WO2019044573A1 - 接続ユニット及び電源システム - Google Patents

接続ユニット及び電源システム Download PDF

Info

Publication number
WO2019044573A1
WO2019044573A1 PCT/JP2018/030729 JP2018030729W WO2019044573A1 WO 2019044573 A1 WO2019044573 A1 WO 2019044573A1 JP 2018030729 W JP2018030729 W JP 2018030729W WO 2019044573 A1 WO2019044573 A1 WO 2019044573A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
conductive path
diode
unit
switch
Prior art date
Application number
PCT/JP2018/030729
Other languages
English (en)
French (fr)
Inventor
広世 前川
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to DE112018004777.6T priority Critical patent/DE112018004777T5/de
Priority to US16/630,636 priority patent/US11091107B2/en
Priority to CN201880052186.1A priority patent/CN111034046A/zh
Publication of WO2019044573A1 publication Critical patent/WO2019044573A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/6871Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1423Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with multiple batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/567Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/693Switching arrangements with several input- or output-terminals, e.g. multiplexers, distributors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/46The network being an on-board power network, i.e. within a vehicle for ICE-powered road vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits

Definitions

  • the present specification discloses a technology that can shut off the power supply between a plurality of power supplies.
  • a power supply system that includes a plurality of power supplies capable of supplying power to a load, and can switch off the conduction between the plurality of power supplies by a switch.
  • a generator, a starter and a battery are connected in parallel, and a DC / DC converter and a storage unit connected in series are connected in parallel to a load, and the battery side and storage
  • a configuration in which an FET is provided in a conductive path connecting to a part side is disclosed.
  • an alternator, a starter, an electric load, and a lead storage battery are connected in parallel, and a lithium storage battery and a constant voltage request electric load are connected in parallel.
  • Patent No. 5471767 Figure 1
  • Patent No. 5494 498 FIG. 9
  • Patent Document 1 described above, energization of only one direction between the plurality of storage batteries is possible when the FET is off, whereas in Patent Document 2 described above, both of the plurality of storage batteries are both switched off when the pair of MOS-FETs is off. Current is cut off.
  • a new power supply system having a modified circuit configuration has to be formed, which complicates the circuit configuration and increases the manufacturing cost of the power supply system.
  • connection unit and a power supply system that can be used.
  • connection unit described in the present specification is disposed between the first conductive path connected to the first power source and the second conductive path connected to the second power source, the first conductive path and the second conductive path.
  • a connection unit capable of electrically connecting to a conductive path, a first terminal connectable to the first conductive path or the second conductive path, and the first terminal being the first conductive path
  • a second terminal connectable to the second conductive path in a state of being connected to the second conductive path, and connectable to the second conductive path in a state in which the first terminal is connected to the second conductive path;
  • a third terminal connectable to the first conductive path in a state where at least one of the first terminal and the second terminal is connected to the second conductive path, and the first terminal
  • a first switch unit and a second switch unit connected in series with each other between the second terminal and the first terminal;
  • a first diode connected in parallel to the latch unit, and a second diode connected in parallel to the second switch unit and in a direction opposite to the
  • the first switch portion and the second switch can be changed by changing the combination of the first conductive path or the second conductive path connected to the first terminal, the second terminal and the third terminal. At least one of the parts is turned off to enable one-way current conduction between the third terminal and at least one of the first terminal and the second terminal by the first diode and the second diode. In a state in which the first switch unit and the second switch unit are turned off, the first diode and the second diode interrupt bidirectional current conduction between the first terminal and the second terminal. It is possible to carry out the above aspect using a common connection unit.
  • connection unit can be made common when configuring a power supply system in which the direction of energization between the first conductive path and the second conductive path is changed, the first power source and the first power source can be manufactured while reducing manufacturing costs. It becomes possible to cope with a change in the direction of energization between two power supplies.
  • the first switch unit and the first diode are configured by a first FET
  • the second switch unit and the second diode are configured by a second FET
  • the first diode and the first diode The second diode is oriented such that the anode side is electrically connected to the third terminal.
  • Power is supplied from at least one of the connection unit, the first power source, the second power source, the first conductive path, the second conductive path, and the first power source and the second power source. And a load capable of In this way, it is possible to configure a power supply system capable of changing the conduction direction between the first power supply and the second power supply using the common connection unit.
  • the first terminal and the second terminal are both connected to the second conductive path. In this way, the current capacity between the first conductive path and the second conductive path can be increased.
  • the first terminal is connected to the first conductive path
  • the second terminal is connected to the second conductive path
  • the third terminal is open.
  • the load is an electric power steering apparatus.
  • the power supply system 10 of the embodiment can be mounted on a vehicle such as an electric car, for example.
  • the power supply system 10 includes a generator 12 (an example of “first power supply”), a starter 13, a first power storage unit 14 (an example of “first power supply”), and a second power storage unit 15 (an example of the “second power source”), a load 17, a vehicle control device 18, a connection unit 20 connected between the generator 12, the first power storage unit 14 and the second power storage unit 15 (FIG. 1) And the inside of the connection unit 20 is partially omitted).
