 | 電子機器 |
JP6717850B2 (ja) * | 2015-11-19 | 2020-07-08 | 株式会社Fuji | テープフィーダ及び部品実装機 |
CN108293319B (zh) * | 2015-12-21 | 2020-09-01 | 株式会社富士 | 带式供料器及元件安装机 |
-
2017
- 2017-09-25 CN CN201780094990.1A patent/CN111108820B/zh active Active
- 2017-09-25 US US16/644,735 patent/US20200267879A1/en active Pending
- 2017-09-25 EP EP17926268.8A patent/EP3691430B1/en active Active
- 2017-09-25 JP JP2019542958A patent/JP6909300B2/ja active Active
- 2017-09-25 WO PCT/JP2017/034578 patent/WO2019058562A1/ja unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001127489A (ja) * | 1999-10-29 | 2001-05-11 | Shibaura Mechatronics Corp | 部品実装装置 |
JP2005228970A (ja) * | 2004-02-13 | 2005-08-25 | Hitachi High-Tech Instruments Co Ltd | 部品供給装置 |
JP2011082500A (ja) | 2009-09-09 | 2011-04-21 | Juki Corp | 部品供給装置 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4030882A4 (en) * | 2019-09-13 | 2022-09-21 | Fuji Corporation | FEED DEVICE AND COMPONENT ASSEMBLY DEVICE |
US11889632B2 (en) | 2019-09-13 | 2024-01-30 | Fuji Corporation | Feeder and component mounting machine |
JP7527825B2 (ja) | 2020-03-31 | 2024-08-05 | ヤマハ発動機株式会社 | 部品載置装置および部品搬送装置 |
JPWO2022009298A1 (ja) * | 2020-07-07 | 2022-01-13 | ||
WO2022009298A1 (ja) * | 2020-07-07 | 2022-01-13 | 株式会社Fuji | 電子部品装着機及び電子部品装着機の制御方法 |
JP7403654B2 (ja) | 2020-07-07 | 2023-12-22 | 株式会社Fuji | 電子部品装着機及び電子部品装着機の制御方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3691430A1 (en) | 2020-08-05 |
CN111108820B (zh) | 2021-03-16 |
JPWO2019058562A1 (ja) | 2020-04-09 |
EP3691430B1 (en) | 2024-02-28 |
JP6909300B2 (ja) | 2021-07-28 |
US20200267879A1 (en) | 2020-08-20 |
CN111108820A (zh) | 2020-05-05 |
EP3691430A4 (en) | 2020-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019058562A1 (ja) | テープフィーダ | |
EP3211983B1 (en) | Component pickup position correction system and component pickup position correction method for rotary head-type component mounter | |
JP2007227491A (ja) | フィーダ調整装置およびテープフィーダ | |
JP5616718B2 (ja) | 部品供給装置 | |
JP7019861B2 (ja) | テープフィーダおよびキャリアテープの装填方法 | |
JP2004047951A (ja) | テープフィーダおよび電子部品供給システム | |
JP3950144B2 (ja) | 部品供給方法および同装置 | |
CN111133849B (zh) | 带式供料器 | |
JP2017028041A (ja) | テープフィーダ | |
JP5903669B2 (ja) | 電子部品実装装置および電子部品実装装置における電子部品実装方法 | |
JP6717850B2 (ja) | テープフィーダ及び部品実装機 | |
KR20160049430A (ko) | 테이프 피더 | |
CN112004764B (zh) | 带进给装置及带进给方法 | |
JP2023012130A (ja) | テープ送り装置およびテープ送り方法 | |
CN111066379B (zh) | 带式供料器 | |
KR101231186B1 (ko) | 전동 피더의 모터위상 보정방법 | |
JP7016761B2 (ja) | テープ送り装置 | |
US20230033735A1 (en) | Component mounting machine | |
JP2016167566A (ja) | テープフィーダ | |
KR100406061B1 (ko) | 테이프 피더의 백래쉬 보정장치 | |
KR20030041599A (ko) | 테이프피더의 피딩제어방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17926268 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019542958 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017926268 Country of ref document: EP Effective date: 20200428 |