WO2019049611A1 - 水素ガスの製造方法 - Google Patents

水素ガスの製造方法 Download PDF

Info

Publication number
WO2019049611A1
WO2019049611A1 PCT/JP2018/030197 JP2018030197W WO2019049611A1 WO 2019049611 A1 WO2019049611 A1 WO 2019049611A1 JP 2018030197 W JP2018030197 W JP 2018030197W WO 2019049611 A1 WO2019049611 A1 WO 2019049611A1
Authority
WO
WIPO (PCT)
Prior art keywords
mineral
water
hydrogen gas
ion water
temperature
Prior art date
Application number
PCT/JP2018/030197
Other languages
English (en)
French (fr)
Inventor
杉山 修
Original Assignee
杉山 修
水口 侑香
水口 果南
水口 悦子
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杉山 修, 水口 侑香, 水口 果南, 水口 悦子 filed Critical 杉山 修
Priority to US16/644,323 priority Critical patent/US11465902B2/en
Priority to JP2019540850A priority patent/JPWO2019049611A1/ja
Publication of WO2019049611A1 publication Critical patent/WO2019049611A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/08Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents with metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/38Other non-alcoholic beverages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a method of producing hydrogen gas, and more particularly, a method of producing hydrogen gas of high purity using alkaline mineral ion water containing a specific mineral ion and a specific mineral-supported high temperature calcined carbonaceous material It is about
  • the present invention has been made in view of the above background art, and an object thereof is to provide a method of manufacturing hydrogen gas with high purity by a simple method so as to be excellent in cost.
  • the inventors of the present invention have obtained hydrogen gas from "mineral ion water containing specific ions and limited to a high pH range" and “mineral-supported high-temperature calcinated carbonaceous material obtained by a specific method", and We found that the above problems could be solved.
  • hydrogen gas can be extremely suitably produced by using a carbonaceous material obtained by a specific method.
  • the present invention is a mineral-supporting high-temperature-calcined carbonaceous material for the method for producing hydrogen gas as described above, which is obtained by impregnating the bio-derived carbon precursor with the mineral ion water and firing at high temperature. It is intended to provide a mineral-supported high-temperature calcined carbonaceous material as a feature.
  • the present invention is a method for producing mineral ion water for the method for producing hydrogen gas described above, wherein at least an oxide, hydroxide, carbonate or bicarbonate of magnesium or calcium is dissolved in water It is intended to provide a method for producing mineral ion water, which comprises incorporating an alkaline earth metal ion, adjusting the pH, and dissolving a water-soluble component of the ash of a living organism.
  • hydrogen gas of high purity can be continuously and stably supplied without carbon dioxide, it is extremely friendly to the environment, it is extremely simple and inexpensive as a system.
  • hydrogen gas can be preferably produced, and the hydrogen gas can be provided.
  • the method for producing hydrogen gas according to the present invention does not use fossil fuels as described above (independent of fossil fuels), anywhere, that is, easily on-site hydrogen at places where hydrogen gas is required. Gas can be generated.
  • hydrogen gas can be easily and safely produced in general homes, food factories, vehicles and the like. That is, if the mineral ion water and the carbon catalyst are present, hydrogen gas can be safely generated anywhere.
  • the method for producing hydrogen gas according to the present invention does not use electricity as in the electrolysis method, but uses water and seawater raw materials which can be said to be almost unlimited, so hydrogen gas can be obtained inexpensively, and Also kind. Furthermore, energy can be obtained without relying on fossil fuels, and contributions towards the creation of a carbon dioxide-free hydrogen society will be possible.
  • the bio-derived carbon precursor that is the raw material is bio-derived, and there is no need to contain a zero-valent metal (alloy). Despite the ability, cost reduction and environmental protection can be obtained. In addition, if, for example, plants, seaweeds, etc. are used as the organism-derived carbon precursor, further cost reduction and environmental protection are achieved.
  • the unique carbon plasma-calcined mineral-supported high-temperature-calcinable carbonaceous material is more preferably used. Since pure hydrogen gas is obtained. Further, the mineral ion water after the hydrogen gas has been exhausted maintains a high pH by the effect of the carbonaceous substance and has a large amount of dissolved oxygen, so that it can be reused as an oxygen-containing mineral ion water. In addition, since the above-described mineral-supported high-temperature calcined carbonaceous material can also be repeatedly used as a catalyst, it provides a very economical effect.
  • the method for producing hydrogen gas according to the present invention comprises "mineral ion water containing at least an alkaline earth metal ion and having a pH of 11 or more and 14 or less", and "high temperature calcining with mineral ion water impregnated in a bioderived carbon precursor And a high-temperature-fired carbonaceous material supporting the mineral.
  • the "mineral ion water” in the present invention refers to an aqueous solution containing at least an alkaline earth metal ion and having a pH of 11 or more and 14 or less.
  • the present invention makes “mineral ion water (A)” react with "a mineral-supported high-temperature calcinated carbonaceous material obtained by impregnating a bio-derived carbon precursor with mineral ion water (B) and calcinated at high temperature”.
  • the description is common to the mineral ion water (A) and the mineral ion water (B).
  • the mineral ion water (A) and the mineral ion water (B) actually used may be identical or different (composition) as long as the requirements are satisfied.
  • alkaline earth metal ion examples include magnesium ion, calcium ion, strontium ion, barium ion and the like. More preferably, magnesium ion (Mg 2+ ) or calcium ion (Ca 2+ ) is preferable because hydrogen gas is suitably generated and the compound containing the ion is inexpensive and the like, and particularly preferably calcium is preferable. It is an ion (Ca 2+ ). These ions may be contained singly or in combination of two or more.
  • the concentration of the alkaline earth metal ion in mineral ion water is preferably 10% by mass or more, more preferably 12% by mass or more, and particularly preferably 15% by mass or more, as the total mass of the alkaline earth metal ions.
  • the upper limit is determined by the pH range.
  • alkaline earth metal ion supply compound an oxide of the alkaline earth metal, hydroxylated Substances, carbonates, bicarbonates and the like. More preferably, they are oxides, hydroxides, carbonates, hydrogencarbonates of magnesium or calcium, etc., more preferably oxides, hydroxides, carbonates, hydrogencarbonates of calcium, etc., Particularly preferred is calcium hydroxide (slaked lime). These may be used alone or in combination of two or more.
  • Alkaline earth metal ion supplying compounds can be obtained from rocks such as limestone; biological products such as meteorites, egg shells, shells, fired shells, etc. Further cost reduction is achieved. Moreover, what is called what is called “calcaceous” including the above is also preferable. It is preferable to use an organism-derived product as the alkaline earth metal ion-supplying compound from the viewpoint that it is available as a waste, advantageous in cost, and human-friendly in nature. As the product derived from an organism, those specifically mentioned above for the above reasons are particularly preferable.
  • the amount of the alkaline earth metal ion in the mineral ion water and the amount of the alkaline earth metal ion supply compound used for preparation of the mineral ion water is such that the finally obtained mineral ion water will be in the pH range described later Is preferred.
  • the alkaline earth metal ion-supplying compound is added to water (preferably dissolved and aged (stationary) in a state where air is blocked), if necessary, filtration of supernatant water after aging is carried out to obtain desired mineral ion water. You can get These compounds may be used alone or in combination of two or more.
  • the alkaline earth metal ion supply compound when only calcium hydroxide (slaked lime) is used as the "alkaline earth metal ion supply compound", 12% by mass or more and 15% by mass or more with respect to the whole of the water as calcium hydroxide, in particular preferable.
  • the preferable concentration of the alkaline earth metal ion is It specifies in number of moles (of calcium) (molar concentration) conversion.
  • the pH of the mineral ion water in the present invention is essentially 11 or more and 14 or less, preferably 12 or more and 14 or less, and particularly preferably 13 or more and 14 or less. In such a pH range, hydrogen gas is suitably generated by interaction with the mineral-supported high-temperature fired carbonaceous material described later.
  • the pH is preferably adjusted to include the above-mentioned alkaline earth metal ion-supplying compound and "the (water-soluble component of the biological ash)" described later. It is also possible (not excluded) to use "other compounds which exhibit alkalinity in water”.
