WO2019050040A1 - 樹脂チタン金属接合体及びその製造法 - Google Patents

樹脂チタン金属接合体及びその製造法 Download PDF

Info

Publication number
WO2019050040A1
WO2019050040A1 PCT/JP2018/033521 JP2018033521W WO2019050040A1 WO 2019050040 A1 WO2019050040 A1 WO 2019050040A1 JP 2018033521 W JP2018033521 W JP 2018033521W WO 2019050040 A1 WO2019050040 A1 WO 2019050040A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium metal
metal member
resin
titanium
washing
Prior art date
Application number
PCT/JP2018/033521
Other languages
English (en)
French (fr)
Inventor
孝 眞 金
紀明 佐々木
修平 三浦
星 衡 李
Original Assignee
ジオネーション株式会社
株式会社東亜電化
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジオネーション株式会社, 株式会社東亜電化 filed Critical ジオネーション株式会社
Publication of WO2019050040A1 publication Critical patent/WO2019050040A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon

Definitions

  • the present invention relates to a resin-titanium metal bonded body and a method of manufacturing the same, and more particularly, to a resin-titanium metal bonded body capable of strongly bonding a resin member and a titanium metal member and a method of manufacturing the same.
  • Patent Document 1 discloses, as a technique for bonding a resin member and a metal member, an electro-chemical surface treatment method of forming a coating of triazine thiol (sulfur organic compound) on the surface of the metal member.
  • metals include copper, nickel, aluminum, iron, cobalt, tin and stainless steel.
  • An object of the present invention is to provide a resin-titanium metal bonded body capable of improving the bonding strength between a resin member and a titanium metal member, and a method for manufacturing a resin-titanium metal bonded body having good bonding strength between a resin member and a titanium metal member. is there.
  • the resin titanium metal bonded body according to the present invention is a resin titanium metal bonded body formed by bonding a titanium metal member and a thermoplastic resin member, wherein the titanium metal member and the thermoplastic resin member have a thickness of 10 to It is characterized in that it is bonded by an anodic oxide film of 1000 nm.
  • the resin titanium metal bonded body according to the present invention is a resin titanium metal bonded body formed by bonding a titanium metal member and a thermoplastic resin member, wherein the titanium metal member and the thermoplastic resin member have a thickness of 10 to It is characterized in that it is bonded by an anodic oxide film in which triazine thiol of 1000 nm is present internally and externally, and is bonded by the anodic oxide film.
  • the anodic oxide film has a composition of 10 to 60% of O, 3% or less of S, 10 to 80% of Ti, 3% or less of P, 3% or less of N, 3% or less of C by weight% It is characterized by having.
  • the method for producing a resin-titanium-metal bonded body according to the present invention is a method for producing a resin-titanium metal-bonded body, comprising a degreasing step of washing a titanium metal member with an alkaline solution, and a titanium metal member after the degreasing step.
  • An acid treatment step of washing with an acidic or alkaline solution an activation treatment step of applying a constant voltage to the electrode by immersing the titanium metal member in the acidic or alkaline solution after the acid treatment step, and the titanium metal member Anodized film having a thickness of 10 to 1000 nm on the titanium metal member by applying a current density of 0.5 A / dm 2 or more and less than 5 A / dm 2 in an acidic or alkaline solution at 20 to 90 ° C. as an anode.
  • the method for producing a resin-titanium-metal bonded body according to the present invention is a method for producing a resin-titanium metal-bonded body, comprising a degreasing step of washing a titanium metal member with an alkaline solution, and a titanium metal member after the degreasing step.
  • An acid treatment step of washing with an acidic or alkaline solution an activation treatment step of applying a constant voltage to the electrode by immersing the titanium metal member in the acidic or alkaline solution after the acid treatment step, and the titanium metal member As an anode, a current density of 0.5 A / dm 2 or more and 5 A / dm 2 or less is applied in an acidic or alkaline solution containing a triazine thiol derivative at 20 to 90 ° C.
  • the oxide film having a thickness of 10 to 1000 nm is formed on the surface of the titanium metal member in advance, the resin member and the titanium metal member can be joined favorably. it can. Further, the airtightness between the resin member and the titanium metal member can be 10 ⁇ 9 Pam 3 / s or less in a leak test using a helium leak.
  • the resin titanium metal joined body according to the present invention has formed on the surface of the titanium metal member in advance an oxide film having a film thickness of 10 to 1000 nm with triazine thiol present inside and outside, the resin member and the titanium metal member are good Can be joined to
