WO2019054225A1 - フィルム状焼成材料、及び支持シート付フィルム状焼成材料 - Google Patents

フィルム状焼成材料、及び支持シート付フィルム状焼成材料 Download PDF

Info

Publication number
WO2019054225A1
WO2019054225A1 PCT/JP2018/032623 JP2018032623W WO2019054225A1 WO 2019054225 A1 WO2019054225 A1 WO 2019054225A1 JP 2018032623 W JP2018032623 W JP 2018032623W WO 2019054225 A1 WO2019054225 A1 WO 2019054225A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
fired
fired material
chip
support sheet
Prior art date
Application number
PCT/JP2018/032623
Other languages
English (en)
French (fr)
Inventor
市川 功
秀一 中山
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to EP18855684.9A priority Critical patent/EP3666429A4/en
Priority to KR1020207006834A priority patent/KR102293573B1/ko
Priority to CN201880059075.3A priority patent/CN111065476B/zh
Priority to US16/645,916 priority patent/US11420255B2/en
Priority to JP2019542004A priority patent/JP6848076B2/ja
Publication of WO2019054225A1 publication Critical patent/WO2019054225A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • B22F7/064Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts using an intermediate powder layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles
    • B22F2304/054Particle size between 1 and 100 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • H01L2221/68336Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding involving stretching of the auxiliary support post dicing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6834Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to protect an active side of a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68377Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support with parts of the auxiliary support remaining in the finished device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/2743Manufacturing methods by blanket deposition of the material of the layer connector in solid form
    • H01L2224/27436Lamination of a preform, e.g. foil, sheet or layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29386Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2224/29387Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/2954Coating
    • H01L2224/29599Material
    • H01L2224/296Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/201Temperature ranges
    • H01L2924/20109Temperature range 350 C=<T<400 C, 623.15K =<T< 673.15K