  • the mineral ion water according to the present invention preferably further contains “a water-soluble component of the ash of a living organism, from the viewpoint of being rich in resources, excellent in cost performance, capable of effectively using wastes, etc. .
  • a water-soluble component of the ash of a living organism from the viewpoint of being rich in resources, excellent in cost performance, capable of effectively using wastes, etc.
  • trace elements in organisms include sodium, potassium, magnesium, calcium, phosphorus, zinc, manganese, selenium, iron, copper and the like.
  • Metal ions other than alkaline earth metal ions are considered to improve the performance as mineral ion water which is highly alkaline but extremely mild and non-irritating as water.
  • the organism is a protist or a plant.
  • the protist include algae, protozoa and the like, and examples of the plant include a seed plant and the like.
  • Protozoa or plants are preferably rich in mineral components.
  • the algae, seaweed and the like are preferable, and among them, green algae; brown algae such as mozuku, kelp, wakame, honda wall, and hijiki; red algae; diatoms and the like are more preferable.
  • the seed plants are preferably tea plants and the like, among which leaves, stems, roots and the like are more preferable. Tea shells are also particularly preferred. Among them, it is particularly preferable that the above-mentioned "organism" is a plant or a seaweed from the viewpoint of being mineral rich as a component.
  • the above "organism” is a living thing (organism itself, a processed product of a living thing, a biological origin, etc.) contained in waste.
  • wastes include seeds derived from seed plants such as tea husks, processed residues of root vegetables, and weeds; seaweeds such as "brown algae such as Hyundai straw”; and the like.
  • a microbe residue etc. are mentioned as this waste.
  • the mineral ion water in the present invention preferably contains a "water-soluble component of the ashes of organisms", but the water-soluble components may be contained separately from the ashes, This may be added to “mineral ion water (water constituting the water)”, and after standing (aging), the supernatant water may be filtered to contain only the water-soluble ion component. That is, the obtained filtrate may be blended.
  • the water used for preparation of mineral ion water is not particularly limited, and includes demineralized water, distilled water, municipal water, pure water, land water, seawater and the like. Above all, land water such as lakes, mars, rivers, wells (ground water); sea water; etc. are preferable from the viewpoint of cost reduction and already containing many mineral components such as sodium. Sea water is preferable in that it contains more mineral components as compared to land water.
  • the present invention relates to a method for producing mineral ion water for the method for producing hydrogen gas according to the present invention, which comprises dissolving at least an oxide, hydroxide, carbonate or bicarbonate of magnesium or calcium in water. It is also a method for producing mineral ion water, characterized in that it contains alkaline earth metal ions, adjusts the pH, and dissolves the water-soluble component of the biological ash.
  • the present invention is also mineral ionized water for the “method of producing hydrogen gas of the present invention”.
  • the mineral ion water of the present invention is also a mineral ion water (A) for producing hydrogen gas, and a mineral ion water (B) to be impregnated into a bioderived carbon precursor in preparation of a mineral-supported high-temperature calcined carbonaceous substance described later. It is also a mineral-imparting material, a fire-retardant support agent for firing, and there are also such applications.
  • the “mineral-supported high-temperature fired carbonaceous material” in the present invention is formed by impregnating a bio-derived carbon precursor with mineral ion water and firing at high temperature.
  • biologically-derived carbon precursor refers to a "thing containing carbon as an element” which can be fired to become a carbonaceous substance and is of biological origin, and "biologically-derived carbon precursor” means Even if it is already a carbonaceous material, it includes one that is fired at a high temperature to maintain the carbonaceous material.
  • the "carbonaceous material” of "a mineral-supported high temperature calcined carbonaceous material” refers to an object substantially consisting of carbon (C), and includes amorphous carbon of biological origin and the like, and the carbon catalyst for producing hydrogen gas of the present invention Very preferable as However, other carbons such as graphite (natural graphite, graphite); graphene such as graphene formed by laminating graphene structures are very suitable as a mineral ion water-supported microwave excited carbon high temperature plasma source.
  • “Supported” of “Mineral supported high temperature calcinated carbonaceous substance” means a form attached or bound to the surface of the carbonaceous substance, or a form in which the carbonaceous substance is porous and is infiltrated or bound in the pores. Including.
  • Examples of the "organism” of the “organism-derived carbon precursor” include the “organism” in the “water-soluble component of the ash of the organism", which is a component contained in the aforementioned mineral ion water.
  • the “organism” of the “biologically-derived carbon precursor” is particularly preferably a plant or a seaweed. As the plants and plants or seaweeds, the same ones as described above are mentioned as preferable ones. Among them, as the “biologically-derived carbon precursor”, broad-leaved branches, trunks, wood and the like having high density are preferable.
  • the “biologically-derived carbon precursor” is contained in the waste from the viewpoint of environmental protection, cost reduction, and the like.
  • the waste thinning materials, pruned materials such as street trees, unnecessary wood, unnecessary bamboo materials, construction waste materials, waste paper and the like are more preferable. Unwanted wood is particularly preferred.
  • bio-derived carbon precursor examples include those which are already carbides and become carbonaceous substances, but also those which are already carbides and are carbonaceous substances even after calcining, but as such substances, Charcoal charcoal, bamboo charcoal, etc. may be mentioned.
  • the charcoal examples include black charcoal; white charcoal such as bincho charcoal; and the like.
  • support) carbonaceous substance only after baking (impregnating mineral ion water) is also preferable.
  • the mineral-supported high-temperature calcinated carbonaceous material may be obtained by impregnating the above-mentioned bio-derived carbon precursor with mineral ion water and calcinated at a high temperature, as described above, to "the already existing bio-derived carbide". It may be obtained by impregnating with mineral ion water and firing at high temperature. Specifically, for example, one obtained by immersing a living organism-derived carbon precursor or a living organism-derived carbide in mineral ion water at 20 ° C. for 1 to 6 hours, and then drying and high-temperature firing is preferable.
  • the (especially) preferable concentration of the alkaline earth metal ion in the mineral ion water (B) to be impregnated is the same as that described above in the section of ⁇ mineral ion water>.
  • the firing may be carried out in a thermal radiation or thermal conductivity type heating furnace in which air (oxygen) is shut off, but it is particularly preferable to carry out by raising the temperature by microwave excitation carbon high temperature plasma firing, in which case, Firing is possible in a short time.
  • a normal heating furnace requires continuous heating for a long time, but carbon plasma firing using a microwave is preferable because a mineral-rich carbonaceous substance can be obtained in a short time.
  • the present invention is more preferably "the method for producing hydrogen gas described above which is microwave-activated carbon plasma firing".
  • microwaves microwaves of household microwave ovens can also be used.
  • the temperature range is the same, but the time range is completely different and extremely short.
  • the firing time also varies depending on the volume of the organism-derived carbon precursor, but high-temperature firing is preferably performed for 2 minutes to 15 minutes (particularly preferably 5 minutes to about 10 minutes).
  • the carbonaceous matter is produced by firing, and the mineral component is impregnated with the mineral ion water impregnated in the mineral component possessed by the bio-based carbon precursor, whereby a very mineral-rich carbonaceous matter is obtained.
  • More mineral components are supported on the surface of the carbonaceous material obtained by high-temperature firing, inside of pores such as micropores, mesopores and macropores, and the like.
  • the pores include those which are branched and those which are not branched, and the minerals include alkaline earth metals (ions) and other metals (minerals). According to the present invention, it has been revealed that hydrogen gas is efficiently generated when alkaline mineral ion water comes in contact with such mineral-supported high-temperature calcined carbonaceous material.
