WO2019056260A1 - 触控电极的制作方法 - Google Patents

触控电极的制作方法 Download PDF

Info

Publication number
WO2019056260A1
WO2019056260A1 PCT/CN2017/102697 CN2017102697W WO2019056260A1 WO 2019056260 A1 WO2019056260 A1 WO 2019056260A1 CN 2017102697 W CN2017102697 W CN 2017102697W WO 2019056260 A1 WO2019056260 A1 WO 2019056260A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch electrode
manufacturing
groove
substrate
recess
Prior art date
Application number
PCT/CN2017/102697
Other languages
English (en)
French (fr)
Inventor
李烨
Original Assignee
深圳市柔宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市柔宇科技有限公司 filed Critical 深圳市柔宇科技有限公司
Priority to PCT/CN2017/102697 priority Critical patent/WO2019056260A1/zh
Priority to CN201780091763.3A priority patent/CN110709804A/zh
Publication of WO2019056260A1 publication Critical patent/WO2019056260A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables

Definitions

  • the present invention relates to the field of touch technologies, and in particular, to a method for fabricating a touch electrode.
  • the existing touch electrodes are wider, and if a thin touch electrode needs to be fabricated, the process requirements are high, resulting in an increase in production cost.
  • Embodiments of the present invention provide a method for fabricating a touch electrode that is simple in process.
  • the occlusion layer on the substrate is removed.
  • the step of injecting metal ink into the groove comprises:
  • a plurality of droplets of the metallic ink are injected into the recess.
  • the droplets of the plurality of metallic inks are separated from one another.
  • the step of forming the touch electrode ring in the recess by using the coffee ring effect comprises:
  • a plurality of droplets of the metallic ink are collected and mixed with each other to form a liquid block.
  • the step of forming the touch electrode ring in the recess by using the coffee ring effect further comprises:
  • Metal particles in the liquid block are collected by capillary action at the edges of the grooves to form the touch electrode ring.
  • the step of forming the touch electrode ring in the recess by using the coffee ring effect further comprises:
  • the liquid block is dried to volatilize the liquid in the middle of the groove.
  • the step of drying the liquid block to volatilize liquid in the liquid block in the groove comprises:
  • the substrate on which the liquid block is formed is placed in an incubator for a preset time.
  • the manufacturing method further includes:
  • the opposite ends of the touch electrode ring are removed to form a touch electrode.
  • the step of removing opposite ends of the touch electrode ring to form a touch electrode is performed in the same process as the step of removing the occlusion layer on the substrate.
  • the removing the occlusion layer on the substrate is achieved by laser stripping, and the removing the opposite ends of the touch electrode ring to form a touch electrode is achieved by laser cutting. .
  • the number of the grooves is multiple, and the touch electrode ring in each of the grooves is a continuous annular structure, and the touch in the adjacent grooves The electrode rings are separated by the shielding layer.
  • the plurality of grooves are parallel to each other.
  • the grooves have a rectangular or parallelogram in cross section in a direction parallel to the surface of the substrate.
  • the groove has a width of less than 0.4 mm.
  • the grooves have a width of from 24 [mu]m to 100 [mu]m.
  • the touch electrode has a width of 2 ⁇ m to 10 ⁇ m, and a distance between two adjacent touch electrodes is 20 ⁇ m to 80 ⁇ m.
  • the metallic ink comprises a metal organic complex.
  • the material of the substrate comprises silicon oxide, silicon nitride or silicon oxynitride.
  • the substrate includes a thin film encapsulation layer disposed on the display module.
  • the substrate is fabricated on the display module by a chemical vapor deposition, inkjet printing process.
  • the method for fabricating the touch electrode according to the embodiment of the present invention forms two spaced touch electrodes in the recess by the coffee ring effect, so that the touch is formed in the recess.
  • the width of the electrode is narrower, which improves touch accuracy.
  • the process of forming the touch electrode by the coffee ring effect is spontaneously formed by the capillary action of the liquid, thereby effectively simplifying the manufacturing process of the electrode, thereby saving manufacturing costs.
  • FIG. 1 is a schematic flow chart of a manufacturing method of some embodiments of the present invention.
  • FIG. 2 is a schematic view showing the process of the manufacturing method of some embodiments of the present invention.
  • FIG. 3 is a schematic plan view of a groove formed on a shielding layer according to some embodiments of the present invention.
  • FIG. 4 is a cross-sectional view of a groove formed in a shielding layer according to some embodiments of the present invention.
  • Figure 5 is a cross-sectional view of a groove formed in a occlusion layer in accordance with some embodiments of the present invention.
  • FIG. 6 is a schematic view showing the principle of forming a touch electrode ring by a metal ink according to some embodiments of the present invention.
  • FIG. 7 is a schematic plan view of a touch electrode ring formed in a recess according to some embodiments of the present invention.
  • FIG. 8 is a schematic plan view showing a touch electrode ring formed on a substrate according to some embodiments of the present invention.
  • FIG. 9 is a schematic flow chart of a manufacturing method of some embodiments of the present invention.
  • FIG. 10 is a schematic flow chart of a manufacturing method of some embodiments of the present invention.
  • FIG. 11 is a schematic flow chart of a manufacturing method of some embodiments of the present invention.
  • FIG. 12 is a schematic plan view showing a touch electrode formed on a substrate according to some embodiments of the present invention.
  • FIG. 13 is a schematic flow chart of a manufacturing method of some embodiments of the present invention.
  • FIG. 14 is a schematic plan view showing a substrate disposed on a display module according to some embodiments of the present invention.
  • 15 is a schematic plan view showing a substrate disposed on a display module according to some embodiments of the present invention.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include one or more of the described features either explicitly or implicitly.
  • the meaning of "a plurality” is two or more unless specifically and specifically defined otherwise.
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; may be mechanically connected, may be electrically connected or may communicate with each other; may be directly connected, or may be indirectly connected through an intermediate medium, may be internal communication of two elements or interaction of two elements relationship.
  • Connected, or integrally connected may be mechanically connected, may be electrically connected or may communicate with each other; may be directly connected, or may be indirectly connected through an intermediate medium, may be internal communication of two elements or interaction of two elements relationship.
  • the first feature "on” or “under” the second feature may include direct contact of the first and second features, and may also include first and second features, unless otherwise specifically defined and defined. It is not in direct contact but through additional features between them.
  • the first feature "above”, “above” and “above” the second feature includes the first feature directly above and above the second feature, or merely indicating that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature includes the first feature directly below and below the second feature, or merely the first feature level being less than the second feature.
  • a method for fabricating the touch electrode 10 according to an embodiment of the present invention includes:
  • the patterned shielding layer 40 forms a groove 42;
  • the metal ink 50 is used to form the touch electrode ring 60 in the recess 42 by using a coffee ring effect
  • Substrate 30 includes a surface 32.
  • the material of the substrate 30 includes silicon oxide, silicon nitride or silicon oxynitride.
  • the material of the substrate 30 may be silicon dioxide.
  • the occlusion layer 40 can be formed on the surface 32 of the substrate 30 by coating, spraying, or the like from a curable material.
