WO2019049865A1 - 金属粉末製造装置、及び金属粉末の製造方法 - Google Patents
金属粉末製造装置、及び金属粉末の製造方法 Download PDFInfo
- Publication number
- WO2019049865A1 WO2019049865A1 PCT/JP2018/032785 JP2018032785W WO2019049865A1 WO 2019049865 A1 WO2019049865 A1 WO 2019049865A1 JP 2018032785 W JP2018032785 W JP 2018032785W WO 2019049865 A1 WO2019049865 A1 WO 2019049865A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal powder
- combustion flame
- flow
- cooling cylinder
- grinding
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/06—Metallic powder characterised by the shape of the particles
- B22F1/065—Spherical particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/08—Metallic powder characterised by particles having an amorphous microstructure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
- B22F2009/0824—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
- B22F2009/0824—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
- B22F2009/0828—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid with water
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
- B22F2009/084—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid combination of methods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
- B22F2009/0844—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid in controlled atmosphere
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
- B22F2009/086—Cooling after atomisation
- B22F2009/0872—Cooling after atomisation by water
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
- B22F2009/086—Cooling after atomisation
- B22F2009/0876—Cooling after atomisation by gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
- B22F2009/0892—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid casting nozzle; controlling metal stream in or after the casting nozzle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
Definitions
- the present disclosure relates to a metal powder production apparatus for producing a metal powder, and a method for producing a metal powder.
- a gas atomizing method of producing a metal powder by injecting a high pressure gas to a dropped molten metal As a method of producing metal powder, a gas atomizing method of producing a metal powder by injecting a high pressure gas to a dropped molten metal, and a water atomizing method of producing a metal powder by spraying high pressure water to a dropped molten metal are known. There is.
- the cooling water is allowed to flow down while forming the swirling water flow along the inner peripheral wall of the cylindrical crushing cooling cylinder whose axis is inclined from the vertical direction.
- Droplets that have been primarily divided (primary grinding) with high-pressure gas are made to enter the swirling water flow together with the gas flow, secondarily divided (secondary grinding), and cooled to produce metal powder with a fine particle diameter. .
- the droplet divided in the primary is rushed into the swirling water flow together with the spread of the high pressure gas caused by the injection angle, so the distance until it rushes into the swirling water flow ( Time) had a gap.
- the metal powder is affected by the cooling rate of the droplet if the distance (time) before rushing into the swirling water flow is varied.
- the metal powder for example, amorphization of the metal powder.
- the present disclosure has been made in view of the above-mentioned problems, and an object thereof is to provide a metal powder production apparatus and a metal powder production method capable of obtaining metal powder of good quality and fine particle size. .
- a metal powder production apparatus comprises the above-described combustion method wherein a supersonic combustion flame is intensively jetted from a combustion flame injection port to a supply means for hanging the molten metal and the molten metal suspended from the supply means.
- the combustion flame injection means for making the flame a jet convergent flow, and the axis line inclines from the vertical direction to form a swirling water flow along the inner peripheral wall, and the jet convergent flow is made to flow from the upper opening.
- a crusher having a crusher cooling cylinder for entering into a swirling water flow, wherein the concentration position of the combustion flame is in the open space above the opening.
- the supersonic combustion flame is intensively injected from the combustion flame injection port to the molten metal suspended from the supply means to concentrate the combustion flame gas on the molten metal. You can make them collide. As a result, the suspended molten metal is crushed by the high collision energy of the supersonic gas, and also crushed while being heated by the combustion flame, that is, the viscosity is reduced, so it is easy to make the metal powder with a fine particle diameter. Can be obtained.
- the hanging down molten metal is crushed (primary crushing) at the concentration position of the combustion flame to form a droplet, and this droplet is made of the molten metal
- the temperature can be raised and moved on a supersonic jet focused flow.
- an inertial force acts on the droplet having a large mass to generate a large velocity difference between the droplet and the jet focused flow, and the primary crushed droplet is delayed until it reaches the swirling water flow. Since it is subjected to a force which is torn off or torn off and re-ground (secondary grinding), a metal powder with a finer particle size can be obtained.
- the concentration position of the combustion flame is in the open space above the opening of the grinding cooling cylinder.
- the concentration position of the combustion flame in the open space above the opening of the grinding cooling cylinder by setting the concentration position of the combustion flame in the open space above the opening of the grinding cooling cylinder, a smoother air flow is formed around the upstream portion of the jet convergent flow, and the generation of negative pressure is suppressed. Ru.
- the effervescent focused flow is prevented from being attracted to the negative pressure generated irregularly and oscillating unstably, and the variation of the quality of the metal powder affected by the secondary crushing, for example, the particle size distribution It is possible to obtain a metal powder of a fine particle size whose spread is suppressed.
- the liquid droplets stay in the high temperature combustion flame for a long time.
- the gas caught in the droplet during primary pulverization and the gas generated in the droplet are easily released to the outside of the droplet, and there are few internal voids, that is, it is made poreless to make fine particle diameter.
- Metal powder can be obtained.
- the droplets stay in the high temperature combustion flame for a long time, even if the other droplets come in contact with the droplets, they easily collect into one droplet. This makes it difficult to form a metal powder in the state of so-called "satellite” in which fine metal particles adhere to metal particles, so it is possible to obtain a metal powder with good particle size and good fluidity. .
- the supersonic combustion flame is intensively injected to the molten metal suspended from the fuel flame injection port. Then, due to the characteristics of the supersonic gas flow, the concentrated combustion flame is linearly ejected vertically downward as a supersonic jet convergent flow. As a result, variations in the distance (time) from the primary crushing of the molten metal to the entry into the swirling water flow, that is, the distance (time) of the secondary grinding, are suppressed, so the metal affected by the secondary grinding It is possible to obtain a fine particle size metal powder in which the quality variation of the powder, for example, the spread of the particle size distribution is suppressed.
- a droplet obtained by secondary pulverization in the jet focused flow, or an impact when a droplet flowing on a swirling water flow is caused to rush into the swirling water flow Alternatively, it is possible to regrind (tertiary grinding) by the impact when it is made to collide with the inner wall of the grinding cooling cylinder. This makes it possible to obtain metal powder of even finer particle size.
- the secondary-crushed droplets can be rushed into the swirling water flow and cooled together with the jet-focused flow in which the high temperature combustion flame is converged. That is, the secondary crushed droplets can be rushed into the swirling water flow while being heated by the combustion flame and maintained at a high temperature. Thereby, the cooling variation of the droplet is suppressed, and it is possible to obtain the quality of the metal powder affected by the cooling rate of the droplet, for example, a stable and amorphized, fine particle diameter metal powder.
- the metal powder production apparatus of the first aspect it is possible to obtain a metal powder with a fine particle diameter, and the sphericity of the metal powder, the good flowability, the porelessness inside the powder, the spread Good quality metal powder can be obtained, such as suppressed particle size distribution, stable amorphization, and the like.
- the metal powder production apparatus is the metal powder production apparatus according to the first aspect, wherein the concentration position of the combustion flame is above the axis of the grinding and cooling cylinder.
- the distance from the concentration position of the combustion flame to the swirling water flow can be lengthened even if the inner diameter of the grinding cooling cylinder is reduced, ie, the time of secondary grinding Can be made longer.
- the time of secondary grinding Can be made longer it is possible to obtain metal powder with a fine particle diameter even with a simpler device having a small internal diameter of the grinding and cooling cylinder and a small capacity of the water supply source for generating the swirling water flow.
- the apparatus for producing a metal powder according to a third aspect is the apparatus for producing a metal powder according to the second aspect, wherein the concentration position of the combustion flame is above the imaginary horizontal plane passing through the upper end corner of the grinding cooling cylinder.
- the air flows in substantially equally from all sides around the upstream portion of the jet convergent flow, and a smooth air flow is formed around the upstream portion of the jet convergent flow. Ru.
- the generation of negative pressure around the upstream portion of the jet focused flow is further suppressed, and the vibration of the jet focused flow is further suppressed, so that the quality variation of the metal powder affected by the secondary grinding, eg, particle size It is possible to obtain a fine particle size metal powder in which the spread of distribution is suppressed.
- the metal powder production apparatus is the metal powder production apparatus according to any one of the first to third aspects, wherein the concentration position is in the range of 15 to 120 mm from the lower end of the combustion flame injection port. It is inside.
- the metal powder production apparatus is the metal powder production apparatus according to any one of the first to fourth aspects, wherein the inclination angle of the axis of the grinding cooling cylinder with respect to the vertical direction is 10 to 55 °.
- the tip of the combustion flame injection port is above the imaginary horizontal plane passing through the upper end corner of the grinding cooling cylinder.
- a supersonic combustion flame is intensively injected into the depending molten metal, and the concentrated combustion flame is ejected as a convergent flow, and the jet convergent flow is An axial line is made to rush into a swirling water flow formed along the inner circumferential surface of the pulverizing cooling cylinder which is inclined from the vertical direction, and the concentration position of the combustion flame is in the open space above the swirling water flow.
- the concentration position of the combustion flame is above the axis of the grinding and cooling cylinder.
- the concentration position of the combustion flame is above the virtual horizontal plane passing through the upper corner of the grinding cooling cylinder.
- the air flow is introduced into the upstream portion of the jet convergent flow from all sides.
- the inclination angle of the axis line of the grinding cooling cylinder with respect to the vertical direction is 10 to 55.
- the tip of the combustion flame injection port for injecting the combustion flame is above the imaginary horizontal plane passing through the upper end corner of the grinding cooling cylinder.
- the combustion flame is jetted immediately below into a jet convergent flow containing droplets after the primary pulverization, and droplets after the primary pulverization are moved in the jet convergent flow having a high relative velocity to perform secondary pulverization.
- the air flow is uniformly flowed from all sides to the upstream portion of the jet convergent flow.
- the metal powder production apparatus and the metal powder production method of the present disclosure it is possible to obtain an excellent effect that it is possible to obtain a metal powder of fine particle size with good quality.
- FIG. 3 is a sectional view taken along line 3-3 of the metal powder manufacturing apparatus shown in FIG. It is a graph which shows the X-ray-diffraction result of the metal powder manufactured with the metal powder manufacturing apparatus which concerns on a comparative example. It is a graph which shows the X-ray-diffraction result of the metal powder manufactured with the metal powder manufacturing apparatus which concerns on the Example to which this invention was applied.
- the metal powder production apparatus 10 includes a supply means 12 for supplying a molten metal M, and a combustion flame for pulverizing the molten metal M (primary pulverization of the present invention) to generate droplets Mmp.
- the injection means 14 includes a crushed cooling cylinder 18 or the like which re-pulverizes the droplets Mmp (third grinding according to the present invention), and cools the metal powder Msp.
- the metal powder manufacturing apparatus 10 arrange
- the supply means 12 includes a container 20 for containing the molten metal M, and on the outer peripheral side of the container 20, a high frequency coil 22 for heating and melting a metal material to make the molten metal M is disposed.
- the supply means 12 has a pouring nozzle 24 communicating with the inside of the container 20 at the center below the bottom surface of the container 20 so that the molten metal M accommodated inside the container 20 can be dropped from the pouring nozzle 24. ing.