  • the supported ratio (range) of the mineral component to the whole of the mineral-supported high-temperature fired carbonaceous material is based on the concentration (range) of the mineral ion water described above and the "proportion of the bioderived carbon precursor and the mineral ion water to be impregnated therein". Although calculation is possible, 1.4 to 15% by mass is preferable, 1.6 to 10% by mass is more preferable, and 2 to 8% by mass is particularly preferable. If the loading ratio is too low or if the firing temperature is low, hydrogen gas may not be generated well, etc. On the other hand, even if the loading ratio is low, the carbon must necessarily be fired at a high temperature and the alkalinity will necessarily increase. And mineral content also tends to increase.
  • the firing may be performed in the state where air (oxygen) is shut off as described above, but may be fired at high temperature in the presence of a flame retardant.
  • the bio-derived carbon precursor is immersed in mineral ion water containing a flame retardant, the flame retardant is impregnated into the bio-derived carbon precursor, dried, and then heated (fired).
  • the above-mentioned organism-derived carbon precursor is impregnated with “an alkaline aqueous solution obtained by dissolving a flame retardant in the above-mentioned mineral ion water” and then fired at high temperature to obtain the above-mentioned mineral-supported high-temperature fired carbonaceous material
  • the method of producing hydrogen gas is preferred.
  • the flame retardant is not particularly limited, and is not limited to water-soluble or water-dispersible. General-purpose and environmentally friendly ones can be used, but mineral-rich alkali is more preferable.
  • the flame retardant supported high temperature calcined carbon is very suitable.
  • the present invention is characterized in that the mineral-supporting high-temperature-calcined carbonaceous material for the method for producing hydrogen gas as described above is obtained by impregnating the bio-derived carbon precursor with the mineral ion water and performing high-temperature calcination.
  • Mineral-supporting high-temperature calcined carbonaceous material obtained by impregnating the bio-derived carbon precursor with the mineral ion water and performing high-temperature calcination.
  • Mineral-supporting high-temperature calcined carbonaceous material for example, in what chemical structure the mineral component is supported on the carbonaceous material; how the carbonaceous material is supported on the porous material; bio-derived carbon precursor
  • the spread of body and mineral ionized water is clear as described above, what trace elements are supported; etc. can not be clarified by the present analytical means, or it is extremely difficult. Since the mineral component is simultaneously loaded while making the carbonaceous matter, the structure of the product is extremely difficult to identify. Therefore, the mineral-supported high-temperature-calcined
  • the present invention is also a method for producing antioxidant water derived from mineral ion water, characterized in that the above-mentioned mineral ion water is changed using the above-mentioned method for producing hydrogen gas. That is, when hydrogen gas is produced using the above method for producing hydrogen gas, the mineral ion water used does not deteriorate due to the carbon catalyst effect even if the chemical change or composition change, and alkaline antioxidant water as a by-product can get. This antioxidant water can also be consumed and reused as valuable material.
  • the use of metals with high ionization tendency as in the prior art can not use water after hydrogen gas generation.
  • Example 1 Add 15 parts by weight of slaked lime (calcium hydroxide) and 1 part by weight of quick lime (calcium oxide) to demineralized water, finely adjust the pH of the solution (with unwanted matter) to 14 and adjust the air. The mixture was allowed to stand for 12 hours or longer in a blocked state for aging, and then the supernatant water was filtered to obtain mineral ion water (1) having a pH of 14.0.
  • slaked lime calcium hydroxide
  • quick lime calcium oxide
  • Example 2 The supernatant water was filtered using seawater instead of the demineralized water of Example 1, to obtain mineral ion water (2) having a pH of 14.0.
  • Example 3 Mineral ion water (3) having a pH of 14.0 was prepared in the same manner as in Example 1, except that 15 parts by mass of calcium hydroxide (calcium hydroxide) and 0.3 parts by mass of magnesium oxide were first added to the demineralized water. Obtained.
  • Example 4 Mineral ion water (4) having a pH of 14.0 was obtained in the same manner as in Example 1 except that 3 parts by mass of ash of Nissan Walla was further added in Example 1.
  • Example 5 Mineral ion water (5) having a pH of 14.0 was obtained in the same manner as in Example 1 except that 5 parts by mass of tea shell ash was further added in Example 1.
  • Example 6 Preparation of Mineral-Supported High-Temperature Calcined Carbonaceous Material
  • a mineral-supported high-temperature fired carbonaceous material was prepared as follows using paper and wood chip cross-sections as a bio-derived carbon precursor.
  • the paper was immersed in the alkaline aqueous solution at 20 ° C., and after taking it out, the excess liquid was squeezed and dried at 20 ° C.
  • the “wood cut approximately perpendicular to the vascular bundle (the wood penetrates well when cut from a cross section)” was immersed in the alkaline aqueous solution at 20 ° C. for 6 hours, taken out, and then dried at 20 ° C.
  • a portion of the dried, mineral ion water impregnated, bioderived carbon precursor was partially charred (carbonized) with a gas fire. After that, a gypsum board and a "high thermal insulation non-combustible foam" were stacked on the bottom of a flat type microwave oven to set a structure not causing thermal shock.
  • the partially carbonized biological carbon precursor is placed on the structure in a microwave oven and microwave irradiation is started at an output of 200 W, the pre-carbonized portion emits high thermal plasma light immediately, The heat was conducted, and within about 2 to 3 minutes, the entire area became plasma red heat, and other parts which were not partially carbonized were also made to emit plasma light and glow in sequence.
  • the microwave irradiation time at this time was 4 minutes.
  • the wood pieces After being taken out of the microwave oven, the wood pieces were reddish for several minutes, and during that time, they were extinguished with mineral ion water of the same composition prepared separately, and black mineral-supported high-temperature calcinated carbonaceous materials were obtained.
  • the plasma temperature at this time was 1000 ° C. to 1200 ° C. as measured by a thermocouple thermometer.
  • the microwave was irradiated, it was possible to obtain the mineral-supporting high-temperature fired carbonaceous material in a simple and short time.
  • the paper is numbered as “1” to “5” corresponding to “the mineral ion water (1) to (5) obtained in Examples 1 to 5” impregnated in the organism-derived carbon precursor, and the paper is “P , And a wood chip as “W” and Example 6 as “A”, a total of 10 types of mineral-supporting high-temperature mineral-supporting high-temperature calcined carbonaceous substances (1PA) to (5PA), (1WA) to (5WA) A calcined carbonaceous substance was obtained.
  • Example 7 In Example 6, as a flame retardant, instead of adding “0.5 parts by mass to 0.8 parts by mass of ammonium sulfate”, “0.595 parts by mass of borax and 0.705 parts by mass of ammonium sulfate” In addition, in the same manner as in Example 6, except that the remaining amount was changed to the above-mentioned mineral ion water (1) to (5) so that the total amounted to 100 parts by mass, high-temperature-calcined carbonaceous material (1PB) A total of 10 types of mineral-supporting high-temperature calcined carbonaceous materials (5PB) and (1WB) to (5WB) were obtained. “B” shows that it was obtained in Example 7.
  • borax is not completely soluble in mineral ion water at 20 ° C.
  • the dissolution of ammonium sulfate causes borax to be completely soluble in mineral ion water with ammonium sulfate at 20 ° C.
  • the obtained “alkaline aqueous solution containing a flame retardant” had a pH of 12 and was very good.
  • Example 8 In a container prepared in advance, 18 g of each of a total of 10 types of mineral-supported high-temperature-calcined carbonaceous materials such as mineral-supported high-temperature-calcinable carbonaceous materials (1PB) to (5PB) and (1WB) to (5WB) prepared in Example 7 are placed; It was fixed to the lower part of the container with a mesh net and a glass weight so as not to float on mineral ionized water to be added later.
  • 1PB mineral-supported high-temperature-calcinable carbonaceous materials
  • Example 9 One liter of mineral ion water (1) at 20 ° C. prepared in Example 1 was poured into 48 g of a solid-supported high temperature calcined carbonaceous substance (1WB) prepared in Example 7 per 48 g.
  • the mineral-supported high-temperature fired carbonaceous material is considered to have excellent hydrogen gas generation ability because it is dense, porous, high-temperature fired, mineral-rich, and highly alkaline. It is considered that, since the mineral-supported high-temperature fired carbonaceous material is dense and porous, the amount of the mineral component distributed therein is proportional to it, and more hydrogen gas is generated.
  • the method for producing hydrogen gas of the present invention is widely used in fields such as fuel cells, hydrogen engines, supercritical fluid drive propulsion, power generation, medical gas, margarine production / drying etc., including energy applications. Will be countries that are environmentally friendly clean energy countries.