Definitions

  • the present invention relates to a film-like fired material and a film-like fired material with a support sheet.
  • Priority is claimed on Japanese Patent Application No. 2017-177833, filed September 15, 2017, the content of which is incorporated herein by reference.
  • Patent Document 1 discloses paste-like metal fine particles in which a specific heat-sinterable metal particle, a specific polymer dispersant, and a specific volatile dispersion medium are mixed. A composition is disclosed. When the composition is sintered, it becomes a solid metal excellent in thermal conductivity.
  • the firing material is used, for example, for sinter bonding between a chip obtained by dicing a semiconductor wafer and a substrate.
  • the chip and the substrate are transported in a state of being temporarily fixed by the firing material before firing. Therefore, if the adhesion of the baking material is insufficient, the chips may be displaced during conveyance before baking.
  • the firing material is sintered, shrinkage may occur and the adhesion between the chip and the substrate may be reduced. As a result, the chip may be peeled off from the substrate after firing, which makes long-term use as a device difficult.
  • the present invention has been made in view of the above circumstances, and when used for bonding a substrate to a chip, a film-like fired material which is less likely to cause chip displacement before firing or chip peeling after firing. Intended to provide. Moreover, it aims at providing a film-like baking material with a support sheet provided with the said film-like baking material.
  • a film-like fired material containing sinterable metal particles and a binder component The content of the sinterable metal particles is 15 to 98% by mass, and the content of the binder component is 2 to 50% by mass
  • the shrinkage ratio in the planar direction when fired under pressure for 3 minutes under the conditions of temperature 350 ° C. and pressure 10 MPa is 10% or less with respect to that before firing, and the volume shrinkage is 15 to 90% with respect to that before firing
  • the contact ratio with the adherend is 90% or more with respect to the contact area of the adherend when pressed and fired under conditions of a temperature of 350 ° C. and a pressure of 10 MPa for 3 minutes in a state of being in contact with the adherend.
  • Film-like baking material Film-like baking material.
  • [2] The film-like baked material according to [1], wherein the arithmetic mean roughness (Ra) of at least one surface is 0.5 ⁇ m or less.
  • the support sheet is provided with an adhesive layer on a base film,
  • a film-like fired material which is excellent in thickness stability and hardly causes chip displacement before firing or chip peeling after firing when used for bonding a substrate and a chip.
  • a film-like fired material with a support sheet, which comprises the film-like fired material and is used for sinter bonding of chips such as semiconductor elements.
  • the film-like fired material of the present embodiment is a film-like fired material containing sinterable metal particles and a binder component, wherein the content of the sinterable metal particles is 15 to 98 mass%, and the content of the binder component is The amount of shrinkage is 2% to 50% by mass, and the shrinkage in a planar direction is 10% or less with respect to that before firing when pressurized firing is performed at a temperature of 350 ° C. and a pressure of 10 MPa for 3 minutes.
  • FIG. 1 is a cross-sectional view schematically showing a film-like fired material of the present embodiment.
  • the film-like fired material 1 contains sinterable metal particles 10 and a binder component 20.
  • the film-like fired material may be formed of one layer (single layer) or may be formed of two or more layers, for example, two or more and 10 or less layers.
  • the film-like fired material comprises a plurality of layers
  • the plurality of layers may be identical to or different from each other, and the combination of the plurality of layers is not particularly limited as long as the effects of the present invention are not impaired.
  • a plurality of layers may be the same as or different from each other” means “all layers may be the same or all layers”.
  • Means that only some of the layers may be the same, and further, “a plurality of layers are different from each other” means “the constituent material of each layer, the composition ratio of the constituent materials, and the thickness Means that at least one of them is different from one another.
  • the thickness before firing of the film-like fired material is not particularly limited, it is preferably 10 to 200 ⁇ m, preferably 20 to 150 ⁇ m, and more preferably 30 to 90 ⁇ m.
  • the thickness of the film-like fired material means the thickness of the entire film-like fired material, and for example, the thickness of the film-like fired material consisting of a plurality of layers means all of the components of the film-like fired material. Means the total thickness of the layers.
  • thickness can be obtained using a constant-pressure thickness measuring device according to JIS K7130 as a value represented by an average of thicknesses measured at any five places.
  • the film-like fired material can be provided in the state of being laminated on a release film.
  • the release film may be peeled off, and the film-like fired material may be placed on an object to be sintered and joined.
  • the release film also has a function as a protective film for preventing damage and dirt adhesion of the film-like fired material.
  • the release film may be provided on at least one side of the film-like fired material, and may be provided on both sides of the film-like fired material. When provided on both sides, one functions as a support sheet.
  • release film for example, polyethylene film, polypropylene film, polybutene film, polybutadiene film, polymethylpentene film, polyvinyl chloride film, vinyl chloride copolymer film, polyethylene terephthalate film, polyethylene naphthalate film, polybutylene terephthalate film, polyurethane Film, ethylene vinyl acetate copolymer film, ionomer resin film, ethylene (meth) acrylic acid copolymer film, ethylene (meth) acrylic acid ester copolymer film, polystyrene film, polycarbonate film, polyimide film, fluorine resin A transparent film such as a film is used. Moreover, these crosslinked films are also used.
  • these laminated films may be sufficient.
  • a film colored with these, an opaque film, or the like can be used.
  • release agents such as silicone type, fluorine type, olefin type, alkyd type, carbamate containing long chain alkyl group and the like can be mentioned.
  • the thickness of the release film is usually about 10 to 500 ⁇ m, preferably about 15 to 300 ⁇ m, and particularly preferably about 20 to 250 ⁇ m.
  • the sinterable metal particles are metal particles that can be melted and bonded together to form a sintered body by being heat-treated at a temperature equal to or higher than the melting point of the metal particles as firing of the film-like fired material.
  • the sintered body it is possible to sinter and bond the film-like fired material and the article fired in contact therewith. Specifically, it is possible to sinter and bond the chip and the substrate through the film-like firing material.
  • metal species of the sinterable metal particles include silver, gold, copper, iron, nickel, aluminum, silicon, palladium, platinum, titanium, barium titanate, oxides or alloys thereof, silver and silver oxide Is preferred. Only one type of sinterable metal particles may be blended, or two or more types may be blended.
  • the sinterable metal particles are preferably silver nanoparticles that are silver particles having a particle diameter of 100 nm or less, preferably 50 nm or less, and more preferably 20 nm or less.
  • the particle diameter of the sinterable metal particles contained in the film-like sintered material is not particularly limited as long as the sinterability can be exhibited, but may be 100 nm or less and 50 nm or less. It may well be 30 nm or less. For example, it is preferable that what has a particle diameter of 100 nm or less is 20 mass% or more of the whole.
  • the particle diameter of the sinterable metal particle which a film-form baking material contains let it be a projection area circle equivalent diameter of the particle diameter of the sinterable metal particle observed with the electron microscope. Sinterable metal particles belonging to the range of the particle diameter are preferable because they are excellent in sinterability.
  • the particle diameter of the sinterable metal particles contained in the film-like fired material is the particle diameter of the particle diameter of the sinterable metal particles observed with an electron microscope, which is the particle diameter obtained with respect to particles having a projected area equivalent circle diameter of 100 nm or less
  • the number average may be 0.1 to 95 nm, 0.3 to 50 nm, or 0.5 to 30 nm.
  • the number of sinterable metal particles to be measured is at least 100, for example, 100 randomly selected per film-like fired material.
  • the sinterable metal particles are mixed with the binder component and other additive components to be described later, they are made into a high-boiling point solvent such as isobornyl cyclohexanol or decyl alcohol in order to make the state free of aggregates. It may be dispersed in advance.
  • the boiling point of the high boiling point solvent may be, for example, 200 to 350 ° C.
  • Dispersion methods include kneader, triple roll, bead mill and ultrasonic waves.
  • the film-like fired material of the present embodiment is a non-sinterable metal which is a metal particle having a particle diameter of not more than 100 nm in addition to the metal particles (sinterable metal particles) having a particle diameter of 100 nm or less Particles may be further formulated.
  • the particle diameter of the non-sinterable metal particles is taken as the equivalent circle diameter of the projected area of the particle diameter of the non-sinterable metal particles observed with an electron microscope.
  • the particle size may be, for example, more than 100 nm and 5000 nm, but one having a particle size of 100 to 2500 nm is preferably 5% by mass or more of the whole.
  • the particle size of the non-sinterable metal particles having a particle size of more than 100 nm was determined for particles having a projected area equivalent circle diameter of more than 100 nm of the particle sizes of the non-sinterable metal particles observed by an electron microscope.
  • the number average particle size may be more than 150 nm and not more than 50000 nm, may be 150 to 10000 nm, and may be 180 to 5000 nm.
  • Examples of the metal species of non-sinterable metal particles having a particle diameter of more than 100 nm include the same as those exemplified as the metal species of the above-mentioned sinterable metal particles, and silver, copper, and oxides thereof are preferable. .
  • the sinterable metal particles having a particle diameter of 100 nm or less and the non-sinterable metal particles having a particle diameter of more than 100 nm may be the same metal species or may be mutually different metal species.
  • the sinterable metal particles having a particle diameter of 100 nm or less may be silver particles
  • the non-sinterable metal particles having a particle diameter of more than 100 nm may be silver or silver oxide particles.
  • the sinterable metal particles having a particle diameter of 100 nm or less may be silver or silver oxide particles
  • the non-sinterable metal particles having a particle diameter of more than 100 nm may be copper or copper oxide particles.
  • the content of the sinterable metal particles may be 10 to 100% by mass, 20 to 95% by mass, based on the total mass (100% by mass) of all the metal particles. It may be
  • the surface of the sinterable metal particles and / or the non-sinterable metal particles may be coated with an organic matter.
  • the compatibility with the binder component is improved, the aggregation of the particles can be prevented, and the particles can be dispersed uniformly.
  • the mass of the sinterable metal particles and the non-sinterable metal particles is the value including the coating and Do.
  • the fired material can be formed into a film and adhesiveness can be imparted to the film-like fired material before firing.
  • the binder component may be thermally decomposable by being heat-treated as firing of the film-like fired material.
  • a binder component is not specifically limited, Resin is mentioned as a suitable example of a binder component.
  • the resin include acrylic resins, polycarbonate resins, polylactic acids, polymers of cellulose derivatives, and the like, with acrylic resins being preferred.
  • Acrylic resins include homopolymers of (meth) acrylate compounds, copolymers of two or more of (meth) acrylate compounds, and copolymers of (meth) acrylate compounds and other copolymerizable monomers. included.
  • the content of the constituent unit derived from the (meth) acrylate compound is preferably 50 to 100% by mass, based on the total mass (100% by mass) of the constituent unit, and is preferably 80 to 100 More preferably, it is 90% by mass, and more preferably 90 to 100% by mass.
  • "derived from” means that the structural change necessary for the monomer to undergo polymerization has been received.
  • the (meth) acrylate compound examples include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (Meth) acrylate, pentyl (meth) acrylate, amyl (meth) acrylate, isoamyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (Meth) acrylate, ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth)
  • Alkyl (meth) acrylates or alkoxyalkyl (meth) acrylates are preferred, and butyl (meth) acrylate, ethylhexyl (meth) acrylate, lauryl (meth) acrylate, isodecyl (meth) acrylate, as a particularly preferred (meth) acrylate compound Ethylhexyl (meth) acrylate and 2-ethoxyethyl (meth) acrylate can be mentioned.
  • (meth) acrylate is a concept including both “acrylate” and “methacrylate”.
  • acrylic resin methacrylate is preferable.
  • the binder component contains a structural unit derived from methacrylate, it can be fired at a relatively low temperature, and conditions for obtaining sufficient adhesive strength after sintering can be easily satisfied.
  • the content of the structural unit derived from methacrylate is preferably 50 to 100% by mass, and is 80 to 100% by mass with respect to the total mass (100% by mass) of the structural unit. Is more preferable, and 90 to 100% by mass is more preferable.
  • the other copolymerizable monomer is not particularly limited as long as it is a compound copolymerizable with the above (meth) acrylate compound, and examples thereof include (meth) acrylic acid, vinylbenzoic acid, maleic acid and vinylphthalic acid.
  • Unsaturated carboxylic acids; vinyl group-containing radically polymerizable compounds such as vinylbenzyl methyl ether, vinyl glycidyl ether, styrene, ⁇ -methylstyrene, butadiene, isoprene and the like.
  • the mass average molecular weight (Mw) of the resin constituting the binder component is preferably 1,000 to 1,000,000, and more preferably 10,000 to 800,000. When the mass average molecular weight of the resin is in the above-mentioned range, it becomes easy to develop sufficient film strength as a film and to impart flexibility.
  • “mass-average molecular weight” is a polystyrene equivalent value measured by gel permeation chromatography (GPC) unless otherwise specified.
  • the glass transition temperature (Tg) of the resin constituting the binder component is preferably -60 to 50 ° C, more preferably -30 to 10 ° C, and still more preferably -20 ° C or more and less than 0 ° C. preferable.
  • Tg of the resin is equal to or less than the above upper limit, the adhesion between the film-like baking material and the adherend (for example, a chip, a substrate, etc.) before baking is improved.
  • the chip and the substrate are transported while being temporarily fixed with the film-like baking material before baking, chip misalignment hardly occurs.
  • the flexibility of the film-like fired material is enhanced.
  • the term "glass transition temperature (Tg)" refers to the temperature at the inflection point of a DSC curve obtained by measuring the DSC curve of a sample using a differential scanning calorimeter.
  • the binder component may be thermally decomposable by being heat-treated as firing of the film-like fired material.
  • the thermal decomposition of the binder component can be confirmed by the decrease in mass of the binder component by firing.
  • blended as a binder component may be substantially thermally decomposed by baking, the total mass of the component mix
  • the binder component may be one in which the mass after firing is 10% by mass or less, and may be 5% by mass or less based on the total mass (100% by mass) of the binder component before calcination. It may be not more than mass%, and may be 0 mass%.
  • the film-like fired material of the present embodiment is not limited to the sinterable metal particles, the non-sinterable metal particles, and the binder component, as long as the effects of the present invention are not impaired. Sinterable metal particles and other additives not corresponding to the binder component may be contained.
  • additives that may be contained in the film-like fired material of the present embodiment, solvents, dispersants, plasticizers, tackifiers, storage stabilizers, antifoaming agents, thermal decomposition accelerators, and antioxidants Etc.
  • the additives may be contained alone or in combination of two or more. These additives are not particularly limited, and those commonly used in this field can be appropriately selected.
  • the film-like fired material of the present embodiment may be composed of sinterable metal particles, a binder component, and other additives, and the sum of these contents (% by mass) is 100% by mass.
  • the film-like fired material of the present embodiment contains non-sinterable metal particles
  • the film-like fired material comprises sinterable metal particles, non-sinterable metal particles, a binder component, and other additives. The sum of these contents (% by mass) is 100% by mass.
  • the content of the sinterable metal particles is 15 to 98% by mass with respect to the total mass (100% by mass) of all components (hereinafter referred to as "solid content") other than the solvent. 15 to 90% by mass is preferable, and 20 to 80% by mass is more preferable.
  • the content of the sinterable metal particles is equal to or less than the above upper limit, the content of the binder component can be sufficiently ensured, and therefore the film shape can be maintained.
  • the content of the sinterable metal particles is not less than the above lower limit, the sinterable metal particles, or the sinterable metal particles and the non-sinterable metal particles are fused at the time of firing, and firing is performed. It develops high bonding adhesive strength (shear adhesive strength) later.
  • the total content of sinterable metal particles and non-sinterable metal particles relative to the total mass (100% by mass) of solid content in the film-like sintered material Is preferably 50 to 98% by mass, more preferably 70 to 95% by mass, and still more preferably 80 to 90% by mass.
  • the content of the binder component is 2 to 50% by mass, preferably 5 to 30% by mass, and more preferably 5 to 20% by mass, with respect to the total mass (100% by mass) of the solid content in the film-like fired material.
  • the content of the binder component is less than or equal to the above upper limit, the content of the sinterable metal particles can be sufficiently ensured, so that the bonding adhesion between the film-like fired material and the adherend improves, and the substrate and the chip Chip peeling hardly occurs when used for bonding with
  • a film shape can be maintained because content of a binder component is more than the said lower limit.
  • chip misalignment hardly occurs.
  • the mass ratio of the sinterable metal particles to the binder component is preferably 50: 1 to 1: 5, and more preferably 20: 1 to 1: 2. 10: 1 to 1: 1 are more preferred.
  • the mass ratio of the sinterable metal particles and the nonsinterable metal particles to the binder component ((sinterable metal particles + nonsinterability 50: 1 to 1: 1 is preferable, 20: 1 to 2: 1 is more preferable, and 9: 1 to 4: 1 is further preferable.
  • the film-like fired material may contain the above-mentioned high boiling point solvent used when mixing sinterable metal particles, non-sinterable metal particles, a binder component and other additive components. 20 mass% or less is preferable, as for content of the high boiling point solvent with respect to the gross mass (100 mass%) of a film-form baking material, 15 mass% or less is more preferable, and 10 mass% or less is more preferable.