- the combustion flame injection means 14 is located below the supply means 12, and a conical passage portion 15 is formed in the center to hang the molten metal M down.
- the combustion flame injection means 14 includes an annular combustion chamber 26 and a combustion flame injection port 28 for injecting the combustion flame 30.
- the combustion flame injection port 28 of the present embodiment is formed in an annular shape as viewed from the axial direction, and coaxial with the passage portion 15 so as to surround the outer peripheral side of the passage portion 15 along the conically formed passage portion 15 Is located in Therefore, the diameter of the combustion flame injection port 28 of the present embodiment is gradually reduced from the combustion chamber 26 downward.
- the combustion flame injection means 14 of the present embodiment is different from the high pressure gas injection means described in the patent document, and for example, air and kerosene, which is a hydrocarbon, are mixed and burned in the combustion chamber 26.
- the combustion flame 30 can be injected without any gap along the circumference of the combustion flame injection hole 28 from the combustion flame injection hole 28 downward.
- the combustion flame 30 is heated to a temperature higher than the melting point of the molten metal M and is injected as a supersonic gas flow.
- combustion flame injection means 14 obliquely downward from the annular combustion flame injection port 28 below the supply means 12, in other words, to an extension line in which the axis of the passage portion 15 is extended downward.
- the combustion flame 30 can be injected, and the combustion flame 30 is surrounded by the downstream Ma of the molten metal M supplied from the pouring nozzle 24 to form a single downstream Ma (hereinafter, the combustion flame 30 is disposed downstream of the downstream Ma). It is made to be able to carry out injection concentrated on the concentration position SP to be concentrated.
- the combustion flame injection means 14 can carry out centralized injection of the combustion flame 30 at a uniform injection pressure without a gap along the outer periphery of the drowise downstream Ma of the molten metal M supplied from the pouring nozzle 24; The injected combustion flames 30 are allowed to concentrate and collide at the concentrated position SP of the downstream Ma. Furthermore, the combustion flame injection means 14 can carry out the intensive injection of the combustion flame 30 at supersonic speed, and the combustion flame 30 which has become concentrated becomes a linear spouted convergent flow 31 whose spread is suppressed, and the concentration position It spouts from SP to directly below the vertical.
- the supersonic combustion flames 30 injected from the combustion flame injection port 28 gradually decrease in diameter downward from the combustion flame injection port 28 and, for example, 15 from the lower end of the combustion flame injection port 28 downward.
- the diameter spreads only slightly, but it spreads downward without becoming widely spread and diffused like gas atomization. Flow down.
- the concentration position SP of the combustion flame 30 can be visually confirmed as a position where the diameter of the combustion flame 30 is minimized, when the combustion flame 30 is viewed from the side.
- the molten metal M is primarily crushed, and a atomized finely pulverized metal powder in a molten state, that is, droplets Mmp are generated. Then, the jet focused flow 31 containing the droplet Mmp flows down on the extension of the axis line CLc of the combustion flame injection means 14 while maintaining supersonic speed or a high speed close to supersonic speed.
- the droplet Mmp generated by the primary pulverization is a liquid having a mass, an inertial force is exerted, and the downflow velocity is slower than the jet convergent flow 31 which is a gas. For this reason, in the process of flowing down, the droplets Mmp flowing down are subjected to a force that can be pulled and torn off by the effervescent focused flow 31 having a high relative velocity, and regrind (secondary grinding of the present invention) Be done.
- the crushing and cooling cylinder 18 is located below the combustion flame injection means 14, and has a cylindrical portion 36 with the axis CLa inclined from the vertical direction, and an annular closing member 38 for closing the outer periphery of the upper portion of the cylindrical portion 36. Have. Further, a circular opening 40 is formed coaxially with the crushing and cooling cylinder 18 at the center of the closing member 38.
- the inclination angle ⁇ of the axis line CLa of the crushing and cooling cylinder 18 with respect to the vertical direction is preferably in the range of 10 to 55 degrees.
- the crushing cooling cylinder 18 opens two cooling water injection ports 42 on the upper end side of the cylindrical portion 36, and as shown in FIG. 3, two cooling water injection ports 42.
- the water supply source 46 includes a pump, a flow rate adjustment valve, etc., and can eject a large amount of cooling water W at high speed along the tangential direction of the inner peripheral surface inside the cylindrical portion 36 through the cooling water injection port 42 I have to.
- the cooling water W When the cooling water W is spouted from the cooling water injection port 42, the cooling water W flows down while swirling at high speed along the inner peripheral surface of the pulverized cooling cylinder 18, and a swirling cooling water layer 56 is formed.
- the cooling water W flows down while swirling at high speed along the inner circumferential surface of the crushed cooling cylinder 18, and is discharged from the lower end of the crushed cooling cylinder 18 to the discharge part 32.
- the closing member 38 prevents the swirling cooling water W from being discharged to the upper side of the crushed cooling cylinder 18.
- the crushing cooling cylinder 18 has an annular projection 18A for adjusting the layer thickness of the swirling cooling water layer 56 on the inner peripheral surface, whereby the flow of the cooling water W is suppressed, and the cooling water injection port A swirling coolant layer 56 having a substantially constant thickness is easily formed between the projection 42 and the projection 18A at a small flow rate. At the same time, the shape of the cavity S formed on the center side of the swirling cooling water layer 56 is stabilized.
- the crushing and cooling cylinder 18 and the water supply source 46 constitute a crushing apparatus.
- the combustion flame injection means 14 is positioned vertically above the opening 40 of the grinding and cooling cylinder 18 and the combustion injected from the combustion flame injection port 28
- the concentrated position SP of the flame 30 is located in the open space, in an area A surrounded by a thin dotted line in FIG. 2 and below the lower end of the combustion flame injection port 28.
- the concentrated position SP is preferably located in the area A and in the area B surrounded by a long dotted line above the axis CLa of the crushing and cooling cylinder 18. Furthermore, it is more preferable that the concentration position SP be located in the area B and in the area C surrounded by a thick dotted line above the virtual horizontal plane FP passing through the upper end corner 18E of the grinding cooling cylinder 18.
- the concentration position SP By setting the concentration position SP like this, the distance from the concentration position SP to the swirling cooling water layer 56 becomes longer, and the time to secondarily grind the droplet Mmp becomes longer, so the droplet Mmp is efficiently secondarily crushed can do.
- the discharge unit 32 has a pipe 50 which is connected to the lower end of the crushing and cooling cylinder 18 and is inclined, and a pipe 52 extending upward is connected to the middle part of the pipe 50.
- a suction device 54 for suctioning the exhaust gas inside the crushing and cooling cylinder 18 (for example, a gas generated by the combustion of kerosene and air) is connected to the end of the pipe 52, and the suction device 54 Is included.
- a metal material is put into the container 20, and heated and melted by the high frequency coil 22 to produce the molten metal M.
- the passage portion 15 leading from the inside of the container 20 to the combustion flame injection port 28 is closed by a valve (not shown) so that the molten metal M does not hang down the passage portion 15.
- a large amount of cooling water W is ejected at high speed from the cooling water injection port 42, and the cooling water W is caused to flow down while rotating at high speed along the inner peripheral surface of the crushed cooling cylinder 18, and a swirling cooling water layer which is a swirling water flow Form 56.
- the cooling water W having the swirling cooling water layer 56 is allowed to further flow down while swirling along the inner peripheral surface of the crushed cooling cylinder 18 so as to be discharged from the lower end of the crushed cooling cylinder 18 to the discharge part 32.
- the suction device 54 is activated to exhaust the gas in the crushing and cooling cylinder 18, and then the combustion flame 30 is injected from the combustion flame injection port 28 of the combustion flame injection means 14. Then, a valve (not shown) of the container 20 is opened, and the molten metal M in the container 20 is allowed to flow vertically downward from the pouring nozzle 24 as a downstream Ma. Thereby, the combustion flames 30 are intensively injected to the concentration position SP of the drooping downstream Ma, the combustion flame 30 collides with the concentration position SP of the drooping downstream Ma, and the drooping downstream Ma is primarily crushed by the collision energy of the combustion flame 30 , A mist of fine droplets Mmp is generated. The exhaust gas produced together with the combustion flame 30 is sucked into the suction device 54 through the inside of the grinding and cooling cylinder 18 and discharged to the outside.
- the combustion flame injection means 14 is a gas injection means as described in the patent document
- the high pressure gas atomized gas
- the injection speed of the gas is also the present embodiment. It will be slower than it is. Therefore, since the drooping downstream Ma is crushed while being cooled by the high pressure gas, that is, while increasing the viscosity of the drooping downstream Ma, since the drooping downstream Ma becomes difficult to be pulverized, the droplet Mmp of the fine particle diameter is reduced. It was difficult to generate.
- the combustion flames 30 intensively injected to the concentrated position SP of the drooping downstream Ma flow straight down from the concentrated position SP as a jet convergent flow 31 whose spread is suppressed by the characteristics of the supersonic gas flow.
- the droplets Mmp generated in the form of mist by the primary crushing of the combustion flame 30 flow downward with the jet focused flow 31 while maintaining supersonic speed or a high speed close thereto.
- the combustion flame injection means 14 is a gas injection means as described in the patent document
- the high-pressure gas atomized gas
- the gas ejection velocity is also the present embodiment. It will be slower than it is. Therefore, since the droplets Mmp generated by the primary pulverization are allowed to flow down while being cooled, that is, while increasing the viscosity of the droplets Mmp, the pulverization is continuously pulverized even if the relative velocity difference with the high pressure gas occurs. It was difficult.
- the droplet Mmp can be made to flow down together with the high temperature / high speed jet focused flow 31 by the combustion flame injection means 14. That is, by heating the jet focused flow 31, the viscosity of the droplet Mmp can be lowered while lowering the viscosity, and a relative velocity difference with the supersonic jet focused flow 31 can be generated to flow downward. As a result, the droplet Mmp can be easily secondarily crushed during reaching the swirling coolant layer 56 from the concentration position SP, and a finer droplet Mmp can be generated.
- the distance from the concentrated position SP of the combustion flame 30 to the swirling cooling water layer 56 is made longer, that is, the time of secondary grinding is made longer.
- the droplets Mmp flowing down with the jet-focused flow 31 can be efficiently secondarily crushed, and the droplets Mmp reaching the swirling cooling water layer 56 are made of metal powder as described in the patent document.
- the droplet Mmp can be finer than the manufacturing method.
- the droplet Mmp refined by the secondary pulverization rushes into the swirling cooling water layer 56 formed on the inner peripheral surface of the pulverizing cooling cylinder 18 with a low viscosity, and the droplet Mmp
- the metal powder Msp is produced by the third grinding and further refining and quenching with the cooling water W.
- the combustion flame injection means 14 is a gas injection means as described in the patent document
- the high pressure gas atomized gas
- the injection speed of the gas is also the present embodiment. It will be slower than it is. Therefore, the droplets Mmp generated by the secondary grinding are allowed to flow down while being cooled, that is, while the viscosity of the droplets Mmp increases, and therefore, even if they enter the swirling cooling water layer 56, they are easily crushed. It was not.