Abstract

純度の高い水素ガスを、簡易な方法で、コスト的に優れるように製造する方法を提供することを課題とし、「少なくともアルカリ土類金属イオンを含有し、pHが11~14のミネラルイオン水」と「生物由来炭素前駆体にミネラルイオン水を含浸させて高温焼成してなるミネラル担持高温焼成炭素質物」とを反応させることを特徴とする水素ガスの製造方法、該水素ガスの製造方法用のミネラル担持高温焼成炭素質物、及び、該水素ガスの製造方法用のミネラルイオン水の製造方法であって、少なくとも、マグネシウム若しくはカルシウムの、酸化物、水酸化物、炭酸塩又は炭酸水素塩を水に溶解させてアルカリ土類金属イオンを含有させ、pHを調整し、生物の灰化物の水溶性成分を溶解させるミネラルイオン水の製造方法によって上記課題を解決した。

Description

水素ガスの製造方法
 本発明は水素ガスの製造方法に関するものであり、更に詳しくは、特定のミネラルイオンを含有するアルカリ性のミネラルイオン水と、特定のミネラル担持高温焼成炭素質物とを用いる純度の高い水素ガスの製造方法に関するものである。
 従来、水素の生成としては、化石燃料を燃焼させて得た熱によって水又はメタンから水素をとる水蒸気改質法、化石燃料を燃焼させて得た電気によって水を電気分解する電気分解法、工場における副生ガスとして得る方法等が知られている。しかしながら、これらは、環境保全、コスト等の点から問題があった。また、化石燃料ベースの水素ガスの生成には、不純物として、一酸化炭素(CO)や二酸化炭素(CO)が少なからず混在し、所謂「COフリー」ではない。
 ユーザー等がその場で水素を得る方法としては、簡便には水素ボンベから得る方法があるが、元を辿れば前記した水素生成方法と同様の問題点があった。
 また、水素化化合物から得る方法;アルミニウム、亜鉛等のイオン化傾向の高い金属と酸性水溶液との反応物として得る方法(例えば、特許文献1~4);等が知られている。
 しかしながら、これらは、水素生成時に、例えばアルミニウムの場合、発生する酸化アルミニウム、アルミン酸の析出が問題となってその反応が停止するという問題点があった。また、イオン化して水に溶出したアルミニウム含有イオンが生体にとって好ましくないため、水素発生後の残水の有効利用がなされる余地がなかった。
 そこで、環境に優しく、コスト的にも優れた純度の高い水素ガスの生成方法が望まれていた。
特開昭62-263946号公報 特開2007-045646号公報 特開2007-131481号公報 WO2015/099129号公報
 本発明は上記背景技術に鑑みてなされたものであり、純度の高い水素ガスを、簡易な方法で、コスト的に優れるように製造する方法を提供することにある。
 本発明者は、「特定のイオンを含有し、pHが高い範囲に限定されたミネラルイオン水」と「特定の方法で得られたミネラル担持高温焼成炭素質物」とから水素ガスが得られ、しかも上記課題が解決できることを見出した。従来、「イオン化傾向の高い金属若しくはその合金(0価の金属(合金)自体)」を用いていたところ、特定の方法で得られた炭素質物を用いることによって、極めて好適に水素ガスが製造できることを見出して本発明を完成するに至った。
 すなわち、本発明は、「少なくともアルカリ土類金属イオンを含有し、pHが11以上14以下のミネラルイオン水」と、「生物由来炭素前駆体にミネラルイオン水を含浸させて高温焼成してなるミネラル担持高温焼成炭素質物」とを反応させることを特徴とする水素ガスの製造方法を提供するものである。
 また、本発明は、上記の水素ガスの製造方法用のミネラル担持高温焼成炭素質物であって、上記生物由来炭素前駆体に上記ミネラルイオン水を含浸させて高温焼成してなるものであることを特徴とするミネラル担持高温焼成炭素質物を提供するものである。
 また、本発明は、上記の水素ガスの製造方法用のミネラルイオン水の製造方法であって、少なくとも、マグネシウム若しくはカルシウムの、酸化物、水酸化物、炭酸塩又は炭酸水素塩を水に溶解させてアルカリ土類金属イオンを含有させ、pHを調整し、生物の灰化物の水溶性成分を溶解させることを特徴とするミネラルイオン水の製造方法を提供するものである。
 本発明によれば、上記問題点と課題を解決し、二酸化炭素を出さず連続的に安定して純度の高い水素ガスを供給でき、環境にとって極めて優しく、システムとして極めて簡易で安価であるにもかかわらず、好適に水素ガスが製造でき、該水素ガスを提供することができる。
 本発明の水素ガスの製造方法は、特に前記のごとく化石燃料を使用することなく(化石燃料に依存することなく)、場所を選ばず、すなわち水素ガスが求められる場所でオンサイトに簡易に水素ガスが生成可能である。本発明によれば、一般家庭、食品工場、車載等においても手軽に安全に水素ガスの製造が可能である。すなわち、前記、ミネラルイオン水と前記、炭素触媒があれば安全に何処でも水素ガス気体の生成が可能である。
 また、本発明の水素ガスの製造方法は、電気分解法のように電気を使用せず、ほぼ無尽蔵とも言える水や海水原料を使用しているので、安価に水素ガスが得られると共に、環境にも優しい。更に、化石燃料に依存しないでエネルギーが得られ、二酸化炭素フリーの水素社会の構築に向けての貢献が可能となる。
 特に、ミネラルイオン水の原料として、例えば、消石灰、生石灰、炭酸カルシウム等を用い、更にはそれらを、例えば、サンゴ石、卵の殻、貝殻等のような生物由来品から得れば、更なるコストダウンと環境保全が得られる。
 また、ミネラルイオン水に、生物の灰化物の水溶性成分を含有させれば、コストアップをさせずに好適に水素ガス製造ができる。
 また、ミネラルイオン水を得るための水を海水や陸水にすることで、更なるコストダウンが図れる。
 また、もう一方のミネラル担持高温焼成炭素質物についても、その原料である生物由来炭素前駆体は生物由来であり、0価の金属(合金)を含有させる必要がないので、好適に水素ガス製造ができるにもかかわらず、コストダウンと環境保全が得られる。
 また、生物由来炭素前駆体として、例えば、草木、海藻等を用いれば、更なるコストダウンと環境保全が達成される。
 本発明によれば、従来必要とされてきたイオン化傾向の高い金属(合金)に代えて、ミネラル担持高温焼成炭素質物を使用するので、更に好ましくは独自の炭素プラズマ焼成したミネラル担持高温焼成炭素質物を使用するので、純粋な水素ガスが得られる。また、水素ガスが出尽くした後のミネラルイオン水は、該炭素質物の効果で高いpHを維持し、溶存酸素量も多いので酸素含有ミネラルイオン水として再利用が可能となる。
 また、前記のミネラル担持高温焼成炭素質物も触媒として繰り返し使用可能であるため、極めて経済的な効果をもたらす。
 以下、本発明について説明するが、本発明は、以下の具体的形態に限定されるものではなく、技術的思想の範囲内で任意に変形することができる。
 本発明の水素ガスの製造方法は、「少なくともアルカリ土類金属イオンを含有し、pHが11以上14以下のミネラルイオン水」と、「生物由来炭素前駆体にミネラルイオン水を含浸させて高温焼成してなるミネラル担持高温焼成炭素質物」とを反応させることを特徴とする。
<ミネラルイオン水>
 本発明における「ミネラルイオン水」とは、少なくともアルカリ土類金属イオンを含有し、pHが11以上14以下の水溶液のことを言う。
 本発明は、「ミネラルイオン水(A)」と「生物由来炭素前駆体にミネラルイオン水(B)を含浸させて高温焼成してなるミネラル担持高温焼成炭素質物」とを反応させるが、以下の記載は、上記ミネラルイオン水(A)にも、上記ミネラルイオン水(B)にも共通である。なお、実際に使用されるミネラルイオン水(A)とミネラルイオン水(B)は、全く同一のものであっても、要件を満たせば異なる(組成の)ものでもよい。
 上記アルカリ土類金属イオン(第2族元素のイオン)としては、マグネシウムイオン、カルシウムイオン、ストロンチウムイオン、バリウムイオン等が挙げられる。
 より好ましくは、好適に水素ガスが発生すること、該イオンを含む化合物が安価であること等から、好ましくは、マグネシウムイオン(Mg2+)又はカルシウムイオン(Ca2+)であり、特に好ましくは、カルシウムイオン(Ca2+)である。これらのイオンは、単独で含んでいても、2種以上含んでいてもよい。
 マグネシウムイオン(Mg2+)と、カルシウムイオン(Ca2+)とを含む場合は、その混合比は、Ca2+リッチなモル比がコストパフォーマンス的にも好ましく、Ca2+/Mg2+=10/10~19/1(モル比)が特に好ましい。
 ミネラルイオン水におけるアルカリ土類金属イオンの濃度は、アルカリ土類金属イオンの合計質量として、10質量%以上が好ましく、12質量%以上がより好ましく、15質量%以上が特に好ましい。上限は、前記pHの範囲によって決められる。
 上記「水に溶解してアルカリ土類金属イオンを与える化合物」(以下、カッコ内を「アルカリ土類金属イオン供給化合物」と略記する。)としては、該アルカリ土類金属の酸化物、水酸化物、炭酸塩、炭酸水素塩等が挙げられる。より好ましくは、マグネシウム若しくはカルシウムの、酸化物、水酸化物、炭酸塩、炭酸水素塩等であり、更に好ましくは、カルシウムの、酸化物、水酸化物、炭酸塩、炭酸水素塩等であり、特に好ましくは、水酸化カルシウム(消石灰)である。これらは、単独で使用しても、2種以上を使用してもよい。
 「アルカリ土類金属イオン供給化合物」は、石灰岩等の岩石;珊瑚石、卵の殻、貝殻、焼成貝殻等の生物由来品;等からも得られ(等が挙げられ)、それらを利用すれば、更なるコストダウンが達成される。また、上記を含む所謂「石灰質」と言われているものも好ましい。
 上記アルカリ土類金属イオン供給化合物として、生物由来品を用いることが、廃棄物として入手可能である点、コスト的に有利である点に加え、人体・自然に優しい等の点から好ましい。該生物由来品としては、上記理由から具体的に上記したものが特に好ましい。
 ミネラルイオン水の中のアルカリ土類金属イオンや、ミネラルイオン水の調製に用いるアルカリ土類金属イオン供給化合物の量は、最終的に得られたミネラルイオン水が後記するpH範囲になるような量であることが好ましい。