  • the film-like fired material of the present embodiment has a shrinkage factor (A) in the planar direction of 10% or less with respect to that before firing when fired under pressure for 3 minutes under conditions of a temperature of 350 ° C. and a pressure of 10 MPa. .
  • the shrinkage ratio (A) is preferably 5% or less, more preferably 3% or less, and most preferably 0% (that is, it does not shrink in the planar direction even when fired under pressure).
  • the shrinkage ratio (A) is less than or equal to the above upper limit value, chip peeling hardly occurs under various environments when used for bonding the substrate and the chip.
  • the contraction rate (A) is determined by the following formula (I).
  • Shrinkage ratio (A) ⁇ 1 ⁇ (area of a plan view shape of a film-like fired material after firing / area of a plan view shape of a film-like fired material before firing) ⁇ ⁇ 100 (I)
  • the shrinkage ratio (A) can be controlled by the content of the sinterable metal particles and the binder component contained in the film-like fired material. Specifically, when the content of the sinterable metal particles increases and the content of the binder component decreases, the shrinkage ratio (A) tends to decrease.
  • the film-like fired material of the present embodiment has a volume shrinkage (B) of 15 to 90% of that before firing when fired under pressure for 3 minutes under conditions of a temperature of 350 ° C. and a pressure of 10 MPa.
  • the volume shrinkage (B) is preferably 30 to 80%, more preferably 40 to 70%, and still more preferably 50 to 60%.
  • the volumetric shrinkage (B) is less than or equal to the above upper limit value, chip peeling hardly occurs when used for bonding the substrate and the chip.
  • the volume contraction rate (B) is not less than the above lower limit value, the binder component which is the main factor of the volume contraction is sufficiently contained.
  • the volume shrinkage ratio (B) can be controlled by the content of the sinterable metal particles and the binder component contained in the film-like fired material. Specifically, when the content of the sinterable metal particles increases and the content of the binder component decreases, the volumetric shrinkage (B) tends to decrease. When the content of the sinterable metal particles decreases and the content of the binder component increases, the volumetric shrinkage (B) tends to increase.
  • the contact ratio (C) with the adherend when pressurized and fired for 3 minutes under the conditions of a temperature of 350 ° C. and a pressure of 10 MPa is in a state of contact with the adherend. It is 90% or more with respect to the area (contact area) where the film-form baking material in an adherend is stuck.
  • the adherend when it is pressure-fired for 3 minutes under the conditions of temperature 350 ° C. and pressure 10 MPa is 90% or more with respect to the area (contact area) to which the film-like fired material in the adherend is attached.
  • the contact ratio (C) is preferably 95% or more, more preferably 97% or more, and 100% (that is, the contact area of the adherend after firing and the film-like fired material (sintered body) after firing It is most preferable that the area of the contact surface is the same.
  • the back surface of the chip ie, the surface in contact with the firing material
  • the surface of the substrate ie, the firing material
  • the firing material in the contact surface
  • the contact ratio (C) the smaller the area of the portion where the sintered material or the sintered body does not exist in the contact area of the adherend.
  • the contact ratio (C) is at least the lower limit value, chip peeling hardly occurs when used for bonding the substrate and the chip.
  • substrate, etc. are mentioned, for example.
  • the contact ratio (C) is determined, for example, as follows. First, after a chip and a substrate are attached to each other via a film-like baking material, pressure baking is performed for 3 minutes under conditions of a temperature of 350 ° C. and a pressure of 10 MPa. Then, force is applied from the shear direction at the interface between the chip and the substrate to peel the chip from the substrate. After peeling at the interface between the chip and the film-like sintered material, measure the area of the adhesion mark of the film-like sintered material found on the surface of the chip (that is, the surface to which the film-like sintered material is attached). And the area of the film-like fired material.
  • the contact ratio (C) can be controlled by the content of the sinterable metal particles and the binder component contained in the film-like fired material. Specifically, when the content of the sinterable metal particles increases and the content of the binder component decreases, the contact ratio (C) tends to increase.
  • the film-like fired material of the present embodiment preferably has an arithmetic average roughness (Ra) of at least one surface of 0.5 ⁇ m or less.
  • the arithmetic average roughness (Ra) is preferably 0.4 ⁇ m or less, more preferably 0.3 ⁇ m or less, and still more preferably 0.25 ⁇ m or less.
  • the lower limit of the arithmetic mean roughness (Ra) is usually about 0.05 ⁇ m.
  • the arithmetic mean roughness (Ra) may be, for example, 0.05 to 0.5 ⁇ m, 0.05 to 0.4 ⁇ m, 0.05 to 0.3 ⁇ m, or 0.05 to 0.25 ⁇ m.
  • Arithmetic mean roughness (Ra) is obtained in accordance with JIS B 0601: 2001, and the details of the measurement method are as shown in the test examples described later.
  • the surface with an arithmetic average roughness (Ra) of 0.5 ⁇ m or less be a surface in contact with the semiconductor wafer or the chip. That is, it is preferable that arithmetic mean roughness (Ra) of the surface at the side which contacts the semiconductor wafer or chip
  • tip of a film-form baking material is 0.5 micrometer or less.
  • the semiconductor wafer or chip sufficiently adheres to the film-like sintered material, and the chip and substrate When it is conveyed in a state where it is temporarily fixed with a film-like baking material before baking, chip misalignment becomes more difficult to occur.
  • the film-like fired material of the present embodiment preferably has an adhesive force (D) to the silicon wafer of 0.2 mN / 25 mm or more.
  • adhesive force (D) 0.5 mN / 25 mm or more is more preferable, and 1.0 mN / 25 mm or more is further more preferable.
  • the adhesive force (D) is at least the lower limit value, chip misalignment is less likely to occur when the chip and the substrate are transported in a state of being temporarily fixed with the film-like firing material before firing.
  • Adhesive force (D) is calculated
  • chemical mechanical polishing is performed until the surface of the silicon wafer has an arithmetic mean roughness (Ra) of 0.02 ⁇ m.
  • the film-like fired material prepared on a 50 ⁇ m-thick PET film is cut so as to have a width of 25 mm and a length of 100 mm or more, and the cut film-like fired material is attached to the treated surface of the silicon wafer.
  • the film-like baking material may be heated to room temperature or more.
  • the heating temperature is not particularly limited, but is preferably 100 ° C. or less.
  • the film-like baking material is peeled from the silicon wafer at a peeling speed of 300 mm / min. Peeling at this time is so-called 180 ° peeling, in which the film-like baking material is peeled in the lengthwise direction such that the surfaces of the silicon wafer and the film-like baking material in contact with each other form an angle of 180 °. . And the load (peeling force) at the time of this 180 degree peeling is measured, and let the measured value be adhesive force (D) (mN / 25 mm).
  • the film-like baking material of the present embodiment since it is in the form of a film, it is excellent in thickness stability. Moreover, since the film-form baking material of this embodiment contains a sinterable metal particle, it is excellent in thermal conductivity. Furthermore, the film-like fired material of the present embodiment contains a specific amount of sinterable metal particles and a binder component, and the shrinkage (A) is 10% or less with respect to that before firing, and the volume shrinkage (B) Is 15 to 90% with respect to that before firing, and the contact ratio (C) is 90% or more with respect to the contact surface of the adherend. Therefore, when the chip and the substrate are transported while being temporarily fixed with the film-like baking material before baking, chip misalignment hardly occurs. In addition, since chip peeling hardly occurs after firing, long-term use as a device becomes possible.
  • the film-like fired material can be a film-like fired material with a support sheet in which a support sheet is provided on at least one side (surface).
  • the detail of the film-like baking material with a support sheet is mentioned later.
  • a film-like fired material can be formed using a fired material composition containing the constituent material.
  • a baking material composition containing each component and a solvent for constituting a film-like baked material is coated or printed on a surface to be formed of a film-like baked material, and the solvent is volatilized if necessary.
  • a film-like baking material can be formed at the desired site.
  • a formation object surface of a film-form baking material the surface of a peeling film is mentioned.
  • the solvent preferably has a boiling point of less than 200 ° C.
  • n-hexane (boiling point: 68 ° C.), ethyl acetate (boiling point: 77 ° C.), 2-butanone (boiling point: 80) ° C), n-heptane (boiling point: 98 ° C), methylcyclohexane (boiling point: 101 ° C), toluene (boiling point: 111 ° C), acetylacetone (boiling point: 138 ° C), n-xylene (boiling point: 139 ° C) and dimethylformamide (Boiling point: 153 ° C.) and the like. These may be used alone or in combination.
  • the baking material composition may be applied by a known method, for example, an air knife coater, blade coater, bar coater, gravure coater, comma coater (registered trademark), roll coater, roll knife coater, curtain coater, die coater And methods using various coaters such as a knife coater, a screen coater, a Mayer bar coater, and a kiss coater.
  • a known method for example, an air knife coater, blade coater, bar coater, gravure coater, comma coater (registered trademark), roll coater, roll knife coater, curtain coater, die coater And methods using various coaters such as a knife coater, a screen coater, a Mayer bar coater, and a kiss coater.
  • the solvent may be any solvent that can be volatilized and dried after printing, and the boiling point is preferably 65 to 350 ° C.
  • solvents having a boiling point of less than 200 ° C. solvents having a boiling point of less than 200 ° C. exemplified above, isophorone (boiling point: 215 ° C.), butyl carbitol (boiling point: 230 ° C.), 1-decanol (boiling point: 233 ° C.), butyl carbibi Tall acetate (boiling point: 247 ° C.), isobornyl cyclohexanol (boiling point: 318 ° C.) and the like.
  • the solvent is less likely to be volatilized by volatilization drying after printing, making it difficult to secure a desired shape, or the solvent remains in the film at the time of firing, resulting in bonding adhesion May degrade the If the boiling point is less than 65 ° C., it may volatilize during printing, and the stability of the thickness may be impaired. If a solvent having a boiling point of 200 to 350 ° C. is used, the increase in viscosity due to the evaporation of the solvent during printing can be suppressed, and printability can be obtained.
  • Printing of the fired material composition can be performed by a known printing method, for example, letterpress printing such as flexo printing, intaglio printing such as gravure printing, flat printing such as offset printing, silk screen printing, rotary screen printing, etc. Examples include methods such as screen printing and printing using various printers such as an inkjet printer.
  • the shape of the film-like fired material may be appropriately set according to the shape of the object of the sinter bonding, and is preferably circular or rectangular.
  • the circular shape is a shape corresponding to the shape of the semiconductor wafer.
  • the rectangle is a shape corresponding to the shape of the chip.
  • the corresponding shape may be the same as or substantially the same as the shape of the target of the sinter bonding.
  • the area of the circle may be 3.5 to 1,600 cm 2 and may be 85 to 1,400 cm 2 .
  • the film-like fired material is rectangular, the rectangular area may be 0.01 to 25 cm 2 and may be 0.25 to 9 cm 2 .
  • the baking material composition is printed, it is easy to form a film-like baking material having a desired shape.
  • the drying conditions of the fired material composition are not particularly limited, but when the fired material composition contains a solvent, it is preferable to heat and dry, in which case, for example, at 70 to 250 ° C., for example 80 to 180 ° C., It is preferable to dry under the conditions of 10 seconds to 10 minutes.
  • the film-like fired material of the present embodiment is a film-like fired material containing sinterable metal particles and a binder component, wherein the content of the sinterable metal particles is 15 to 98 mass%, and the content of the binder component is The amount of shrinkage is 2% to 50% by mass, and the shrinkage in a planar direction is 10% or less with respect to that before firing when pressurized firing is performed at a temperature of 350 ° C. and a pressure of 10 MPa for 3 minutes.
  • the ratio of contact with the adherend when pressed and fired for 3 minutes at a temperature of 350 ° C and a pressure of 10 MPa in a state of 15 to 90% relative to the previous value and in contact with the adherend It is a film-like fired material having a contact area of 90% or more, and as the sinterable metal particles, at least one selected from the group consisting of silver, copper, and their oxides, and as a binder component , (Meta) Aclay Compound and the film-like fired material containing copolymers with other copolymers are preferred.
  • the content of the sinterable metal particles is preferably 20 to 80% by mass, and the content of the binder component is preferably 5 to 20% by mass.
  • the film-like fired material with support sheet of the present embodiment includes the above-mentioned film-like fired material and a support sheet provided on at least one side (surface) of the film-like fired material.
  • the support sheet is preferably provided with a pressure-sensitive adhesive layer on the entire surface or the outer peripheral portion of the base film, and the film-like baking material is preferably provided on the pressure-sensitive adhesive layer.
  • the film-like fired material may be provided in direct contact with the pressure-sensitive adhesive layer, or may be provided in direct contact with the base film. By taking this form, it can be used as a dicing sheet used when singulating a semiconductor wafer into chips. In addition, by using the blade or the like to separate it together with the semiconductor wafer, it can be processed as a film-like fired material having the same shape as the chip, and a chip with a film-like fired material can be manufactured.
  • FIG.3 and FIG.4 The schematic sectional drawing of the film-form baking material with a support sheet of this embodiment is shown in FIG.3 and FIG.4.
  • the film-like sintered material 100a, 100b with a support sheet of the present embodiment allows the film-like material 1 to be peeled off on the inner peripheral part of the support sheet 2 having the adhesive part on the outer peripheral part. It is temporarily attached.
  • the support sheet 2 is a pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer 4 on the upper surface of a base film 3 as shown in FIG. 3, and the inner peripheral surface of the pressure-sensitive adhesive layer 4 is covered with a film-like baking material The adhesive portion is exposed at the outer peripheral portion.
  • the support sheet 2 may have a ring-shaped pressure-sensitive adhesive layer 4 at the outer peripheral portion of the base film 3.
  • the film-like fired material 1 is formed on the inner circumferential portion of the support sheet 2 in substantially the same shape as the work (semiconductor wafer or the like) to be attached.
  • An adhesive portion is provided on the outer peripheral portion of the support sheet 2.
  • the film-like fired material 1 having a diameter smaller than that of the support sheet 2 is concentrically stacked on the circular support sheet 2.
  • the adhesive part of the outer peripheral part is used for fixing the ring frame 5 as illustrated.
  • the base film 3 is not particularly limited.
  • low density polyethylene LDPE
  • linear low density polyethylene LLDPE
  • ethylene / propylene copolymer polypropylene
  • polybutene polybutadiene
  • polymethylpentene ethylene / vinyl acetate Copolymer
  • ethylene, (meth) acrylic acid copolymer ethylene, methyl (meth) acrylate copolymer, ethylene, ethyl (meth) acrylate copolymer
  • polyvinyl chloride vinyl chloride
  • vinyl acetate copolymer A film made of coalesced, polyurethane film, ionomer or the like is used.
  • polyester film such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, etc., polyolefin film such as polypropylene, polymethylpentene etc.
  • polyester film such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, etc.
  • polyolefin film such as polypropylene, polymethylpentene etc.
  • the base film may be a laminate of the above films.
  • these films can also be used in lamination of 2 or more types, or in combination. Further, those obtained by coloring these films or those obtained by printing can also be used.
  • the film may be a sheet formed of a thermoplastic resin by extrusion or may be stretched, and a sheet obtained by thinning and curing a curable resin by a predetermined means is used. It may be
  • the thickness of the substrate film is not particularly limited, and is preferably 30 to 300 ⁇ m, more preferably 50 to 200 ⁇ m. By setting the thickness of the substrate film in the above range, breakage of the substrate film is unlikely to occur even if cutting is performed by dicing. Moreover, since sufficient flexibility is given to the film-like baking material with a support sheet, it shows favorable sticking property with respect to a workpiece
  • work for example, semiconductor wafer etc.
  • the base film can also be obtained by applying a release agent to the surface and performing a release treatment.
  • a release agent Alkyd-based, silicone-based, fluorine-based, unsaturated polyester-based, polyolefin-based, wax-based, etc. are used as the release agent used for the release treatment, but particularly the alkyd-based, silicone-based and fluorine-based release agents are heat resistant It is preferable because it has
  • the release agent is directly used without solvent, or diluted with solvent or emulsified, and a gravure coater, a Mayer bar coater, an air knife coater, a roll coater, etc.
  • the base film to which the release agent has been applied is applied at room temperature or under heating, or cured by electron beam, wet lamination, dry lamination, hot melt lamination, melt extrusion lamination, coextrusion processing, etc.
  • the laminate may be formed by
  • the support sheet 2 has an adhesive portion at least at its outer peripheral portion.
  • the adhesive portion preferably has a function of temporarily fixing the ring frame 5 at the outer peripheral portion of the film-like sintered material 100a, 100b with the support sheet, and the ring frame 5 is preferably removable after a required process. Therefore, as the pressure-sensitive adhesive layer 4, one having a weak adhesiveness may be used, or one having an energy ray curing property in which the adhesive force is reduced by the energy ray irradiation may be used.
  • the removable pressure-sensitive adhesive layer may be any of various known pressure-sensitive adhesives (for example, general-purpose pressure-sensitive adhesives such as rubber, acrylic, silicone, urethane, and polyvinyl ether, pressure-sensitive adhesives with uneven surface, energy ray-curable adhesive Agent, a thermal expansion component-containing adhesive, etc.).
  • general-purpose pressure-sensitive adhesives such as rubber, acrylic, silicone, urethane, and polyvinyl ether
  • pressure-sensitive adhesives with uneven surface such as rubber, acrylic, silicone, urethane, and polyvinyl ether
  • pressure-sensitive adhesives with uneven surface such as rubber, acrylic, silicone, urethane, and polyvinyl ether
  • pressure-sensitive adhesives with uneven surface such as rubber, acrylic, silicone, urethane, and polyvinyl ether
  • pressure-sensitive adhesives with uneven surface such as rubber, acrylic, silicone, urethane, and polyvinyl ether
  • pressure-sensitive adhesives with uneven surface such as rubber, acrylic, silicone, urethane,
  • the support sheet 2 is a pressure-sensitive adhesive sheet of a usual configuration having the pressure-sensitive adhesive layer 4 on the entire upper surface of the base film 3 as shown in FIG. 3, and the inner peripheral surface of the pressure-sensitive adhesive layer 4 is film-like fired It may be covered with a material and the adhesion part may be exposed to the outer peripheral part.