- the droplet Mmp can be made to rush into the swirling cooling water layer 56 together with the high temperature / high speed jetted convergent flow 31 by the combustion flame injection means 14. That is, the droplet Mmp can be injected into the swirling cooling water layer 56 together with the supersonic jet focused flow 31 while decreasing the viscosity by heating the jet focused flow 31.
- the droplets Mmp are efficiently thirdarily crushed by the impact of impinging on the swirling cooling water layer 56, and the particle diameter of the thirdly crushed droplets Mmp is manufactured as described in the patent document. It can be finer than the method.
- the molten metal M is subjected to two processes until the droplet Mmp obtained by primary crushing with the supersonic combustion flame 30 reaches the swirling cooling water layer 56. It is possible to carry out the next crushing, and further, to make it go into the swirling cooling water layer 56 and carry out the third crushing. Thereby, metal powder Msp of a finer particle size can be efficiently obtained rather than the manufacturing method of metal powder which is indicated in patent documents.
- the obtained metal powder reaches the swirling cooling water layer It becomes a mixture of the metal particle to which the distance was short, and the metal particle to which the distance to the swirling coolant layer was long. Since these metal particles become a mixture of metal particles obtained by different cooling conditions, the quality variation of the metal powder influenced by the cooling rate, for example, the metal powder may become a loose metal powder. Furthermore, in the gas atomizing method described in the patent document, the molten metal is cooled by the gas (the cooling rate is slower than that by water) before being quenched by water, so the molten metal is cooled during the cooling by the gas. There is a possibility that part of the crystal crystallizes.
- the jet focused flow 31 flows down linearly, the distance until the droplet Mmp reaches the swirling cooling water layer 56 can be made approximately equal.
- the droplet Mmp rushes into the swirling cooling water layer 56 while being heated by the jet focused flow 31, it is possible to further suppress the variation in quality of the metal powder that is affected by the cooling condition.
- the droplet Mmp which has a fine particle diameter by primary grinding and secondary grinding, enters the swirling cooling water layer 56 and is cooled.
- Mmp solidifies to metal powder Msp, it can be rapidly quenched to the inside of metal powder Msp.
- the metal powder Msp is uniformly amorphized to the inside, the stably amorphized metal powder Msp can be easily obtained.
- the amorphized state of the metal powder Msp can be confirmed by X-ray diffraction (XRD).
- the metal powder Msp thus obtained is made to flow down the crushing cooling cylinder 18 in a state of being dispersed in the cooling water W, and is discharged to the discharge part 32.
- the cooling water W containing the metal powder Msp discharged to the discharge portion 32 is recovered at the tip end of the pipe 50.
- the particle diameter of the metal powder Msp can be adjusted, for example, by the distance from the combustion flame injection port 28 to the swirling cooling water layer 56, the swirling speed of the cooling water W, or the like.
- the concentration position SP of the combustion flame 30 is preferably located in the area B rather than the area A, and the area More preferably, it is located at C.
- the swirling speed of the cooling water W can be adjusted by changing the amount of water per unit time of the cooling water W spouted from the cooling water injection port 42.
- the swirling speed of the cooling water W By increasing the swirling speed of the cooling water W, the collision energy between the droplet Mmp and the swirling cooling water layer 56 can be increased, thereby increasing the crushing power of the third grinding to make the droplet Mmp finer.
- the metal powder Msp having a finer particle size can be obtained by grinding into
- the inclination angle ⁇ of the axis line CLa of the crushing and cooling cylinder 18 with respect to the vertical direction is preferably in the range of 10 to 55 degrees. If the lower limit of the inclination angle ⁇ is 10 °, the upper end face of the crushing and cooling cylinder 18 is sufficiently inclined, so the tip of the combustion flame injection port 28 is above the imaginary horizontal plane FP passing through the upper corner portion 18E of the crushing and cooling cylinder If so, the distance between the tip of the combustion flame injection port 28 and the swirling cooling water layer 56 becomes long, the time of secondary grinding becomes long, and the droplets Mmp become easy to be spherical, so the metal powder Msp close to a sphere is It can be obtained with a fine particle size.
- the cooling water W can be easily flowed to the lower side of the crushed cooling cylinder 18, so the swirling cooling water layer formed of the cooling water spouted from the cooling water injection port 42 Easy to keep the temperature of 56 low.
- the droplet Mmp can be rushed into the low temperature swirling cooling water layer 56, and can be rapidly quenched to the inside of the metal powder Msp.
- the metal powder Msp can be uniformly amorphized to the inside.
- the metal powder production apparatus 10 of the present embodiment it is possible to efficiently obtain the metal powder Msp having a finer particle diameter than the production method of the metal powder as described in the patent document. .
- the combustion flame injection means 14 is disposed inside the crushing and cooling cylinder 18 or the combustion flame injection means 14 is disposed outside the crushing cooling cylinder 18, combustion does not occur.
- the flame injection port 28 and the crushing cooling cylinder 18 are accommodated in a sealed chamber or the like, the air pressure around the droplet Mmp tends to be asymmetrical, and the upstream portion of the jet convergent flow 31, ie, the concentration position SP Negative pressure is likely to occur in the vicinity.
- This negative pressure destabilizes the periphery of the jet focused flow 31 and attracts the jet focused flow 31 so that vibration is generated in the jet focused flow 31 flowing down with the droplet Mmp to stabilize the droplet Mmp.
- Secondary grinding may be difficult. That is, the quality of the metal powder affected by the secondary grinding may vary.
- the ultra high speed combustion flame 30 injected from the combustion flame injection port 28 is concentrated in the open space outside the crushing cooling cylinder 18 to form the ultra high speed jet focused flow 31. doing. As a result, generation of negative pressure in the upstream portion of the jet focused flow 31 can be suppressed, and vibration of the jet focused flow 31 can be suppressed.
- the concentration position SP of the combustion flame 30 in the region C above the virtual horizontal plane FP passing through the upper end corner 18E of the grinding and cooling cylinder 18
- the flow of air can be made to flow more evenly from all sides around the upstream portion of the convergent flow 31.
- a smooth air flow can be formed around the upstream portion of the jet convergent flow 31, and generation of negative pressure can be further suppressed.
- the diameter of the swirling water flow that is, the diameter of the pulverizing cooling cylinder is set large. It is necessary to capture the metal powder flowing down while spreading in a large diameter water layer.
- the diameter of the grinding and cooling cylinder is increased, it is necessary to increase the ability of the water supply source to eject the cooling water, and the cost of manufacturing the apparatus also increases.
- the metal powder production apparatus 10 of the present embodiment since the primarily crushed droplets Mmp are made to flow down linearly with the jet focused flow 31, the diameter of the grinding cooling cylinder for capturing the droplets is made smaller to produce the metal powder.
- the device 10 can be miniaturized. In addition, it is easy to take a long area for secondary grinding.
- the diameter of the combustion flame injection port 28 of this embodiment is gradually reduced from the combustion chamber 26 downward, the diameter may be constant from the combustion chamber 26 downward.
- the shape of the passage portion 15 is not conical but cylindrical.
- Metal Powder Manufacturing Device / Metal Powder Manufacturing Device of Example
- the melting part (supply means), the combustion flame injection means, and the grinding part (grind cooling cylinder) are the same as those of the above embodiment.
- Water was adopted as a cooling medium introduced into the grinding cooling cylinder, and the flow velocity was controlled to be about 160 m / s.
- the crushed droplets rush into a high-velocity water flow, the water vapor film generated on the surface of the droplets is broken by the water flow, and cooling progresses rapidly.
- the metal powder production apparatus disclosed in JP-A-2014-136807 was used.
- the jet burner jets a flame jet to the molten metal supplied by the supply means to crush the molten metal.
- the molten metal pulverized as described above was continuously sprayed using water as a cooling medium of 5 L / min by a cooling nozzle installed in the cooling chamber so that the cooling medium impinges on the outer surface of the combustion flame.
- the obtained powder was recovered by a cyclone. -Description of the same condition part of the embodiment and the comparative example Metal to be crushed in the melting portion, 6.7 wt% Si, 2.5 wt% Cr, 2.5 wt% B, 0.6 wt% C, metal with the balance being Fe Dissolved.
- the melting section has a plug which can control the dropping of the molten metal from the lower part, and the supply of the molten metal to the grinding section can be controlled by opening the plug.
- the temperature profile along the vertical direction from the center of the nozzle was measured, and the air-fuel ratio was controlled to be 1.2 so that the maximum value would be about 1200 ° C.
- the dropping of the molten metal was 3 kg / min.
- FIG. 4A is a graph showing the test results by X-ray diffraction of the metal powder manufactured by the metal powder manufacturing apparatus according to the comparative example
- FIG. 4B is a graph showing the metal powder manufactured by the metal powder manufacturing apparatus according to the example. It is a graph which shows the test result by X-ray diffraction. From the test results shown in FIG. 4A, it can be seen that the metal powder manufactured by the metal powder manufacturing apparatus according to the comparative example partially contains crystallized metal powder (in the figure, there is a peak of Fe) . On the other hand, it can be seen from the test results shown in FIG. 4B that the metal powder manufactured by the metal powder manufacturing apparatus according to the example is completely amorphized (no peak as shown in the test results of the comparative example) ).
- FIG. 5A is a graph which shows the particle size distribution of the metal powder manufactured by the metal powder manufacturing apparatus which concerns on a comparative example
- FIG. 5: B is a particle size distribution of the metal powder manufactured by the metal powder manufacturing apparatus which concerns on an Example. Is a graph showing From the test results shown in FIGS. 5A and 5B, the metal powder manufactured by the metal powder manufacturing apparatus according to the example has a larger particle size than the metal powder manufactured by the metal powder manufacturing apparatus according to the comparative example. Generation is suppressed, and it is found that the particle size distribution is relatively small in average particle size.
- the droplet Mmp generated by the second crushing is collided with the swirling cooling water layer 56 to perform the third crushing, but the droplet Mmp generated by the second crushing or the droplet Mmp solidified
- the metal powder Msp may be placed on the swirling cooling water layer 56 to collide with the inner peripheral surface of the grinding cooling cylinder 18, and the third grinding may be performed by the impact at that time. Thereby, the pulverizing force can be further enhanced to obtain a metal powder with a finer particle size.
- an inert gas such as argon gas or nitrogen gas not containing oxygen may be flowed into the inside of the grinding and cooling cylinder 18, for example. This can suppress metal oxidation.