 アルカリ土類金属イオン供給化合物は、水に投入して(好ましくは空気を遮断した状態で溶解熟成(静置)させ)、要すれば熟成後に上澄み水の濾過を行って、所望のミネラルイオン水を得ることができる。これらの化合物は、単独で用いても、2種以上を併用してもよい。
 また、「アルカリ土類金属イオン供給化合物」として水酸化カルシウム(消石灰)のみを用いた場合には、水酸化カルシウムとして、水全体の対比に対して、12質量%以上、15質量%以上が特に好ましい。
 カルシウムイオン以外のアルカリ土類金属イオンを含む場合や、アルカリ土類金属を水酸化物以外の形態で配合・溶解イオン化する場合には、好ましいアルカリ土類金属イオンの濃度は、上記水酸化カルシウムの(カルシウムの)モル数(モル濃度)換算で特定する。
 本発明におけるミネラルイオン水は、pHが11以上14以下であることが必須であり、好ましくは12以上14以下であり、特に好ましくは13以上14以下である。このようなpH範囲とすると、後述するミネラル担持高温焼成炭素質物との相互作用で好適に水素ガスが発生する。
 該pHは、前記アルカリ土類金属イオン供給化合物、及び、後述する「生物の灰化物(の水溶性成分)」をも含めて調整することが好ましい。「水中でアルカリ性を示す他の化合物」を用いることも可能である(排除されない)。
 本発明におけるミネラルイオン水は、更に「生物の灰化物の水溶性成分」を含有することが、資源が豊富である、コストパフォーマンスに優れる、廃棄物の有効利用が可能である等の点から好ましい。
 生物中の微量元素としては、ナトリウム、カリウム、マグネシウム、カルシウム、リン、亜鉛、マンガン、セレン、鉄、銅等が挙げられる。アルカリ土類金属イオン以外の金属イオンは、高アルカリ性であるが水として極めて穏やかで刺激性がないと言うミネラルイオン水としての性能を向上させると考えられる。
 特に、上記生物が原生生物又は植物であることがより好ましい。該原生生物としては、藻類、原生動物類等が挙げられ、該植物としては種子植物等が挙げられる。原生生物又は植物は、ミネラル成分を多く含むものが好ましい。
 該藻類としては海藻等が好ましく、中でも、緑藻;モズク、コンブ、ワカメ、ホンダワラ、ヒジキ等の褐藻;紅藻;珪藻等がより好ましい。
 該種子植物としては、チャノキ等が好ましく、中でも、それらの葉、茎、根等がより好ましい。茶殻も特に好ましい。
 中でも、上記「生物」としては、草木又は海藻であることが、成分としてミネラルリッチである点等から特に好ましい。
 また、上記「生物」は、廃棄物中に含まれる生物(生物自体、生物の加工品、生物由来物等)であることも環境にとっても好ましい。
 そのような廃棄物としては、茶の出し殻、根菜類加工残渣、雑草類等の種子植物由来品;「ホンダワラ等の褐藻」等の海藻;等が挙げられる。また、該廃棄物としては、菌床残渣等が挙げられる。
 「生物の灰化物」は、上記生物を灰化したものであり、草木灰(として入手できるもの)が好適に使用できる。
 本発明におけるミネラルイオン水には、「生物の灰化物の水溶性成分」を含有することが好ましいが、該水溶性成分は、該灰化物から別途分離しておいて含有させてもよいが、これを「ミネラルイオン水(を構成する水)」に投入し、静置(熟成)後に上澄み水を濾過して、水溶性イオン成分だけを含有させるようにしてもよい。すなわち、得られた濾液を配合させてもよい。
 ミネラルイオン水の調製に用いる水は、特に限定はなく、脱塩水、蒸留水、市水、純水、陸水、海水等が挙げられる。中でも、湖、沼、河川、井戸(地下水)等の陸水;海水;等が、コストダウン、既にナトリウム等ミネラル成分を多く含んでいる点から好ましい。海水は、陸水と比較すると、より多くのミネラル成分が含まれている点で好適である。
 本発明は、「本発明の水素ガスの製造方法」用のミネラルイオン水の製造方法であって、少なくとも、マグネシウム若しくはカルシウムの、酸化物、水酸化物、炭酸塩又は炭酸水素塩を水に溶解させてアルカリ土類金属イオンを含有させ、pHを調整し、生物の灰化物の水溶性成分を溶解させることを特徴とするミネラルイオン水の製造方法でもある。
 本発明は、「本発明の水素ガスの製造方法」用のミネラルイオン水でもある。
 本発明のミネラルイオン水は、水素ガス生成用のミネラルイオン水(A)でもあり、また、後記するミネラル担持高温焼成炭素質物の調製に際して、生物由来炭素前駆体に含浸させるミネラルイオン水(B)でもあり、ミネラル付与材でもあり、焼成用難燃性担持剤でもあり、このような用途もある。
<ミネラル担持高温焼成炭素質物>
 本発明における「ミネラル担持高温焼成炭素質物」は、生物由来炭素前駆体にミネラルイオン水を含浸させて高温焼成してなる。ここで、「生物由来炭素前駆体」とは、焼成されて炭素質物になるような「元素として炭素を含有するもの」であって生物由来のものを言い、「生物由来炭素前駆体」には、既に炭素質物であっても、高温焼成して炭素質物であることを維持するものも含まれる。
 「ミネラル担持高温焼成炭素質物」の「炭素質物」とは、実質的に炭素(C)からなる物体を言い、生物由来の不定形炭素等が挙げられ、本発明の水素ガスの生成用炭素触媒として極めて好ましい。しかしながら、他の炭素であるグラファイト(天然黒鉛、石墨);グラフェン構造が積層されてなるグラフェン等の炭素群は、ミネラルイオン水担持マイクロ波励起炭素高温プラズマ源としては極めて好適である。
 「ミネラル担持高温焼成炭素質物」の「担持」とは、炭素質物の表面に付着若しくは結合している形態や、炭素質物が多孔質であり該孔の中に浸透定着若しくは結合している形態を含む。
 「生物由来炭素前駆体」の「生物」としては、前記したミネラルイオン水に含有される成分である「生物の灰化物の水溶性成分」における「生物」が挙げられる。
 「生物由来炭素前駆体」の「生物」としては、草木又は海藻であることが特に好ましい。草木又は海藻としては、前記したものと同様のものが好ましいものとして挙げられる。中でも、「生物由来炭素前駆体」としては、密度が高い広葉樹の枝、幹、木材等が好適である。
 「生物由来炭素前駆体」は、廃棄物中に含まれるものであることも、環境保護、コストダウン等の点から好ましい。該廃棄物としては、間伐材、街路樹等の剪定材、不要木材、不要竹材、建設廃材、廃棄紙等がより好ましい。不要木材であることが特に好ましい。
 これらにミネラルイオン水を含浸させて、酸素(空気)を遮断して焼成すれば、高密度であったり、高表面積を有する多孔質であったりする「ミネラル担持高温焼成炭素質物」を得ることができ、より多くの水素ガスの生成が可能である。
 該生物由来炭素前駆体としては、焼成されて初めて炭素質物になるようなもの以外にも、既に炭化物であって焼成しても炭素質物であるものも含まれるが、そのようなものとしては、木炭、竹炭等が挙げられる。該木炭としては、黒炭;備長炭等の白炭;等が挙げられる。
 なお、(ミネラルイオン水を含浸させて)焼成して初めて(ミネラル担持)炭素質物となるような「前記したもの」も好ましい。
 ミネラル担持高温焼成炭素質物は、上記生物由来炭素前駆体に、ミネラルイオン水を含浸させて高温焼成して得られるものであっても、上記したように「既に存在する生物由来の炭化物」に、ミネラルイオン水を含浸させて高温焼成して得られるものであってもよい。
 具体的には、例えば、生物由来炭素前駆体又は生物由来の炭化物をミネラルイオン水に、20℃で1~6時間浸漬させて、その後、乾燥させ高温焼成してなるものが好ましい。
 なお、含浸させるミネラルイオン水(B)中のアルカリ土類金属イオンの(特に)好ましい濃度は、<ミネラルイオン水>の項で前記したものと同様である。
 生物由来炭素前駆体を加熱炉で焼成する場合は、空気(酸素)を遮断して、800℃以上1500℃以下で行うことが好ましく、900℃以上1500℃以下で行うことがより好ましく、1100℃以上1500℃以下で行うことが特に好ましい。
 既に炭化物である黒炭は低温焼成物であり、その焼成温度は500℃前後であるため、ミネラルイオン水を含浸させてから改めて高温焼成しなければならず、好ましくは1100℃近傍で再焼成する必要がある。
 焼成は、空気(酸素)が遮断された、熱放射型又は熱伝導型の加熱炉内で行ってもよいが、マイクロ波励起炭素高温プラズマ焼成による昇温によって行うことが特に好ましく、その場合、短時間で焼成が可能である。通常の加熱炉においては長時間継続した加熱が必要であるが、マイクロ波を利用した炭素プラズマ焼成は、短時間でミネラルリッチな炭素質物が得られるため好ましい。
 本発明は、「マイクロ波励起炭素プラズマ焼成である上記の水素ガスの製造方法」であることがより好ましい。該マイクロ波としては、家庭用の電子レンジのマイクロ波を利用することもできる。
 マイクロ波励起で焼成する場合は、温度範囲は同様であるが、時間範囲は全く異なり極端に短時間である。生物由来炭素前駆体の体積によっても焼成時間は異なるが、2分以上15分以下(特に好ましくは5分以上10分程度)で高温焼成することが好ましい。
 焼成によって炭素質物ができると共に、生物由来炭素前駆体が持つミネラル成分に、含浸されたミネラルイオン水によってミネラル成分が増し、極めてミネラルリッチな炭素質物が得られる。
 高温焼成してなる炭素質物の、表面;ミクロ孔、メソ孔、マクロ孔等の孔の内部;等に更に多くのミネラル成分が担持される。該孔には分岐しているものも分岐していないものも含まれ、該ミネラルにはアルカリ土類金属(イオン)やそれ以外の金属(ミネラル)が含まれる。
 本発明によって、アルカリ性のミネラルイオン水が、このようなミネラル担持高温焼成炭素質物に接触することで、水素ガスが効率よく発生することが明らかになった。
 ミネラル担持高温焼成炭素質物全体に対するミネラル成分の担持比率(範囲)は、前記したミネラルイオン水の濃度(範囲)と、前記した「生物由来炭素前駆体とそこに含浸させるミネラルイオン水の割合」から計算できるが、1.4~15質量%が好ましく、1.6~10質量%がより好ましく、2~8質量%が特に好ましい。