  • the bonding strength is 30 MPa or more, and the airtightness between the resin member and the titanium metal member can be 10 -9 Pam 3 / s or less in a leak test using a helium leak.
  • the anodized film is composed of components with 10% to 60% O, 3% or less S, 10% to 80% Ti, 3% or less P, 3% or less N, and 3% or less C by weight% Therefore, it contains sulfur (S), and the resin member and the titanium metal member can be joined well.
  • the first method for producing a titanium resin bonded resin according to the present invention, (a) a degreasing step for removing fats from the surface of a titanium metal member by immersion, and (b) acid treatment for washing with an acidic or alkaline solution Step (c) activation step of applying a low voltage by immersion in an acidic or alkaline solution, and (d) forming an oxide layer in an acidic or alkaline solution using a titanium metal member as an anode.
  • the resin member is provided with the following steps: (e) washing the titanium metal member with water after formation of the oxide film, and (f) inserting the resin member into the insert member and joining it to the titanium metal member.
  • the bonding strength of titanium and titanium metal members can be 30 MPa or more, and the airtightness can be 10 -9 Pam 3 / s or less in a leak test using a helium leak.
  • the second method for producing a resin-titanium-metal bonded body (a) a degreasing step for removing fats from the surface of the titanium metal member by immersion, and (b) acid treatment for washing with an acidic or alkaline solution Forming an oxide film in an acidic or alkaline solution containing a triazine thiol derivative, using (c) an activation step of applying voltage by immersion in an acidic or alkaline solution, and (d) using a titanium metal member as an anode Oxide film forming process (referred to as TRI electrolytic process), (e) washing the titanium metal member with water after forming the oxide film, and (f) insert molding the resin member and bonding it to the titanium metal member Since the insert process is provided, the bonding strength between the resin member and the titanium metal member can be made to be 30 MPa or more, and the airtightness is 10 -9 Pam 3 / s or more in the leak test using helium leak. You can do it below.
  • FIG. 1 It is a flowchart which shows the manufacturing method of the resin titanium metal joining body by this invention. It is a figure which shows the shape of the titanium metal member made into the test piece.
  • (A) is a front view
  • (B) is a right side view
  • (C) is a perspective view.
  • FIG. 1 is a flow chart showing a method of manufacturing a resin-titanium metal bonded body according to the present invention.
  • the degreasing step (s1) is performed by immersing the titanium metal member 1 for 1 to 10 minutes in a solution in which a cationic surfactant is added to an alkaline series of NAOH, KOH, or NA 2 CO 3 .
  • the temperature of the solution is in the range of normal temperature to 50 ° C.
  • the oil on the surface of the titanium metal member 1 is removed.
  • the acid treatment step (s2) is an alkaline solution obtained by adding H 2 O 2 to 5 to 50% by weight of an acidic solution of hydrochloric acid, sulfuric acid, phosphoric acid or nitric acid, or 5 to 50% by weight of NAOH or KOH
  • the titanium metal member 1 is immersed in the solution of 1 to 10 minutes.
  • the temperature of the solution is in the range of normal temperature (20 ° C.) to 50 ° C.
  • the surface of the titanium metal member 1 is cleaned to remove the oxide film and the like.
  • the titanium metal member 1 is applied with a constant voltage of 0.2 to 5 V applied to the anode or the cathode of 5 to 50% by weight of 5 to 50% hydrochloric acid, sulfuric acid, phosphoric acid or nitric acid bath. Soak for 1 to 10 minutes.
  • the temperature of the solution is from normal temperature to 50 ° C.
  • the electrodes are provided with a pulse or DC voltage.
  • the oxide film forming step (s4) is referred to as a TRI electrolytic step.
  • the titanium metal member 1 is connected as an anode.
  • the solution is a 10-30% (wt%) acidic solution of sulfuric acid, phosphoric acid or hydrochloric acid, or 5-50% (wt%) of NAOH or KOH with 1-5% (wt%) sodium phosphate and sodium carbonate It is an alkaline solution to which 1 to 5% (% by weight) is added, to which a trace amount of a triazine thiols derivative is added.
  • the temperature of the solution is from normal temperature (20 ° C.) to 90 ° C.
  • a constant current current density of 0.5 A / dm 2 or more and less than 5 A / dm 2 is applied between the anode and the cathode.
  • a voltage of 4 to 40 V may be applied between the anode and the cathode.
  • Oxide film 4 has a composition of 10 to 60% of O, 3% or less of S, 10 to 80% of Ti, 3% or less of P, 3% or less of N, 3% or less of C, by weight% it can.
  • the oxide film 4 changes in color from 200 to 300 for R (red), 200 to 300 for G (green), 200 to 300 for B (blue) from 200 to 300 before TRI electrolytic processing, and after TRI electrolytic processing, R 100-200 for (red), 100-200 for G (green), and 100-300 for B (blue).