  • the occlusion layer 40 may be formed by photoresist coating on the surface 32, the photoresist being a positive glue, that is, the photoresist is insoluble prior to exposure and soluble after exposure.
  • the step of forming the mask 42 to form the recess 42 may form the recess 42 by using the laser cut shield 40, and the number of the recesses 42 may be one or more.
  • the occlusion layer 40 is formed of a photoresist
  • the groove 42 may be formed by laser exposure. Specifically, when the laser light is irradiated on the shielding layer 40 (that is, the photoresist), the photoresist 40 is gradually melted, and the groove 42 can be obtained by removing the melted photoresist 40 from the substrate 30.
  • the recess 42 may extend through the side of the photoresist 40 (the corresponding side of the end of the recess 42), and the recess 42 may not extend through the side of the photoresist 40 (as shown in FIG. 3).
  • a baffle (not shown) may be provided at the end of the recess 42 for confining the metallic ink 50 within the recess 42.
  • the groove 42 has a rectangular or parallelogram in cross section in a direction parallel to the surface 32 of the substrate 30.
  • the groove 42 has a rectangular cross section, a parallelogram shape, or an isosceles trapezoid.
  • the width W of the groove 42 is the average width of the cross section.
  • the width W of the groove 42 of the above embodiment is less than 0.4 mm.
  • the width W of the groove 42 may be 0.39 mm, 0.35 mm, 0.3 mm, 0.25 mm, 0.2 mm, 0.15 mm, 0.1. Any of mm, 0.05 mm, 0.04 mm, 0.03 mm, 0.02 mm, 0.01 mm or any of the above. Referring to FIG.
  • the depth D of the recess 42 is proportional to the thickness T of the touch electrode 10 to be fabricated. Specifically, the depth of the groove 42 is positively correlated with the thickness T of the touch electrode 10. That is, if the thickness T of the touch electrode 10 to be formed is larger, the depth of the groove 42 is larger.
  • the metal ink 50 may be a suspension, wherein the suspension in the suspension is metal particles, and the metal particles may be silver, gold, copper, platinum, etc., and the liquid in the suspension may be organic. .
  • Metal ink 50 can also be a metal organic complex.
  • the metallic ink 50 may fill the recess 42 or may only fill a portion of the recess 42.
  • the step of injecting the metallic ink 50 into the recess 42 (step S3) may inject the metallic ink 50 into the recess 42 by an inkjet printing process. Specifically, the metallic ink 50 injected into the recess 42 may be separated from each other. A droplet-shaped, mutually separated mist-like, continuous liquid.
  • FIG. 6 shows a step of injecting the metallic ink 50 into the recess 42 (step S3), to the use of the coffee ring effect to form the touch ink ring 60 in the recess 42 by the metallic ink 50.
  • the step (step S4), the process of forming the touch electrode ring 60 in the recess 42 by the metallic ink 50 can be understood as: injecting a plurality of metal ink 50 droplets separated from each other into the recess 42 and a plurality of metal inks 50 liquid The droplets are gradually aggregated and mixed to form a metal ink 50 liquid block; as the metal ink 50 is gradually dried, the metal concentration in the metal ink 50 is gradually increased, and under the action of capillary action, the metal particles in the metal ink 50 are concave from the center of the groove 42.
  • the edge of the groove 42 flows so that the metal concentration at the edge of the groove 42 gradually increases and gradually deposits on the edge of the groove 42; as the liquid (solvent) in the metallic ink 50 gradually volatilizes, metal particle deposition at the edge of the groove 42 The amount is gradually increased and finally the touch electrode ring 60 is obtained.
  • the touch electrode ring 60 includes two opposite initial electrodes 62 and two connecting portions 64 connecting the two initial electrodes 62 .
  • the two connecting portions 64 are respectively located at opposite ends of the initial electrode 62 .
  • the manufacturing method of the embodiment of the present invention removes the remaining shielding layer 40 on the substrate 30 (step S5 ) to obtain the touch electrode ring 60 , and the step S5 may remove the remaining remaining on the substrate 30 by laser stripping.
  • the touch electrode ring 60 can function as the touch electrode 10 .
  • the touch electrode ring 60 can be etched, cut, etc. to wait for the touch electrode 10 with better shape and structure.
  • the touch electrode 10 has a strip structure, and the touch electrode 10 can be obtained by laser cutting the touch electrode ring 60 and removing the two connecting portions 64.
  • the method for fabricating the touch electrode 10 of the embodiment of the present invention forms two spaced touch electrodes in the recess 42 by the coffee ring effect, with respect to forming a touch electrode having the same size as the recess 42 in the recess 42. 10, the width of the touch electrode 10 is made narrower, thereby improving the touch precision. Further, the touch electrode 10 is formed by the coffee ring effect The process is spontaneously formed by the capillary action of the liquid, thereby effectively simplifying the manufacturing process of the electrode, thereby saving manufacturing costs.
  • the method for fabricating the touch electrode 10 of the embodiment of the present invention further has the following beneficial effects: forming the recess 42 on the shielding layer 40 and forming the touch electrode 10 in the recess 42.
  • the manufacturing method of the present invention passes through the control recess 42. The spacing between them can thereby control the spacing between the touch electrodes 10.
  • the step of injecting the metallic ink 50 into the groove 42 of the above embodiment includes:
  • the droplets of the metallic ink 50 continuously injected into the recess 42 may be separated from each other (or spaced apart from each other), and the droplets of the metallic ink 50 continuously injected into the recess 42 may be connected to each other.
  • the number of droplets of metallic ink 50 injected into the recess 42 is facilitated for control so that the user can obtain the desired width and thickness of the initial electrode 62.
  • the step of injecting the metallic ink 50 into the groove 42 of the above embodiment includes:
  • droplets of the plurality of metallic inks 50 are injected into the recesses 42, and the droplets of the plurality of metallic inks 50 are separated from each other.
  • the droplets of metallic ink 50 continuously injected into the recess 42 may be separated from each other (or spaced apart from each other).
  • the number of droplets of metallic ink 50 injected into the recess 42 is facilitated for control so that the user can obtain the desired width and thickness of the initial electrode 62.
  • the step of using the coffee ring effect to form the touch ink ring 60 in the recess 42 by the metal ink 50 in the above embodiment includes:
  • the droplets of the plurality of metallic inks 50 are collected and mixed with each other to form a liquid block.
  • the metal particles in the metal ink 50 are condensed under the action of the capillary to the edge of the groove 42 to form a better-structured touch electrode ring. 60.
  • step S4 further includes:
  • the metal particles in the liquid block are collected by the capillary action at the edge of the groove 42 to form the touch electrode ring 60.
  • the liquid block needs to be controlled.
  • the rate of volatilization of the liquid is such that the metal particles are completely collected to the edge of the groove 42.
  • the metal particles can uniformly gather on the edge of the groove 42 in the capillary action to obtain a better-structured touch electrode ring 60; at the same time, the edge of the metal particle collecting groove 42 in the liquid block is spontaneously formed by the capillary action of the liquid. Therefore, the manufacturing process of the electrode can be effectively simplified, thereby saving manufacturing costs.
  • step S4 further includes:
  • the liquid block is dried to volatilize the liquid in the middle of the groove 42 (the intermediate position of the groove 42).
  • the liquid in the middle of the groove 42 is first evaporated to dry, so that the metal particles in the liquid block are all collected by the capillary to the edge of the groove 42, and the middle portion of the groove 42 does not aggregate the metal particles, so that the embodiment can obtain