  • the outer peripheral portion of the pressure-sensitive adhesive layer 4 is used to fix the ring frame 5 described above, and the film-like baking material is laminated on the inner peripheral portion so as to be peelable.
  • a weak adhesive may be used, or an energy ray-curable pressure-sensitive adhesive may be used.
  • the ring-shaped adhesive layer 4 is formed in the outer peripheral part of the base film 3, and it is set as the adhesion part.
  • the pressure-sensitive adhesive layer 4 may be a single-layer pressure-sensitive adhesive layer comprising the above-mentioned pressure-sensitive adhesive, or a double-sided pressure-sensitive adhesive tape comprising the pressure-sensitive adhesive layer comprising the above-mentioned pressure-sensitive adhesive.
  • the adhesive strength of the pressure-sensitive adhesive layer 4 to the SUS plate at 23 ° C. is preferably 30 to 120 mN / 25 mm, and 50 to 100 mN / 25 mm. Is more preferable, and 60 to 90 mN / 25 mm is more preferable. If this adhesion is too low, the ring frame may come off. When the adhesive strength is too high, it is difficult to separate from the ring frame, making it difficult to reuse the ring frame.
  • the area to which the film-like fired material is laminated is irradiated with energy rays in advance to reduce adhesion. Good.
  • other regions may not be irradiated with energy rays, and for example, the adhesion may be kept high for the purpose of adhesion to the ring frame 5.
  • an energy beam shielding layer is provided in a region corresponding to the other region of the substrate film by printing or the like, and energy beam irradiation is performed from the substrate film side. It is good.
  • sandblast or Irregularization treatment by solvent treatment or the like, or oxidation treatment such as corona discharge treatment, electron beam irradiation, plasma treatment, ozone / ultraviolet radiation treatment, flame treatment, chromic acid treatment, hot air treatment and the like can be applied.
  • primer treatment can be performed.
  • the thickness of the pressure-sensitive adhesive layer 4 is not particularly limited, but is preferably 1 to 100 ⁇ m, more preferably 2 to 80 ⁇ m, and particularly preferably 3 to 50 ⁇ m.
  • the film-like fired material with support sheet is temporarily attached to the inner periphery of the support sheet having the adhesive part at the outer periphery so as to be peelable.
  • the film-like fired material 1 is laminated on the inner peripheral portion of the support sheet 2 composed of the base film 3 and the pressure-sensitive adhesive layer 4 so as to be peelable.
  • the adhesive layer 4 is exposed at the outer peripheral portion of the support sheet 2.
  • the film-like fired material 100 a with a support sheet of the above configuration is attached to the ring frame 5 in the pressure-sensitive adhesive layer 4 exposed to the outer peripheral portion of the support sheet 2.
  • an annular double-sided tape or pressure-sensitive adhesive layer may be additionally provided on the adhesive margin (exposed pressure-sensitive adhesive layer at the outer peripheral portion of the pressure-sensitive adhesive sheet) to the ring frame.
  • the double-sided tape has a constitution of pressure-sensitive adhesive layer / core material / pressure-sensitive adhesive layer, and the pressure-sensitive adhesive layer in the double-sided tape is not particularly limited.
  • a pressure-sensitive adhesive such as rubber, acrylic, silicone, polyvinyl ether is used .
  • the pressure-sensitive adhesive layer is attached to a ring frame at an outer peripheral portion when manufacturing a chip-mounted substrate to be described later.
  • a polyester film As a core material of a double-sided tape, a polyester film, a polypropylene film, a polycarbonate film, a polyimide film, a fluorine resin film, a liquid crystal polymer film etc. are used preferably, for example.
  • the ring-shaped adhesive layer 4 is formed in the outer peripheral part of the base film 3, and it is set as the adhesion part.
  • FIG. 5 the perspective view of the film-form baking material 100b with a support sheet shown in FIG. 4 is shown.
  • the pressure-sensitive adhesive layer 4 may be a single-layer pressure-sensitive adhesive layer comprising the above-mentioned pressure-sensitive adhesive, or a double-sided pressure-sensitive adhesive tape comprising the pressure-sensitive adhesive layer comprising the above-mentioned pressure-sensitive adhesive.
  • the film-like baking material 1 is peelably laminated on the inner peripheral portion of the base film 3 surrounded by the adhesive portion. In this configuration example, it is preferable that the film-like fired material 1 having a diameter smaller than that of the support sheet 2 be concentrically and releasably laminated on the base film 3 of the support sheet 2.
  • a release film for the purpose of surface protection to avoid contact with the outside on the surface of one or both of the film-like baked material and the adhesive part until being used for use. May be provided.
  • the surface protective film can be obtained by subjecting the surface of the base film such as polyethylene, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate and polypropylene mentioned above to a release treatment as described above using a release agent. It can also be done.
  • the release agent used for the release treatment include the release agents exemplified above in the description of the base film.
  • the thickness of the film-like fired material with a support sheet is preferably 1 to 500 ⁇ m, more preferably 5 to 300 ⁇ m, and still more preferably 10 to 150 ⁇ m.
  • the thickness of the film-like sintered material with support sheet means the thickness of the entire film-like sintered material with support sheet, for example, the thickness of the film-like sintered material with support sheet consisting of a plurality of layers This means the thickness of all layers constituting the film-like fired material with support sheet.
  • the film-like fired material with a support sheet can be manufactured by sequentially laminating the above-mentioned layers so as to have a corresponding positional relationship.
  • a pressure-sensitive adhesive composition or a baking material composition containing a component for constituting the pressure-sensitive adhesive film or a solvent is coated on a release film.
  • the pressure-sensitive adhesive layer or the film-like baking material is formed in advance on the release film by drying or volatilizing the solvent to form a film, if necessary.
  • the exposed surface of the film-like fired material opposite to the side in contact with the release film may be bonded to the surface of the base film.
  • the pressure-sensitive adhesive composition or the baking material composition is preferably applied or printed on the release-treated surface of the release film.
  • the release film may be removed as necessary after the formation of the laminated structure.
  • the content of each component for constituting the pressure-sensitive adhesive composition or the baking material composition may be 50 to 99% by mass in total of each component, and the content of the solvent may be 1 to 50% by mass.
  • a film-like fired material with a support sheet in which a pressure-sensitive adhesive layer is laminated on a substrate film and a film-like fired material is laminated on the pressure-sensitive adhesive layer (a support sheet is a laminate of a substrate film and a pressure-sensitive adhesive layer)
  • the pressure-sensitive adhesive layer is laminated on the base film by the above-mentioned method, and separately the film-like fired material is formed on the release film.
  • the film-like baking material is formed on the release film by coating or printing the baking material composition containing the components of and the solvent, and if necessary drying and volatilizing the solvent to form a film,
  • the film-like sintered material with a support sheet is formed by laminating the exposed surface of the film-like baked material onto the exposed surface of the pressure-sensitive adhesive layer which has been laminated on the substrate, and laminating the film-like baked material onto the pressure-sensitive adhesive layer. Obtained.
  • the baking material composition is preferably coated or printed on the peeling treated surface of the peeling film, and the peeling film is formed as needed after formation of the laminated structure. You can remove it.
  • any layers other than the base material constituting the film-like fired material with support sheet can be previously formed on the peelable film in advance and laminated on the surface of the target layer, so that it is necessary. Accordingly, a layer adopting such a process may be appropriately selected to produce a film-like fired material with a support sheet.
  • a film-like baking material with a support sheet may be stored in the state in which the peeling film was bonded together on the surface of the outermost layer on the opposite side to the support sheet.
  • a method for manufacturing a chip-mounted substrate using a film-like sintered material with a support sheet peels a peeling film of the film-like sintered material with a support sheet and supports the back surface of a semiconductor wafer (work)
  • the sheet-like film-like baking material may be attached, and the following steps (1) to (2) may be performed in the order of (1) and (2), and the following steps (1) to (4) 1), (2), (3), and (4) may be performed in this order.
  • Step (1) dicing the semiconductor wafer (work) and the film-like fired material of the laminate in which the support sheet, the film-like fired material and the semiconductor wafer (work) are stacked in this order;
  • Step (2) a step of peeling the film-like fired material and the support sheet to obtain a chip with a film-like fired material,
  • the semiconductor wafer may be a silicon wafer and a silicon carbide wafer, or may be a compound semiconductor wafer such as gallium arsenide.
  • a circuit may be formed on the surface of the semiconductor wafer. The formation of the circuit on the wafer surface can be performed by various methods including conventionally used methods such as etching method and lift-off method.
  • the opposite surface (rear surface) of the circuit surface of the semiconductor wafer is ground.
  • the grinding method is not particularly limited, and grinding may be performed by a known means using a grinder or the like. At the time of back grinding, an adhesive sheet called a surface protective sheet is attached to the circuit surface in order to protect the circuit on the surface.
  • the circuit surface side (that is, the surface protection sheet side) of the wafer is fixed by a chuck table or the like, and the back surface side on which the circuit is not formed is ground by the grinder.
  • the thickness of the wafer after grinding is not particularly limited, but is usually about 20 to 500 ⁇ m.
  • the fractured layer generated during back grinding is removed. The removal of the fractured layer is performed by chemical etching, plasma etching or the like.
  • steps (1) to (4) are performed in the order of (1), (2), (3), and (4).
  • the laminate of semiconductor wafer / film-like fired material / support sheet is diced for each circuit formed on the wafer surface to obtain a laminate of chip / film-like fired material / support sheet.
  • the dicing is performed to cut the semiconductor wafer and the film-like baking material together.
  • the film-like sintered material with a support sheet of this embodiment since the adhesive force is exhibited between the film-like material and the support sheet at the time of dicing, chipping and chip fly can be prevented, and dicing suitability is achieved. Excellent. Dicing is not particularly limited.
  • a known method such as using a rotating round blade such as a dicing blade after fixing the peripheral portion of the support sheet (the outer peripheral portion of the support) with a ring frame
  • the cutting depth to the support sheet by dicing may be completely cut from the film-like fired material, and is preferably 0 to 30 ⁇ m from the interface between the film-like fired material and the support sheet.
  • By reducing the cut amount to the support sheet it is possible to suppress the melting of the pressure-sensitive adhesive layer and the base film constituting the support sheet due to the friction of the dicing blade, and the generation of burrs and the like.
  • an individualized chip (chip) of a semiconductor wafer having a circuit formed on the surface is particularly referred to as an element or a semiconductor element.
  • the support sheet may be expanded.
  • the base film of the support sheet is selected to be excellent in extensibility
  • the support sheet has excellent expandability.
  • the film-like fired material and the support sheet are peeled off by picking up the diced chip with a film-like fired material by a general-purpose means such as a collet. As a result, a chip (a chip with a film-like fired material) having a film-like fired material on the back surface is obtained.
  • a chip with a film-like fired material is attached to the surface of the substrate.
  • the substrate also includes lead frames and heat sinks.
  • the film-like fired material is fired to sinter and bond the substrate and the chip.
  • the exposed surface of the film-like fired material of the chip with film-like fired material is attached to the substrate, the chip and the substrate can be sintered and joined via the film-like fired material.
  • the heating temperature for firing the film-like firing material may be appropriately determined in consideration of the type of the film-like firing material and the like, but it is preferably 100 to 600 ° C., more preferably 150 to 550 ° C., and further preferably 250 to 500 ° C. preferable.
  • the heating time may be appropriately determined in consideration of the type of the film-like fired material and the like, but is preferably 1 to 60 minutes, more preferably 1 to 30 minutes, and still more preferably 1 to 10 minutes.
  • the firing of the film-like firing material may be carried out by applying pressure to the film-like firing material to carry out pressure firing.
  • the pressure condition can be, for example, about 1 to 50 MPa.
  • a film-like baked material having a high uniformity of thickness can be easily formed on the back surface of the chip, and cracks after the dicing step and packaging are less likely to occur.
  • the method for manufacturing a chip-mounted substrate of the present embodiment it is possible to obtain a chip with a film-like fired material without individually attaching a film-like fired material to the back surface of the individualized chip. Simplification can be achieved. Then, the chip with a film-like fired material is disposed on a desired substrate and fired to manufacture a chip-attached substrate in which the chip and the substrate are sinter-bonded through the film-like fired material.
  • chip peeling hardly occurs.
  • chip misalignment hardly occurs.
  • a chip with a film-like fired material comprising a chip and the film-like fired material of the present invention is obtained.
  • the chip with a film-like fired material can be manufactured, for example, by the method for manufacturing a chip-mounted substrate described above.
  • the sintering and bonding of the chip of the film-like sintered material and the substrate thereof are exemplified.
  • the object of the sintering and bonding of the film-like calcination material is not limited to those exemplified above. Sinter bonding is possible for various articles sintered in contact with materials.
  • the blade or the like to separate the semiconductor wafer together with the semiconductor wafer, it can be processed as a film-like fired material having the same shape as the chip, and a chip with a film-like fired material can be manufactured.
  • the chip with a film-like fired material the sizes (areas) of the contact surface of the film-like fired material and the contact surface of the chip are the same, but they may be different.
  • the substrate and the chip may be bonded via the film-like baking material in a state where the contact surface of the film-like baking material is larger than the contact surface of the chip.
  • a film-like fired material having a desired size may be disposed on a substrate, and a chip having a smaller contact surface than the film-like fired material may be attached onto the film-like fired material.
  • Examples 1 to 3 and Comparative Examples 1 to 2 ⁇ Production of Firing Material Composition>
  • the components used for producing the fired material composition are shown below.
  • metal particles having a particle diameter of 100 nm or less are described as “sinterable metal particles”.
  • Alco nano silver paste ANP-1 organic coated composite silver nano paste, manufactured by Applied Nanoparticles Research Institute, Inc .: alcohol derivative coated silver particles, silver particles having a metal content of 70% by mass or more and an average particle diameter of 100 nm or less (sinterable metal) 60 mass% or more
  • Alco nano silver paste ANP-4 organic coated composite silver nano paste, manufactured by Applied Nanoparticles Research Institute: alcohol derivative coated silver particles, silver particles having a metal content of 80% by mass or more and an average particle diameter of 100 nm or less (sinterable metal) Particle) 25 mass% or more
  • Acrylic polymer 1 (2-ethylhexyl methacrylate polymer, weight average molecular weight 260,000, L-0818, manufactured by Japan Synthetic Chemical Co., MEK diluted product, solid content 58.4% by mass, Tg: -10 ° C)
  • Each component was mixed by the composition shown in the following Table 1 to obtain a fired material composition corresponding to Examples 1 to 3 and Comparative Examples 1 to 2.
  • the values of the respective components in Table 1 represent parts by mass. Since the sinterable metal particle-containing paste material is sold with a high boiling point solvent and remains in the material for film-like firing after coating or drying, the components of the sinterable metal particle-containing paste material Has included them.
  • the solvent in the binder component represents the solid part by mass excluding the solvent component in consideration of volatilization during drying.
  • the numerical values in parentheses in Table 1 are the amount (% by mass) of the sinterable metal particles contained in the fired material composition when the total mass of the fired material composition is 100% by mass.
  • the area of the planar view shape of the film-like firing material before firing is (5/2) 2 ⁇ ⁇ [mm 2 ]
  • the volume is (5/2) 2 ⁇ ⁇ ⁇ 0.075 [mm 3 ] is there.
  • test piece (X) was obtained in the same manner as the measurement of the shrinkage rate. A force is applied from the shear direction at a rate of 6 mm / min to the adhesive surface of the test piece (X) (the interface between the copper adherend ( ⁇ ) and the copper adherend ( ⁇ )) at normal temperature to The copper adherend ( ⁇ ) was peeled off from the adherend ( ⁇ ).
  • the contact ratio (C) [%] was determined from the following formula (III). The results are shown in Table 1.
  • Contact ratio (C) [%] (area of film-like fired material after firing / area of surface of copper adherend ( ⁇ ) to which film-like fired material is attached) ⁇ 100 (III)
  • the baked material composition of each example is coated on a 12 ⁇ m-thick PET (polyethylene terephthalate) film, dried, and the solvent is evaporated to form a laminated film in which the PET film and the film-like baked material are firmly bonded.
  • a release film for the purpose of surface protection, a release film (thickness 38 ⁇ m, SP-PET 381031, manufactured by Lintec Corporation) was attached to the surface of the laminated film on the side of the film-like fired material. The obtained laminated film was cut together with the release film to obtain a sheet for measuring the adhesive strength of 25 mm in width.
  • the adherend to be adhered is a silicon wafer (Science Research Laboratory Co., Ltd., diameter: 150 mm, thickness: 500 ⁇ m) whose surface has been subjected to chemical mechanical polishing until the arithmetic mean roughness (Ra) becomes 0.02 ⁇ m or less.
  • Ra arithmetic mean roughness
  • test piece (X) was obtained in the same manner as the measurement of the shrinkage rate. A force was applied from the shear direction at a speed of 6 mm / min to the adhesive surface of the test piece (X) at normal temperature, and the strength at which the adhesive state was broken was measured as a shear adhesive force. When the shear adhesion was 50 MPa or more, chip peeling was not likely to occur in various environments, and the chip peeling was evaluated as "none". In addition, when the shear adhesion was less than 50 MPa, the chip was evaluated as "presence”. The results are shown in Table 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Die Bonding (AREA)
  • Powder Metallurgy (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Materials For Medical Uses (AREA)