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
品質のよい微細な粒径の金属粉末を得ることが可能な、金属粉末製造装置、及び金属粉末製造方法を提供する。 垂下した溶融金属に、超音速の燃焼炎を集中噴射し、集中した前記燃焼炎を噴出集束流にして直下に噴出し、前記噴出集束流を、軸線が鉛直方向から傾斜した粉砕冷却筒の内周面に沿って形成した旋回水流に突入させると共に、前記燃焼炎の集中位置を、前記旋回水流より上方の開放空間中とする。
Description
本開示は、金属粉末を製造する金属粉末製造装置、及び金属粉末の製造方法に関する。
金属粉末の製造方法として、垂下した溶融金属に高圧ガスを噴射して金属粉末を作製するガスアトマイズ法や、垂下した溶融金属に高圧水を噴射して金属粉末を作製する水アトマイズ法が知られている。また、ガスアトマイズ法を利用した金属粉末の製造方法として、垂下した溶融金属に高圧ガスを噴射して、溶融金属を微細な溶滴に分断(一次粉砕)し、分断した溶滴を旋回水流に突入させて、さらに微細な溶滴に分断(二次粉砕)して冷却する、金属粉末の製造方法が知られている(例えば、特開平10-121115号公報、特開平11-43707号公報、特開平11-80812号公報、特開2010-90410号公報)。
上記特許文献に記載の金属粉末の製造方法では、例えば、軸線を鉛直方向から傾斜させた円筒状の粉砕冷却筒の内周壁に沿って、冷却水を旋回させながら流下させて旋回水流を形成し、高圧ガスで一次分断(一次粉砕)した溶滴を、ガス流とともに旋回水流に突入させ、二次分断(二次粉砕)すると共に冷却して、微細な粒径の金属粉末を製造している。
特許文献1~4に記載の金属粉末の製造方法では、溶融金属に噴射する高圧ガス(アトマイズガス)の温度が、溶融金属の温度より極めて低いため、溶融金属は冷却されながら粉砕されることになる。そのため、溶融金属は、粘度が高まりながら粉砕されるので、噴射するガス圧を高くしても、溶融金属がより微細に粉砕されるには限界があった。即ち、より一層微細な粒径の金属粉末を得るには限界があった。
また、特許文献1~4に記載の金属粉末の製造方法では、一次分断した溶滴を、噴射角に起因する高圧ガスの広がりと共に旋回水流に突入させるので、旋回水流に突入するまでの距離(時間)にバラつきを生じていた。そして、一次分断した溶滴を、高圧ガスにより冷却しながら旋回水流に突入させるので、旋回水流に突入するまでの距離(時間)にバラつきを生じると、溶滴の冷却速度に影響される金属粉末の品質、例えば、金属粉末のアモルファス化にバラつきを生じることがあった。
本開示は、上述の問題点に鑑みてなされたものであり、品質のよい微細な粒径の金属粉末を得ることが可能な、金属粉末製造装置、及び金属粉末製造方法の提供を目的としている。
第1の態様に係る金属粉末製造装置は、溶融金属を垂下する供給手段と、前記供給手段から垂下した溶融金属に、燃焼炎噴射口から超音速の燃焼炎を集中噴射し、集中した前記燃焼炎を噴出集束流にして直下に噴出させる燃焼炎噴射手段と、軸線が鉛直方向から傾斜して内周壁に沿って旋回水流を形成し、上部の開口部から前記噴出集束流を流入して前記旋回水流に突入させる粉砕冷却筒、を有する粉砕装置と、を備え、前記燃焼炎の集中位置が、前記開口部より上方の開放空間中にある。
第1の態様に係る金属粉末製造装置によれば、供給手段から垂下した溶融金属に、燃焼炎噴射口から超音速の燃焼炎を集中噴射して、溶融金属に対して燃焼炎ガスを集中的に衝突させることができる。これにより、垂下した溶融金属が、超音速ガスの高い衝突エネルギーにより粉砕されると共に、燃焼炎により加熱されながら、即ち、粘性を低下させながら粉砕されるので、微細な粒径の金属粉末を容易に得ることができる。
また、第1の態様に係る金属粉末製造装置によれば、垂下した溶融金属を、燃焼炎の集中位置にて粉砕(一次粉砕)して溶滴を形成し、この溶滴を、溶融金属より高温にして超音速の噴出集束流に乗せて移動させることができる。これにより、質量のある溶滴に慣性力が働いて、溶滴と噴出集束流との間に大きな速度差を生じ、一次粉砕した溶滴が、旋回水流に到達するまでの間に、引き延ばされ、引きちぎられるような力を受け、再粉砕(二次粉砕)されるので、より微細な粒径の金属粉末を得ることができる。
さらに、第1の態様に係る金属粉末製造装置では、燃焼炎の集中位置を、粉砕冷却筒の開口部より上方の開放空間中とする。これにより、燃焼炎の集中位置から旋回水流までの距離が長くなり、二次粉砕の時間が長くなり、溶滴は球状化しやすくなるので、球形に近い金属粉末を、微細な粒径にして得ることができる
また、燃焼炎の集中位置を、粉砕冷却筒の開口部より上方の開放空間中とすることにより、噴出集束流の上流部周りに、よりスムーズな気流が形成され、負圧の発生が抑制される。これにより、噴出集束流が、不規則に発生する負圧に引き寄せられて、不安定に振動することが抑制され、二次粉砕に影響される金属粉末の品質のバラつき、例えば、粒径分布の広がりが抑制された、微細な粒径の金属粉末を得ることができる。
また、燃焼炎の集中位置から粉砕冷却筒の旋回水流までの距離が長くなることで、溶滴が高温の燃焼炎内に長時間滞留するようになる。これにより、一次粉砕時に溶滴内に巻き込んだガスや、溶滴内に発生したガスが、溶滴外に放出されやすくなり、内部空孔が少ない、即ち、ポアレスにして、微細な粒径の金属粉末を得ることができる。
また、溶滴が高温の燃焼炎内に長時間滞留することで、溶滴に他の溶滴が接触しても、一つの溶滴にまとまりやすくなる。これにより、金属粒子に微細な金属粒子が付着した、いわゆる「サテライト」と呼ばれる状態の金属粉末になりにくくすることができるので、微細な粒径にして流動性のよい金属粉末を得ることができる。
また、第1の態様に係る金属粉末製造装置では、燃料炎噴射口から垂下した溶融金属に対して、超音速の燃焼炎を集中噴射する。そして、超音速ガス流の特性により、集中した燃焼炎を、超音速の噴出集束流にして鉛直下方に直線的に噴出する。これにより、溶融金属を一次粉砕してから、旋回水流に突入させるまでの距離(時間)、即ち、二次粉砕の距離(時間)のバラつきが抑制されるので、二次粉砕に影響される金属粉末の品質バラつき、例えば、粒径分布の広がりが抑制された、微細な粒径の金属粉末を得ることができる。
また、第1の態様に係る金属粉末製造装置によれば、噴出集束流にて二次粉砕した溶滴、あるいは、旋回水流に乗って流れる溶滴を、旋回水流に突入させた際の衝撃、あるいは、粉砕冷却筒内壁に衝突させた際の衝撃により、再粉砕(三次粉砕)することができる。これにより、より一層微細な粒径の金属粉末を得ることができる。
さらに、第1の態様に係る金属粉末製造装置によれば、二次粉砕した溶滴を、高温の燃焼炎が集束した噴出集束流と共に、旋回水流に突入させて冷却することができる。即ち、二次粉砕した溶滴を、燃焼炎により加熱し高温に保ったまま、旋回水流に突入させることができる。これにより、溶滴の冷却バラつきが抑制され、溶滴の冷却速度に影響される金属粉末の品質、例えば、安定してアモルファス化した、微細な粒径の金属粉末を得ることができる。
以上のように、第1の態様に係る金属粉末製造装置によれば、微細な粒径の金属粉末を得ることができ、金属粉末の球形性、良好な流動性、粉末内部のポアレス、広がりが抑えられた粒径分布、安定したアモルファス化等、品質のよい金属粉末を得ることができる。
また、第2の態様に係る金属粉末製造装置は、第1の態様に係る金属粉末製造装置において、前記燃焼炎の集中位置が、前記粉砕冷却筒の前記軸線よりも上方にある。
第2の態様に係る金属粉末製造装置によれば、粉砕冷却筒の内径を小さくしても、燃焼炎の集中位置から旋回水流までの距離を長くすることができる、即ち、二次粉砕の時間を長くすることができる。これにより、粉砕冷却筒の内径が小さく、旋回水流を発生させる水供給源の能力が小さい、より簡易な装置でも、微細な粒径の金属粉末を得ることができる。
第3の態様に係る金属粉末製造装置は、第2の態様に係る金属粉末製造装置において、前記燃焼炎の集中位置が、前記粉砕冷却筒の上端角部を通る仮想水平面よりも上方にある。
第3の態様に係る金属粉末製造装置では、噴出集束流の上流部周りに対して、全側方からほぼ均等に気流が流入し、噴出集束流の上流部周りに、スムーズな気流が形成される。これにより、噴出集束流の上流部周りでの負圧の発生がより抑制され、噴出集束流の振動がより抑制されるので、二次粉砕に影響される金属粉末の品質バラつき、例えば、粒径分布の広がりが抑制された、微細な粒径の金属粉末を得ることができる。
第4の態様に係る金属粉末製造装置は、第1の態様乃至第3の態様の何れか1つの金属粉末製造装置において、前記集中位置は、前記燃焼炎噴射口の下端から15~120mmの範囲内にある。
第5の態様に係る金属粉末製造装置は、第1の態様乃至第4の態様の何れか1つの金属粉末製造装置において、鉛直方向に対する前記粉砕冷却筒の軸線の傾斜角度が10~55°であり、前記燃焼炎噴射口の先端が、前記粉砕冷却筒の上端角部を通る仮想水平面よりも上方にある。
第6の態様に係る金属粉末の製造方法では、垂下した溶融金属に、超音速の燃焼炎を集中噴射し、集中した前記燃焼炎を噴出集束流にして直下に噴出し、前記噴出集束流を、軸線が鉛直方向から傾斜した粉砕冷却筒の内周面に沿って形成した旋回水流に突入させると共に、前記燃焼炎の集中位置を、前記旋回水流より上方の開放空間中とする。
第7の態様に係る金属粉末の製造方法では、第6の態様に係る金属粉末の製造方法において、前記燃焼炎の集中位置を、前記粉砕冷却筒の前記軸線よりも上方とする。
第8の態様に係る金属粉末の製造方法では、第7の態様に係る金属粉末の製造方法において、前記燃焼炎の集中位置を、前記粉砕冷却筒の上端角部を通る仮想水平面よりも上方とする。
第9の態様に係る金属粉末の製造方法では、第6の態様乃至第8の態様の何れか1つの金属粉末の製造方法において、前記噴出集束流の上流部に、全側方から気流を流入させる。
第10の態様に係る金属粉末の製造方法では、第6の態様乃至第9の態様の何れか1つの金属粉末の製造方法において、鉛直方向に対する前記粉砕冷却筒の軸線の傾斜角度が10~55°であり、燃焼炎を噴射する燃焼炎噴射口の先端が、前記粉砕冷却筒の上端角部を通る仮想水平面よりも上方にある。
第11の態様に係る金属粉末の製造方法では、垂下した溶融金属に、超音速の燃焼炎を集中噴射し、前記溶融金属を一次粉砕し、溶融状態の溶滴を形成する一次粉砕工程と、前記燃焼炎を、前記一次粉砕後の溶滴を含む噴出集束流にして直下に噴出し、前記一次粉砕後の溶滴を、相対速度の速い前記噴出集束流中にて移動させて二次粉砕し、より小さな溶融状態の溶滴にする二次粉砕工程と、前記二次粉砕後の溶滴を含む前記噴出集束流を、旋回水流に突入させて三次粉砕すると共に冷却し、前記二次粉砕後の溶滴よりも小さな金属粉末にする三次粉砕工程と、を有している。
第12の態様に係る金属粉末の製造方法では、第11の態様に係る金属粉末の製造方法において、前記噴出集束流の上流部に、全側方から均等に気流を流入させる。
第6の態様から第8の態様の作用効果は、第1の態様から第3の態様の作用効果と重複するので、説明を省略する。
本開示の金属粉末製造装置、及び金属粉末製造方法によれば、品質のよい微細な粒径の金属粉末を得ることができる、という優れた効果を有する。
図1乃至図3にしたがって、本発明の一実施形態である金属粉末製造装置10について説明する。