  • the touch electrode ring 50 has a better structure.
  • step S4 further includes:
  • the temperature of the temperature in the incubator is related to the material of the liquid (or solvent) in the metal ink 50 and the moving speed of the metal in the metal ink 50 toward the edge of the groove 42.
  • the holding time can be measured according to actual experimental data.
  • the substrate 30 on which the liquid block is formed is placed in the incubator to keep the liquid in the middle of the groove 42 from evaporating.
  • the temperature in the incubator may be 40 ° C - 100 ° C, for example, the holding temperature is 40 ° C, 50 ° C, 60 ° C, 70 ° C, 80 ° C, 90 ° C Any one of 100 ° C or a value between any two of the above, preferably, the holding temperature is 60 ° C, and the preset time may be 5 minutes to 60 minutes, for example, the preset time is 5 minutes, 10 minutes, 15 Any one of minutes, 20 minutes, 25 minutes, 30 minutes, 35 minutes, 40 minutes, 35 minutes, 50 minutes, 55 minutes, 60 minutes, or any of the above.
  • the manufacturing method of the present embodiment places the substrate 30 on which the liquid block is formed in the incubator to prevent the metal in the metal ink 50 on the middle of the groove 42 from moving to the edge of the groove 42, so that the metal ink 50 can form a structure.
  • the preferred touch electrode ring 60 prevents the metal in the metal ink 50 from being deposited at the center of the recess 42 and the metal ink 50 cannot form the touch electrode ring 60.
  • placing the substrate 30 on which the liquid block is formed in the incubator for a predetermined period of time can also speed up the process of the coffee ring effect and improve the formation efficiency of the touch electrode ring 60.
  • the manufacturing method of the embodiment of the present invention further includes:
  • the touch electrode rings 60 need to be removed from the connecting portions 64 on opposite ends of the touch electrode ring 60. After the opposite ends of the touch electrode ring 60 are removed to form the touch electrode 10, two strip-shaped initial electrodes 62 can be obtained.
  • the initial electrode 62 can be the touch electrode 10, or the initial electrode 62 can be etched, cut, etc.
  • the touch electrode 10 has a better shape and structure.
  • step S6 the step of removing the opposite ends of the touch electrode ring 60 to form the touch electrode 10 in the above embodiment
  • the step of removing the shielding layer 40 on the substrate 30 is completed in the same process.
  • Step S5 and step S6 are completed in the same process to reduce the manufacturing process of the touch electrode 10, thereby improving the fabrication efficiency of the touch electrode 10 and reducing the manufacturing cost of the touch electrode 10.
  • step S6 the steps of removing the opposite ends of the touch electrode ring 60 to form the touch electrode 10 in the above embodiment (step S6 ), and the occlusion on the removal substrate 30 .
  • step S5 of layer 40 include:
  • Step S5 and step S6 are completed in the same process to reduce the manufacturing process of the touch electrode 10, thereby improving the fabrication efficiency of the touch electrode 10 and reducing the manufacturing cost of the touch electrode 10.
  • step S51 may be performed before step S52 or after step S52.
  • Step S52 is performed after step S51.
  • the laser beam is used to cut the connecting portion 64 (the opposite ends of the touch electrode ring 60)
  • the excess edge in the initial electrode 62 can be cut by the laser to obtain a better shape and structure.
  • Electrode 10. Step S52 is performed before step S51.
  • the connection portion 64 is cut by the laser, the photoresist 40 can support the touch electrode ring 60 so that the connection portion 64 has a large strength to avoid damage to the initial electrode 62 when the connection portion 64 is cut. .
  • the number of the grooves 42 formed on the shielding layer 40 of the above embodiment is plural, and the touch electrode ring 60 in each of the grooves 42 has a continuous annular structure.
  • the touch electrode rings 60 in the adjacent grooves 42 are separated by the shielding layer 40.
  • each of the grooves 42 is filled with a metallic ink 50 and a touch electrode ring 60 is formed in each of the grooves 42. Since the width of the touch electrode 10 fabricated by the embodiment of the present invention is narrower, the density of the touch electrode 10 formed on the substrate 30 can be made larger, thereby improving the detection of the touch electrode 10 for touch detection. Precision.
  • the number of the grooves 42 formed on the shielding layer 40 of the above embodiment is multiple, and the touch electrode ring 60 in each groove 42 is a continuous ring.
  • the touch electrode ring 60 in the adjacent recess 42 is separated by the shielding layer 40.
  • the plurality of grooves 42 are parallel to each other. Therefore, the density of the touch electrodes 10 formed on the substrate 30 can be made larger, so that the detection accuracy of the touch electrodes 10 for touch detection can be improved.
  • the plurality of grooves 42 are equally spaced. As such, the detection accuracy of the touch electrode 10 formed in the recess 42 for touch detection is further improved.
  • the groove 42 of the above embodiment has a width W of 24 ⁇ m to 100 ⁇ m.
  • the width W of the groove 42 may be any one of 24 ⁇ m, 25 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m, 50 ⁇ m, 55 ⁇ m, 60 ⁇ m, 65 ⁇ m, 70 ⁇ m, 75 ⁇ m, 80 ⁇ m, 85 ⁇ m, 90 ⁇ m, 95 ⁇ m, 100 ⁇ m or any of the above. The value between the two.
  • the manufacturing method of the touch electrode 10 according to the embodiment of the present invention is produced.
  • the width W1 of the touch electrode 10 is 2 ⁇ m to 10 ⁇ m.
  • the width W1 of the touch electrode 10 may be any one of 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, or the like. value.
  • the distance D1 between two adjacent touch electrodes 10 is 20 ⁇ m-80 ⁇ m.
  • the distance D1 between two adjacent touch electrodes 10 may be 20 ⁇ m, 30 ⁇ m, 40 ⁇ m, 50 ⁇ m, 60 ⁇ m, 70 ⁇ m, 80 ⁇ m, etc. Any one or a value between any two of the above.
  • the width W1 of the touch electrode 10 refers to the width of the initial electrode 62 , and the distance D1 between adjacent touch electrodes 10 and adjacent ones. The distance between the two grooves 42 is equal.
  • the display module 20 includes an Organic Light-Emitting Diode (OLED) display module or a Liquid Crystal Display (LCD).
  • OLED Organic Light-Emitting Diode
  • LCD Liquid Crystal Display
  • the OLED display module 20 includes a module substrate 21, an anode layer 22, a light-emitting layer 23, and a cathode layer 24 which are sequentially disposed.
  • the substrate 30 is disposed on the cathode layer 24.
  • the substrate 30 can be subjected to a chemical vapor deposition (CVD) process or inkjet printing (Ink-jet Printing, IJP).
  • CVD chemical vapor deposition
  • IJP Ink-jet Printing
  • the process is formed on the cathode layer 24 of the display module 20; or the OLED display module 20 further includes a thin film encapsulation layer 25 on which the substrate 30 is located.
  • the encapsulating film layer 25 can also be part of the substrate 30.
  • the film encapsulation layer 25 is made of a corrosion-resistant material, and the film encapsulation layer 25 can also have adhesion.
  • the film encapsulation layer 25 is more resistant to corrosion and better adheres than ordinary materials.
  • the LCD display module 20 includes a lower polarizer 26, a liquid crystal layer 27 and an upper polarizer 28 which are sequentially disposed.
  • the substrate 30 is disposed on the upper polarizer 28.
  • the substrate 30 can be subjected to a chemical vapor deposition (CVD) process or inkjet printing (Ink-jet printing, The IJP) process is formed on the upper polarizer 28 of the display module 20; or the LCD display module 20 further includes a thin film encapsulation layer 25, which is the thin film encapsulation layer 25.
  • the film encapsulation layer 25 is made of a corrosion-resistant material, and the film encapsulation layer 25 can also have adhesion.
  • the film encapsulation layer 25 is more resistant to corrosion and better adheres than ordinary materials.
  • the substrate 30 is also the upper polarizer 28 of the LCD display module.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种触控电极(10)的制作方法,包括:在基板(30)的表面(32)上形成遮挡层(40);图案化遮挡层(40)形成凹槽(42);向凹槽(42)内注入金属油墨(50);利用咖啡环效应使金属油墨(50)在凹槽(42)内形成触控电极环(60);去除基板(30)上的遮挡层(40)。