Abstract

焼結性金属粒子10及びバインダー成分20を含有するフィルム状焼成材料1であって、焼結性金属粒子10の含有量が15~98質量%であり、バインダー成分20の含有量が2~50質量%であり、温度350℃、圧力10MPaの条件で3分間、加圧焼成したときの平面方向における収縮率が焼成前に対して10%以下であり、体積収縮率が焼成前に対して15~90%であり、被着体と接触した状態で、温度350℃、圧力10MPaの条件で3分間、加圧焼成したときの被着体との接触率が被着体の接触面積に対して90%以上である、フィルム状焼成材料1。

Description

フィルム状焼成材料、及び支持シート付フィルム状焼成材料
 本発明は、フィルム状焼成材料、及び支持シート付フィルム状焼成材料に関する。
 本願は、2017年9月15日に、日本に出願された特願2017-177833号に基づき優先権を主張し、その内容をここに援用する。
 近年、自動車、エアコン、パソコン等の、高電圧・高電流化に伴い、これらに搭載される電力用半導体素子(パワーデバイス)の需要が高まっている。電力用半導体素子は、高電圧・高電流下で使用されるという特徴から、半導体素子からの熱の発生が問題となりやすい。
 従来、半導体素子から発生した熱の放熱のため、半導体素子の周りにヒートシンクが取り付けられる場合もある。しかし、ヒートシンクと半導体素子との間の接合部での熱伝導性が良好でなければ、効率的な放熱が妨げられてしまう。
 熱伝導性に優れた接合材料として、例えば、特許文献1には、特定の加熱焼結性金属粒子と、特定の高分子分散剤と、特定の揮発性分散媒が混合されたペースト状金属微粒子組成物が開示されている。当該組成物を焼結させると、熱伝導性の優れた固形状金属になるとされる。
特開2014-111800号公報
 しかしながら、特許文献1のように焼成材料がペースト状の場合では、塗布されるペーストの厚さを均一化することが難しく、厚さ安定性に乏しい傾向にある。
 ところで、焼成材料は、例えば半導体ウエハをダイシングにより個片化したチップと基板との焼結接合に使用される。通常、チップと基板は焼成前の焼成材料で仮固定された状態で搬送される。そのため、焼成材料の粘着力が不充分であると、焼成前の搬送時にチップがずれることある。また、焼成材料を焼結させると収縮が発生し、チップと基板との接着性が低下することがある。その結果、焼成後にチップが基板から剥がれることがあり、デバイスとしての長期使用が困難となる。
 本発明は上記事情に鑑みてなされたもので、厚さ安定性に優れ、基板とチップとの接合に用いた際に、焼成前のチップずれや焼成後のチップ剥がれが起きにくいフィルム状焼成材料を提供することを目的とする。また、当該フィルム状焼成材料を備えた支持シート付フィルム状焼成材料を提供することを目的とする。
 本発明は、以下の態様を有する。
[1] 焼結性金属粒子及びバインダー成分を含有するフィルム状焼成材料であって、
 焼結性金属粒子の含有量が15~98質量%であり、バインダー成分の含有量が2~50質量%であり、
 温度350℃、圧力10MPaの条件で3分間、加圧焼成したときの平面方向における収縮率が焼成前に対して10%以下であり、体積収縮率が焼成前に対して15~90%であり、
 被着体と接触した状態で、温度350℃、圧力10MPaの条件で3分間、加圧焼成したときの被着体との接触率が被着体の接触面積に対して90%以上である、フィルム状焼成材料。
[2] 少なくとも一方の表面の算術平均粗さ(Ra)が0.5μm以下である、[1]に記載のフィルム状焼成材料。
[3] 焼成前のフィルム状焼成材料のシリコンウエハに対する粘着力が0.2mN/25mm以上である、[1]又は[2]に記載のフィルム状焼成材料。
[4] [1]~[3]のいずれか1つに記載のフィルム状焼成材料と、前記フィルム状焼成材料の少なくとも一方の側に設けられた支持シートと、を備えた支持シート付フィルム状焼成材料。
[5] 前記支持シートが、基材フィルム上に粘着剤層が設けられたものであり、
 前記粘着剤層上に、前記フィルム状焼成材料が設けられている、[4]に記載の支持シート付フィルム状焼成材料。
 本発明によれば、厚さ安定性に優れ、基板とチップとの接合に用いた際に、焼成前のチップずれや焼成後のチップ剥がれが起きにくいフィルム状焼成材料を提供できる。また、当該フィルム状焼成材料を備え、半導体素子等のチップの焼結接合に用いられる支持シート付フィルム状焼成材料を提供できる。
本発明の一実施形態に係る、フィルム状焼成材料を模式的に示す断面図である。 本発明の一実施形態に係る、フィルム状焼成材料が被着体に積層された状態を模式的に示す断面図である。 本発明の一実施形態に係る、支持シート付フィルム状焼成材料がリングフレームに貼付された状態を模式的に示す断面図である。 本発明の一実施形態に係る、支持シート付フィルム状焼成材料がリングフレームに貼付された状態を模式的に示す断面図である。 本発明の一実施形態に係る、支持シート付フィルム状焼成材料がリングフレームに貼付された状態を模式的に示す斜視図である。
 以下、本発明の一実施形態について、適宜図面を参照し説明する。
 なお、以下の説明で用いる図は、本発明の特徴を分かり易くするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率等が実際と同じであるとは限らない。
≪フィルム状焼成材料≫
 本実施形態のフィルム状焼成材料は、焼結性金属粒子及びバインダー成分を含有するフィルム状焼成材料であって、焼結性金属粒子の含有量が15~98質量%であり、バインダー成分の含有量が2~50質量%であり、温度350℃、圧力10MPaの条件で3分間、加圧焼成したときの平面方向における収縮率が焼成前に対して10%以下であり、体積収縮率が焼成前に対して15~90%であり、被着体と接触した状態で、温度350℃、圧力10MPaの条件で3分間、加圧焼成したときの被着体との接触率が被着体の接触面に対して90%以上である。ここで、焼結性金属粒子の含有量及びバインダー成分の含有量とは、それぞれ、本実施形態のフィルム状焼成材料において、溶媒以外の全ての成分に対する総質量(100質量%)に対する含有量をいう。なお、焼結性金属粒子の含有量とバインダー成分の含有量との和は、100質量%を超えない。
 本発明において、フィルム状焼成材料とは、特に断らない限り、焼成前のものをいう。
 図1は、本実施形態のフィルム状焼成材料を模式的に示す断面図である。フィルム状焼成材料1は、焼結性金属粒子10及びバインダー成分20を含有している。
 フィルム状焼成材料は1層(単層)からなるものでもよいし、2層以上の複数層、例えば、2層以上10層以下の層からなるものでもよい。フィルム状焼成材料が複数層からなる場合、これら複数層は互いに同一でも異なっていてもよく、これら複数層の組み合わせは、本発明の効果を損なわない限り、特に限定されない。
 なお、本明細書においては、フィルム状焼成材料の場合に限らず、「複数層が互いに同一でも異なっていてもよい」とは、「すべての層が同一であってもよいし、すべての層が異なっていてもよく、一部の層のみが同一であってもよい」ことを意味し、さらに「複数層が互いに異なる」とは、「各層の構成材料、構成材料の配合比、及び厚さの少なくとも一つが互いに異なる」ことを意味する。
 フィルム状焼成材料の焼成前の厚さは、特に制限されるものではないが、10~200μmが好ましく、20~150μmが好ましく、30~90μmがより好ましい。
 ここで、「フィルム状焼成材料の厚さ」とは、フィルム状焼成材料全体の厚さを意味し、例えば、複数層からなるフィルム状焼成材料の厚さとは、フィルム状焼成材料を構成するすべての層の合計の厚さを意味する。
 本明細書において、「厚さ」は、任意の5箇所で厚さを測定した平均で表される値として、JIS K7130に準じて、定圧厚さ測定器を用いて取得できる。
(剥離フィルム)
 フィルム状焼成材料は、剥離フィルム上に積層された状態で提供することができる。使用する際には、剥離フィルムを剥がし、フィルム状焼成材料を焼結接合させる対象物上に配置すればよい。剥離フィルムはフィルム状焼成材料の損傷や汚れ付着を防ぐための保護フィルムとしての機能も有する。剥離フィルムは、フィルム状焼成材料の少なくとも一方の側に設けられていればよく、フィルム状焼成材料の両方の側に設けられてよい。両方に設けられる場合、一方は支持シートとして機能する。
 剥離フィルムとしては、例えばポリエチレンフィルム、ポリプロピレンフィルム、ポリブテンフィルム、ポリブタジエンフィルム、ポリメチルペンテンフィルム、ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリウレタンフィルム、エチレン酢酸ビニル共重合体フィルム、アイオノマー樹脂フィルム、エチレン・(メタ)アクリル酸共重合体フィルム、エチレン・(メタ)アクリル酸エステル共重合体フィルム、ポリスチレンフィルム、ポリカーボネートフィルム、ポリイミドフィルム、フッ素樹脂フィルムなどの透明フィルムが用いられる。またこれらの架橋フィルムも用いられる。さらにこれらの積層フィルムであってもよい。また、これらを着色したフィルム、不透明フィルムなどを用いることができる。剥離剤としては、例えば、シリコーン系、フッ素系、オレフィン系、アルキッド系、長鎖アルキル基含有カルバメート等の剥離剤が挙げられる。
 剥離フィルムの厚さは、通常は10~500μm、好ましくは15~300μm、特に好ましくは20~250μm程度である。
<焼結性金属粒子>
 焼結性金属粒子は、フィルム状焼成材料の焼成として金属粒子の融点以上の温度で加熱処理されることで粒子同士が溶融・結合して焼結体を形成可能な金属粒子である。焼結体を形成することで、フィルム状焼成材料とそれに接して焼成された物品とを焼結接合させることが可能である。具体的には、フィルム状焼成材料を介してチップと基板とを焼結接合させることが可能である。
 焼結性金属粒子の金属種としては、銀、金、銅、鉄、ニッケル、アルミ、シリコン、パラジウム、白金、チタン、チタン酸バリウム、これらの酸化物又は合金等が挙げられ、銀及び酸化銀が好ましい。焼結性金属粒子は、一種類のみが配合されていてもよく、2種類以上の組み合わせで配合されていてもよい。
 焼結性金属粒子は、粒子径が100nm以下、好ましくは50nm以下、さらに好ましくは20nm以下の銀粒子である銀ナノ粒子であることが好ましい。
 フィルム状焼成材料に含まれる焼結性金属粒子の粒子径は、上記焼結性を発揮可能なものであれば特に制限されるものではないが、100nm以下であってよく、50nm以下であってよく、30nm以下であってよい。例えば、100nm以下の粒子径を有するものが全体の20質量%以上であることが好ましい。なお、フィルム状焼成材料が含む焼結性金属粒子の粒子径とは、電子顕微鏡で観察された焼結性金属粒子の粒子径の、投影面積円相当径とする。
 上記粒子径の範囲に属する焼結性金属粒子は、焼結性に優れるため好ましい。
 フィルム状焼成材料が含む焼結性金属粒子の粒子径は、電子顕微鏡で観察された焼結性金属粒子の粒子径の、投影面積円相当径が100nm以下の粒子に対して求めた粒子径の数平均が、0.1~95nmであってよく、0.3~50nmであってよく、0.5~30nmであってよい。なお、測定対象の焼結性金属粒子は、1つのフィルム状焼成材料あたり無作為に選ばれた100個以上、例えば、100個とする。
 焼結性金属粒子はバインダー成分及び後述するその他の添加剤成分に混合する前に、あらかじめ凝集物の無い状態にするため、イソボルニルシクロヘキサノールや、デシルアルコールなどの沸点の高い高沸点溶媒に予め分散させてもよい。高沸点溶媒の沸点としては、例えば200~350℃であってもよい。この時、高沸点溶媒を用いると、これが常温で揮発することがほとんどないために焼結性金属粒子の濃度が高くなることが防止され、作業性が向上される他、焼結性金属粒子の再凝集なども防止され、品質的にも良好となる。分散法としてはニーダ、三本ロール、ビーズミル及び超音波などが挙げられる。
 本実施形態のフィルム状焼成材料には、粒子径100nm以下の金属粒子(焼結性金属粒子)の他に、これに該当しない粒子径が100nmを超える金属粒子である、非焼結性の金属粒子がさらに配合されてもよい。なお、非焼結性の金属粒子の粒子径とは、電子顕微鏡で観察された非焼結性の金属粒子の粒子径の、投影面積円相当径とする。粒子径は、例えば、100nm超5000nmであってよいが、100~2500nmの粒子径を有するものが全体の5質量%以上であることが好ましい。粒子径が100nmを超える非焼結性の金属粒子の粒子径は、電子顕微鏡で観察された非焼結性金属粒子の粒子径の、投影面積円相当径が100nmを超える粒子に対して求めた粒子径の数平均が、150nm超50000nm以下であってよく、150~10000nmであってよく、180~5000nmであってよい。
 粒子径が100nmを超える非焼結性の金属粒子の金属種としては、上記焼結性金属粒子の金属種として例示したものと同じものが挙げられ、銀、銅、及びこれらの酸化物が好ましい。
 粒子径100nm以下の焼結性金属粒子と、粒子径が100nmを超える非焼結性の金属粒子とは、互いに同一の金属種であってもよく、互いに異なる金属種であってもよい。例えば、粒子径100nm以下の焼結性金属粒子が銀粒子であり、粒子径が100nmを超える非焼結性の金属粒子が銀又は酸化銀粒子であってもよい。例えば、粒子径100nm以下の焼結性金属粒子が銀又は酸化銀粒子であり、粒子径が100nmを超える非焼結性の金属粒子が銅又は酸化銅粒子であってもよい。
 本実施形態のフィルム状焼成材料において、全ての金属粒子の総質量(100質量%)に対する、焼結性金属粒子の含有量は、10~100質量%であってもよく、20~95質量%であってもよい。
 焼結性金属粒子及び/又は非焼結性の金属粒子の表面には、有機物が被覆されていてもよい。有機物の被覆を有することで、バインダー成分との相溶性が向上し、粒子同士の凝集を防止でき、均一に分散することができる。
 焼結性金属粒子及び/又は非焼結性の金属粒子の表面に有機物が被覆されている場合、焼結性金属粒子及び非焼結性の金属粒子の質量は、被覆物を含んだ値とする。
<バインダー成分>
 バインダー成分が配合されることで、焼成材料をフィルム状に成形でき、焼成前のフィルム状焼成材料に粘着性を付与することができる。バインダー成分は、フィルム状焼成材料の焼成として加熱処理されることで熱分解される熱分解性であってよい。
 バインダー成分は特に限定されるものではないが、バインダー成分の好適な一例として、樹脂が挙げられる。樹脂としては、アクリル系樹脂、ポリカーボネート樹脂、ポリ乳酸、セルロース誘導体の重合物等が挙げられ、アクリル系樹脂が好ましい。アクリル系樹脂には、(メタ)アクリレート化合物の単独重合体、(メタ)アクリレート化合物の2種以上の共重合体、(メタ)アクリレート化合物と他の共重合性単量体との共重合体が含まれる。
 バインダー成分を構成する樹脂において、(メタ)アクリレート化合物由来の構成単位の含有量は、構成単位の総質量(100質量%)に対して、50~100質量%であることが好ましく、80~100質量%であることがより好ましく、90~100質量%であることがさらに好ましい。
 ここでいう「由来」とは、前記モノマーが重合するのに必要な構造の変化を受けたことを意味する。
 (メタ)アクリレート化合物の具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、アミル(メタ)アクリレート、イソアミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレートなどのアルキル(メタ)アクリレート;
 ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレート;
 フェノキシエチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレートなどのフェノキシアルキル(メタ)アクリレート;
 2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-プロポキシエチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、2-メトキシブチル(メタ)アクリレートなどのアルコキシアルキル(メタ)アクリレート;
 ポリエチレングリコールモノ(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、エトキシポリプロピレングリコール(メタ)アクリレート、ノニルフェノキシポリプロピレングリコール(メタ)アクリレートなどのポリアルキレングリコール(メタ)アクリレート;
 シクロヘキシル(メタ)アクリレート、4-ブチルシクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタジエニル(メタ)アクリレート、ボルニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレートなどのシクロアルキル(メタ)アクリレート;
 ベンジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、などを挙げることができる。アルキル(メタ)アクリレート又はアルコキシアルキル(メタ)アクリレートが好ましく、特に好ましい(メタ)アクリレート化合物として、ブチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソデシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、及び2-エトキシエチル(メタ)アクリレートを挙げることができる。
 本明細書において、「(メタ)アクリレート」とは、「アクリレート」及び「メタクリレート」の両方を包含する概念である。
 アクリル樹脂としては、メタクリレートが好ましい。バインダー成分がメタクリレート由来の構成単位を含有することで、比較的低温で焼成することができ、焼結後に充分な接着強度を得るための条件を容易に満たすことができる。
 バインダー成分を構成する樹脂において、メタクリレート由来の構成単位の含有量は、構成単位の総質量(100質量%)に対して、50~100質量%であることが好ましく、80~100質量%であることがより好ましく、90~100質量%であることがさらに好ましい。
 他の共重合性単量体としては、上記(メタ)アクリレート化合物と共重合可能な化合物であれば特に制限はないが、例えば(メタ)アクリル酸、ビニル安息香酸、マレイン酸、ビニルフタル酸などの不飽和カルボン酸類;ビニルベンジルメチルエーテル、ビニルグリシジルエーテル、スチレン、α-メチルスチレン、ブタジエン、イソプレンなどのビニル基含有ラジカル重合性化合物が挙げられる。
 バインダー成分を構成する樹脂の質量平均分子量(Mw)は、1,000~1,000,000であることが好ましく、10,000~800,000であることがより好ましい。樹脂の質量平均分子量が上記範囲内であることで、フィルムとして充分な膜強度を発現し、且つ柔軟性を付与することが容易となる。
 なお、本明細書において、「質量平均分子量」とは、特に断りのない限り、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定されるポリスチレン換算値である。
 バインダー成分を構成する樹脂のガラス転移温度(Tg)は、-60~50℃であることが好ましく、-30~10℃であることがより好ましく、-20℃以上0℃未満であることがさらに好ましい。樹脂のTgが上記上限値以下であることで、フィルム状焼成材料と被着体(例えばチップ、基板等)との焼成前の粘着力が向上する。その結果、チップと基板が焼成前のフィルム状焼成材料で仮固定されている状態で搬送される際に、チップずれが起きにくい。加えて、フィルム状焼成材料の柔軟性が高まる。一方、樹脂のTgが上記下限値以上であることで、フィルム形状の維持が可能であり、支持シート等からのフィルム状焼成材料の引き離しがより容易となる。
 本明細書において「ガラス転移温度(Tg)」とは、示差走査熱量計を用いて、試料のDSC曲線を測定し、得られたDSC曲線の変曲点の温度で表される。
 バインダー成分は、フィルム状焼成材料の焼成として加熱処理されることで熱分解される熱分解性であってよい。バインダー成分が熱分解されたことは、焼成によるバインダー成分の質量減少により確認できる。なお、バインダー成分として配合される成分は焼成によりほぼ熱分解されてよいが、バインダー成分として配合される成分の全質量が、焼成により熱分解されなくともよい。
 バインダー成分は、焼成前のバインダー成分の総質量(100質量%)に対し、焼成後の質量が10質量%以下となるものであってよく、5質量%以下となるものであってよく、3質量%以下となるものであってよく、0質量%となるものであってもよい。
 本実施形態のフィルム状焼成材料は、上記の焼結性金属粒子、非焼結性の金属粒子及びバインダー成分の他に、本発明の効果を損なわない範囲内において、焼結性金属粒子、非焼結性の金属粒子及びバインダー成分に該当しないその他の添加剤を含有していてもよい。
 本実施形態のフィルム状焼成材料に含有されてもよいその他の添加剤としては、溶媒、分散剤、可塑剤、粘着付与剤、保存安定剤、消泡剤、熱分解促進剤、及び酸化防止剤などが挙げられる。添加剤は、1種のみ含有されてもよいし、2種以上含有されてもよい。これらの添加剤は、特に限定されるものではなく、この分野で通常用いられるものを適宜選択することができる。
<組成>
 本実施形態のフィルム状焼成材料は、焼結性金属粒子、バインダー成分、及びその他の添加剤からなるものであってもよく、これらの含有量(質量%)の和は100質量%となる。
 本実施形態のフィルム状焼成材料が非焼結性の金属粒子を含む場合には、フィルム状焼成材料は、焼結性金属粒子、非焼結性の金属粒子、バインダー成分、及びその他の添加剤からなるものであってもよく、これらの含有量(質量%)の和は100質量%となる。
 フィルム状焼成材料において、溶媒以外の全ての成分(以下「固形分」と表記する。)の総質量(100質量%)に対する、焼結性金属粒子の含有量は、15~98質量%であり、15~90質量%が好ましく、20~80質量%がより好ましい。焼結性金属粒子の含有量が上記上限値以下であることで、バインダー成分の含有量を充分に確保できるので、フィルム形状を維持できる。一方、焼結性金属粒子の含有量が上記下限値以上であることで、焼成時に焼結性金属粒子同士、又は焼結性金属粒子と非焼結性金属粒子とが融着して、焼成後に高い接合接着強度(せん断接着力)を発現する。