  • the water-washing step (s5) is a step of washing the titanium metal member 1 having the oxide film of triazine thiol formed on the surface with water having a water temperature of 5 ° C. or more and less than 60 ° C.
  • the insert molding step (s6) after the water washing step (s5), the titanium metal member 1 having the oxide film formed thereon is loaded into a mold, and a thermoplastic resin to be the resin member 2 is injected. The members 1 are joined to form a resin-titanium-metal bonded body 3.
  • FIG. 2 is a figure which shows the shape of the titanium metal member 1 made into the test piece.
  • (A) is a front view
  • (B) is a right side view
  • (C) is a perspective view.
  • the symbol a is a hole of 4 mm in diameter.
  • the symbol f is 3 mm in thickness.
  • Vertical x horizontal is a plate of 40 mm x 12 mm as shown by the symbols b and e. c is 6 mm and d is 5 mm. Titanium metal member 1 used grade 2 of titanium alloy as an example.
  • FIG. 3 is a photograph of a resin-titanium-metal bonded body manufactured by the manufacturing method of FIG.
  • the resin titanium metal bonded body 3 is obtained by integrally molding the resin member 2 on the titanium metal member 1 by insert molding.
  • the titanium metal member 1 is loaded in a mold, and a thermoplastic resin is pressed into a portion to be joined, thereby integrally molding the titanium metal member 1 and the resin member 2.
  • the thermoplastic resin polybutylene terephthalate (PBT) and polyphenylene sulfide (PPS) can be used.
  • the resin-titanium-metal bonded body 3 of FIG. 3 is used as a test piece 3a for a tensile test in order to check the bonding strength.
  • FIG. 4 is a table showing the grade of titanium alloy 5. The values are in weight percent. For grade 2 titanium alloys, N is 0.03% or less, C is 0.10% or less, H is 0.015 or less, Fe is 0.20% or less, Ti (titanium) is the remaining (rem) is there. Other grades were also used in the test.
  • FIG. 5 is a component analysis table of the oxide film.
  • the oxide film 4 was subjected to spectrum analysis after TRI electrolytic treatment, C (carbon) 0.53 to 1.47 wt%, N (nitrogen) 0.0 wt%, O (oxygen) 28.37 to 49.78% by weight, 0.07% by weight of P (phosphorus), 0.07 to 0.16% by weight of S (sulfur), and 48.83 to 70.96% of Ti (titanium) .
  • This figure shows that oxide film 4 is 10% to 60% O, 3% or less S, 49 to 80% Ti, 3% or less P, 3% or less N, C 3% or less by weight% It shows that it is a component composition of
  • FIG. 6 is a table showing the bonding strength of the resin titanium metal bonded body 3.
  • the test pieces A and B are titanium alloys of different grades.
  • Test strip A consisted of 7 test strips, and 35 of N1 to N5 were tested.
  • Test piece B also consisted of 7 test pieces, and 35 of N1 to N5 were tested.
  • an average tensile strength of 30 MPa can be secured.
  • an average of 33 MPa can be secured.
  • FIG. 7 is a graph showing the results of the reliability test.
  • the high temperature and high humidity test was conducted at a temperature of 80 ° C., a humidity of 90%, and a test time of 200 hours or more.
  • the tensile strength after this test is lower than the tensile strength of the test piece not subjected to the load test, as shown in FIG.
  • the thermal shock test was repeated for 150 cycles, with the temperature varied between -40 ° C and 80 ° C, every 30 minutes.
  • the tensile strength after this test was higher than the tensile strength of the untested specimen.
  • FIG. 8 is a photograph showing a test piece for an airtightness test.
  • the test piece 3b for the airtightness test is a test piece for testing the airtightness and waterproofness of the resin titanium metal bonded body 3.
  • the titanium metal member 1 penetrates the disk-shaped resin member 2 and is integrally joined.
  • a test piece 3b for air tightness test is loaded in a cylindrical container, helium gas is pressed into one side from which the titanium metal member 1 protrudes, and helium gas does not leak to the other side from which the titanium metal member 1 protrudes. Find out The leak of helium gas can be reduced to 10 -9 Pam 3 / s or less. In other words, there is no leak.
  • FIG. 9 is a photograph (magnification: 500 times) of the oxide film.
  • FIG. 10 is a photograph (magnification: 5000 times) of the oxide film.
  • FIG. 11 is a photograph (magnification: 40000 times) of the oxide film.
  • FIG. 12 is a photograph (magnification: 50000 times) of the oxide film.
  • the surface is uneven, and many bulges having a diameter of 10 nm to 1 ⁇ m are formed.
  • FIG. 13 is a photograph showing a cross section of the oxide film formed on the surface of titanium metal member 1.
  • the oxide film 4 having a thickness of 546 nm or 501 nm is formed on the surface of the titanium alloy 5.
  • the resin-titanium-metal bonded body and the method for manufacturing the same according to the present invention are integrated bonding of a metal member and a resin member, and can be used to reduce the weight of automobile parts.