Description

触控电极的制作方法 技术领域
本发明涉及触控技术领域,特别涉及一种触控电极的制作方法。
背景技术
现有的触控电极较宽,如需要制造较细的触控电极,对于制程的要求较高,导致生产成本增加。
发明内容
本发明的实施例提供一种制程简单的触控电极的制作方法。
本发明实施方式的触控电极的制作方法,所述制作方法包括:
在基板的表面上形成遮挡层;
图案化所述遮挡层形成凹槽;
向所述凹槽内注入金属油墨;
利用咖啡环效应使所述金属油墨在所述凹槽内形成触控电极环;和
去除所述基板上的所述遮挡层。
在某些实施方式中,所述向所述凹槽内注入金属油墨的步骤包括:
向所述凹槽内注入多个所述金属油墨的液滴。
在某些实施方式中,多个所述金属油墨的液滴相互分离。
在某些实施方式中,所述利用咖啡环效应使所述金属油墨在所述凹槽内形成触控电极环的步骤包括:
将多个所述金属油墨的液滴相互汇聚混合形成液块。
在某些实施方式中,所述利用咖啡环效应使所述金属油墨在所述凹槽内形成触控电极环的步骤还包括:
利用毛细作用将所述液块中的金属颗粒聚集在所述凹槽的边缘以形成所述触控电极环。
在某些实施方式中,所述利用咖啡环效应使所述金属油墨在所述凹槽内形成触控电极环的步骤还包括:
干燥所述液块以使所述凹槽中部的液体挥发。
在某些实施方式中,所述干燥所述液块以使所述凹槽中的所述液块中的液体挥发的步骤包括:
将形成有所述液块的所述基板放置在恒温箱中保温预设时间。
在某些实施方式中,所述制作方法还包括:
去除所述触控电极环的相对两端以形成触控电极。
在某些实施方式中,所述去除所述触控电极环的相对两端以形成触控电极的步骤,与所述去除所述基板上的所述遮挡层的步骤在同一制程中完成。
在某些实施方式中,所述去除所述基板上的所述遮挡层是通过激光剥离实现的,所述去除所述触控电极环的相对两端以形成触控电极是通过激光切割实现的。
在某些实施方式中,所述凹槽的数量为多个,每个所述凹槽中的所述触控电极环为连续的环状结构,相邻所述凹槽内的所述触控电极环通过所述遮挡层隔开。
在某些实施方式中,多个所述凹槽彼此平行。
在某些实施方式中,沿平行于所述基板的所述表面的方向,所述凹槽的截面呈矩形或平行四边形。
在某些实施方式中,所述凹槽的宽度小于0.4mm。
在某些实施方式中,所述凹槽的宽度为24μm-100μm。
在某些实施方式中,所述触控电极的宽度为2μm-10μm,相邻两条所述触控电极之间的距离为20μm-80μm。
在某些实施方式中,所述金属油墨包括金属有机络合物。
在某些实施方式中,所述基板的材质包括氧化硅、氮化硅或氮氧化硅。
在某些实施方式中,所述基板包括设置在显示模组上的薄膜封装层。
在某些实施方式中,所述基板通过化学气相淀积、喷墨印刷工艺制作在所述显示模组上。
相对于在凹槽内形成一条与凹槽尺寸一致的触控电极,本发明实施方式的触控电极的制作方法通过咖啡环效应在凹槽内形成两条间隔设置的触控电极,使得触控电极的宽度更窄,从而提升触控精度。进一步地,通过咖啡环效应形成触控电极的过程,是利用液体的毛细作用所自发形成的,因而可以有效简化电极的制造工艺,从而节省制造成本。
本发明的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实施方式的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本发明某些实施方式的制作方法的流程示意图;
图2是本发明某些实施方式的制作方法的过程示意图;
图3是本发明某些实施方式的遮挡层上形成的凹槽的平面示意图;
图4是本发明某些实施方式的遮挡层上形成的凹槽的剖视图;
图5是本发明某些实施方式的遮挡层上形成的凹槽的剖视图;
图6是本发明某些实施方式的金属油墨形成触控电极环的原理示意图;
图7是本发明某些实施方式的凹槽内形成的触控电极环的平面示意图;
图8是本发明某些实施方式的基板上形成触控电极环的平面示意图;
图9是本发明某些实施方式的制作方法的流程示意图;
图10是本发明某些实施方式的制作方法的流程示意图;
图11是本发明某些实施方式的制作方法的流程示意图;
图12是本发明某些实施方式的触控电极形成在基板上的平面示意图;
图13是本发明某些实施方式的制作方法的流程示意图;
图14是本发明某些实施方式的基板设置在显示模组上的平面示意图;和
图15是本发明某些实施方式的基板设置在显示模组上的平面示意图。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的 普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参阅图1及图2,本发明实施方式的触控电极10的制作方法包括:
S1,在基板30的表面32上形成遮挡层40;
S2,图案化遮挡层40形成凹槽42;
S3,向凹槽42内注入金属油墨50;
S4,利用咖啡环效应使金属油墨50在凹槽42内形成触控电极环60;和
S5,去除基板30上的遮挡层40。
基板30包括表面32。基板30的材料包括氧化硅、氮化硅或氮氧化硅,例如,基板30的材料可以为二氧化硅。
遮挡层40可以由易固化的材料通过涂覆、喷涂等方式在基板30的表面32形成。例如,遮挡层40可由光刻胶涂覆在表面32上形成,光刻胶为正性胶,也就是说,光刻胶在曝光之前不可溶,而在曝光后可溶。
所述图案化遮挡层40形成凹槽42的步骤(步骤S2)可采用激光切割遮挡层40形成凹槽42,凹槽42的数量可以为一个或多个。当遮挡层40由光刻胶形成时,凹槽42可通过激光曝光形成。具体地,当激光照射在遮挡层40(也就是光刻胶)上时,光刻胶40会逐渐溶化,通过将溶化的光刻胶40从基板30上清除后可以得到凹槽42。凹槽42可贯穿过光刻胶40的侧面(凹槽42的端部对应的侧面),凹槽42也可不贯穿光刻胶40的侧面(如图3所示)。当凹槽42贯穿光刻胶40的侧面时,可在凹槽42的端部设置挡板(图未示),挡板以用于将金属油墨50限制在凹槽42内。请参阅图3,沿与基板30的表面32平行的方向,凹槽42的截面呈矩形或平行四边形。请参阅图4及图5,沿凹槽42的深度D方向, 凹槽42的截面呈矩形、平行四边形、或等腰梯形,当凹槽42的截面为等腰梯形时,凹槽42的宽度W为截面的平均宽度。在某些实施方式中,上述实施方式的凹槽42的宽度W小于0.4mm,例如,凹槽42的宽度W可以为0.39mm、0.35mm、0.3mm、0.25mm、0.2mm、0.15mm、0.1mm、0.05mm、0.04mm、0.03mm、0.02mm、0.01mm中的任意一个或上述任意两者之间的值。请参阅图2,凹槽42的深度D与需要制作的触控电极10的厚度T成比例。具体地,凹槽42的深度与触控电极10的厚度T正相关。也就是说,若需要制成的触控电极10的厚度T越大,则凹槽42的深度越大。