図1に示すように、本実施形態の金属粉末製造装置10は、溶融金属Mを供給する供給手段12、溶融金属Mを粉砕(本発明の一次粉砕)して溶滴Mmpを生成する燃焼炎噴射手段14、溶滴Mmpを再粉砕(本発明の三次粉砕)して冷却し、金属粉末Mspを生成する粉砕冷却筒18等を含む構成としている。そして、金属粉末製造装置10は、供給手段12、燃焼炎噴射手段14、及び粉砕冷却筒18を、開放空間中に配置している。即ち、燃焼炎噴射手段14と粉砕冷却筒18との間に、装置周囲の雰囲気気体(例えば大気)が自由に流通できる空間を有している。
図1に示すように、本実施形態の金属粉末製造装置10は、溶融金属Mを供給する供給手段12、溶融金属Mを粉砕(本発明の一次粉砕)して溶滴Mmpを生成する燃焼炎噴射手段14、溶滴Mmpを再粉砕(本発明の三次粉砕)して冷却し、金属粉末Mspを生成する粉砕冷却筒18等を含む構成としている。そして、金属粉末製造装置10は、供給手段12、燃焼炎噴射手段14、及び粉砕冷却筒18を、開放空間中に配置している。即ち、燃焼炎噴射手段14と粉砕冷却筒18との間に、装置周囲の雰囲気気体(例えば大気)が自由に流通できる空間を有している。
供給手段12は、溶融金属Mを収納する容器20を備え、容器20の外周側には、金属材料を加熱溶融して溶融金属Mにする高周波コイル22を配置している。供給手段12は、容器20の底面下方の中央に、容器20の内部に連通する注湯ノズル24を有し、容器20の内部に収納した溶融金属Mを、注湯ノズル24から垂下できるようにしている。
また、図2に示すように、燃焼炎噴射手段14は、供給手段12の下側に位置し、中央に、溶融金属Mを垂下させる円錐状の通路部15を形成している。また、燃焼炎噴射手段14は、円環状の燃焼室26と、燃焼炎30を噴射する燃焼炎噴射口28を備えている。本実施形態の燃焼炎噴射口28は、軸方向から見て円環状に形成され、円錐状に形成された通路部15に沿って通路部15の外周側を囲むように通路部15と同軸的に配置されている。したがって、本実施形態の燃焼炎噴射口28は、燃焼室26から下方に向けて徐々にその径が縮小している。
本実施形態の燃焼炎噴射手段14は、特許文献に記載された高圧ガス噴射手段と異なるものであり、燃焼室26の内部において、例えば、空気と炭化水素である灯油とを気体混合して燃焼し、燃焼炎噴射口28から下方内側に向かい、燃焼炎噴射口28の円周に沿って隙間なく燃焼炎30を噴射できるようにしている。なお、燃焼炎30は、溶融金属Mの融点より高温にして、かつ、超音速のガス流として噴射される。
また、燃焼炎噴射手段14は、供給手段12の下方にて、円環状の燃焼炎噴射口28から斜め下方に向かって、言い換えれば、通路部15の軸線を下方に伸ばした延長線に向けて燃焼炎30を噴射できるものであり、燃焼炎30を、注湯ノズル24から供給した溶融金属Mの垂下流Maを取り囲んで、垂下流Maの一箇所(以後、垂下流Maに燃焼炎30が集中する集中位置SPとする)に集中して噴射できるようにしている。
また、燃焼炎噴射手段14は、燃焼炎30を、注湯ノズル24から供給される溶融金属Mの垂下流Maの外周に沿って隙間なく、均等な噴射圧力にて集中噴射できるものであり、噴射した燃焼炎30が、垂下流Maの集中位置SPに集中して衝突できるようにしている。
さらに、燃焼炎噴射手段14は、燃焼炎30を、超音速にて集中噴射できるものであり、集中した燃焼炎30が、広がりが抑えられた直線状の噴出集束流31となって、集中位置SPから鉛直直下に向けて、噴出できるようにしている。即ち、燃焼炎噴射口28から噴射される超音速の燃焼炎30は、燃焼炎噴射口28から下方に向けて徐々に径が小となり、一例として、燃焼炎噴射口28の下端から下方に15~120mm離間した位置で一旦集中して径が最小となった後、径が極僅かに広がりはするが、ガスアトマイズのように大きく広がって拡散する事無く下方へ向けて噴出集束流31となって流下する。なお、燃焼炎30の集中位置SPは、燃焼炎30を側面視して、燃焼炎30の径が最小となった位置として目視にて確認できる。
また、燃焼炎噴射手段14は、燃焼炎30を、注湯ノズル24から供給される溶融金属Mの垂下流Maの外周に沿って隙間なく、均等な噴射圧力にて集中噴射できるものであり、噴射した燃焼炎30が、垂下流Maの集中位置SPに集中して衝突できるようにしている。
さらに、燃焼炎噴射手段14は、燃焼炎30を、超音速にて集中噴射できるものであり、集中した燃焼炎30が、広がりが抑えられた直線状の噴出集束流31となって、集中位置SPから鉛直直下に向けて、噴出できるようにしている。即ち、燃焼炎噴射口28から噴射される超音速の燃焼炎30は、燃焼炎噴射口28から下方に向けて徐々に径が小となり、一例として、燃焼炎噴射口28の下端から下方に15~120mm離間した位置で一旦集中して径が最小となった後、径が極僅かに広がりはするが、ガスアトマイズのように大きく広がって拡散する事無く下方へ向けて噴出集束流31となって流下する。なお、燃焼炎30の集中位置SPは、燃焼炎30を側面視して、燃焼炎30の径が最小となった位置として目視にて確認できる。
ここで、燃焼炎30が、垂下流Maの集中位置SPに衝突すると、溶融金属Mは一次粉砕され、霧状に微細化した溶融状態の金属粉末、即ち、溶滴Mmpが生成される。そして、溶滴Mmpを含んだ噴出集束流31は、超音速あるいは超音速に近い高速を保って、燃焼炎噴射手段14の軸線CLcの延長線上を流下する。
なお、一次粉砕により生成した溶滴Mmpは、質量を有する液体なので、慣性力が働き、気体である噴出集束流31よりも流下速度が遅くなる。このため、流下する溶滴Mmpは、流下する過程において、相対速度の速い噴出集束流31により、引っ張られ、引きちぎられるような力を受け、再粉砕(本発明の二次粉砕)されて微細化される。
また、粉砕冷却筒18は、燃焼炎噴射手段14の下方に位置し、軸線CLaを鉛直方向から傾斜させた円筒部36、及び円筒部36の上部の外周付近を塞ぐ円環状の閉塞部材38を備えている。また、閉塞部材38の中心部には、粉砕冷却筒18と同軸的に円形の開口部40を形成している。なお、鉛直方向に対する粉砕冷却筒18の軸線CLaの傾斜角度θは、10~55度の範囲内とすることが好ましい。
図1、及び図3に示すように、粉砕冷却筒18は、円筒部36の上端側に、2つの冷却水噴射口42を開口し、図3に示すように、2つの冷却水噴射口42が、粉砕冷却筒18の軸線CLaを境にして互いに反対側に位置し、円筒部36の内周面の接線方向に沿って延びる配管44を介して、水供給源46に繋がっている。水供給源46は、ポンプ、流量調整バルブ等を含み、冷却水噴射口42を介して、円筒部36内部の内周面の接線方向に沿って、多量の冷却水Wを高速に噴出できるようにしている。
冷却水噴射口42から冷却水Wを噴出すると、冷却水Wが粉砕冷却筒18の内周面に沿って高速に旋回しながら流下し、旋回冷却水層56が形成される。冷却水Wは、粉砕冷却筒18の内周面に沿って高速に旋回しながら流下し、粉砕冷却筒18の下端から排出部32に排出される。なお、閉塞部材38は、旋回する冷却水Wが、粉砕冷却筒18の上側に排出されることを防止している。
また、粉砕冷却筒18は、内周面に、旋回冷却水層56の層厚を調整するための環状の突起18Aを有し、これにより、冷却水Wの流下が抑制され、冷却水噴射口42と突起18Aとの間に、略一定厚さの旋回冷却水層56が少ない流量で容易に形成されている。また同時に、旋回冷却水層56の中心側に形成される空洞Sの形状を安定化している。なお、本実施形態では、粉砕冷却筒18と水供給源46により、粉砕装置を構成している。
次に、燃焼炎噴射手段14と粉砕冷却筒18との位置関係について説明する。
図2に示すように、本実施形態の金属粉末製造装置10では、燃焼炎噴射手段14が、粉砕冷却筒18の開口部40の鉛直上方に位置すると共に、燃焼炎噴射口28から噴射した燃焼炎30の集中位置SPが、開放空間中である、図2の細い点線で囲まれる領域A内で、かつ燃焼炎噴射口28の下端よりも下方に位置している。
図2に示すように、本実施形態の金属粉末製造装置10では、燃焼炎噴射手段14が、粉砕冷却筒18の開口部40の鉛直上方に位置すると共に、燃焼炎噴射口28から噴射した燃焼炎30の集中位置SPが、開放空間中である、図2の細い点線で囲まれる領域A内で、かつ燃焼炎噴射口28の下端よりも下方に位置している。
なお、集中位置SPは、領域A内で、かつ粉砕冷却筒18の軸線CLaよりも上方の線の長い点線で囲まれる領域B内に位置することが好ましい。
さらに、集中位置SPは、領域B内で、かつ粉砕冷却筒18の上端角部18Eを通る仮想水平面FPよりも上方の太い点線で囲まれる領域C内に位置することがより好ましい。
さらに、集中位置SPは、領域B内で、かつ粉砕冷却筒18の上端角部18Eを通る仮想水平面FPよりも上方の太い点線で囲まれる領域C内に位置することがより好ましい。
このような集中位置SPにすることで、集中位置SPから旋回冷却水層56までの距離が長くなり、溶滴Mmpを二次粉砕する時間が長くなるので、溶滴Mmpを効率よく二次粉砕することができる。
また、図1に示すように、排出部32は、粉砕冷却筒18の下端に接続して傾斜する配管50を有し、配管50の中間部に、上方に向けて延びる配管52を接続している。さらに、配管52の端部には、粉砕冷却筒18の内部の排ガス(例えば、灯油と空気との燃焼により生成されるガス)を吸引する吸引装置54を接続し、吸引装置54は、ブロワ等を含む構成にしている。
(作用、効果)
次に、本実施形態の金属粉末製造装置10の、作動及び作用・効果について説明する。
次に、本実施形態の金属粉末製造装置10の、作動及び作用・効果について説明する。
金属粉末製造装置10により金属粉末Mspを製造する手順は、まず、容器20内に金属材料を投入し、高周波コイル22により加熱溶融して溶融金属Mを作製する。その際、不図示の弁により、容器20内から燃焼炎噴射口28に通じる通路部15を閉じ、溶融金属Mが通路部15を垂下しないようにしておく。
次に、冷却水噴射口42から多量の冷却水Wを高速で噴出し、冷却水Wを粉砕冷却筒18の内周面に沿って高速旋回させながら流下させ、旋回水流である旋回冷却水層56を形成する。なお、旋回冷却水層56を形成した冷却水Wは、粉砕冷却筒18の内周面に沿って旋回しながらさらに流下するようにし、粉砕冷却筒18の下端から排出部32に排出するようにする。
次に、吸引装置54を起動して、粉砕冷却筒18内部の気体を排気できるようにした後、燃焼炎噴射手段14の燃焼炎噴射口28から燃焼炎30を噴射する。そして、容器20の不図示の弁を開けて、容器20内の溶融金属Mを、注湯ノズル24から垂下流Maとして鉛直下方に流出させる。これにより、燃焼炎30を、垂下流Maの集中位置SPに集中噴射し、燃焼炎30が、垂下流Maの集中位置SPに衝突し、垂下流Maが燃焼炎30の衝突エネルギーにより一次粉砕され、霧状の微細な溶滴Mmpが生成される。なお、燃焼炎30と共に生成された、排ガスは、粉砕冷却筒18内部を通して吸引装置54に吸引され、外部に排出される。
ここで、燃焼炎噴射手段14が、特許文献に記載されているようなガス噴射手段であると、高圧ガス(アトマイズガス)は垂下流Maより低い温度であり、ガスの噴射速度も本実施形態よりも遅い速度になる。そのため、垂下流Maは、高圧ガスにより冷却されながら、即ち、垂下流Maの粘度を高めながら粉砕されことになるので、垂下流Maは粉砕されにくくなるため、微細な粒径の溶滴Mmpを生成することが困難になっていた。