Abstract

優れた接合強度を有する樹脂チタン金属接合体とその製造法を提供する。 樹脂チタン金属接合体の製造法は、チタン金属部材をアルカリ性の溶液で洗浄する脱脂工程と、脱脂工程後、チタン金属部材を酸性又はアルカリ性の溶液で洗浄する酸処理工程と、酸処理工程後、チタン金属部材を酸性又はアルカリ性の溶液に浸漬して電極に定電圧をかける活性化処理工程と、チタン金属部材を陽極とし、トリアジンチオール誘導体を含む酸性又はアルカリ性の溶液中で、所定の電流密度を印加して、チタン金属部材上に10~1000nmの陽極酸化被膜を形成する工程と、陽極酸化被膜が形成されたチタン金属部材を、水で洗浄する水洗い工程と、陽極酸化被膜が形成されたチタン金属部材に、熱可塑性樹脂をインサート成形する工程と、を備える。

Description

樹脂チタン金属接合体及びその製造法
 本発明は、樹脂チタン金属接合体及びその製造方法に係り、より詳しくは、樹脂部材とチタン金属部材を強力に接合できる樹脂チタン金属接合体及びその製造法に関する。
 自動車部品の軽量化は、例えば金属部材のみで形成されていた部材を金属部材と樹脂部材の接合体とすることで行われる。特許文献1には、樹脂部材と金属部材とを接合する技術として、トリアジンチオール(硫黄有機化合物)の被膜を金属部材表面上に形成する電気・化学的な表面処理法が開示されている。金属としては、銅、ニッケル、アルミニウム、鉄、コバルト、錫、ステンレスがあげられている。
 しかしながら、チタン金属部材にトリアジンチオールの被膜を形成し、チタン金属部材に樹脂部材を接合して、十分な接合強度を得ることについては具体的な開示がない。
特公平5-51671号公報
 本発明の目的は、樹脂部材とチタン金属部材の接合強度が向上できる樹脂チタン金属接合体と、樹脂部材とチタン金属部材の接合強度が良好な樹脂チタン金属接合体の製造方法を提供することにある。
 本発明による樹脂チタン金属接合体は、チタン金属部材と熱可塑性樹脂部材とを接合してなる樹脂チタン金属接合体であって、前記チタン金属部材と前記熱可塑性樹脂部材とが、膜厚10~1000nmの陽極酸化被膜により接合されることを特徴とする。
 本発明による樹脂チタン金属接合体は、チタン金属部材と熱可塑性樹脂部材とを接合してなる樹脂チタン金属接合体であって、前記チタン金属部材と前記熱可塑性樹脂部材とが、膜厚10~1000nmのトリアジンチオールを内部及び外部に存在させた陽極酸化被膜により接合され、前記陽極酸化被膜により接合されることを特徴とする。
 前記陽極酸化被膜は、重量%で、Oが10~60%、Sが3%以下、Tiが10~80%、Pが3%以下、Nが3%以下、Cが3%以下の成分構成を有することを特徴とする。
 本発明による樹脂チタン金属接合体の製造法は、樹脂チタン金属接合体を製造する製造法であって、チタン金属部材をアルカリ性の溶液で洗浄する脱脂工程と、前記脱脂工程後、チタン金属部材を酸性又はアルカリ性の溶液で洗浄する酸処理工程と、前記酸処理工程後、チタン金属部材を前記酸性又はアルカリ性の溶液に浸漬して電極に定電圧をかける活性化処理工程と、前記チタン金属部材を陽極とし、20~90℃の酸性又はアルカリ性の溶液中で、0.5A/dm2以上5A/dm2未満の電流密度を印加して、前記チタン金属部材上に膜厚が10~1000nmの陽極酸化被膜を形成する工程と、前記陽極酸化被膜が形成されたチタン金属部材を、5℃以上、60℃未満の水で洗浄する水洗い工程と、前記水洗い工程後の、前記陽極酸化被膜が形成されたチタン金属部材に、熱可塑性樹脂をインサート成形する工程と、を備えて、チタン金属部材と熱可塑性樹脂部材とを接合することを特徴とする。
 本発明による樹脂チタン金属接合体の製造法は、樹脂チタン金属接合体を製造する製造法であって、チタン金属部材をアルカリ性の溶液で洗浄する脱脂工程と、前記脱脂工程後、チタン金属部材を酸性又はアルカリ性の溶液で洗浄する酸処理工程と、前記酸処理工程後、チタン金属部材を前記酸性又はアルカリ性の溶液に浸漬して電極に定電圧をかける活性化処理工程と、前記チタン金属部材を陽極とし、20~90℃のトリアジンチオール誘導体を含む酸性又はアルカリ性の溶液中で、0.5A/dm2以上5A/dm2未満の電流密度を印加して、前記チタン金属部材上に膜厚が10~1000nmの陽極酸化被膜を形成する工程と、前記陽極酸化被膜が形成されたチタン金属部材を、5℃以上、60℃未満の水で洗浄する水洗い工程と、前記水洗い工程後の、前記陽極酸化被膜が形成されたチタン金属部材に、熱可塑性樹脂をインサート成形する工程と、を備えて、前記チタン金属部材と熱可塑性樹脂部材とを接合することを特徴とする。
 本発明による樹脂チタン金属接合体は、あらかじめチタン金属部材の表面に、膜厚が10~1000nmの酸化被膜を形成したので、樹脂部材とチタン金属部材が良好に接合でき、接合強度を30MPa以上にできる。また、樹脂部材とチタン金属部材の間の気密性は、ヘリウムリークを使用したリークテストで、10-9Pam/s以下にできる。