请参阅图2,金属油墨50可以为悬浊液,其中,悬浊液中的悬浮物为金属颗粒,该金属颗粒可以为银、金、铜、铂等,悬浊液中的液体可以为有机物。金属油墨50也可以为金属有机络合物。金属油墨50可以填满凹槽42也可以只填充一部分凹槽42。所述向凹槽42内注入金属油墨50的步骤(步骤S3)可采用喷墨印刷工艺向凹槽42内注入金属油墨50,具体地,向凹槽42内注入的金属油墨50可以为相互分离的液滴状、相互分离的雾状、连续的液体。
请参阅图6,图6展示出从所述向凹槽42内注入金属油墨50的步骤(步骤S3),至所述利用咖啡环效应使金属油墨50在凹槽42内形成触控电极环60的步骤(步骤S4),金属油墨50在凹槽42内形成触控电极环60的过程可以理解为:向凹槽42内注入相互分离的多个金属油墨50液滴,多个金属油墨50液滴逐渐汇聚混合形成金属油墨50液块;随着金属油墨50逐渐干燥,金属油墨50中的金属浓度逐渐增大,在毛细作用下,金属油墨50中的金属颗粒从凹槽42的中心向凹槽42的边缘流动,使凹槽42边缘处的金属浓度逐渐增大并逐渐沉积在凹槽42的边缘;随着金属油墨50中的液体(溶剂)逐渐挥发,凹槽42边缘的金属颗粒沉积量逐渐增加并最终得到触控电极环60。
请参阅图7,触控电极环60包括两条相对的初始电极62及连接两条初始电极62的两个连接部64,两个连接部64分别位于初始电极62的相对两端。
请参阅图2及图8,本发明实施方式的制作方法去除基板30上剩余的遮挡层40(步骤S5)后得到触控电极环60,步骤S5可采用激光剥离的方式去除基板30上剩余的遮挡层40。在某些实施方式中,触控电极环60可作为触控电极10。在其他实施方式中,触控电极环60可经过蚀刻、切割等处理以等到形状及结构更好的触控电极10。在另一些实施方式中,触控电极10为条状结构,触控电极10可通过激光切割触控电极环60并去除两个连接部64得到。
相对于在凹槽42内形成一条与凹槽42尺寸一致的触控电极,本发明实施方式的触控电极10的制作方法通过咖啡环效应在凹槽42内形成两条间隔设置的触控电极10,使得触控电极10的宽度更窄,从而提升触控精度。进一步地,通过咖啡环效应形成触控电极10 的过程,是利用液体的毛细作用所自发形成的,因而可以有效简化电极的制造工艺,从而节省制造成本。
本发明实施方式的触控电极10的制作方法还具有以下有益效果:在遮挡层40上形成凹槽42,并在凹槽42内形成触控电极10,本发明的制作方法通过控制凹槽42之间的间距从而能够控制触控电极10之间的间距。
请参阅图6及图9,在某些实施方式中,上述实施方式的所述向凹槽42内注入金属油墨50(步骤S3)的步骤包括:
S31,向凹槽42内注入多个金属油墨50的液滴。
具体地,连续注入到凹槽42内的金属油墨50液滴可以相互分离(或相互间隔),连续注入到凹槽42内的金属油墨50液滴也可以相互连接。向凹槽42内注入的金属油墨50液滴的数量便于控制,以便于用户得到所需要的初始电极62的宽度及厚度。同时,便于多个金属油墨50的液滴利用咖啡环效应在凹槽42内形成触控电极环60。
请参阅图6及图9,在某些实施方式中,上述实施方式的所述向凹槽42内注入金属油墨50(步骤S3)的步骤包括:
S31,向凹槽42内注入多个金属油墨50的液滴,多个金属油墨50的液滴相互分离。
具体地,连续注入到凹槽42内的金属油墨50液滴可以相互分离(或相互间隔)。向凹槽42内注入的金属油墨50液滴的数量便于控制,以便于用户得到所需要的初始电极62的宽度及厚度。同时,便于多个金属油墨50的液滴利用咖啡环效应在凹槽42内形成触控电极环60。
请参阅图6及图10,在某些实施方式中,上述实施方式的所述利用咖啡环效应使金属油墨50在凹槽42内形成触控电极环60(步骤S4)的步骤包括:
S41,将多个金属油墨50的液滴相互汇聚混合形成液块。
具体地,向凹槽42内注入多个金属油墨50的液滴后,需要保持一定时间(例如,1分钟)才能够使多个金属油墨50液滴相互汇聚混合形成液块。多个金属油墨50液滴汇聚形成液块之前需要控制金属油墨50中的液体的挥发速度,以避免每个金属油墨50液滴中的金属颗粒在毛细作用下朝每个金属油墨50液滴的边缘聚集而不朝着凹槽42的边缘聚集。当凹槽42内的多个金属油墨50液滴相互汇聚混合形成液块后便于金属油墨50中的金属颗粒在毛细作用下聚集到凹槽42的边缘,以形成结构较好的触控电极环60。
请参阅图6及图10,在某些实施方式中,上述实施方式的所述利用咖啡环效应使金属油墨50在凹槽42内形成触控电极环60(步骤S4)的步骤还包括:
S42,利用毛细作用将液块中的金属颗粒聚集在凹槽42的边缘以形成触控电极环60。
具体地,利用毛细作用将液块中的金属颗粒聚集在凹槽42的边缘时,需要控制液块中 的液体的挥发速度以使金属颗粒完全聚集到凹槽42的边缘。金属颗粒在毛细作用能够均匀的聚集在凹槽42的边缘以得到结构较好的触控电极环60;同时,液块中的金属颗粒聚集凹槽42的边缘是利用液体的毛细作用所自发形成的,因而可以有效简化电极的制造工艺,从而节省制造成本。
请参阅图6及图10,在某些实施方式中,上述实施方式的所述利用咖啡环效应使金属油墨50在凹槽42内形成触控电极环60(步骤S4)的步骤还包括:
S43,干燥液块以使凹槽42中部(凹槽42的中间位置)的液体挥发。
具体地,凹槽42中部的液体先挥发干能够使液块中的金属颗粒在毛细作用下全部聚集到凹槽42的边缘,并且凹槽42中部不会聚集金属颗粒,从而本实施方式能够得到结构较好的触控电极环50。
请参阅图6及图10,在某些实施方式中,上述实施方式的所述利用咖啡环效应使金属油墨50在凹槽42内形成触控电极环60(步骤S4)的步骤还包括:
S44,将形成有液块的基板30放置在恒温箱中保温预设时间。
具体地,恒温箱中保温的温度与金属油墨50中的液体(或溶剂)的材料及金属油墨50中的金属的朝凹槽42的边缘移动速度等有关,保温时间可根据实际的实验数据测得,将形成有液块的基板30放置在恒温箱中保温能够使凹槽42中部的液体先挥发干。一般地,当金属油墨50为金属有机络合物时,恒温箱中的温度可以为40℃-100℃,例如,保温温度为40℃、50℃、60℃、70℃、80℃、90℃、100℃中的任意一个或上述任意两者之间的值,优选的,保温温度为60℃,预设时间可以为5分钟-60分钟,例如,预设时间为5分钟、10分钟、15分钟、20分钟、25分钟、30分钟、35分钟、40分钟、35分钟、50分钟、55分钟、60分钟中的任意一个或上述任意两者之间的值。