 担持比率が少な過ぎる場合或いは焼成温度が低いと、水素ガスが良好に発生しない場合等があり、一方、担持比率が少なくても、良く高温焼成した炭素とすることで必然的にアルカリ性も高くなり且つミネラル成分も増す傾向にある。
 焼成に際しては、前記のように、空気(酸素)が遮断された状態で行ってもよいが、難燃剤の存在下に高温焼成してもよい。具体的には、例えば、難燃剤を含有するミネラルイオン水中に生物由来炭素前駆体を浸漬する等して、難燃剤を生物由来炭素前駆体に染みこませ、乾燥させて次いで加熱(焼成)する。
 すなわち、本発明は、上記生物由来炭素前駆体に、「上記ミネラルイオン水に難燃剤を溶解してなるアルカリ性の水溶液」を含浸させ、次いで高温焼成して上記ミネラル担持高温焼成炭素質物を得る前記の水素ガスの製造方法が好ましい。
 該難燃剤としては特に限定はなく、水溶性か水分散性かに限定されず、汎用のもので環境に優しいものも使用できるが、ミネラルリッチなアルカリ性であることが更に好ましい。前記難燃剤担持高温焼成炭素が極めて好適である。
 本発明は、前記の水素ガスの製造方法用のミネラル担持高温焼成炭素質物であって、上記生物由来炭素前駆体に上記ミネラルイオン水を含浸させて高温焼成してなるものであることを特徴とするミネラル担持高温焼成炭素質物でもある。
 なお、ミネラル担持高温焼成炭素質物の態様、例えば、どのような化学構造でミネラル成分が炭素質物に担持されているか;炭素質物が多孔質の場合にどのように担持されているか;生物由来炭素前駆体やミネラルイオン水の外延は前記した通りで明確ではあるが、どのような微量元素が担持されているか;等は、現在の分析手段では明らかにできないか、非常に難し過ぎる。炭素質物を作りながら同時にミネラル成分を担持させるので、できたものの構造が極めて特定し難い。従って、本発明のミネラル担持高温焼成炭素質物は、その製造方法でしか特定できない。
 本発明は、上記の水素ガスの製造方法を使用して上記ミネラルイオン水を変化させることを特徴とするミネラルイオン水由来の抗酸化水の製造方法でもある。すなわち、上記の水素ガスの製造方法を使用して水素ガスを製造すると、使用したミネラルイオン水が化学変化や組成変化をしても炭素触媒効果で変質せず、副産物としてアルカリ性の抗酸化水が得られる。この抗酸化水は、飲用することもでき、有価物として再利用できる。従来技術の様なイオン化傾向の高い金属を使用すると水素ガス生成後の水は使用できない。
 以下に、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明は、その要旨を超えない限りこれらの実施例に限定されるものではない。
<ミネラルイオン水の調製>
実施例1
 脱塩水に対し、消石灰(水酸化カルシウム)15質量部、及び、生石灰(酸化カルシウム)1質量部を先入れし、溶液(不要物あり)のpHが14になるように微調整し、空気を遮断した状態で12時間以上静置して熟成した後に上澄み水を濾過して、pH14.0のミネラルイオン水(1)を得た。
実施例2
 実施例1の脱塩水に代えて海水を用い、上澄み水を濾過して、pH14.0のミネラルイオン水(2)を得た。
実施例3
 脱塩水に対し、消石灰(水酸化カルシウム)15質量部、及び、酸化マグネシウム0.3質量部を先入れした以外は、実施例1と同様にして、pH14.0のミネラルイオン水(3)を得た。
実施例4
 実施例1において、更にホンダワラの灰化物3質量部を加えた以外は実施例1と同様にして、pH14.0のミネラルイオン水(4)を得た。
実施例5
 実施例1において、更に茶殻の灰化物5質量部を加えた以外は実施例1と同様にして、pH14.0のミネラルイオン水(5)を得た。
<ミネラル担持高温焼成炭素質物の調製>
実施例6
 前記のミネラルイオン水(1)~(5)をそれぞれ99.2~99.5質量部に対して、難燃剤として、硫酸アンモニウム0.5質量部~0.8質量部を加えて、20℃で撹拌し溶解させた。得られた水溶液のpHは10(レベル)であった。
 生物由来炭素前駆体として紙と木片断面カット物を使用して、以下のようにしてミネラル担持高温焼成炭素質物を調製した。
 紙は、前記アルカリ性の水溶液に20℃で浸漬し、取り出した後に余剰液を絞り、20℃で乾燥させた。
 「維管束に略垂直に切断した木片(木片を断面切断すると毛細管から良く浸透する。)」は、前記アルカリ性の水溶液に、20℃で6時間浸漬し、取り出した後に20℃で乾燥させた。
 この乾燥させた、ミネラルイオン水を含浸させた生物由来炭素前駆体の一部分を、ガス火で一部分チャー化(炭化)した。
 その後、フラットタイプの電子レンジ内の底部に、石膏ボードと「高断熱性で不燃性の発泡体」を重ねてサーマルショックが生じない構造体としたものをセットした。
 前記の一部炭化させた生物由来炭素前駆体を、電子レンジ内の該構造体の上にのせ、200Wの出力でマイクロ波照射を開始すると、予め炭化させた部位が、即高熱プラズマ発光し、その熱が伝導し、約2~3分以内に全体的にプラズマ赤熱し、一部炭化させていないその他の部位も連鎖的にプラズマ発光し赤熱した。この時のマイクロ波照射時間は4分間であった。
 電子レンジから取り出したのちも木片は数分間赤熱していたが、その間に、別途調製してあった同一組成のミネラルイオン水で消火し黒色のミネラル担持高温焼成炭素質物を得た。
 この時のプラズマ温度は、熱電対温度計で測定したところ、1000℃~1200℃であった。マイクロ波を照射すると、簡単短時間でミネラル担持高温焼成炭素質物を得ることができた。
 生物由来炭素前駆体に含浸させた「実施例1~5で得られたミネラルイオン水(1)~(5)」に対応させて、「1」~「5」とナンバリングし、紙を「P」、木片を「W」とし、実施例6を「A」とすることで、ミネラル担持高温焼成炭素質物(1PA)~(5PA)、(1WA)~(5WA)の計10種のミネラル担持高温焼成炭素質物を得た。
実施例7
 実施例6で、難燃剤として、「硫酸アンモニウム0.5質量部~0.8質量部」を加えたことに代えて、「ホウ砂0.595質量部、及び、硫酸アンモニウム0.705質量部」を加え、全体で100質量部になるように残量を前記のミネラルイオン水(1)~(5)に代えた以外は、実施例6と同様にして、ミネラル担持高温焼成炭素質物(1PB)~(5PB)、(1WB)~(5WB)の計10種のミネラル担持高温焼成炭素質物を得た。「B」は実施例7で得られたものであることを示す。
 ホウ砂は20℃でミネラルイオン水に完溶しないが、硫酸アンモニウムが溶解されていることで、ホウ砂は20℃で硫酸アンモニウムと共にミネラルイオン水に完溶した。
 得られた「難燃剤を含有するアルカリ性の水溶液」は、pHが12レベルであり、極めて良好であった。
<水素ガスの製造>
実施例8
 予め用意した容器内に、実施例7で調製したミネラル担持高温焼成炭素質物(1PB)~(5PB)、(1WB)~(5WB)の計10種のミネラル担持高温焼成炭素質物をそれぞれ18g入れ、後で添加するミネラルイオン水の上に浮いてこないように、メッシュネットとガラス製の錘で容器の下方に固定した。
 上記ミネラル担持高温焼成炭素質物を入れた容器内に、20℃のミネラルイオン水150mLを注ぎ入れた。注ぎ入れたミネラルイオン水は、ミネラル担持高温焼成炭素質物(1PB)~(5PB)を調製したミネラルイオン水(1)~(5)に対応したものであった。
 その結果、僅か1~2秒で、木片細孔に含まれる空気が出る同時に、水素ガスが連続的に発生した。その水素ガスは、1時間経過しても生成し続けた。
 ミネラルイオン水の温度を45℃にすると、前記より勢いよく水素ガスが連続的に生成した。更に、ミネラルイオン水の温度を70℃にすると、更に激しくミネラル担持高温焼成炭素質物の表面及び多孔性内部構造からも水素ガスが噴出した。
 「ミネラルイオン水(1)~(5)」と「ミネラル担持高温焼成炭素質物(1PB)~(5PB)」の組み合わせは、何れも良好に水素ガスを発生した。更に、マグネシウムを含有するミネラル担持高温焼成炭素質物(3PB)、生物の灰化物の水溶性成分を含有するミネラル担持高温焼成炭素質物(4)、(5)は、ミネラル担持高温焼成炭素質物(1)より、水素の発生速度が良く、また、水素ガスの生成量が多かった。
 実施例7で調製したミネラル担持高温焼成炭素質物(1PB)~(5PB)、(1WB)~(5WB)に代えて、実施例6で調製したミネラル担持高温焼成炭素質物(1PA)~(5PA)、(1WA)~(5WA)を用いたところ、ほぼ同様の結果が得られた。
実施例9
 実施例7で調製したミネラル担持高温焼成炭素質物(1WB)1個体48gに対し、実施例1で調製した20℃のミネラルイオン水(1)を1L注ぎ込んだ。
 ミネラル担持高温焼成炭素質物との反応において、ミネラル担持高温焼成炭素質物の微細な細孔から噴出する水素ガスの生成量が多かった。
 このミネラル担持高温焼成炭素質物は、高密度で多孔質であり、高温焼成されており、ミネラルリッチで、アルカリ性が高いので、優れた水素ガス生成能を有したと考えられる。該ミネラル担持高温焼成炭素質物が高密度多孔質であるため、その中に分布するミネラル成分量が多く、それにも比例し、より多くの水素ガスが生成したと考えられる。
 そして、ミネラルイオン水と炭素質物に代えて、イオン化傾向の高い金属反応では、金属の溶解や酸化によって、水自体が酸性化するため水素ガスの生成が停止する。しかし、高アルカリ性ミネラルリッチな炭素触媒反応においては、ミネラルイオン水が高アルカリ性を維持するため、水素の発生が持続する。
 なお、前記反応によって完全に水素ガスが出尽くした後のミネラルイオン水のpHは13をキープしており、抗酸化性の水であると推察される。
 本発明の水素ガスの製造方法は、エネルギー用途をはじめとして、燃料電池、水素エンジン、超臨界流体駆動推進、発電、医療ガス、マーガリン製造・乾燥等の分野に広く利用されるものであり、資源が不足する国々が環境に優しいクリーンエネルギー立国となる。