 本発明による樹脂チタン金属接合体は、あらかじめチタン金属部材の表面に、膜厚が10~1000nmのトリアジンチオールを内部及び外部に存在させた酸化被膜を形成したので、樹脂部材とチタン金属部材が良好に接合できる。その接合強度は30MPa以上で、樹脂部材とチタン金属部材の間の気密性は、ヘリウムリークを使用したリークテストで、10-9Pam/s以下にできる。
 陽極酸化被膜は、重量%で、Oが10~60%、Sが3%以下、Tiが10~80%、Pが3%以下、Nが3%以下、Cが3%以下の成分で構成したので、すなわち硫黄(S)を含むものであり、樹脂部材とチタン金属部材を良好に接合できる。
 本発明による第1の樹脂チタン金属接合体の製造法によれば、(a)浸漬してチタン金属部材表面の脂分を除く脱脂工程と、(b)酸性又はアルカリ性の溶液で洗浄する酸処理工程と、(c)酸性又はアルカリ性の溶液に浸漬して低電圧をかける活性化工程と、(d)チタン金属部材を陽極とし、酸性又はアルカリ性の溶液中で、酸化被膜を形成する酸化被膜形成工程と、(e)酸化被膜形成後、チタン金属部材を水で洗う水洗工程と、(f)樹脂部材をインサート成形して、チタン金属部材に接合するインサート工程と、を設けたので、樹脂部材とチタン金属部材の接合強度を30MPa以上にでき、気密性はヘリウムリークを使用したリークテストで10-9Pam/s以下にできる。
 本発明による第2の樹脂チタン金属接合体の製造法によれば、(a)浸漬してチタン金属部材表面の脂分を除く脱脂工程と、(b)酸性又はアルカリ性の溶液で洗浄する酸処理工程と、(c)酸性又はアルカリ性の溶液に浸漬して電圧をかける活性化工程と、(d)チタン金属部材を陽極とし、トリアジンチオール誘導体を含む酸性又はアルカリ性の溶液中で、酸化被膜を形成する酸化被膜形成工程(TRI電解工程と称す)と、(e)酸化被膜形成後、チタン金属部材を水で洗う水洗工程と、(f)樹脂部材をインサート成形して、チタン金属部材に接合するインサート工程と、を設けたので、樹脂部材とチタン金属部材の接合強度を30MPa以上にでき、気密性は、ヘリウムリークを使用したリークテストで10-9Pam/s以下にできる。
本発明による樹脂チタン金属接合体の製造法を示すフローチャートである。 試験片としたチタン金属部材の形状を示す図である。(A)は正面図、(B)は右側面図、(C)は斜視図である。 図1に示す製造法で製作した樹脂チタン金属接合体の写真である。 チタン合金のグレートを示す表である。 酸化被膜の成分分析表である。 樹脂チタン金属接合体の接合強度を示す表である。 信頼性テストの結果を示すグラフである。 気密試験用の試験片を示す写真である。 酸化被膜の写真(倍率:500倍)である。 酸化被膜の写真(倍率:5000倍)である。 酸化被膜の写真(倍率:40000倍)である。 酸化被膜の写真(倍率:50000倍)である。 チタン金属部材の表面に形成された酸化被膜の断面を示す写真である。
 以下、図面を参照して、本発明による樹脂チタン金属接合体及びその製造法を詳しく説明する。
 図1は、本発明による樹脂チタン金属接合体の製造法を示すフローチャートである。脱脂工程(s1)は、アルカリ系列のNAOH、KOH、又はNACOに陽イオン活性剤を加えた溶液に、チタン金属部材1を1~10分間浸漬することで行なう。溶液の温度は、常温~50℃の範囲とする。これにより、チタン金属部材1の表面の脂分を除去する。酸処理工程(s2)は、重量%で5~50%の塩酸、硫酸、リン酸又は硝酸の酸性の溶液、もしくは重量%で5~50%のNAOH又はKOHにHを加えたアルカリ性の溶液に、チタン金属部材1を1~10分間浸漬することで行なう。溶液の温度は、常温(20℃)~50℃の範囲とする。これにより、チタン金属部材1の表面を洗浄し、酸化膜等を除去する。
 活性化工程(s3)は、重量%で5~50%の塩酸、硫酸、リン酸、又は硝酸浴の陽極または陰極に、0.2~5Vの定電圧を与えた状態で、チタン金属部材1を1~10分浸漬することで行なう。溶液の温度は、常温~50℃とする。電極には、パルス又は直流電圧が与えられる。
 酸化被膜形成工程(s4)は、TRI電解工程と称する。チタン金属部材1を陽極として接続する。溶液は、硫酸、リン酸又は塩酸の10~30%(重量%)の酸性溶液、もしくはNAOH又はKOHの5~50%(重量%)にリン酸ナトリウム1~5%(重量%)と炭酸ナトリウム1~5%(重量%)を加えたのアルカリ性の溶液に、微量のトリアジンチオール(Triazine Thiols)誘導体を加えたものである。溶液の温度は、常温(20℃)~90℃とする。陽極と陰極間に、0.5A/dm以上で、5A/dm未満の定電流電流密度を印加する。陽極と陰極間に、電圧4~40Vを印加してもよい。1~40分間の電気分解により、チタン金属部材の表面に、膜厚10~1000nmのトリアジンチオールの酸化被膜4を形成する。酸化被膜4は、重量%で、Oが10~60%、Sが3%以下、Tiが10~80%、Pが3%以下、Nが3%以下、Cが3%以下の成分構成にできる。酸化被膜4は、TRI電解処理の前の色相、R(赤)が200~300、G(緑)が200~300、B(青)が200~300から変化し、TRI電解処理後は、R(赤)が100~200、G(緑)が100~200、B(青)が100~300となる。