しかし、本実施形態では、燃焼炎噴射手段14により、垂下流Maを、高温の燃焼炎30に加熱しながら、即ち、垂下流Maの粘度を低下させながら粉砕(一次粉砕)することができる。そして、超音速の燃焼炎30を集中噴射することにより、燃焼炎30の高い衝撃エネルギーで、垂下流Maを粉砕することができる。これにより、垂下流Maを容易に粉砕することができ、特許文献にある金属粉末の製造方法よりも微細な粒径の溶滴Mmpを得ることができる。
そして、垂下流Maの集中位置SPに集中噴射した燃焼炎30は、超音速のガス流の特性により、集中位置SPから広がりを抑制された噴出集束流31にして、直線状に流下する。その際、燃焼炎30の一次粉砕により霧状に生成された溶滴Mmpは、噴出集束流31と共に、超音速あるいはそれに近い高速を保って、鉛直下方に流下する。
ここで、燃焼炎噴射手段14が、特許文献に記載されているようなガス噴射手段であると、高圧ガス(アトマイズガス)は溶滴Mmpより低い温度であり、ガスの噴出速度も本実施形態よりも遅い速度になる。そのため、一次粉砕により生成した溶滴Mmpは、冷却されながら、即ち、溶滴Mmpの粘度を高めながら流下することになるので、高圧ガスとの相対速度差が生じても、継続して粉砕することが困難になっていた。
しかし、本実施形態の金属粉末製造装置10では、燃焼炎噴射手段14により、溶滴Mmpを、高温・高速の噴出集束流31と共に流下させることができる。即ち、噴出集束流31の加熱により、溶滴Mmpの粘度を低下させながら流下させると共に、超音速の噴出集束流31との間に相対速度差を生じさせて流下させることができる。これにより、溶滴Mmpを、集中位置SPから旋回冷却水層56に到達するまでの間に、容易に二次粉砕することができ、より微細な溶滴Mmpを生成することができる。
また、本実施形態の金属粉末製造装置10では、燃焼炎30の集中位置SPから旋回冷却水層56までの距離が長くなるように、即ち、二次粉砕する時間が長くなるようにしている。これにより、噴出集束流31と共に流下する溶滴Mmpを、効率よく二次粉砕することができ、旋回冷却水層56に到達する溶滴Mmpを、特許文献に記載されているような金属粉末の製造方法よりも微細な溶滴Mmpにすることができる。
そして、二次粉砕により微細化した溶滴Mmpは、低い粘度のまま、粉砕冷却筒18の内周面に形成した旋回冷却水層56に突入し、突入した際の衝撃により、溶滴Mmpは三次粉砕されて更に微細化し、冷却水Wにより急冷して金属粉末Mspが生成される。
ここで、燃焼炎噴射手段14が、特許文献に記載されているようなガス噴射手段であると、高圧ガス(アトマイズガス)は溶滴Mmpより低い温度であり、ガスの噴射速度も本実施形態よりも遅い速度になる。そのため、二次粉砕により生成した溶滴Mmpは、冷却されながら、即ち、溶滴Mmpの粘度が高まりながら流下することになるので、旋回冷却水層56に突入しても、容易には粉砕されなかった。
しかし、本実施形態の金属粉末製造装置10では、燃焼炎噴射手段14により、溶滴Mmpを、高温・高速の噴出集束流31と共に、旋回冷却水層56に突入させることができる。即ち、溶滴Mmpを、噴出集束流31の加熱により粘度を低下させながら、超音速の噴出集束流31と共に、旋回冷却水層56に突入させることができる。これにより、溶滴Mmpは、旋回冷却水層56に突入させた衝撃により、効率よく三次粉砕され、三次粉砕した溶滴Mmpの粒径を、特許文献に記載されているような金属粉末の製造方法よりも、微細にすることができる。
このように、本実施形態の金属粉末製造装置10によれば、溶融金属Mを、超音速の燃焼炎30で一次粉砕した溶滴Mmpを、旋回冷却水層56に到達するまでの間に二次粉砕し、更に、旋回冷却水層56に突入させて三次粉砕することができる。これにより、特許文献に記載されているような金属粉末の製造方法よりも微細な粒径の金属粉末Mspを、効率よく得ることができる。
また、特許文献に記載されているような金属粉末の製造方法では、一次粉砕により生成した溶滴が、広がりながら水層に衝突するため、得られた金属粉末は、旋回冷却水層に到るまでの距離が短かった金属粒子と、旋回冷却水層に到るまでの距離が長かった金属粒子との混合になる。これら金属粒子は、異なる冷却条件により得られた金属粒子の混合になるので、冷却速度に影響される金属粉末の品質バラつき、例えば、金属粉末のアモルファス化がバラいた金属粉末になることがある。さらに、特許文献に記載されているガスアトマイズ法では、溶融金属が、水で急冷される前にガスで冷却(水による冷却よりも冷却速度は遅い)されてしまうため、ガスによる冷却中に溶融金属の一部が結晶化する虞がある。
しかし、本実施形態の金属粉末製造装置10では、噴出集束流31が直線状に流下するので、溶滴Mmpが、旋回冷却水層56に到るまでの距離を、ほぼ等しくすることができ、しかも、溶滴Mmpは、噴出集束流31により加熱されながら旋回冷却水層56に突入するので、冷却条件に影響される金属粉末の品質バラつきをより一層抑制することができる。
さらに、本実施形態の金属粉末製造装置10によれば、一次粉砕及び二次粉砕により微細な粒径になった溶滴Mmpが、旋回冷却水層56に突入して冷却されるので、溶滴Mmpが凝固して金属粉末Mspになる際、金属粉末Mspの内部まで迅速に急冷することができる。これにより、金属粉末Mspは、内部まで均一にアモルファス化されるので、安定してアモルファス化した金属粉末Mspを容易に得ることができる。なお、金属粉末Mspのアモルファス化状態は、X線回折(XRD)により確認することができる。
このようにして得られた金属粉末Mspは、冷却水Wに分散された状態で粉砕冷却筒18を流下され、排出部32に排出される。排出部32に排出された金属粉末Mspを含む冷却水Wは、配管50の先端側で回収される。
なお、金属粉末Mspの粒径は、例えば、燃焼炎噴射口28から旋回冷却水層56までの距離、冷却水Wの旋回速度、等により調整することができる。
例えば、燃焼炎噴射口28から旋回冷却水層56までの距離を長くすれば、二次粉砕が促進され、旋回冷却水層56に到達する溶滴Mmpの粒径が小さくなるので、より微細な粒径の金属粉末を得ることができる。なお、燃焼炎噴射口28から旋回冷却水層56までの距離を長くするためには、燃焼炎30の集中位置SPを、領域Aよりも領域Bに位置することが好ましく、領域Bよりも領域Cに位置することがより好ましい。
また、冷却水Wの旋回速度は、冷却水噴射口42から噴出する冷却水Wの単位時間当たりの水量を変えることで調整することができる。冷却水Wの旋回速度を上げることにより、溶滴Mmpと旋回冷却水層56との衝突エネルギーを大きくすることができるので、これにより、三次粉砕の粉砕力を高めて、溶滴Mmpをより微細に粉砕することで、より微細な粒径の金属粉末Mspを得ることができる。
なお、鉛直方向に対する粉砕冷却筒18の軸線CLaの傾斜角度θは、10~55度の範囲内とすることが好ましい。傾斜角度θの下限が10°であれば、粉砕冷却筒18の上端面が十分に傾くので、燃焼炎噴射口28の先端を粉砕冷却筒の上端角部18Eを通る仮想水平面FPよりも上方にすれば、燃焼炎噴射口28の先端と旋回冷却水層56までの距離が長くなり、二次粉砕の時間が長くなり、溶滴Mmpは球状化しやすくなるので、球形に近い金属粉末Mspを、微細な粒径にして得ることができる。
一方、傾斜角度θの上限が55°であれば、例えば、冷却水Wを粉砕冷却筒18の下方に流しやすくなるので、冷却水噴射口42から噴出する冷却水で形成される旋回冷却水層56の温度を低く保ちやすい。その結果、溶滴Mmpを低温の旋回冷却水層56に突入させることができ、金属粉末Mspの内部まで迅速に急冷することができる。
これにより、金属粉末Mspを、内部まで均一にアモルファス化することができる。
一方、傾斜角度θの上限が55°であれば、例えば、冷却水Wを粉砕冷却筒18の下方に流しやすくなるので、冷却水噴射口42から噴出する冷却水で形成される旋回冷却水層56の温度を低く保ちやすい。その結果、溶滴Mmpを低温の旋回冷却水層56に突入させることができ、金属粉末Mspの内部まで迅速に急冷することができる。
これにより、金属粉末Mspを、内部まで均一にアモルファス化することができる。
このように、本実施形態の金属粉末製造装置10を用いることで、特許文献に記載されているような金属粉末の製造方法より、より微細な粒径の金属粉末Mspを効率よく得ることができる。
また、本実施形態の金属粉末製造装置10において、燃焼炎噴射手段14を粉砕冷却筒18の内部に配置する、あるいは、燃焼炎噴射手段14を粉砕冷却筒18の外部に配置しても、燃焼炎噴射口28や粉砕冷却筒18を密閉されたチャンバ等の中に収容すると、溶滴Mmpの周囲の気圧が、左右非対称になり易く、噴出集束流31の上流部、即ち、集中位置SPの近傍に負圧が発生し易くなる。この負圧は、噴出集束流31の周囲を不安定にして、噴出集束流31を引き寄せるため、溶滴Mmpと共に流下する噴出集束流31に振動を発生させるなどして、溶滴Mmpの安定した二次粉砕が困難となることがある。即ち、二次粉砕に影響される金属粉末の品質にバラつきを生じる可能性がある。
本実施形態の金属粉末製造装置10では、燃焼炎噴射口28から噴射した超高速の燃焼炎30を粉砕冷却筒18の外部の開放空間中に集中させて、超高速の噴出集束流31を形成している。これにより、噴出集束流31の上流部に負圧が発生することを抑制し、噴出集束流31の振動を抑制することができる。
また、本実施形態の金属粉末製造装置10では、燃焼炎30の集中位置SPを、粉砕冷却筒18の上端角部18Eを通る仮想水平面FPよりも上方の領域C内にすることが好ましく、噴出集束流31の上流部周りに対して、全側方からより均等に気流を流入できるようにしている。これにより、噴出集束流31の上流部周りにスムーズな気流を形成して、負圧の発生をより一層抑制することができる。
また、特許文献に記載されているような金属粉末の製造方法では、一次粉砕により生成した溶滴が広がりながら流下するので、旋回水流の径、即ち、粉砕冷却筒の径を大きく設定して、広がりながら流下する金属粉末を大径の水層で捕捉する必要が生じる。しかし、粉砕冷却筒の径を大径にすると、冷却水を噴出する水供給源の能力を大きくする必要があり、装置の製作コストも高くなる。
一方、本実施形態の金属粉末製造装置10では、一次粉砕した溶滴Mmpを噴出集束流31と共に直線状に流下させるので、溶滴を捕捉する粉砕冷却筒の径を小さくして、金属粉末製造装置10を小型化することができる。また、二次粉砕する領域を長くとることも容易になる。
上記実施形態では、本実施形態の燃焼炎噴射口28は、燃焼室26から下方に向けて徐々にその径を縮小させていたが、燃焼室26から下方に向けて径を一定としてもよい。この場合、通路部15の形状は、円錐状ではなく、円筒状となる。なお、燃焼炎30の噴出速度が音速を超えるようになると、燃焼炎噴射口28を一定径としても、燃焼炎噴射口28の下端から下方へ離れた位置で燃焼炎30を集束させ、噴出集束流31とすることができる。
なお、ガスアトマイズ法では、ガスの噴出速度が燃焼炎の噴出速度よりも遥かに遅いため、噴出したガス(金属粉を含む)が大きく拡散してしまう。
なお、ガスアトマイズ法では、ガスの噴出速度が燃焼炎の噴出速度よりも遥かに遅いため、噴出したガス(金属粉を含む)が大きく拡散してしまう。
[試験例]
本発明の効果を確かめるために、本発明の適用された実施形態の金属粉末製造装置と、比較例に係る金属粉末製造装置とを用いて各々の装置で金属粉末を製造し、製造された金属粉末について、組成、及び粒径の比較を行った。