 フィルム状焼成材料が非焼結性の金属粒子を含む場合、フィルム状焼成材料における固形分の総質量(100質量%)に対する、焼結性金属粒子及び非焼結性の金属粒子の総含有量は、50~98質量%が好ましく、70~95質量%がより好ましく、80~90質量%がさらに好ましい。
 フィルム状焼成材料における固形分の総質量(100質量%)に対するバインダー成分の含有量は、2~50質量%であり、5~30質量%が好ましく、5~20質量%がより好ましい。バインダー成分の含有量が上記上限値以下であることで、焼結性金属粒子の含有量を充分に確保できるので、フィルム状焼成材料と被着体との接合接着力が向上し、基板とチップとの接合に用いた際にチップ剥がれが起きにくい。一方、バインダー成分の含有量が上記下限値以上であることで、フィルム形状を維持できる。加えて、チップと基板が焼成前のフィルム状焼成材料で仮固定されている状態で搬送される際に、チップずれが起きにくい。
 フィルム状焼成材料において、焼結性金属粒子とバインダー成分との質量比率(焼結性金属粒子:バインダー成分)は、50:1~1:5が好ましく、20:1~1:2がより好ましく、10:1~1:1がさらに好ましい。フィルム状焼成材料が非焼結性の金属粒子を含む場合には、焼結性金属粒子及び非焼結性の金属粒子とバインダー成分との質量比率((焼結性金属粒子+非焼結性の金属粒子):バインダー成分)は50:1~1:1が好ましく、20:1~2:1がより好ましく、9:1~4:1がさらに好ましい。
 フィルム状焼成材料には、焼結性金属粒子、非焼結性の金属粒子、バインダー成分及びその他の添加剤成分を混合する際に使用する前記した高沸点溶媒が含まれていてもよい。フィルム状焼成材料の総質量(100質量%)に対する、高沸点溶媒の含有量は、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下がさらに好ましい。
<平面方向における収縮率>
 本実施形態のフィルム状焼成材料は、温度350℃、圧力10MPaの条件で3分間、加圧焼成したときの平面方向における収縮率(A)が、焼成前に対して10%以下のものである。収縮率(A)は5%以下が好ましく、3%以下がより好ましく、0%(すなわち、加圧焼成しても平面方向に収縮しないこと)が最も好ましい。収縮率(A)が上記上限値以下であることで、基板とチップとの接合に用いた際に様々な環境下でチップ剥がれが起きにくい。ここでいう「様々な環境」としては、例えば高湿度環境、高温環境、高湿度高温環境、低温環境や、高温と低温が繰り返される環境などが挙げられる。
 収縮率(A)は、下記式(I)より求められる。
 収縮率(A)={1-(焼成後のフィルム状焼成材料の平面視形状の面積/焼成前のフィルム状焼成材料の平面視形状の面積)}×100  ・・・(I)
 収縮率(A)は、フィルム状焼成材料に含まれる焼結性金属粒子やバインダー成分の含有量により制御できる。具体的には、焼結性金属粒子の含有量が多くなり、バインダー成分の含有量が少なくなると、収縮率(A)は小さくなる傾向にある。
<体積収縮率>
 本実施形態のフィルム状焼成材料は、温度350℃、圧力10MPaの条件で3分間、加圧焼成したときの体積収縮率(B)が、焼成前に対して15~90%のものである。体積収縮率(B)は30~80%が好ましく、40~70%がより好ましく、50~60%がさらに好ましい。体積収縮率(B)が上記上限値以下であることで、基板とチップとの接合に用いた際にチップ剥がれが起きにくい。一方、体積収縮率(B)が上記下限値以上であることで、体積収縮の主要因となるバインダー成分が充分に含有されることとなる。
そのため、チップと基板が焼成前のフィルム状焼成材料で仮固定されている状態で搬送される際に、チップずれが起きにくい。
 体積収縮率(B)は、下記式(II)より求められる。
 体積収縮率(B)={1-(焼成後のフィルム状焼成材料の体積/焼成前のフィルム状焼成材料の体積)}×100  ・・・(II)
 体積収縮率(B)は、フィルム状焼成材料に含まれる焼結性金属粒子やバインダー成分の含有量により制御できる。具体的には、焼結性金属粒子の含有量が多くなり、バインダー成分の含有量が少なくなると、体積収縮率(B)は小さくなる傾向にある。焼結性金属粒子の含有量が少なくなり、バインダー成分の含有量が多くなると、体積収縮率(B)は大きくなる傾向にある。
<接触率>
 本実施形態のフィルム状焼成材料は、被着体と接触した状態で、温度350℃、圧力10MPaの条件で3分間、加圧焼成したときの被着体との接触率(C)が、被着体におけるフィルム状焼成材料が貼付される面積(接触面積)に対して90%以上のものである。
 例えば、図2に示す、本実施形態のフィルム状焼成材料と被着体とが積層された積層体において、温度350℃、圧力10MPaの条件で3分間、加圧焼成したときの被着体との接触率(C)が、被着体におけるフィルム状焼成材料が貼付される面積(接触面積)に対して90%以上である。
 接触率(C)は95%以上が好ましく、97%以上がより好ましく、100%(すなわち、加圧焼成しても被着体の接触面積と焼成後のフィルム状焼成材料(焼結体)の接触面の面積が同じこと)が最も好ましい。
 例えば、焼成材料を介して基板とチップとを貼り合せて焼成したときに、焼成材料の収縮が著しい場合、チップの裏面(すなわち、焼成材料と接する面)や基板の表面(すなわち、焼成材料と接する面)において、例えば額縁状に焼成材料やその焼結体が存在しない部分が発生する。焼成材料やその焼結体が存在しない部分の面積が大きくなるほど、チップと基板との接着性が低下し、チップ剥がれが起きやすくなる。
 接触率(C)が大きくなるほど、被着体の接触面積において焼成材料やその焼結体が存在しない部分の面積が小さいことを意味する。接触率(C)が上記下限値以上であることで、基板とチップとの接合に用いた際にチップ剥がれが起きにくい。
 なお、被着体としては、例えばチップ、基板などが挙げられる。
 接触率(C)は、例えば以下のようにして求められる。
 まず、フィルム状焼成材料を介してチップと基板とを貼り合せた後、温度350℃、圧力10MPaの条件で3分間、加圧焼成する。
 次いで、チップと基板との界面においてせん断方向から力を加えて、基板からチップを剥がす。
 チップとフィルム状焼成材料との界面で剥離した場合、チップの表面(すなわち、フィルム状焼成材料が貼付される面)に見られるフィルム状焼成材料の接着痕の面積を計測し、これを焼成後のフィルム状焼成材料の面積とする。
 フィルム状焼成材料が凝集破壊した場合、チップの表面に残存するフィルム状焼成材料を20μm以下の厚さになるまで削った後、フィルム状焼成材料の面積を計測する。これを焼成後のフィルム状焼成材料の面積とする。
 なお、フィルム状焼成材料を焼成すると、ボイドが発生することがある。焼成後のフィルム状焼成材料の面積を計測するに際して、ボイド又はその痕跡が認められる場合、ボイドの面積は焼成後のフィルム状焼成材料の面積には含めないものとする。
 下記式(III)より、接触率(C)を求める。
 接触率(C)=(焼成後のフィルム状焼成材料(焼結体)の面積/フィルム状焼成材料が貼付されるチップ表面の面積)×100  ・・・(III)
 接触率(C)は、フィルム状焼成材料に含まれる焼結性金属粒子やバインダー成分の含有量により制御できる。具体的には、焼結性金属粒子の含有量が多くなり、バインダー成分の含有量が少なくなると、接触率(C)は大きくなる傾向にある。
<算術平均粗さ>
 本実施形態のフィルム状焼成材料は、少なくとも一方の表面の算術平均粗さ(Ra)が0.5μm以下であることが好ましい。算術平均粗さ(Ra)は0.4μm以下が好ましく、0.3μm以下がより好ましく、0.25μm以下がさらに好ましい。算術平均粗さ(Ra)が上記上限値以下であることで、被着体との接触面積が増え、被着体に対する粘着力が高まる傾向にある。算術平均粗さ(Ra)の下限値は、通常、0.05μm程度である。
 算術平均粗さ(Ra)は、例えば、0.05~0.5μm、0.05~0.4μm、0.05~0.3μm、0.05~0.25μmであってよい。
 算術平均粗さ(Ra)は、JIS B0601:2001に準拠して求められるものであり、測定方法の詳細は後述する試験例に示す通りである。
 フィルム状焼成材料をチップと基板との接合に用いる場合、算術平均粗さ(Ra)が0.5μm以下の表面が、半導体ウエハ又はチップと接する面となることが好ましい。すなわち、フィルム状焼成材料の半導体ウエハ又はチップと接する側の表面の算術平均粗さ(Ra)が、0.5μm以下であることが好ましい。
 フィルム状焼成材料の半導体ウエハ又はチップと接する側の表面の算術平均粗さ(Ra)が、0.5μm以下であれば、半導体ウエハやチップがフィルム状焼成材料に充分に粘着し、チップと基板が焼成前のフィルム状焼成材料で仮固定されている状態で搬送される際に、チップずれがより起きにくくなる。
<粘着力>
 本実施形態のフィルム状焼成材料は、焼成前において、シリコンウエハに対する粘着力(D)が0.2mN/25mm以上であることが好ましい。粘着力(D)は0.5mN/25mm以上がより好ましく、1.0mN/25mm以上がさらに好ましい。粘着力(D)が上記下限値以上であることで、チップと基板が焼成前のフィルム状焼成材料で仮固定されている状態で搬送される際に、チップずれがより起きにくくなる。
 粘着力(D)は、JIS Z0237:2009に準拠して求められ、具体的には、以下の方法で測定できる。
 まず、シリコンウエハの表面を算術平均粗さ(Ra)が0.02μmになるまでケミカルメカニカルポリッシュ処理する。
 厚さ50μmのPETフィルム上に作製したフィルム状焼成材料を、幅25mm、長さ100mm以上になるように切断し、切断したフィルム状焼成材料をシリコンウエハの処理面に貼付する。貼付する際、フィルム状焼成材料を室温以上に加熱してもよい。加熱温度は特に限定されないが100℃以下が好ましい。
 次いで、シリコンウエハからフィルム状焼成材料を剥離速度300mm/minで剥離させる。このときの剥離は、シリコンウエハ及びフィルム状焼成材料の互いに接触していた面同士が180°の角度を為すように、フィルム状焼成材料をその長さ方向へ剥離させる、いわゆる180°剥離とする。そして、この180°剥離のときの荷重(剥離力)を測定し、その測定値を粘着力(D)(mN/25mm)とする。
 上記の本実施形態のフィルム状焼成材料によれば、フィルム状であるため、厚さ安定性に優れる。また、本実施形態のフィルム状焼成材料は焼結性金属粒子を含むため、熱伝導性に優れる。更に、本実施形態のフィルム状焼成材料は、特定量の焼結性金属粒子及びバインダー成分を含み、かつ収縮率(A)が焼成前に対して10%以下であり、体積収縮率(B)が焼成前に対して15~90%であり、接触率(C)が被着体の接触面に対して90%以上である。よって、チップと基板が焼成前のフィルム状焼成材料で仮固定されている状態で搬送される際に、チップずれが起きにくい。加えて、焼成後にチップ剥がれが起きにくいので、デバイスとしての長期使用が可能となる。
 フィルム状焼成材料は、少なくとも一方の側(表面)に支持シートが設けられた、支持シート付フィルム状焼成材料とすることができる。
 支持シート付フィルム状焼成材料の詳細は、後述する。
≪フィルム状焼成材料の製造方法≫
 フィルム状焼成材料は、その構成材料を含有する焼成材料組成物を用いて形成できる。
例えば、フィルム状焼成材料の形成対象面に、フィルム状焼成材料を構成するための各成分及び溶媒を含む焼成材料組成物を塗工又は印刷し、必要に応じて溶媒を揮発させることで、目的とする部位にフィルム状焼成材料を形成できる。
 フィルム状焼成材料の形成対象面としては、剥離フィルムの表面が挙げられる。
 焼成材料組成物を塗工する場合、溶媒としては沸点が200℃未満のものが好ましく、例えばn-ヘキサン(沸点:68℃)、酢酸エチル(沸点:77℃)、2-ブタノン(沸点:80℃)、n-ヘプタン(沸点:98℃)、メチルシクロヘキサン(沸点:101℃)、トルエン(沸点:111℃)、アセチルアセトン(沸点:138℃)、n-キシレン(沸点:139℃)及びジメチルホルムアミド(沸点:153℃)などが挙げられる。これらは単独で使用してもよく、また組み合わせて使用してもよい。
 焼成材料組成物の塗工は、公知の方法で行えばよく、例えばエアーナイフコーター、ブレードコーター、バーコーター、グラビアコーター、コンマコーター(登録商標)、ロールコーター、ロールナイフコーター、カーテンコーター、ダイコーター、ナイフコーター、スクリーンコーター、マイヤーバーコーター、キスコーター等の各種コーターを用いる方法が挙げられる。
 焼成材料組成物を印刷する場合、溶媒としては印刷後に揮発乾燥することができるものであればよく、沸点が65~350℃であることが好ましい。このような溶媒としては、先に例示した沸点が200℃未満の溶媒や、イソホロン(沸点:215℃)、ブチルカルビトール(沸点:230℃)、1‐デカノール(沸点:233℃)、ブチルカルビトールアセタート(沸点:247℃)、イソボルニルシクロヘキサノール(沸点:318℃)などが挙げられる。
 沸点が350℃を上回ると、印刷後の揮発乾燥にて溶媒が揮発しにくくなり、所望の形状を確保することが困難となったり、焼成時に溶媒がフィルム内に残存してしまい、接合接着性を劣化させたりする可能性がある。沸点が65℃を下回ると印刷時に揮発してしまい、厚さの安定性が損なわれてしまう恐れがある。沸点が200~350℃の溶媒を用いれば、印刷時の溶媒の揮発による粘度上昇を抑えることができ、印刷適性を得ることができる。
 焼成材料組成物の印刷は、公知の印刷方法で行うことができ、例えば、フレキソ印刷等の凸版印刷、グラビア印刷等の凹版印刷、オフセット印刷等の平板印刷、シルクスクリーン印刷やロータリースクリーン印刷等のスクリーン印刷、インクジェットプリンタ等の各種プリンタによる印刷などの方法が挙げられる。
 フィルム状焼成材料の形状は、焼結接合の対象の形状に合わせて適宜設定すればよく、円形又は矩形が好ましい。円形は半導体ウエハの形状に対応した形状である。矩形はチップの形状に対応した形状である。対応した形状とは、焼結接合の対象の形状と同形状又は略同形状であってよい。
 フィルム状焼成材料が円形である場合、円の面積は、3.5~1,600cmであってよく、85~1,400cmであってよい。フィルム状焼成材料が矩形である場合、矩形の面積は、0.01~25cmであってよく、0.25~9cmであってよい。
 特に、焼成材料組成物を印刷すれば、所望の形状のフィルム状焼成材料を形成しやすい。
 焼成材料組成物の乾燥条件は、特に限定されないが、焼成材料組成物が溶媒を含有している場合、加熱乾燥させることが好ましく、この場合、例えば70~250℃、例えば80~180℃で、10秒~10分間の条件で乾燥させることが好ましい。
 本実施形態のフィルム状焼成材料は、焼結性金属粒子及びバインダー成分を含有するフィルム状焼成材料であって、焼結性金属粒子の含有量が15~98質量%であり、バインダー成分の含有量が2~50質量%であり、温度350℃、圧力10MPaの条件で3分間、加圧焼成したときの平面方向における収縮率が焼成前に対して10%以下であり、体積収縮率が焼成前に対して15~90%であり、被着体と接触した状態で、温度350℃、圧力10MPaの条件で3分間、加圧焼成したときの被着体との接触率が被着体の接触面積に対して90%以上であるフィルム状焼成材料であるが、焼結性金属粒子としては、銀、銅、及びこれらの酸化物からなる群から選ばれる少なくとも1種と、バインダー成分としては、(メタ)アクリレート化合物と他の共重合体との共重合体を含有するフィルム状焼成材料が好ましい。
 また、本実施形態のフィルム状焼成材料は、焼結性金属粒子の含有量が20~80質量%、バインダー成分の含有量が5~20質量%であるものが好ましい。
≪支持シート付フィルム状焼成材料≫
 本実施形態の支持シート付フィルム状焼成材料は、上述したフィルム状焼成材料と、前記フィルム状焼成材料の少なくとも一方の側(表面)に設けられた支持シートと、を備える。前記支持シートは、基材フィルム上の全面もしくは外周部に粘着剤層が設けられたものであり、前記粘着剤層上に、前記フィルム状焼成材料が設けられていることが好ましい。前記フィルム状焼成材料は、粘着剤層に直接接触して設けられてもよく、基材フィルムに直接接触して設けられてもよい。本形態をとることで、半導体ウエハをチップに個片化する際に使用するダイシングシートとして使用することができる。且つブレード等を用いて半導体ウエハと一緒に個片化することでチップと同形のフィルム状焼成材料として加工することができ、且つフィルム状焼成材料付チップを製造することができる。
 以下、支持シート付フィルム状焼成材料の一実施形態について説明する。図
3及び図4に、本実施形態の支持シート付フィルム状焼成材料の概略断面図を示す。図3、図4に示すように、本実施形態の支持シート付フィルム状焼成材料100a,100bは、外周部に粘着部を有する支持シート2の内周部に、フィルム状焼成材料1が剥離可能に仮着されてなる。支持シート2は、図3に示すように、基材フィルム3の上面に粘着剤層4を有する粘着シートであり、該粘着剤層4の内周部表面が、フィルム状焼成材料に覆われて、外周部に粘着部が露出した構成になる。また、図4に示すように、支持シート2は、基材フィルム3の外周部にリング状の粘着剤層4を有する構成であってもよい。
 フィルム状焼成材料1は、支持シート2の内周部に、貼付されるワーク(半導体ウエハ等)と略同形状に形成されてなる。支持シート2の外周部には粘着部を有する。好ましい態様では、支持シート2よりも小径のフィルム状焼成材料1が、円形の支持シート2上に同心円状に積層されている。外周部の粘着部は、図示したように、リングフレーム5の固定に用いられる。
(基材フィルム)
 基材フィルム3としては、特に限定されず、例えば低密度ポリエチレン(LDPE)、直鎖低密度ポリエチレン(LLDPE),エチレン・プロピレン共重合体、ポリプロピレン、ポリブテン、ポリブタジエン、ポリメチルペンテン、エチレン・酢酸ビニル共重合体、エチレン・(メタ)アクリル酸共重合体、エチレン・(メタ)アクリル酸メチル共重合体、エチレン・(メタ)アクリル酸エチル共重合体、ポリ塩化ビニル、塩化ビニル・酢酸ビニル共重合体、ポリウレタンフィルム、アイオノマー等からなるフィルムなどが用いられる。なお、本明細書において「(メタ)アクリル」は、アクリル及びメタクリルの両者を含む意味で用いる。
 また支持シートに対してより高い耐熱性が求められる場合には、基材フィルム3としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステルフィルム、ポリプロピレン、ポリメチルペンテンなどのポリオレフィンフィルム等が挙げられる。また、これらの架橋フィルムや放射線・放電等による改質フィルムも用いることができる。基材フィルムは上記フィルムの積層体であってもよい。
 また、これらのフィルムは、2種類以上を積層したり、組み合わせて用いたりすることもできる。さらに、これらフィルムを着色したもの、あるいは印刷を施したもの等も使用することができる。また、フィルムは熱可塑性樹脂を押出形成によりシート化したものであってもよく、延伸されたものであってもよく、硬化性樹脂を所定手段により薄膜化、硬化してシート化したものが使われてもよい。
 基材フィルムの厚さは特に限定されず、好ましくは30~300μm、より好ましくは50~200μmである。基材フィルムの厚さを上記範囲とすることで、ダイシングによる切り込みが行われても基材フィルムの断裂が起こりにくい。また、支持シート付フィルム状焼成材料に充分な可とう性が付与されるため、ワーク(例えば半導体ウエハ等)に対して良好な貼付性を示す。
 基材フィルムは、表面に剥離剤を塗布して剥離処理を施すことで得ることもできる。剥離処理に用いられる剥離剤としては、アルキッド系、シリコーン系、フッ素系、不飽和ポリエステル系、ポリオレフィン系、ワックス系などが用いられるが、特にアルキッド系、シリコーン系、フッ素系の剥離剤が耐熱性を有するので好ましい。
 上記の剥離剤を用いて基材フィルムの表面を剥離処理するためには、剥離剤をそのまま無溶剤で、又は溶剤希釈やエマルション化して、グラビアコーター、メイヤーバーコーター、エアーナイフコーター、ロールコーターなどにより塗布して、剥離剤が塗布された基材フィルムを常温下又は加熱下に供するか、又は電子線により硬化させたり、ウェットラミネーションやドライラミネーション、熱溶融ラミネーション、溶融押出ラミネーション、共押出加工などで積層体を形成したりすればよい。
(粘着剤層)
 支持シート2は、少なくともその外周部に粘着部を有する。粘着部は、支持シート付フィルム状焼成材料100a,100bの外周部において、リングフレーム5を一時的に固定する機能を有し、所要の工程後にはリングフレーム5が剥離可能であることが好ましい。したがって、粘着剤層4には、弱粘着性のものを使用してもよいし、エネルギー線照射により粘着力が低下するエネルギー線硬化性のものを使用してもよい。再剥離性粘着剤層は、公知の種々の粘着剤(例えば、ゴム系、アクリル系、シリコーン系、ウレタン系、ポリビニルエーテル系などの汎用粘着剤、表面凹凸のある粘着剤、エネルギー線硬化型粘着剤、熱膨張成分含有粘着剤等)により形成できる。
 支持シート2は、図3に示すように、基材フィルム3の上側全面に粘着剤層4を有する通常の構成の粘着シートであり、該粘着剤層4の内周部表面が、フィルム状焼成材料に覆われて、外周部に粘着部が露出した構成であってもよい。この場合、粘着剤層4の外周部は、上記したリングフレーム5の固定に使用され、内周部には、フィルム状焼成材料が剥離可能に積層される。粘着剤層4としては、上記と同様に、弱粘着性のものを使用してもよいし、またエネルギー線硬化性粘着剤を使用してもよい。
 また、図4に示した構成では、基材フィルム3の外周部にリング状の粘着剤層4を形成し、粘着部とする。この際、粘着剤層4は、上記粘着剤からなる単層粘着剤層であってもよく、上記粘着剤からなる粘着剤層を含む両面粘着テープを環状に切断したものであってもよい。
 弱粘着剤としては、アクリル系、シリコーン系が好ましく用いられる。また、フィルム状焼成材料の剥離性を考慮して、粘着剤層4の23℃でのSUS板への粘着力は、30~120mN/25mmであることが好ましく、50~100mN/25mmであることがさらに好ましく、60~90mN/25mmであることがより好ましい。この粘着力が低すぎると、リングフレームが脱落することがある。また粘着力が高過ぎると、リングフレームからの剥離が困難となり、リングフレームを再利用しにくくなる。