 水洗い工程(s5)は、表面にトリアジンチオールの酸化被膜が形成されたチタン金属部材1を、水温が5℃以上60℃未満の水で洗浄する工程である。インサート成形工程(s6)は、水洗い工程(s5)後、酸化被膜が形成されたチタン金属部材1を型に装填し、樹脂部材2となる熱可塑性の樹脂を注入し、樹脂部材2とチタン金属部材1を接合して樹脂チタン金属接合体3を形成する。
 図2は、試験片としたチタン金属部材1の形状を示す図である。(A)は正面図、(B)は右側面図、(C)は斜視図である。符号aは直径4mmの孔である。符号fは板厚で3mmである。縦×横は、符号b、eで示すように40mm×12mmの板である。cは6mm、dは5mmである。チタン金属部材1は、一例としてチタン合金のグレード2を使用した。
 図3は、図1の製造法で製作した樹脂チタン金属接合体の写真である。樹脂チタン金属接合体3は、チタン金属部材1に樹脂部材2がインサート成形により一体化成形されたものである。インサート成形は、金型にチタン金属部材1を装填しておき、接合する部位に熱可塑性の樹脂を圧入することで、チタン金属部材1と樹脂部材2を一体化成形する。熱可塑性の樹脂としては、ポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイド(PPS)を使用できる。チタン金属部材1と樹脂部材2の接触面積は、直線状に接合したので、約36mm(=12mm×3mm)である。図3の樹脂チタン金属接合体3は、接合強度を調べるため、引っ張り試験用の試験片3aとして使用する。
 図4は、チタン合金5のグレートを示す表である。数値は重量%である。グレード2のチタン合金は、Nが0.03%以下、Cが0.10%以下、Hが0.015以下、Feが0.20%以下、Ti(チタン)が残り(rem)の数値である。他のグレードも試験に使用した。
 図5は、酸化被膜の成分分析表である。TRI電解処理後、酸化被膜4をスペクトル分析したもので、C(炭素)が0.53~1.47重量%、N(窒素)が0.0重量%、O(酸素)が28.37~49.78重量%、P(リン)が0.07重量%、S(硫黄)が0.07~0.16重量%、Ti(チタン)が48.83~70.96%の成分構成を有する。この数値は、酸化被膜4が、重量%で、Oが10~60%、Sが3%以下、Tiが49~80%、Pが3%以下、Nが3%以下、Cが3%以下の成分構成であることを示す。
 図6は、樹脂チタン金属接合体3の接合強度を示す表である。試験片A、Bは、グレードの異なるチタン合金である。試験片Aは、7個の試験片からなり、N1~N5の35個を試験した。試験片Bも7個の試験片からなり、N1~N5の35個を試験した。図6に示すように、引っ張り強度は、試験片Aのグループでは平均30MPaを確保できている。試験片Bのグループでは平均33MPaを確保できている。
 図7は、信頼性テストの結果を示すグラフである。高温高湿テストは、温度が80℃、湿度90%、テスト時間は200時間以上で実施した。この試験後の引っ張り強度は、図7に示すように、負荷テストをしない試験片の引っ張り強度よりも低下する。熱衝撃テストは、温度をマイナス40℃~80℃間で、30分毎に変化させ、150サイクルを繰り返した。この試験後の引っ張り強度は、負荷テストをしない試験片の引っ張り強度よりも上昇した。
 図8は、気密試験用の試験片を示す写真である。気密試験用の試験片3bは、樹脂チタン金属接合体3の気密性及び防水性をテストするための試験片である。チタン金属部材1が、円板状の樹脂部材2を貫通して一体に接合している。筒状の容器に気密試験用の試験片3bを装填し、チタン金属部材1が突出した一方の側に、ヘリウムガスを圧入し、チタン金属部材1が突出した他方の側にヘリウムガスが漏れないか調べる。ヘリウムガスのリークを10-9Pam/s以下にできる。つまり、漏れはないといえる。
 図9は、酸化被膜の写真(倍率:500倍)である。図10は、酸化被膜の写真(倍率:5000倍)である。図11は、酸化被膜の写真(倍率:40000倍)である。図12は、酸化被膜の写真(倍率:50000倍)である。図9に示すように、表面は凸凹しており、直径が10nm~1μmのふくらみが多数形成される。
 図13は、チタン金属部材1の表面に形成された酸化被膜の断面を示す写真である。チタン合金5の表面には、膜厚が、546nmや501nmの酸化被膜4が形成されている。
 本発明の樹脂チタン金属接合体及びその製造法は、金属部材と樹脂部材の一体化した接合するもので、自動車部品の軽量化に利用できる。
 1  チタン金属部材
 2  樹脂部材
 3  樹脂チタン金属接合体
 3a  引っ張り試験用の試験片
 3b  気密試験用の試験片
 4  酸化被膜
 5  チタン合金
 s1~s6  製造法の各工程