本实施方式的制作方法将形成有液块的基板30放置在恒温箱中保温能够使凹槽42中部上的金属油墨50中的金属均移动到凹槽42的边缘,从而金属油墨50能够形成结构较好的触控电极环60,避免金属油墨50中的金属沉积在凹槽42的中心位置上而导致金属油墨50不能够形成触控电极环60。另外,将形成有液块的基板30放置在恒温箱中保温预设时间也能够加快咖啡环效应的进程,提高触控电极环60的形成效率。
请参阅图11及图12,在某些实施方式中,本发明实施方式的制作方法还包括:
S6,去除触控电极环60的相对两端以形成触控电极10。
具体地,当触控电极10为条状结构时,触控电极环60需要去除触控电极环60的相对两端上的连接部64得到。去除触控电极环60的相对两端以形成触控电极10后可以得到两根条状的初始电极62,初始电极62可以为触控电极10,或者初始电极62经过蚀刻、切割等处理以等到形状及结构更好的触控电极10。
在某些实施方式中,上述实施方式的所述去除触控电极环60的相对两端以形成触控电极10的步骤(步骤S6),与所述去除基板30上的遮挡层40的步骤(步骤S5)在同一制程中完成。步骤S5与步骤S6在同一制程中完成能够减小触控电极10的制作工艺,从而能够提升触控电极10的制作效率并降低触控电极10的制作成本。
请参阅图13,在某些实施方式中,上述实施方式的所述去除触控电极环60的相对两端以形成触控电极10的步骤(步骤S6),与所述去除基板30上的遮挡层40的步骤(步骤S5)的步骤包括:
S51,利用激光剥离遮挡层40;及
S52,利用激光切割触控电极环60的相对两端。
步骤S5与步骤S6在同一制程中完成能够减少触控电极10的制作工艺,从而能够提升触控电极10的制作效率并降低触控电极10的制作成本。具体地,步骤S51可以在步骤S52之前执行也可以在步骤S52之后执行。步骤S52在步骤S51之后执行能够在利用激光切割连接部64(触控电极环60的相对两端)时,还能够利用激光切割初始电极62中多余的边缘以得到形状及结构更好的触控电极10。步骤S52在步骤S51之前执行能够在利用激光切割连接部64时,光刻胶40能够支撑触控电极环60以使连接部64具有较大的强度从而避免在切割连接部64时损坏初始电极62。
请参阅图2,在某些实施方式中,上述实施方式的遮挡层40上形成的凹槽42的数量为多个,每个凹槽42中的触控电极环60为连续的环状结构,相邻凹槽42内的触控电极环60通过遮挡层40隔开。具体地,每个凹槽42内均注入有金属油墨50并在每个凹槽42内形成触控电极环60。由于本发明实施方式制作的触控电极10的宽度更窄,因此,触控电极10制作在基板30上的密度可以做得更大,从而能够提升触控电极10用于触控检测时的检测精度。
请参阅图2及图7,在某些实施方式中,上述实施方式的遮挡层40上形成的凹槽42的数量为多个,每个凹槽42中的触控电极环60为连续的环状结构,相邻凹槽42内的触控电极环60通过遮挡层40隔开。多个凹槽42彼此平行。因此,触控电极10制作在基板30上的密度可以做得更大,从而能够提升触控电极10用于触控检测时的检测精度。在其他实施方式中,多个凹槽42等间隔设置。如此,在凹槽42内形成的触控电极10用于触控检测时的检测精度进一步提高。
请参阅图4及图12,在某些实施方式中,上述实施方式的凹槽42的宽度W为24μm-100μm。例如,凹槽42的宽度W可以为24μm、25μm、30μm、35μm、40μm、45μm、50μm、55μm、60μm、65μm、70μm、75μm、80μm、85μm、90μm、95μm、100μm中的任意一个或上述任意两者之间的值。此时,本发明实施方式的触控电极10的制作方法制作出 的触控电极10的宽度W1为2μm-10μm,例如,触控电极10的宽度W1可以为2μm、3μm、4μm、5μm、6μm、7μm、8μm等中的任意一个或上述任意两者之间的值。相邻两条触控电极10之间的距离D1为20μm-80μm,例如,相邻两条触控电极10之间的距离D1可以为20μm、30μm、40μm、50μm、60μm、70μm、80μm等中的任意一个或上述任意两者之间的值。当触控电极10为环状时(如图8所示),触控电极10的宽度W1指的是初始电极62的宽度,相邻两条触控电极10之间的距离D1与相邻的两个凹槽42之间的距离相等。
请参阅图14,在某些实施方式中,显示模组20包括有机发光二极管(Organic Light-Emitting Diode,OLED)显示模组或液晶显示模组(Liquid Crystal Display,LCD)。OLED显示模组20包括依次设置的模组基材21、阳极层22、发光层23和阴极层24。当显示模组20为OLED显示模组时,基板30设置在阴极层24上,此时,基板30可以通过化学气相沉积(Chemical Vapor Deposition,CVD)工艺或喷墨印刷(Ink-jet Printing,IJP)工艺形成在显示模组20的阴极层24上;或者,OLED显示模组20还包括薄膜封装层25,基板30位于该薄膜封装层25上。当然,封装薄膜层25也可以为基板30的一部分。该薄膜封装层25由耐腐蚀的材料制成,同时该薄膜封装层25还可具有粘附性,相较于普通的材质而言,薄膜封装层25更耐腐蚀,也能更好地粘附在阴极层24上。
请参阅图15所示,LCD显示模组20包括依次设置的下偏光片26、液晶层27及上偏光片28。当显示模组20为LCD显示模组时,基板30设置在上偏光片28上,此时,基板30可以通过化学气相沉积(Chemical Vapor Deposition,CVD)工艺或喷墨印刷(Ink-jet Printing,IJP)工艺形成在显示模组20的上偏光片28上;或者,LCD显示模组20还包括薄膜封装层25,基板30即为该薄膜封装层25。该薄膜封装层25由耐腐蚀的材料制成,同时该薄膜封装层25还可具有粘附性,相较于普通的材质而言,薄膜封装层25更耐腐蚀,也能更好地粘附在阴极层24上。在其他实施方式中,基板30也为LCD显示模组的上偏光片28。
在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个所述特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
尽管上面已经示出和描述了本发明的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施方式进行变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (20)