 図3の構成の支持シートにおいて、エネルギー線硬化性の再剥離性粘着剤層を用いる場合、フィルム状焼成材料が積層される領域に予めエネルギー線照射を行い、粘着性を低減させておいてもよい。この際、他の領域はエネルギー線照射を行わず、例えばリングフレーム5への接着を目的として、粘着力を高いまま維持しておいてもよい。他の領域のみにエネルギー線照射を行わないようにするには、例えば基材フィルムの他の領域に対応する領域に印刷等によりエネルギー線遮蔽層を設け、基材フィルム側からエネルギー線照射を行えばよい。また、図3の構成の支持シートでは、基材フィルム3と粘着剤層4との接着を強固にするため、基材フィルム3の粘着剤層4が設けられる面には、所望により、サンドブラストや溶剤処理などによる凹凸化処理、あるいはコロナ放電処理、電子線照射、プラズマ処理、オゾン・紫外線照射処理、火炎処理、クロム酸処理、熱風処理などの酸化処理などを施すことができる。また、プライマー処理を施すこともできる。
 粘着剤層4の厚さは特に限定されないが、好ましくは1~100μm、さらに好ましくは2~80μm、特に好ましくは3~50μmである。
(支持シート付フィルム状焼成材料)
 支持シート付フィルム状焼成材料は、外周部に粘着部を有する支持シートの内周部にフィルム状焼成材料が剥離可能に仮着されてなる。図3で示した構成例では、支持シート付フィルム状焼成材料100aは、基材フィルム3と粘着剤層4とからなる支持シート2の内周部にフィルム状焼成材料1が剥離可能に積層され、支持シート2の外周部に粘着剤層4が露出している。この構成例では、支持シート2よりも小径のフィルム状焼成材料1が、支持シート2の粘着剤層4上に同心円状に剥離可能に積層されていることが好ましい。
 上記構成の支持シート付フィルム状焼成材料100aは、支持シート2の外周部に露出した粘着剤層4において、リングフレーム5に貼付される。
 また、リングフレームに対する糊しろ(粘着シートの外周部における露出した粘着剤層)上に、さらに環状の両面テープ若しくは粘着剤層を別途設けてもよい。両面テープは粘着剤層/芯材/粘着剤層の構成を有し、両面テープにおける粘着剤層は特に限定されず、たとえばゴム系、アクリル系、シリコーン系、ポリビニルエーテル等の粘着剤が用いられる。粘着剤層は、後述するチップ付基板を製造する際に、その外周部においてリングフレームに貼付される。両面テープの芯材としては、例えば、ポリエステルフィルム、ポリプロピレンフィルム、ポリカーボネートフィルム、ポリイミドフィルム、フッ素樹脂フィルム、液晶ポリマーフィルム等が好ましく用いられる。
 図4で示した構成例では、基材フィルム3の外周部にリング状の粘着剤層4を形成し、粘着部とする。図5に、図4で示す支持シート付フィルム状焼成材料100bの斜視図を示す。この際、粘着剤層4は、上記粘着剤からなる単層粘着剤層であってもよく、上記粘着剤からなる粘着剤層を含む両面粘着テープを環状に切断したものであってもよい。フィルム状焼成材料1は、粘着部に囲繞された基材フィルム3の内周部に剥離可能に積層される。この構成例では、支持シート2よりも小径のフィルム状焼成材料1が、支持シート2の基材フィルム3上に同心円状に剥離可能に積層されていることが好ましい。
 支持シート付フィルム状焼成材料には、使用に供するまでの間、フィルム状焼成材料及び粘着部のいずれか一方又はその両方の表面に、外部との接触を避けるための表面保護を目的として剥離フィルムを設けてもよい。
 表面保護フィルム(剥離フィルム)としては、先に挙げたポリエチレン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート及びポリプロピレンなどの基材フィルム表面に、剥離剤を用いて上述した剥離処理を施すことで得ることもできる。剥離処理に用いられる剥離剤としては、基材フィルムの説明において先に例示した剥離剤が挙げられる。
 支持シート付フィルム状焼成材料の厚さは、1~500μmが好ましく、5~300μmがより好ましく、10~150μmがさらに好ましい。
 ここで、「支持シート付フィルム状焼成材料の厚さ」とは、支持シート付フィルム状焼成材料全体の厚さを意味し、例えば、複数層からなる支持シート付フィルム状焼成材料の厚さとは、支持シート付フィルム状焼成材料を構成するすべての層の厚さを意味する。
≪支持シート付フィルム状焼成材料の製造方法≫
 前記支持シート付フィルム状焼成材料は、上述の各層を対応する位置関係となるように順次積層することで製造できる。
 例えば、基材フィルム上に粘着剤層又はフィルム状焼成材料を積層する場合には、剥離フィルム上に、これを構成するための成分及び溶媒を含有する粘着剤組成物又は焼成材料組成物を塗工又は印刷し、必要に応じて乾燥させ溶媒を揮発させてフィルム状とすることで、剥離フィルム上に粘着剤層又はフィルム状焼成材料をあらかじめ形成しておき、この形成済みの粘着剤層又はフィルム状焼成材料の前記剥離フィルムと接触している側とは反対側の露出面を、基材フィルムの表面と貼り合わせればよい。このとき、粘着剤組成物又は焼成材料組成物は、剥離フィルムの剥離処理面に塗工又は印刷することが好ましい。剥離フィルムは、積層構造の形成後、必要に応じて取り除けばよい。粘着剤組成物又は焼成材料組成物における、これを構成するための各成分の含有量は各成分の合計で50~99質量%、溶媒の含有量は1~50質量%であってよい。
 例えば、基材フィルム上に粘着剤層が積層され、前記粘着剤層上にフィルム状焼成材料が積層されてなる支持シート付フィルム状焼成材料(支持シートが基材フィルム及び粘着剤層の積層物である支持シート付フィルム状焼成材料)を製造する場合には、上述の方法で、基材フィルム上に粘着剤層を積層しておき、別途、剥離フィルム上にフィルム状焼成材料を構成するための成分及び溶媒を含有する焼成材料組成物を塗工又は印刷し、必要に応じて乾燥させ溶媒を揮発させてフィルム状とすることで、剥離フィルム上にフィルム状焼成材料を形成しておき、このフィルム状焼成材料の露出面を、基材上に積層済みの粘着剤層の露出面と貼り合わせて、フィルム状焼成材料を粘着剤層上に積層することで、支持シート付フィルム状焼成材料が得られる。剥離フィルム上にフィルム状焼成材料を形成する場合も、焼成材料組成物は、剥離フィルムの剥離処理面に塗工又は印刷することが好ましく、剥離フィルムは、積層構造の形成後、必要に応じて取り除けばよい。
 このように、支持シート付フィルム状焼成材料を構成する基材以外の層はいずれも、剥離フィルム上にあらかじめ形成しておき、目的とする層の表面に貼り合わせる方法で積層できるため、必要に応じてこのような工程を採用する層を適宜選択して、支持シート付フィルム状焼成材料を製造すればよい。
 なお、支持シート付フィルム状焼成材料は、必要な層をすべて設けた後、その支持シートとは反対側の最表層の表面に、剥離フィルムが貼り合わされた状態で保管されてよい。
≪チップ付基板の製造方法≫
 次に本発明に係る支持シート付フィルム状焼成材料の利用方法について、該焼成材料をチップ付基板の製造に適用した場合を例にとって説明する。
 本発明の一実施形態として、支持シート付フィルム状焼成材料を用いたチップ付基板の製造方法は、支持シート付フィルム状焼成材料の剥離フィルムを剥離し、半導体ウエハ(ワーク)の裏面に、支持シート付フィルム状焼成材料を貼付し、以下の工程(1)~(2)を、(1)、(2)の順で行ってもよく、以下の工程(1)~(4)を、(1)、(2)、(3)、(4)の順で行ってもよい。
 工程(1):支持シート、フィルム状焼成材料、及び半導体ウエハ(ワーク)がこの順に積層された積層体の、半導体ウエハ(ワーク)とフィルム状焼成材料とをダイシングする工程、
 工程(2):フィルム状焼成材料と、支持シートとを剥離し、フィルム状焼成材料付チップを得る工程、
 工程(3):基板の表面に、フィルム状焼成材料付チップを貼付する工程、
 工程(4):フィルム状焼成材料を焼成し、チップと基板とを接合する工程。
 以下、上記工程(1)~(4)を行う場合について説明する。
 半導体ウエハはシリコンウエハ及びシリコンカーバイドウエハであってもよく、またガリウム・砒素などの化合物半導体ウエハであってもよい。半導体ウエハの表面には、回路が形成されていてもよい。ウエハ表面への回路の形成はエッチング法、リフトオフ法などの従来汎用されている方法を含む様々な方法により行うことができる。次いで、半導体ウエハの回路面の反対面(裏面)を研削する。研削法は特に限定はされず、グラインダーなどを用いた公知の手段で研削してもよい。裏面研削時には、表面の回路を保護するために回路面に、表面保護シートと呼ばれる粘着シートを貼付する。裏面研削は、ウエハの回路面側(すなわち表面保護シート側)をチャックテーブル等により固定し、回路が形成されていない裏面側をグラインダーにより研削する。ウエハの研削後の厚さは特に限定はされないが、通常は20~500μm程度である。その後、必要に応じ、裏面研削時に生じた破砕層を除去する。破砕層の除去は、ケミカルエッチングや、プラズマエッチングなどにより行われる。
 次いで、半導体ウエハの裏面に、上記支持シート付フィルム状焼成材料のフィルム状焼成材料を貼付する。その後、工程(1)~(4)を(1)、(2)、(3)、(4)の順で行う。
 半導体ウエハ/フィルム状焼成材料/支持シートの積層体を、ウエハ表面に形成された回路毎にダイシングし、チップ/フィルム状焼成材料/支持シートの積層体を得る。ダイシングは、半導体ウエハとフィルム状焼成材料をともに切断するように行われる。本実施形態の支持シート付フィルム状焼成材料によれば、ダイシング時においてフィルム状焼成材料と支持シートの間で粘着力が発揮されるため、チッピングやチップ飛びを防止することができ、ダイシング適性に優れる。ダイシングは特に限定はされず、一例として、半導体ウエハのダイシング時には支持シートの周辺部(支持体の外周部)をリングフレームにより固定した後、ダイシングブレードなどの回転丸刃を用いるなどの公知の手法により半導体ウエハの個片化を行う方法などが挙げられる。ダイシングによる支持シートへの切り込み深さは、フィルム状焼成材料を完全に切断していてよく、フィルム状焼成材料と支持シートとの界面から0~30μmとすることが好ましい。支持シートへの切り込み量を小さくすることで、ダイシングブレードの摩擦による支持シートを構成する粘着剤層や基材フィルムの溶融や、バリ等の発生を抑制することができる。
 なお、表面に回路が形成された半導体ウエハを個片化したもの(チップ)を特に、素子又は半導体素子ともいう。
 その後、上記支持シートをエキスパンドしてもよい。支持シートの基材フィルムとして、伸張性に優れたものを選択した場合は、支持シートは、優れたエキスパンド性を有する。ダイシングされたフィルム状焼成材料付チップをコレット等の汎用手段によりピックアップすることで、フィルム状焼成材料と支持シートとを剥離する。この結果、裏面にフィルム状焼成材料を有するチップ(フィルム状焼成材料付チップ)が得られる。
 続いて、基板の表面に、フィルム状焼成材料付チップを貼付する。基板には、リードフレームやヒートシンクなども含まれる。
 次いでフィルム状焼成材料を焼成し、基板とチップとを焼結接合する。このとき、フィルム状焼成材料付チップのフィルム状焼成材料の露出面を、基板に貼付けておけば、フィルム状焼成材料を介してチップと前記基板とを焼結接合できる。
 フィルム状焼成材料を焼成する加熱温度は、フィルム状焼成材料の種類等を考慮して適宜定めればよいが、100~600℃が好ましく、150~550℃がより好ましく、250~500℃がさらに好ましい。加熱時間は、フィルム状焼成材料の種類等を考慮して適宜定めればよいが、1~60分間が好ましく、1~30分間がより好ましく、1~10分間がさらに好ましい。
 フィルム状焼成材料の焼成は、フィルム状焼成材料に圧をかけて焼成する加圧焼成を行ってもよい。加圧条件は、一例として、1~50MPa程度とすることができる。
 本実施形態のチップ付基板の製造方法によれば、厚さの均一性の高いフィルム状焼成材料を、チップ裏面に簡便に形成でき、ダイシング工程やパッケージングの後のクラックが発生しにくくなる。また、本実施形態のチップ付基板の製造方法によれば、個別化されたチップ裏面に、フィルム状焼成材料を個別に貼り付けることなくフィルム状焼成材料付チップを得ることができ、製造工程の簡略化が図れる。そして、フィルム状焼成材料付チップを、所望の基板上に配置して焼成することでフィルム状焼成材料を介してチップと基板とが焼結接合されたチップ付基板を製造することができる。チップと基板とは、本発明のフィルム状焼成材料により接合されているので、チップ剥がれが起きにくい。また、チップと基板を焼成前のフィルム状焼成材料で仮固定されている状態で搬送しても、チップずれが起きにくい。
 一実施形態として、チップと、本発明のフィルム状焼成材料とを備える、フィルム状焼成材料付チップが得られる。フィルム状焼成材料付チップは、一例として、上記のチップ付基板の製造方法により製造できる。
 なお、上記実施形態では、フィルム状焼成材料のチップとその基板との焼結接合について例示したが、フィルム状焼成材料の焼結接合対象は、上記に例示したものに限定されず、フィルム状焼成材料と接触して焼結させた種々の物品に対し、焼結接合が可能である。
 また、上記実施形態では、ブレード等を用いて半導体ウエハと一緒に個片化することでチップと同形のフィルム状焼成材料として加工することができ、且つフィルム状焼成材料付チップを製造することができる。すなわち、フィルム状焼成材料付チップにおいて、フィルム状焼成材料の接触面とチップの接触面の大きさ(面積)は同じであるが、これらは異なっていてもよい。例えば、フィルム状焼成材料の接触面がチップの接触面よりも大きい状態で、基板とチップとをフィルム状焼成材料を介して貼り合せてもよい。具体的には、基板に所望の大きさのフィルム状焼成材料を配置しておき、該フィルム状焼成材料よりも接触面が小さいチップをフィルム状焼成材料上に貼り付けてもよい。
 以下、実施例等により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例等に限定されるものではない。
≪実施例1~3、比較例1~2≫
<焼成材料組成物の製造>
 焼成材料組成物の製造に用いた成分を以下に示す。ここでは、粒子径100nm以下の金属粒子について「焼結性金属粒子」と表記している。
(焼結性金属粒子内包ペースト材料)
・アルコナノ銀ペーストANP-1(有機被覆複合銀ナノペースト、応用ナノ粒子研究所社製:アルコール誘導体被覆銀粒子、金属含有量70質量%以上、平均粒径100nm以下の銀粒子(焼結性金属粒子)60質量%以上)
・アルコナノ銀ペーストANP-4(有機被覆複合銀ナノペースト、応用ナノ粒子研究所社製:アルコール誘導体被覆銀粒子、金属含有量80質量%以上、平均粒径100nm以下の銀粒子(焼結性金属粒子)25質量%以上)
(バインダー成分)
・アクリル重合体1(2-エチルヘキシルメタクリレート重合体、質量平均分子量260,000、L-0818、日本合成化学社製、MEK希釈品、固形分58.4質量%、Tg:-10℃)
 下記表1に示す配合で、各成分を混合し、実施例1~3及び比較例1~2に対応する焼成材料組成物を得た。表1中の各成分の値は質量部を表す。焼結性金属粒子内包ペースト材料が高沸点溶媒を含んで販売され、且つこれが塗工後もしくは乾燥後のフィルム状焼成用材料中に残存しているため、焼結性金属粒子内包ペースト材料の成分はこれらを含めて記載している。バインダー成分中の溶媒は乾燥時に揮発することを考慮し、溶媒成分を除いた固形分質量部を表す。なお、表1中のカッコ内の数値は、焼成材料組成物の総質量を100質量%としたときの、焼成材料組成物に含まれる焼結性金属粒子の量(質量%)である。
<フィルム状焼成材料の製造>
 片面に剥離処理を施したポリエチレンテレフタレート系フィルムである剥離フィルム(厚さ38μm、SP-PET381031、リンテック社製)の片面に、上記で得られた焼成材料組成物を塗工し、110℃10分間乾燥させることで、表1に示す厚さを有するフィルム状焼成材料を得た。
<フィルム状焼成材料の測定・評価>
 上記で得られたフィルム状焼成材料について、下記項目を測定及び評価した。
(厚さの測定)
 JIS K7130に準じて、定圧厚さ測定器(テクロック社製、製品名「PG-02」)を用いて測定した。
(収縮率の測定)
 上記で得られた剥離フィルム付フィルム状焼成材料を直径5mmの円形状にカットし、これを直径10mmの断面を持つ高さ5mmの円柱体形状の銅被着体(α)の上面に貼付した。剥離フィルムを剥がし、フィルム状焼成材料の露出した面上に直径5mmの断面を持つ高さ2mmの円柱体形状の銅被着体(β)を、フィルム状焼成材料に重なるように載せて、大気雰囲気下で下記(1)又は(2)の条件にて加圧焼成し、収縮率測定用の試験片(X)を得た。
(1)350℃、10MPa、3分
(2)400℃、10MPa、3分
 試験片(X)における焼成後のフィルム状焼成材料の直径(R)[mm]と厚さ(H)[mm]を測定し、下記式(I)より収縮率(A)[%]を求め、下記式(II)より体積収縮率(B)[%]を求めた。結果を表1に示す。
 収縮率(A)[%]={1-(焼成後のフィルム状焼成材料の平面視形状の面積/焼成前のフィルム状焼成材料の平面視形状の面積)}×100  ・・・(I)
 体積収縮率(B)[%]={1-(焼成後のフィルム状焼成材料の体積/焼成前のフィルム状焼成材料の体積)}×100  ・・・(II)
 なお、焼成前のフィルム状焼成材料の平面視形状の面積は(5/2)×π[mm]であり、体積は(5/2)×π×0.075[mm]である。対して焼成後のフィルム状焼成材料の面積は(R/2)×π[mm]であり、体積は(R/2)×π×H[mm]である。なお、π=3.14とする。
(接触率の測定)
 収縮率の測定と同様にして試験片(X)を得た。
 常温で、試験片(X)の接着面(銅被着体(β)と銅被着体(α)との界面)に対して6mm/分の速度でせん断方向から力を加えて、銅被着体(α)から銅被着体(β)を剥がした。
 銅被着体(β)とフィルム状焼成材料との界面で剥離した場合、銅被着体(β)の表面(すなわち、フィルム状焼成材料が貼付される面)に見られるフィルム状焼成材料の接着痕の面積を計測し、これを焼成後のフィルム状焼成材料の面積とした。
 フィルム状焼成材料が凝集破壊した場合、銅被着体(β)の表面に残存するフィルム状焼成材料を20μm以下の厚さになるまで削った後、フィルム状焼成材料の面積を計測した。これを焼成後のフィルム状焼成材料の面積とした。
 なお、ボイド又はその痕跡が認められる場合、ボイドの面積は焼成後のフィルム状焼成材料の面積には含めないものとする。
 下記式(III)より接触率(C)[%]を求めた。結果を表1に示す。
 接触率(C)[%]=(焼成後のフィルム状焼成材料の面積/フィルム状焼成材料が貼付される銅被着体(β)の表面の面積)×100  ・・・(III)
(粘着力の測定)
 各例の焼成材料組成物を厚さ12μmのPET(ポリエチレンテレフタレート)フィルム上に塗工し、乾燥させて溶媒を揮発させることによりPETフィルムとフィルム状焼成材料が強固に貼合された積層フィルムを作製した。表面保護を目的として、積層フィルムのフィルム状焼成材料側の表面に剥離フィルム(厚さ38μm、SP-PET381031、リンテック社製)を貼り合わせた。得られた積層フィルムを剥離フィルムごと切断して幅25mmの粘着力測定用シートを得た。
 別途、表面を算術平均粗さ(Ra)が0.02μm以下になるまでケミカルメカニカルポリッシュ処理したシリコンウエハ(科学技術研究所社製、直径:150mm、厚さ:500μm)を粘着対象の被着体として準備した。
 次いで、シリコンウエハの処理面に、幅が25mmで長さが100mm以上の粘着力測定用シートの剥離フィルムを剥がし、フィルム状焼成材料が露出した面を40℃で貼り合せ、シリコンウエハと粘着力測定用シートとからなる積層体を得た。
 得られた積層体を23℃、相対湿度50%の雰囲気下に20分間放置した後、万能型引張試験機(インストロン社製、5581型試験機)を用いて、JIS Z0237:2000に準拠して180°引き剥がし試験を行った。具体的には、シリコンウエハから粘着力測定用シートを剥離速度300mm/minで剥離させた。このときの剥離は、シリコンウエハ及び粘着力測定用シートの互いに接触していた面同士が180°の角度を為すように、粘着力測定用シートをその長さ方向へ剥離させた。そして、この180°剥離のときの荷重(剥離力)を測定し、その測定値を粘着力(D)[mN/25mm]とした。結果を表1に示す。
(算術平均粗さの測定)
 形状測定レーザマイクロスコープ(キーエンス社製、3次元レーザー顕微鏡VK-9700)を用いて、JIS B0601:2001に準拠してカットオフ2.5mmにて、剥離フィルムを剥がしたフィルム状焼成材料の表面の凹凸を700×500μmの範囲で計測し、算術平均粗(Ra)を測定した。結果を表1に示す。
(チップずれの評価)
 収縮率の測定と同様にして、フィルム状焼成材料を介して銅被着体(α)と銅被着体(β)とを貼り合せた。常温で、銅被着体(α)と銅被着体(β)との接着面に対して6mm/分の速度でせん断方向から力を加え、銅被着体(α)から銅被着体(β)を剥がした。このとき、焼成前のフィルム状焼成材料と銅被着体(β)のずれの有無を確認し、これをチップのずれ発生の有無とした。結果を表1に示す。
(チップ剥がれの評価(せん断接着力の測定))
 収縮率の測定と同様にして試験片(X)を得た。常温で、試験片(X)の接着面に対して6mm/分の速度でせん断方向から力を加え、接着状態が破壊するときの強度を測定し、せん断接着力とした。このせん断接着力が50MPa以上の場合、様々な環境下でチップ剥がれが起きにくいことからチップ剥がれ「無し」と評価した。また、せん断接着力が50MPa未満の場合、チップ剥がれ「有り」と評価した。結果を表1に示す。
(額縁現象の有無)
 接触率の測定を行った際に、銅被着体(β)の裏面に見られるフィルム状焼成材料の接着痕、又は銅被着体(β)の裏面に残存するフィルム状焼成材料を目視にて観察し、額縁状にフィルム状焼成材料が存在しない部分の有無を確認した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例1~3のフィルム状焼成材料は、比較例1~2のフィルム状焼成材料と比較し、焼成前の搬送時のチップずれや焼成後のチップ剥がれが起きにくいものであった。
 各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、及びその他の変更が可能である。また、本発明は各実施形態によって限定されることはなく、請求項(クレーム)の範囲によってのみ限定される。
 1 フィルム状焼成材料
 2 支持シート
 3 基材フィルム
 4 粘着剤層
 5 リングフレーム
 6 被着体
 10 焼結性金属粒子
 20 バインダー成分
 100a 支持シート付フィルム状焼成材料
 100b 支持シート付フィルム状焼成材料