Claims (5)

  1.  チタン金属部材と熱可塑性樹脂部材とを接合してなる樹脂チタン金属接合体であって、
     前記チタン金属部材と前記熱可塑性樹脂部材とが、膜厚10~1000nmの陽極酸化被膜により接合されることを特徴とする樹脂チタン金属接合体。
  2.  チタン金属部材と熱可塑性樹脂部材とを接合してなる樹脂チタン金属接合体であって、
     前記チタン金属部材と前記熱可塑性樹脂部材とが、膜厚10~1000nmのトリアジンチオールを内部及び外部に存在させた陽極酸化被膜により接合され、前記陽極酸化被膜により接合されることを特徴とする樹脂チタン金属接合体。
  3.  前記陽極酸化被膜は、重量%で、Oが10~60%、Sが3%以下、Tiが10~80%、Pが3%以下、Nが3%以下、Cが3%以下の成分構成を有することを特徴とする請求項1又は2に記載の樹脂チタン金属接合体。
  4.  樹脂チタン金属接合体を製造する製造法であって、
     チタン金属部材をアルカリ性の溶液で洗浄する脱脂工程と、
     前記脱脂工程後、チタン金属部材を酸性又はアルカリ性の溶液で洗浄する酸処理工程と、
     前記酸処理工程後、チタン金属部材を前記酸性又はアルカリ性の溶液に浸漬して電極に定電圧をかける活性化処理工程と、
     前記チタン金属部材を陽極とし、20~90℃の溶液中で、0.5A/dm2以上5A/dm2未満の電流密度を印加して、前記チタン金属部材上に膜厚が10~1000nmの陽極酸化被膜を形成する工程と、
     前記陽極酸化被膜が形成されたチタン金属部材を、5℃以上、60℃未満の水で洗浄する水洗い工程と、
     前記水洗い工程後の、前記陽極酸化被膜が形成されたチタン金属部材に、熱可塑性樹脂をインサート成形する工程と、が備えられ、
     前記チタン金属部材と熱可塑性樹脂部材とが接合されることを特徴とする樹脂チタン金属接合体の製造法。
  5.  樹脂チタン金属接合体を製造する製造法であって、
     チタン金属部材をアルカリ性の溶液で洗浄する脱脂工程と、
     前記脱脂工程後、チタン金属部材を酸性又はアルカリ性の溶液で洗浄する酸処理工程と、
     前記酸処理工程後、チタン金属部材を前記酸性又はアルカリ性の溶液に浸漬し電極に定電圧をかける活性化処理工程と、
     前記チタン金属部材を陽極とし、20~90℃のトリアジンチオール誘導体を含む溶液中で、0.5A/dm2以上5A/dm2未満の電流密度を印加して、前記チタン金属部材上に膜厚が10~1000nmの陽極酸化被膜を形成する工程と、
     前記陽極酸化被膜が形成されたチタン金属部材を、5℃以上、60℃未満の水で洗浄する水洗い工程と、
     前記水洗い工程後の、前記陽極酸化被膜が形成されたチタン金属部材に、熱可塑性樹脂をインサート成形する工程と、が備えられ、
     前記チタン金属部材と熱可塑性樹脂部材とが接合されることを特徴とする樹脂チタン金属接合体の製造法。
     
PCT/JP2018/033521 2017-09-08 2018-09-10 樹脂チタン金属接合体及びその製造法 WO2019050040A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-173160 2017-09-08
JP2017173160A JP6501841B2 (ja) 2017-09-08 2017-09-08 樹脂チタン金属接合体及びその製造法

Publications (1)

Publication Number Publication Date
WO2019050040A1 true WO2019050040A1 (ja) 2019-03-14

Family

ID=65635343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033521 WO2019050040A1 (ja) 2017-09-08 2018-09-10 樹脂チタン金属接合体及びその製造法

Country Status (2)

Country Link
JP (1) JP6501841B2 (ja)
WO (1) WO2019050040A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112810043A (zh) * 2020-12-15 2021-05-18 河北中瓷电子科技股份有限公司 塑料封装外壳的制备方法
CN114207192A (zh) * 2019-05-23 2022-03-18 Geo国民株式会社 树脂金属镁接合体及其制造方法
CN114381722A (zh) * 2021-12-20 2022-04-22 鸿富锦精密电子(成都)有限公司 钛合金表面处理方法、复合材料的制备方法及复合材料
CN115151398A (zh) * 2020-07-07 2022-10-04 塑料金属有限公司 钛-树脂接合体制造方法及用于其的钛处理溶液