本発明の効果を確かめるために、本発明の適用された実施形態の金属粉末製造装置と、比較例に係る金属粉末製造装置とを用いて各々の装置で金属粉末を製造し、製造された金属粉末について、組成、及び粒径の比較を行った。
金属粉末製造装置の説明
・実施例の金属粉末製造装置
溶解部(供給手段)、燃焼炎噴射手段、および粉砕部(粉砕冷却筒)は、上記実施形態と同様。
粉砕冷却筒に導入する冷却媒体として水を採用し、流速をおよそ160m/sとなるように制御した。粉砕された溶滴は、高速度の水の流れに突入し、溶滴の表面に発生した水蒸気被膜が水流によって破壊され急速に冷却が進行する。
・比較例の金属粉末製造装置
特開2014-136807号に開示の構成の金属粉末製造装置を用いた。
この金属粉末製造装置は、実施例と同様に、ジェットバーナーが、供給手段により供給される溶融金属に対してフレームジェットを噴射し、溶融金属を粉砕する。上記により粉砕した溶融金属を冷却チャンバ内に燃焼炎の外側面に冷却媒体が当たるように設置した冷却ノズルにより5L/minの冷却媒体として水を使用し連続的に噴霧した。得られた粉末はサイクロンにより回収した。
・実施例と比較例の同一条件部分の説明
粉砕する金属を溶解部にて、6.7wt%Si、2.5wt%Cr、2.5wt%B、0.6wt%C、残量をFeからなるように金属を溶解した。溶解部には溶解金属を下部から滴下制御できるような栓があり、栓を開けることで粉砕部への溶解金属供給を制御することができる。
燃焼炎はノズル中央部から鉛直方向に沿った温度プロファイルを測定し最大値を約1200℃となるように空燃比を1.2となるように制御した。溶融金属の滴下は3kg/minとした。
・実施例の金属粉末製造装置
溶解部(供給手段)、燃焼炎噴射手段、および粉砕部(粉砕冷却筒)は、上記実施形態と同様。
粉砕冷却筒に導入する冷却媒体として水を採用し、流速をおよそ160m/sとなるように制御した。粉砕された溶滴は、高速度の水の流れに突入し、溶滴の表面に発生した水蒸気被膜が水流によって破壊され急速に冷却が進行する。
・比較例の金属粉末製造装置
特開2014-136807号に開示の構成の金属粉末製造装置を用いた。
この金属粉末製造装置は、実施例と同様に、ジェットバーナーが、供給手段により供給される溶融金属に対してフレームジェットを噴射し、溶融金属を粉砕する。上記により粉砕した溶融金属を冷却チャンバ内に燃焼炎の外側面に冷却媒体が当たるように設置した冷却ノズルにより5L/minの冷却媒体として水を使用し連続的に噴霧した。得られた粉末はサイクロンにより回収した。
・実施例と比較例の同一条件部分の説明
粉砕する金属を溶解部にて、6.7wt%Si、2.5wt%Cr、2.5wt%B、0.6wt%C、残量をFeからなるように金属を溶解した。溶解部には溶解金属を下部から滴下制御できるような栓があり、栓を開けることで粉砕部への溶解金属供給を制御することができる。
燃焼炎はノズル中央部から鉛直方向に沿った温度プロファイルを測定し最大値を約1200℃となるように空燃比を1.2となるように制御した。溶融金属の滴下は3kg/minとした。
図4Aは、比較例に係る金属粉末製造装置で製造された金属粉末のX線回折による試験結果を示すグラフであり、図4Bは、実施例に係る金属粉末製造装置で製造された金属粉末のX線回折による試験結果を示すグラフである。
図4Aに示す試験結果から、比較例に係る金属粉末製造装置で製造された金属粉末は、一部に結晶化した金属粉末が含まれていることが分かる(図中、Feのピークがある)。一方、図4Bに示す試験結果から、実施例に係る金属粉末製造装置で製造された金属粉末は、完全にアモルファス化していることが分かる(比較例の試験結果で示されたようなピークが無い)。
図4Aに示す試験結果から、比較例に係る金属粉末製造装置で製造された金属粉末は、一部に結晶化した金属粉末が含まれていることが分かる(図中、Feのピークがある)。一方、図4Bに示す試験結果から、実施例に係る金属粉末製造装置で製造された金属粉末は、完全にアモルファス化していることが分かる(比較例の試験結果で示されたようなピークが無い)。
また、図5Aは、比較例に係る金属粉末製造装置で製造された金属粉末の粒度分布を示すグラフであり、図5Bは、実施例に係る金属粉末製造装置で製造された金属粉末の粒度分布を示すグラフである。
図5A,Bに示す試験結果から、実施例に係る金属粉末製造装置で製造された金属粉末は、比較例に係る金属粉末製造装置で製造された金属粉末に比較して、粒径の大きい粉末の発生が抑制され、比較的平均粒径の小さい粒度分布に粉砕されていることがわかる。
図5A,Bに示す試験結果から、実施例に係る金属粉末製造装置で製造された金属粉末は、比較例に係る金属粉末製造装置で製造された金属粉末に比較して、粒径の大きい粉末の発生が抑制され、比較的平均粒径の小さい粒度分布に粉砕されていることがわかる。
[その他の実施形態]
以上、本発明の一実施形態について説明したが、本発明は、上記に限定されるものでなく、上記以外にも、その主旨を逸脱しない範囲内において種々変形して実施可能であることは勿論である。
以上、本発明の一実施形態について説明したが、本発明は、上記に限定されるものでなく、上記以外にも、その主旨を逸脱しない範囲内において種々変形して実施可能であることは勿論である。
上記実施形態では、二次粉砕により生成した溶滴Mmpを、旋回冷却水層56に衝突させて三次粉砕を行ったが、二次粉砕により生成した溶滴Mmp、あるいは、溶滴Mmpが凝固した金属粉末Mspを、旋回冷却水層56に乗せて粉砕冷却筒18の内周面に衝突させ、その際の衝撃で三次粉砕を行ってもよい。これにより、粉砕力を更に高めて、より微細な粒径の金属粉末を得ることができる。
本実施形態の金属粉末製造装置10では、粉砕冷却筒18の内部に、例えば、酸素の含まれていないアルゴンガス、窒素ガス等の不活性ガスを流入させてもよい。これにより、金属の酸化を抑制することができる。
2017年9月7日に出願された日本国特許出願2017-172411号の開示は、その全体が参照により本明細書に取り込まれる。
本明細書に記載されたすべての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
本明細書に記載されたすべての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
10 金属粉末製造装置
12 供給手段
14 燃焼炎噴射手段
18 粉砕冷却筒(粉砕装置)
28 燃焼炎噴射口
30 燃焼炎
31 噴出集束流
38A 上面(開口部の開口面)
40 開口部
46 水供給源(粉砕装置)
56 旋回冷却水層(旋回水流)
CLa 軸線
FP 仮想水平面
M 溶融金属
Mmp 溶滴
Msp 金属粉末
W 冷却水(粉砕冷却媒体)
12 供給手段
14 燃焼炎噴射手段
18 粉砕冷却筒(粉砕装置)
28 燃焼炎噴射口
30 燃焼炎
31 噴出集束流
38A 上面(開口部の開口面)
40 開口部
46 水供給源(粉砕装置)
56 旋回冷却水層(旋回水流)
CLa 軸線
FP 仮想水平面
M 溶融金属
Mmp 溶滴
Msp 金属粉末
W 冷却水(粉砕冷却媒体)
Claims (12)
- 溶融金属を垂下する供給手段と、
前記供給手段から垂下した溶融金属に、燃焼炎噴射口から超音速の燃焼炎を集中噴射し、集中した前記燃焼炎を噴出集束流にして直下に噴出させる燃焼炎噴射手段と、
軸線が鉛直方向から傾斜して内周壁に沿って旋回水流を形成し、上部の開口部から前記噴出集束流を流入して前記旋回水流に突入させる粉砕冷却筒、を有する粉砕装置と、
を備え、
前記燃焼炎の集中位置が、前記開口部より上方の開放空間中にある、金属粉末製造装置。 - 前記燃焼炎の集中位置が、前記粉砕冷却筒の前記軸線よりも上方にある、請求項1に記載の金属粉末製造装置。
- 前記燃焼炎の集中位置が、前記粉砕冷却筒の上端角部を通る仮想水平面よりも上方にある、請求項2に記載の金属粉末製造装置。
- 前記集中位置は、前記燃焼炎噴射口の下端から15~120mmの範囲内にある、請求項1乃至請求項3のいずれか1項に記載の金属粉末製造装置。
- 鉛直方向に対する前記粉砕冷却筒の軸線の傾斜角度が10~55°であり、
前記燃焼炎噴射口の先端が、前記粉砕冷却筒の上端角部を通る仮想水平面よりも上方にある、請求項1乃至請求項4の何れか1項に記載の金属粉末製造装置。 - 垂下した溶融金属に、超音速の燃焼炎を集中噴射し、集中した前記燃焼炎を噴出集束流にして直下に噴出し、
前記噴出集束流を、軸線が鉛直方向から傾斜した粉砕冷却筒の内周面に沿って形成した旋回水流に突入させると共に、
前記燃焼炎の集中位置を、前記旋回水流より上方の開放空間中とする、金属粉末の製造方法。 - 前記燃焼炎の集中位置を、前記粉砕冷却筒の前記軸線よりも上方とする、請求項6に記載の金属粉末の製造方法。
- 前記燃焼炎の集中位置を、前記粉砕冷却筒の上端角部を通る仮想水平面よりも上方とする、請求項7に記載の金属粉末の製造方法。
- 前記噴出集束流の上流部に、全側方から気流を流入させる、請求項6乃至請求項8のいずれか1項に記載の金属粉末の製造方法。
- 鉛直方向に対する前記粉砕冷却筒の軸線の傾斜角度が10~55°であり、
燃焼炎を噴射する燃焼炎噴射口の先端が、前記粉砕冷却筒の上端角部を通る仮想水平面よりも上方にある、請求項6乃至請求項9の何れか1項に記載の金属粉末の製造方法。 - 垂下した溶融金属に、超音速の燃焼炎を集中噴射し、前記溶融金属を一次粉砕し、溶融状態の溶滴を形成する一次粉砕工程と、
前記燃焼炎を、前記一次粉砕後の溶滴を含む噴出集束流にして直下に噴出し、前記一次粉砕後の溶滴を、相対速度の速い前記噴出集束流中にて移動させて二次粉砕し、より小さな溶融状態の溶滴にする二次粉砕工程と、
前記二次粉砕後の溶滴を含む前記噴出集束流を、旋回水流に突入させて三次粉砕すると共に冷却し、前記二次粉砕後の溶滴よりも小さな金属粉末にする三次粉砕工程と、
を有することを特徴とする金属粉末の製造方法。 - 前記噴出集束流の上流部に、全側方から均等に気流を流入させる、請求項11に記載の金属粉末の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18854477.9A EP3680045B1 (en) | 2017-09-07 | 2018-09-04 | Device and method for manfacturing metal powder |
US16/644,915 US11235390B2 (en) | 2017-09-07 | 2018-09-04 | Apparatus for producing metal powder and method of producing metal powder |
CN201880058184.3A CN111050959B (zh) | 2017-09-07 | 2018-09-04 | 金属粉末制造装置以及金属粉末的制造方法 |
JP2018568973A JP6539793B1 (ja) | 2017-09-07 | 2018-09-04 | 金属粉末製造装置、及び金属粉末の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017172411 | 2017-09-07 | ||
JP2017-172411 | 2017-09-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019049865A1 true WO2019049865A1 (ja) | 2019-03-14 |