Claims (5)

  1.  焼結性金属粒子及びバインダー成分を含有するフィルム状焼成材料であって、
     焼結性金属粒子の含有量が15~98質量%であり、バインダー成分の含有量が2~50質量%であり、
     温度350℃、圧力10MPaの条件で3分間、加圧焼成したときの平面方向における収縮率が焼成前に対して10%以下であり、体積収縮率が焼成前に対して15~90%であり、
     被着体と接触した状態で、温度350℃、圧力10MPaの条件で3分間、加圧焼成したときの被着体との接触率が被着体の接触面積に対して90%以上である、フィルム状焼成材料。
  2.  少なくとも一方の表面の算術平均粗さ(Ra)が0.5μm以下である、請求項1に記載のフィルム状焼成材料。
  3.  焼成前のフィルム状焼成材料のシリコンウエハに対する粘着力が0.2mN/25mm以上である、請求項1又は2に記載のフィルム状焼成材料。
  4.  請求項1~3のいずれか一項に記載のフィルム状焼成材料と、前記フィルム状焼成材料の少なくとも一方の側に設けられた支持シートと、を備えた支持シート付フィルム状焼成材料。
  5.  前記支持シートが、基材フィルム上に粘着剤層が設けられたものであり、
     前記粘着剤層上に、前記フィルム状焼成材料が設けられている、請求項4に記載の支持シート付フィルム状焼成材料。
PCT/JP2018/032623 2017-09-15 2018-09-03 フィルム状焼成材料、及び支持シート付フィルム状焼成材料 WO2019054225A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18855684.9A EP3666429A4 (en) 2017-09-15 2018-09-03 BAKING MATERIAL IN THE FORM OF FILM, AND BAKING EQUIPMENT IN THE FORM OF FILM EQUIPPED WITH A SUPPORT SHEET
KR1020207006834A KR102293573B1 (ko) 2017-09-15 2018-09-03 필름상 소성 재료, 및 지지 시트를 가지는 필름상 소성 재료
CN201880059075.3A CN111065476B (zh) 2017-09-15 2018-09-03 膜状烧成材料及带支撑片的膜状烧成材料
US16/645,916 US11420255B2 (en) 2017-09-15 2018-09-03 Film-shaped firing material and film-shaped firing material with a support sheet
JP2019542004A JP6848076B2 (ja) 2017-09-15 2018-09-03 フィルム状焼成材料、及び支持シート付フィルム状焼成材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017177833 2017-09-15
JP2017-177833 2017-09-15

Publications (1)

Publication Number Publication Date
WO2019054225A1 true WO2019054225A1 (ja) 2019-03-21

Family

ID=65722790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032623 WO2019054225A1 (ja) 2017-09-15 2018-09-03 フィルム状焼成材料、及び支持シート付フィルム状焼成材料

Country Status (7)

Country Link
US (1) US11420255B2 (ja)
EP (1) EP3666429A4 (ja)
JP (1) JP6848076B2 (ja)
KR (1) KR102293573B1 (ja)
CN (1) CN111065476B (ja)
TW (1) TWI779091B (ja)
WO (1) WO2019054225A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196299A1 (ja) * 2019-03-22 2020-10-01 ハリマ化成株式会社 金属ペースト、接合方法及び接合体の製造方法
JP2021024145A (ja) * 2019-08-01 2021-02-22 リンテック株式会社 支持シート付フィルム状焼成材料、ロール体、積層体、及び装置の製造方法
CN114174067A (zh) * 2019-08-01 2022-03-11 琳得科株式会社 带支撑片的膜状烧成材料、辊体、层叠体及装置的制造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11267992B2 (en) 2017-09-15 2022-03-08 Lintec Corporation Film-shaped firing material and film-shaped firing material with support sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006321715A (ja) * 2006-06-19 2006-11-30 Kyocera Corp 未焼成積層シート
JP2014111800A (ja) 2012-12-05 2014-06-19 Nippon Handa Kk ペースト状金属微粒子組成物、固形状金属または固形状金属合金の製造方法、金属製部材の接合方法、プリント配線板の製造方法および電気回路接続用バンプの製造方法
JP2014224296A (ja) * 2013-05-17 2014-12-04 トヨタ自動車株式会社 接合用金属ペースト
JP2017069559A (ja) * 2015-09-30 2017-04-06 日東電工株式会社 パワー半導体装置の製造方法
JP2017069557A (ja) * 2015-09-30 2017-04-06 日東電工株式会社 シートおよび複合シート
JP2017177833A (ja) 2016-03-28 2017-10-05 株式会社ケーヒン 車両用空調装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3977226B2 (ja) * 2002-10-25 2007-09-19 大日本インキ化学工業株式会社 焼結体形成用金属粉の表面処理方法及び該焼結体形成用金属粉
JP4274867B2 (ja) * 2003-08-06 2009-06-10 リンテック株式会社 Icタグ
US20070183920A1 (en) 2005-02-14 2007-08-09 Guo-Quan Lu Nanoscale metal paste for interconnect and method of use
US8257795B2 (en) 2004-02-18 2012-09-04 Virginia Tech Intellectual Properties, Inc. Nanoscale metal paste for interconnect and method of use
US8535971B2 (en) * 2010-02-12 2013-09-17 Heraeus Precious Metals North America Conshohocken Llc Method for applying full back surface field and silver busbar to solar cell
JP5949051B2 (ja) 2012-03-29 2016-07-06 セイコーエプソン株式会社 射出成形用組成物および焼結体の製造方法
TWI600740B (zh) 2012-11-30 2017-10-01 Lintec Corp Sheet having a curable resin film-forming layer, and method of manufacturing the semiconductor device using the same
JP5988867B2 (ja) 2012-12-27 2016-09-07 リンテック株式会社 透明導電性フィルム
JP6360157B2 (ja) 2014-04-04 2018-07-18 京セラ株式会社 熱硬化性樹脂組成物、半導体装置及び電気・電子部品
JP6682235B2 (ja) * 2014-12-24 2020-04-15 日東電工株式会社 加熱接合用シート、及び、ダイシングテープ付き加熱接合用シート

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006321715A (ja) * 2006-06-19 2006-11-30 Kyocera Corp 未焼成積層シート
JP2014111800A (ja) 2012-12-05 2014-06-19 Nippon Handa Kk ペースト状金属微粒子組成物、固形状金属または固形状金属合金の製造方法、金属製部材の接合方法、プリント配線板の製造方法および電気回路接続用バンプの製造方法
JP2014224296A (ja) * 2013-05-17 2014-12-04 トヨタ自動車株式会社 接合用金属ペースト
JP2017069559A (ja) * 2015-09-30 2017-04-06 日東電工株式会社 パワー半導体装置の製造方法
JP2017069557A (ja) * 2015-09-30 2017-04-06 日東電工株式会社 シートおよび複合シート
JP2017177833A (ja) 2016-03-28 2017-10-05 株式会社ケーヒン 車両用空調装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3666429A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196299A1 (ja) * 2019-03-22 2020-10-01 ハリマ化成株式会社 金属ペースト、接合方法及び接合体の製造方法
CN113613811A (zh) * 2019-03-22 2021-11-05 哈利玛化成株式会社 金属糊剂、接合方法及接合体的制造方法
JP2021024145A (ja) * 2019-08-01 2021-02-22 リンテック株式会社 支持シート付フィルム状焼成材料、ロール体、積層体、及び装置の製造方法
CN114174067A (zh) * 2019-08-01 2022-03-11 琳得科株式会社 带支撑片的膜状烧成材料、辊体、层叠体及装置的制造方法
EP4008549A4 (en) * 2019-08-01 2023-12-06 Lintec Corporation COOKING MATERIAL IN FILM FORM WITH CARRIER SHEET, ROLL, LAMINATE, AND METHOD FOR MANUFACTURING DEVICE

Also Published As

Publication number Publication date
KR20200039733A (ko) 2020-04-16
CN111065476A (zh) 2020-04-24
TWI779091B (zh) 2022-10-01
EP3666429A1 (en) 2020-06-17
KR102293573B1 (ko) 2021-08-25
US20200276645A1 (en) 2020-09-03
CN111065476B (zh) 2022-03-01
TW201929983A (zh) 2019-08-01
EP3666429A4 (en) 2021-01-27
JP6848076B2 (ja) 2021-03-24
JPWO2019054225A1 (ja) 2020-03-26
US11420255B2 (en) 2022-08-23

Similar Documents

Publication Publication Date Title
JP6848076B2 (ja) フィルム状焼成材料、及び支持シート付フィルム状焼成材料
JP7080721B2 (ja) フィルム状焼成材料、及び支持シート付フィルム状焼成材料
TWI764993B (zh) 膜狀燒成材料、附支撐片的膜狀燒成材料、膜狀燒成材料的製造方法以及附支撐片的膜狀燒成材料的製造方法
JP7124049B2 (ja) フィルム状焼成材料、及び支持シート付フィルム状焼成材料
CN111066137B (zh) 膜状烧成材料及带支撑片的膜状烧成材料
US11267992B2 (en) Film-shaped firing material and film-shaped firing material with support sheet
JP6982625B2 (ja) 焼成材料組成物、フィルム状焼成材料の製造方法、及び支持シート付フィルム状焼成材料の製造方法
JP7080725B2 (ja) 支持シート付フィルム状焼成材料、及び半導体装置の製造方法
WO2021100851A1 (ja) フィルム状焼成材料、支持シート付フィルム状焼成材料、積層体、及び装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18855684

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019542004

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207006834

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018855684

Country of ref document: EP

Effective date: 20200312