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6923700B1 (ja) 2020-03-25 2021-08-25 昭和電工株式会社 電気化学素子、及び電気化学素子の製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005342895A (ja) * 2004-05-31 2005-12-15 Taisei Plas Co Ltd 金属と樹脂の複合体とその製造方法
JP2008207547A (ja) * 2007-01-30 2008-09-11 Toray Ind Inc 熱可塑性樹脂成形品と金属の複合体の製造方法
WO2009078377A1 (ja) * 2007-12-14 2009-06-25 Denso Corporation 樹脂金属接合体及びその製造方法
JP2009144198A (ja) * 2007-12-14 2009-07-02 Denso Corp 樹脂接合用アルミニウム部材及びその製造方法
JP2010076437A (ja) * 2008-08-29 2010-04-08 Toray Ind Inc 熱可塑性樹脂組成物からなる成形体と金属の複合体の製造方法
US20120301690A1 (en) * 2011-05-24 2012-11-29 Hon Hai Precision Industry Co., Ltd. Titanium/titanium alloy-and-resin composite and method for making the same
US20120301704A1 (en) * 2011-05-24 2012-11-29 Hon Hai Precision Industry Co., Ltd. Titanium/titanium alloy-and-resin composite and method for making the same
CN104309055A (zh) * 2013-10-31 2015-01-28 比亚迪股份有限公司 金属树脂复合体的制造方法及金属树脂复合体
JP2016190412A (ja) * 2015-03-31 2016-11-10 三井化学株式会社 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005342895A (ja) * 2004-05-31 2005-12-15 Taisei Plas Co Ltd 金属と樹脂の複合体とその製造方法
JP2008207547A (ja) * 2007-01-30 2008-09-11 Toray Ind Inc 熱可塑性樹脂成形品と金属の複合体の製造方法
WO2009078377A1 (ja) * 2007-12-14 2009-06-25 Denso Corporation 樹脂金属接合体及びその製造方法
JP2009144198A (ja) * 2007-12-14 2009-07-02 Denso Corp 樹脂接合用アルミニウム部材及びその製造方法
JP2010076437A (ja) * 2008-08-29 2010-04-08 Toray Ind Inc 熱可塑性樹脂組成物からなる成形体と金属の複合体の製造方法
US20120301690A1 (en) * 2011-05-24 2012-11-29 Hon Hai Precision Industry Co., Ltd. Titanium/titanium alloy-and-resin composite and method for making the same
US20120301704A1 (en) * 2011-05-24 2012-11-29 Hon Hai Precision Industry Co., Ltd. Titanium/titanium alloy-and-resin composite and method for making the same
CN104309055A (zh) * 2013-10-31 2015-01-28 比亚迪股份有限公司 金属树脂复合体的制造方法及金属树脂复合体
JP2016190412A (ja) * 2015-03-31 2016-11-10 三井化学株式会社 金属/樹脂複合構造体および金属/樹脂複合構造体の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114207192A (zh) * 2019-05-23 2022-03-18 Geo国民株式会社 树脂金属镁接合体及其制造方法
CN115151398A (zh) * 2020-07-07 2022-10-04 塑料金属有限公司 钛-树脂接合体制造方法及用于其的钛处理溶液
CN112810043A (zh) * 2020-12-15 2021-05-18 河北中瓷电子科技股份有限公司 塑料封装外壳的制备方法
CN114381722A (zh) * 2021-12-20 2022-04-22 鸿富锦精密电子(成都)有限公司 钛合金表面处理方法、复合材料的制备方法及复合材料
CN114381722B (zh) * 2021-12-20 2024-02-23 鸿富锦精密电子(成都)有限公司 钛合金表面处理方法、复合材料的制备方法及复合材料

Also Published As

Publication number Publication date
JP2019048407A (ja) 2019-03-28
JP6501841B2 (ja) 2019-04-17

Similar Documents

Publication Publication Date Title
JP6501841B2 (ja) 樹脂チタン金属接合体及びその製造法
CN109585173B (zh) 一种长寿命低压用铝电解电容器化成箔的制造方法
CN111279022B (zh) 树脂金属接合体及其制造方法
JP2019119914A (ja) 樹脂ジルコニウム合金接合体及びその製造法
KR20220134574A (ko) 알루미늄 기반 부품의 표면 처리 방법
JP6655593B2 (ja) 樹脂マグネシウム金属接合体及びその製造法
TWI554183B (zh) 金屬殼體成型方法
US10538851B2 (en) Coating method for clad steel and coating solution for coating clad steel
JP2011511164A (ja) アルミニウム部材の多機能皮膜
JPWO2014203919A1 (ja) マグネシウム合金製品の製造方法
WO2020235070A1 (ja) 樹脂マグネシウム金属接合体及びその製造法
CN110129855B (zh) 一种铝合金防腐的表面处理方法
KR20150099850A (ko) 전자 부품 및 그 제조 방법
JP6546313B1 (ja) 樹脂炭素鋼接合体及びその製造法
JP5540029B2 (ja) アルミニウム或いはアルミニウム合金と樹脂の複合体及びその製造方法
KR101790975B1 (ko) 알루미늄 소재의 표면처리방법
KR102327770B1 (ko) 금속-수지 접합체 및 그 제조방법
JP2011208175A (ja) めっき物の製造方法及びめっき物
JP2007302935A (ja) アルカリ電池正極缶用Niメッキ鋼板およびその製造方法
JP2012057225A (ja) メッキ前処理方法
KR102620567B1 (ko) 내전압을 향상시키는 아노다이징 방법
KR20160143979A (ko) 이차전지용 탭 리드의 무크롬 표면처리방법
KR20070097895A (ko) 마그네슘을 주성분으로 하는 금속체의 표면 처리 방법
US20180127889A1 (en) Zinc coating-forming method for drawing of metallic pipes
KR20190006623A (ko) 기계 및 항공기부품용 타이타늄의 양극산화 전해액 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18854340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18854340

Country of ref document: EP

Kind code of ref document: A1