  1. 一种触控电极的制作方法,所述制作方法包括:
    在基板的表面上形成遮挡层;
    图案化所述遮挡层形成凹槽;
    向所述凹槽内注入金属油墨;
    利用咖啡环效应使所述金属油墨在所述凹槽内形成触控电极环;和
    去除所述基板上的所述遮挡层。
  2. 根据权利要求1所述的制作方法,其特征在于,所述向所述凹槽内注入金属油墨的步骤包括:
    向所述凹槽内注入多个所述金属油墨的液滴。
  3. 根据权利要求2所述的制作方法,其特征在于,多个所述金属油墨的液滴相互分离。
  4. 根据权利要求3所述的制作方法,其特征在于,所述利用咖啡环效应使所述金属油墨在所述凹槽内形成触控电极环的步骤包括:
    将多个所述金属油墨的液滴相互汇聚混合形成液块。
  5. 根据权利要求4所述的制作方法,其特征在于,所述利用咖啡环效应使所述金属油墨在所述凹槽内形成触控电极环的步骤还包括:
    利用毛细作用将所述液块中的金属颗粒聚集在所述凹槽的边缘以形成所述触控电极环。
  6. 根据权利要求4或5所述的制作方法,其特征在于,所述利用咖啡环效应使所述金属油墨在所述凹槽内形成触控电极环的步骤还包括:
    干燥所述液块以使所述凹槽中部的液体挥发。
  7. 根据权利要求6所述的制作方法,其特征在于,所述干燥所述液块以使所述凹槽中的所述液块中的液体挥发的步骤包括:
    将形成有所述液块的所述基板放置在恒温箱中保温预设时间。
  8. 根据权利要求1所述的制作方法,其特征在于,所述制作方法还包括:
    去除所述触控电极环的相对两端以形成触控电极。
  9. 根据权利要求8所述的制作方法,其特征在于,所述去除所述触控电极环的相对两端以形成触控电极的步骤,与所述去除所述基板上的所述遮挡层的步骤在同一制程中完成。
  10. 根据权利要求9所述的制作方法,其特征在于,所述去除所述基板上的所述遮挡层是通过激光剥离实现的,所述去除所述触控电极环的相对两端以形成触控电极是通过激光切割实现的。
  11. 根据权利要求1所述的制作方法,其特征在于,所述凹槽的数量为多个,每个所述凹槽中的所述触控电极环为连续的环状结构,相邻所述凹槽内的所述触控电极环通过所述遮挡层隔开。
  12. 根据权利要求11所述的制作方法,其特征在于,多个所述凹槽彼此平行。
  13. 根据权利要求12所述的制作方法,其特征在于,沿平行于所述基板的所述表面的方向,所述凹槽的截面呈矩形或平行四边形。
  14. 根据权利要求12所述的制作方法,其特征在于,所述凹槽的宽度小于0.4mm。
  15. 根据权利要求12所述的制作方法,其特征在于,所述凹槽的宽度为24μm-100μm。
  16. 根据权利要求15所述的制作方法,其特征在于,所述触控电极的宽度为2μm-10μm,相邻两条所述触控电极之间的距离为20μm-80μm。
  17. 根据权利要求1所述的制作方法,其特征在于,所述金属油墨包括金属有机络合物。
  18. 根据权利要求1所述的制作方法,其特征在于,所述基板的材质包括氧化硅、氮化硅或氮氧化硅。
  19. 根据权利要求1所述的制作方法,其特征在于,所述基板包括设置在显示模组上 的薄膜封装层。
  20. 根据权利要求19所述的制作方法,其特征在于,所述基板通过化学气相淀积、喷墨印刷工艺制作在所述显示模组上。
PCT/CN2017/102697 2017-09-21 2017-09-21 触控电极的制作方法 WO2019056260A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/102697 WO2019056260A1 (zh) 2017-09-21 2017-09-21 触控电极的制作方法
CN201780091763.3A CN110709804A (zh) 2017-09-21 2017-09-21 触控电极的制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/102697 WO2019056260A1 (zh) 2017-09-21 2017-09-21 触控电极的制作方法