Family
ID=65633962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/032785 WO2019049865A1 (ja) | 2017-09-07 | 2018-09-04 | 金属粉末製造装置、及び金属粉末の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11235390B2 (ja) |
EP (1) | EP3680045B1 (ja) |
JP (1) | JP6539793B1 (ja) |
CN (1) | CN111050959B (ja) |
WO (1) | WO2019049865A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112276105B (zh) * | 2020-10-29 | 2022-08-09 | 佛山市中研非晶科技股份有限公司 | 水气联合雾化制粉工艺及应用其的水气联合雾化制粉装置 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08812A (ja) | 1994-06-20 | 1996-01-09 | Takeya Co Ltd | パチンコ機の管理装置 |
JPH10121115A (ja) | 1996-08-30 | 1998-05-12 | Kubota Corp | 金属粉末の製造方法およびその装置 |
JPH1143707A (ja) | 1997-07-23 | 1999-02-16 | Kubota Corp | 金属粉末の製造方法およびその装置 |
JPH1180813A (ja) * | 1997-09-04 | 1999-03-26 | Kubota Corp | 急冷凝固金属粉末の製造方法および装置 |
JPH11106805A (ja) * | 1997-10-01 | 1999-04-20 | Kubota Corp | 金属粉末の製造方法およびその装置 |
JP2010090410A (ja) | 2008-10-03 | 2010-04-22 | Seiko Epson Corp | 金属粉末製造装置 |
JP2014136807A (ja) | 2013-01-15 | 2014-07-28 | Tohoku Techno Arch Co Ltd | 金属粉末の製造装置および金属粉末の製造方法 |
JP2016204718A (ja) * | 2015-04-27 | 2016-12-08 | ハード工業有限会社 | 粉末製造装置 |
JP2017145442A (ja) * | 2016-02-16 | 2017-08-24 | ハード工業有限会社 | 金属粉末製造装置 |
JP2017145494A (ja) * | 2016-02-19 | 2017-08-24 | セイコーエプソン株式会社 | 金属粉末製造装置 |
JP2017172411A (ja) | 2016-03-22 | 2017-09-28 | ダイハツ工業株式会社 | スロットルの温度調節構造 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2672056B2 (ja) * | 1991-06-05 | 1997-11-05 | 株式会社クボタ | 金属粉末製造方法及びその装置 |
GB9316522D0 (en) * | 1993-08-09 | 1993-09-22 | Hopkins William | Apparatus for and methods of producing a particulate spray |
JP4181234B2 (ja) * | 1997-09-04 | 2008-11-12 | セイコーエプソン株式会社 | 非晶質金属粉末の製造方法および装置 |
JPWO2012157733A1 (ja) * | 2011-05-18 | 2014-07-31 | 株式会社 東北テクノアーチ | 金属粉末の製造方法および金属粉末の製造装置 |
-
2018
- 2018-09-04 WO PCT/JP2018/032785 patent/WO2019049865A1/ja unknown
- 2018-09-04 EP EP18854477.9A patent/EP3680045B1/en active Active
- 2018-09-04 US US16/644,915 patent/US11235390B2/en active Active
- 2018-09-04 JP JP2018568973A patent/JP6539793B1/ja active Active
- 2018-09-04 CN CN201880058184.3A patent/CN111050959B/zh active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08812A (ja) | 1994-06-20 | 1996-01-09 | Takeya Co Ltd | パチンコ機の管理装置 |
JPH10121115A (ja) | 1996-08-30 | 1998-05-12 | Kubota Corp | 金属粉末の製造方法およびその装置 |
JPH1143707A (ja) | 1997-07-23 | 1999-02-16 | Kubota Corp | 金属粉末の製造方法およびその装置 |
JPH1180813A (ja) * | 1997-09-04 | 1999-03-26 | Kubota Corp | 急冷凝固金属粉末の製造方法および装置 |
JPH11106805A (ja) * | 1997-10-01 | 1999-04-20 | Kubota Corp | 金属粉末の製造方法およびその装置 |
JP2010090410A (ja) | 2008-10-03 | 2010-04-22 | Seiko Epson Corp | 金属粉末製造装置 |
JP2014136807A (ja) | 2013-01-15 | 2014-07-28 | Tohoku Techno Arch Co Ltd | 金属粉末の製造装置および金属粉末の製造方法 |
JP2016204718A (ja) * | 2015-04-27 | 2016-12-08 | ハード工業有限会社 | 粉末製造装置 |
JP2017145442A (ja) * | 2016-02-16 | 2017-08-24 | ハード工業有限会社 | 金属粉末製造装置 |
JP2017145494A (ja) * | 2016-02-19 | 2017-08-24 | セイコーエプソン株式会社 | 金属粉末製造装置 |
JP2017172411A (ja) | 2016-03-22 | 2017-09-28 | ダイハツ工業株式会社 | スロットルの温度調節構造 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3680045A4 |
Also Published As
Publication number | Publication date |
---|---|
EP3680045B1 (en) | 2024-03-27 |
CN111050959B (zh) | 2022-12-16 |
US11235390B2 (en) | 2022-02-01 |
EP3680045A1 (en) | 2020-07-15 |
EP3680045A4 (en) | 2021-01-13 |
JP6539793B1 (ja) | 2019-07-03 |
CN111050959A (zh) | 2020-04-21 |
US20200261981A1 (en) | 2020-08-20 |
JPWO2019049865A1 (ja) | 2019-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10328492B2 (en) | Metal powder production apparatus | |
EP3689512B1 (en) | Metal powder producing apparatus | |
Fritsching et al. | Hybrid gas atomization for powder production | |
JP7231159B2 (ja) | 金属粉末製造装置、及び金属粉末の製造方法 | |
EP3504020B1 (en) | Low melting point metal or alloy powders atomization manufacturing processes | |
AU2018303387A1 (en) | Method for cost-effective production of ultrafine spherical powders at large scale using thruster-assisted plasma atomization | |
KR100800505B1 (ko) | 금속분말 제조장치 | |
JP6539793B1 (ja) | 金属粉末製造装置、及び金属粉末の製造方法 | |
US10391558B2 (en) | Powder manufacturing apparatus and powder forming method | |
KR20180046652A (ko) | 금속 분말 제조를 위한 원추형 수분사 아토마이저 가변 노즐 | |
JP2017145494A (ja) | 金属粉末製造装置 | |
JP6854008B2 (ja) | 金属粉末製造装置 | |
JP4014239B2 (ja) | 微粉体の作製法 | |
JPS6350404A (ja) | 金属粉末製造用噴霧ノズル | |
JPH0649512A (ja) | ガス噴霧金属粉末製造装置 | |
JP2017145495A (ja) | 金属粉末製造装置 | |
JP6560850B2 (ja) | ガラス粉末の製造方法およびガラス粉末の製造装置 | |
KR102678280B1 (ko) | 금속 분말 제조장치 | |
KR102293284B1 (ko) | 복합 아토마이저 | |
JPH08199207A (ja) | 金属粉末の製造方法およびその装置 | |
JPH0559411A (ja) | 金属粉末の製造方法 | |
JPH01149906A (ja) | 超急冷金属合金粉末製造装置 | |
JP2004018956A (ja) | 金属微粉末の製造方法およびそのためのノズル | |
JPS63183109A (ja) | 金属粉末製造装置 | |
JPH03140403A (ja) | ガスアトマイズ法による金属粉末の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018568973 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18854477 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018854477 Country of ref document: EP Effective date: 20200407 |