Claims (9)

  1.  「少なくともアルカリ土類金属イオンを含有し、pHが11以上14以下のミネラルイオン水」と、「生物由来炭素前駆体にミネラルイオン水を含浸させて高温焼成してなるミネラル担持高温焼成炭素質物」とを反応させることを特徴とする水素ガスの製造方法。
  2.  上記生物由来炭素前駆体に、「上記ミネラルイオン水に難燃剤を溶解してなるアルカリ性の水溶液」を含浸させ、次いで高温焼成して上記ミネラル担持高温焼成炭素質物を得る請求項1に記載の水素ガスの製造方法。
  3.  上記高温焼成が、マイクロ波励起炭素プラズマ焼成である請求項1又は請求項2に記載の水素ガスの製造方法。
  4.  上記生物由来炭素前駆体が、草木、海藻、木炭又は竹炭である請求項1ないし請求項3の何れかの請求項に記載の水素ガスの製造方法。
  5.  上記ミネラルイオン水が、更に、生物の灰化物の水溶性成分を含有する請求項1ないし請求項4の何れかの請求項に記載の水素ガスの製造方法。
  6.  上記生物が原生生物又は植物である請求項5に記載の水素ガスの製造方法。
  7.  請求項1ないし請求項6の何れかの請求項に記載の水素ガスの製造方法用のミネラル担持高温焼成炭素質物であって、上記生物由来炭素前駆体に上記ミネラルイオン水を含浸させて高温焼成してなるものであることを特徴とするミネラル担持高温焼成炭素質物。
  8.  請求項1ないし請求項6の何れかの請求項に記載の水素ガスの製造方法用のミネラルイオン水の製造方法であって、少なくとも、マグネシウム若しくはカルシウムの、酸化物、水酸化物、炭酸塩又は炭酸水素塩を水に溶解させてアルカリ土類金属イオンを含有させ、pHを調整し、生物の灰化物の水溶性成分を溶解させることを特徴とするミネラルイオン水の製造方法。
  9.  請求項1ないし請求項6の何れかの請求項に記載の水素ガスの製造方法を使用して上記ミネラルイオン水を変質変化させないことを特徴とするミネラルイオン水由来の抗酸化水の製造方法。