Publications (1)

Publication Number Publication Date
WO2019056260A1 true WO2019056260A1 (zh) 2019-03-28

Family

ID=65809992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102697 WO2019056260A1 (zh) 2017-09-21 2017-09-21 触控电极的制作方法

Country Status (2)

Country Link
CN (1) CN110709804A (zh)
WO (1) WO2019056260A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111965159B (zh) * 2020-07-13 2021-05-18 上海交通大学 利用咖啡环效应的高效富集sers基底及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050110397A1 (en) * 2003-09-25 2005-05-26 Seiko Epson Corporation Film forming method, device manufacturing method, and electro-optic device
US20140327844A1 (en) * 2011-12-23 2014-11-06 Korea Institute Of Industrial Technology Touch screen panel for multi-touching and method of manufacturing the same
CN104464956A (zh) * 2014-12-03 2015-03-25 中国科学院化学研究所 一种高精度、间距可控电极及其制备方法
US20160168715A1 (en) * 2014-12-11 2016-06-16 The Research Foundation For The State University Of New York Electroless copper plating polydopamine nanoparticles
CN106125990A (zh) * 2016-08-03 2016-11-16 京东方科技集团股份有限公司 一种有机发光二极管触控显示面板及其制备方法
CN106951122A (zh) * 2017-03-20 2017-07-14 苏州诺菲纳米科技有限公司 触控传感器的制备方法及触控传感器
CN107148607A (zh) * 2014-10-28 2017-09-08 柯尼卡美能达株式会社 图案、带图案的基材及触摸面板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050110397A1 (en) * 2003-09-25 2005-05-26 Seiko Epson Corporation Film forming method, device manufacturing method, and electro-optic device
US20140327844A1 (en) * 2011-12-23 2014-11-06 Korea Institute Of Industrial Technology Touch screen panel for multi-touching and method of manufacturing the same
CN107148607A (zh) * 2014-10-28 2017-09-08 柯尼卡美能达株式会社 图案、带图案的基材及触摸面板
CN104464956A (zh) * 2014-12-03 2015-03-25 中国科学院化学研究所 一种高精度、间距可控电极及其制备方法
US20160168715A1 (en) * 2014-12-11 2016-06-16 The Research Foundation For The State University Of New York Electroless copper plating polydopamine nanoparticles
CN106125990A (zh) * 2016-08-03 2016-11-16 京东方科技集团股份有限公司 一种有机发光二极管触控显示面板及其制备方法
CN106951122A (zh) * 2017-03-20 2017-07-14 苏州诺菲纳米科技有限公司 触控传感器的制备方法及触控传感器

Also Published As

Publication number Publication date
CN110709804A (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
JP6441025B2 (ja) 半導体チップの製造方法
EP1806792B1 (en) Light emitting device and manufacturing method thereof
CN206033864U (zh) 一种开口掩膜板、掩膜板及基板
KR101246985B1 (ko) 박막을 갖는 기판, 유기 일렉트로루미네센스 표시 장치, 컬러 필터 기판 및 박막을 갖는 기판의 제조 방법
WO2018214216A1 (zh) Oled器件的封装组件及封装方法、显示装置
CN110970456B (zh) 一种Micro-LED芯片及其制备方法、显示装置
US10840449B2 (en) Method for producing resin film having fine pattern, method for producing organic el display device, base film for forming fine pattern, and resin film provided with supporting member
JP2000123711A (ja) 電界放出型冷陰極及びその製造方法
JPH07504785A (ja) 組み合わせ金属被覆を有する太陽電池及びその製造方法
US20140346468A1 (en) Organic light emitting display device having a channel in pixel defining layer
CN110233169B (zh) 像素界定层、显示装置、阵列基板及其制造方法
WO2019056260A1 (zh) 触控电极的制作方法
KR20120081945A (ko) 반도체장치 및 반도체장치의 제조 방법
CN108598228A (zh) 一种大功率紫外led垂直芯片封装结构及其制作方法
JP2008150662A (ja) マスク蒸着法、有機エレクトロルミネッセンス装置の製造方法、およびマスク蒸着装置
WO2020062845A1 (zh) Micro-LED芯片及其制备方法、显示装置
US7387739B2 (en) Mask and method of manufacturing the same, electroluminescent device and method of manufacturing the same, and electronic instrument
WO2021000478A1 (zh) 阵列基板及其制备方法和显示面板
WO2021042577A1 (zh) 显示面板及其制备方法
CN104167478A (zh) 一种具有多粗化层的红外发光二极管的粗化方法
US20200194323A1 (en) Fluidic assembly substrates and methods for making such
JP2011211022A (ja) 抵抗器の製造方法
JP3956955B2 (ja) 半導体基板の製造方法、電気光学装置の製造方法
JP6163724B2 (ja) 蒸着マスク、及び金属フレーム一体型蒸着マスク
WO2019148596A1 (zh) 一种oled显示面板及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17925969

Country of ref document: EP

Kind code of ref document: A1