     
PCT/JP2018/030197 2017-09-08 2018-08-13 水素ガスの製造方法 WO2019049611A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/644,323 US11465902B2 (en) 2017-09-08 2018-08-13 Method for producing hydrogen gas
JP2019540850A JPWO2019049611A1 (ja) 2017-09-08 2018-08-13 水素ガスの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-172611 2017-09-08
JP2017172611 2017-09-08

Publications (1)

Publication Number Publication Date
WO2019049611A1 true WO2019049611A1 (ja) 2019-03-14

Family

ID=65633972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030197 WO2019049611A1 (ja) 2017-09-08 2018-08-13 水素ガスの製造方法

Country Status (3)

Country Link
US (1) US11465902B2 (ja)
JP (1) JPWO2019049611A1 (ja)
WO (1) WO2019049611A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113044839A (zh) * 2021-04-02 2021-06-29 清创人和生态工程技术有限公司 一种分级多孔炭材料的制备方法及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000319011A (ja) * 1999-05-07 2000-11-21 Nisshoku Corp カルシウム含有の多孔質炭素材料
JP2003026408A (ja) * 2001-07-11 2003-01-29 Nisshoku Corp タンパク質吸着用多孔質炭素材料およびその製造方法
JP2005289796A (ja) * 2004-03-09 2005-10-20 Japan Science & Technology Agency 水素製造方法およびその装置
WO2011048685A1 (ja) * 2009-10-22 2011-04-28 株式会社テラウィング 水素発生剤、並びに該発生剤を用いた水素発生方法および水素発生装置
WO2012140726A1 (ja) * 2011-04-12 2012-10-18 日本水素発電株式会社 水素発生剤、並びに該発生剤を用いた水素発生方法および水素発生装置
JP6190084B1 (ja) * 2017-03-24 2017-08-30 株式会社日本サクドリー マグネシウム粉末含有多孔質体、その製造方法、それを備えた水素水生成フィルタ及び水素水製造装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762198B2 (ja) 1986-05-12 1995-07-05 三菱アルミニウム株式会社 水素生成用アルミニウム合金及びその製造方法
JP2006190084A (ja) * 2005-01-06 2006-07-20 Canon Inc 印刷システム
JP4574487B2 (ja) 2005-08-08 2010-11-04 日立マクセル株式会社 水素の製造方法及び水素の製造装置並びに電源
JP4762684B2 (ja) 2005-11-10 2011-08-31 旭化成イーマテリアルズ株式会社 水素発生材料及び水素製造方法
FR2973084B1 (fr) * 2011-03-25 2013-03-29 Faurecia Interieur Ind Dispositif de fixation avec rattrapage de jeu et procede associe, notamment pour fixer une traverse de planche de bord a une caisse de vehicule automobile
US20160318761A1 (en) 2013-12-27 2016-11-03 Kyoto University Hydrogen production method and hydrogen production system
WO2019044042A1 (ja) * 2017-08-28 2019-03-07 杉山 修 アルカリ性のミネラルイオン水を含有する電解液を有する電池、電解質活物質及び電池用電解液の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000319011A (ja) * 1999-05-07 2000-11-21 Nisshoku Corp カルシウム含有の多孔質炭素材料
JP2003026408A (ja) * 2001-07-11 2003-01-29 Nisshoku Corp タンパク質吸着用多孔質炭素材料およびその製造方法
JP2005289796A (ja) * 2004-03-09 2005-10-20 Japan Science & Technology Agency 水素製造方法およびその装置
WO2011048685A1 (ja) * 2009-10-22 2011-04-28 株式会社テラウィング 水素発生剤、並びに該発生剤を用いた水素発生方法および水素発生装置
WO2012140726A1 (ja) * 2011-04-12 2012-10-18 日本水素発電株式会社 水素発生剤、並びに該発生剤を用いた水素発生方法および水素発生装置
JP6190084B1 (ja) * 2017-03-24 2017-08-30 株式会社日本サクドリー マグネシウム粉末含有多孔質体、その製造方法、それを備えた水素水生成フィルタ及び水素水製造装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113044839A (zh) * 2021-04-02 2021-06-29 清创人和生态工程技术有限公司 一种分级多孔炭材料的制备方法及应用
CN113044839B (zh) * 2021-04-02 2022-09-16 清创人和生态工程技术有限公司 一种分级多孔炭材料的制备方法及应用

Also Published As

Publication number Publication date
JPWO2019049611A1 (ja) 2020-11-19
US11465902B2 (en) 2022-10-11
US20200325018A1 (en) 2020-10-15

Similar Documents

Publication Publication Date Title
CN105502392B (zh) 一种微孔发达活性炭的制备方法
CN101249377B (zh) 钙基二氧化碳吸收剂的改性方法
JP4233601B1 (ja) 珊瑚粉の製造方法
JP6947832B2 (ja) アルカリ性のミネラルイオン水を含有する電解液を有する電池、電解質活物質及び電池用電解液の製造方法
US347078A (en) Geoege white
CN111171847A (zh) 一种废弃生物质资源化利用和无害化处理方法
WO2019049611A1 (ja) 水素ガスの製造方法
Gąsior et al. Application of the biochar-based technologies as the way of realization of the sustainable development strategy
JP2005144210A (ja) ガリウムナイトライド固溶体からなる水分解用触媒
JP4919442B2 (ja) 汚染土壌浄化剤、およびこれを用いた汚染土壌浄化方法
JP4846075B2 (ja) 水素発生剤、並びに該発生剤を用いた水素発生方法および水素発生装置
WO2003006576A1 (fr) Antipyrene intumescent cokefiant et son procede de production et d'utilisation
KR20090085382A (ko) 커피 부산물을 이용한 고체연료 조성물
JP2010269946A (ja) 水素発生剤、及び水素ガスの発生方法、並びに水素ガス供給装置
CN105695037A (zh) 一种消烟助燃引火炭棒及其制备方法
KR20140132671A (ko) 유해성 없는 성형 목탄
JP2007196205A (ja) 魚の骨の炭化物を改良した水質浄化剤。
JP2009262010A (ja) バイオディーゼル燃料合成用固体塩基触媒およびその製造方法
KR101187497B1 (ko) 굴 패각을 이용한 단열재의 제조 방법 및 굴 패각 단열재
Yin et al. Enhancing the sludge-based carbon quality via site-occupied and decomposed process
CN105695022A (zh) 消烟助燃引火炭棒及其制备方法
EA023454B1 (ru) Топливо и горючая смесь, используемые в качестве замены ископаемых видов топлива в котельных установках теплоэлектростанций, промышленных предприятий и систем централизованного теплоснабжения
KR100540056B1 (ko) 발열체용 마그네슘-알루미늄 합금, 이를 이용한 발열체,그 발열체의 제조방법 및 그 발열체를 이용한 발열 방법
CN1093558C (zh) 高效脱硫节煤剂及其生产工艺
JP2010069377A (ja) 酸化マグネシウム触媒および該触媒を用いた脂肪酸エステルとグリセリンの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853590

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019540850

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 24.06.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18853590

Country of ref document: EP

Kind code of ref document: A1