  • the generator 12 includes, for example, an alternator and a rectifier, and alternating current generated by the alternator is converted into direct current and output.
  • Starter 13 receives supply of power from first power storage unit 14 to start the engine.
  • the first power storage unit 14 can be, for example, a lead battery.
  • the second power storage unit 15 can be, for example, a lithium ion storage battery or an electric double layer capacitor.
  • a protection switch 16 is connected to the second power storage unit 15 to cut off the connection and protect the second power storage unit 15 at the time of abnormality.
  • the protection switch 16 is an electromagnetic switch having a coil and a contact portion.
  • the load 17 may be various electrical components of a vehicle, but in the present embodiment, the load 17 is, for example, an electric power steering apparatus.
  • the load 17 receives supply of power from at least one of the generator 12, the first power storage unit 14, and the second power storage unit 15, whereby an electric component such as a motor of the load 17 operates.
  • the generator 12, the starter 13, and the first storage unit 14 are connected in parallel between the first conductive path 11A and the ground, and the second storage unit 15 and the load 17 are connected with the second conductive path 11B. Connected in parallel with the ground.
  • the first conductive path 11A and the second conductive path 11B are made of a wire or the like and are connected to the connection unit 20.
  • the vehicle control device 18 is provided, for example, in an ECU (Electronic Control Unit) of the vehicle.
  • the ECU includes a circuit unit having a circuit board on which electronic components are mounted, and a connector unit for connecting to the outside, and detects voltage of the first power storage unit 14 and the second power storage unit 15 and controls charge and discharge. , And control of the supply of power to the load 17 can be performed.
  • the vehicle control device 18 of the present embodiment is connected to the external signal terminal 21D of the connection unit 20, and outputs the control signal S1 to control the on / off of the FETs 22A, 22B, 23A, 23B, and the first conductive path 11A. And control the energization between the second conductive path 11B and the second conductive path 11B.
  • the connection unit 20 described later may be provided in the ECU, the connection unit 20 may be provided outside the ECU.
  • the vehicle control device 18 outputs control signals S1 to S4 for controlling the operation of the connection unit 20, the generator 12, the switch of the starter 13, and the protection switch 16. For example, according to the operation of the ignition key (operation unit) of the vehicle, the vehicle control device 18 outputs control signals S1 to S4 to the connection unit 20, the generator 12, the switch of the starter 13, the protection switch 16 and the like. Further, the vehicle control device 18 receives a signal such as a voltage indicating the state of charge transmitted from the first power storage unit 14 and the second power storage unit 15.
  • connection unit 20 is configured, for example, by mounting a plurality of electronic components and a plurality of connector portions on a circuit board (not shown), and as shown in FIG. 2, four terminals disposed in the plurality of connector portions 21A to 21D, four field effect transistors (FETs) 22A, 22B, 23A, and 23B, a plurality of drive units 27A and 27B, a plurality of detection units 28A and 28B, and a control unit 29.
  • the four terminals 21A to 21D are connected to the first to third terminals 21A to 21C connectable to the terminals of the end portions of the first conductive path 11A and the second conductive path 11B, and a signal line connected to the vehicle control device 18.
  • an external signal terminal 21D connected to the terminal of the terminal unit of The external signal terminal 21 D performs signal input / output with the control unit 29.
  • the first to third terminals 21A to 21C can be connected to the terminal of one of the end portions of the first conductive path 11A and the second conductive path 11B in accordance with the aspect of the power supply system 10 described later. Between the first terminal 21A and the second terminal 21B, four FETs 22A, 22B, 23A, and 23B connected in series and in parallel are connected.
  • the four (plural) FETs 22A, 22B, 23A, and 23B are, for example, N-type MOSFETs, and include first FETs 22A and 23A connected in parallel and second FETs 22B and 23B connected in parallel, The first FETs 22A, 23A and the second FETs 22B, 23B are connected in series.
  • a third terminal 21C is electrically connected to the conductive path 26 between the first FET 22A and the second FET 22B connected in series and between the first FET 23A and the second FET 23B. ing.
  • the first FETs 22A and 23A both have a first switch portion 24A and a first diode 25A
  • the second FETs 22B and 23B both have a second switch portion 24B and a second diode 25B.
  • the first diode 25A and the second diode 25B are parasitic diodes of the FETs 22A, 22B, 23A, and 23B, and are connected such that the conduction directions of the diodes 25A and 25B connected in series are reverse.
  • the anode sides of the diodes 25A and 25B are connected to the conductive path 26 and connected to the third terminal 21C.
  • the cathodes of the pair of first diodes 25A in parallel are both electrically connected to the first terminal 21A
  • the cathodes of the pair of second diodes 25B in parallel are both electrically connected to the second terminal 21B. It is connected to the.
  • the gates of the FETs 22A, 22B, 23A, and 23B are connected to a plurality of drive units 27A and 27B.
  • the plurality of driving units 27A and 27B include a first driving unit 27A and a second driving unit 27B.
  • the first driving unit 27A receives signals from the control unit 29 and the first detection unit 28A.
  • the drive signal is output to the gates of the FETs 22A and 23A to drive the first FETs 22A and 23A on and off.
  • the second drive unit 27B receives signals from the control unit 29 and the second detection unit 28B, A signal is output to the gates of the second FETs 22B and 23B to drive the second switch on and off.
  • the plurality of detection units 28A and 28B include a first detection unit 28A and a second detection unit 28B.
  • the first detection unit 28A detects at least one of the current and voltage on the drain side of the first FETs 22A and 23A. , And perform abnormality determination such as low voltage and overcurrent.
  • the second detection unit 28B detects the current and voltage of the drain side of the second FETs 22B and 23B, and performs abnormality determination such as a low voltage or an overcurrent.
  • the detection result and the abnormality determination result by the first detection unit 28A are transmitted to the first drive unit 27A and the control unit 29.
  • the detection result and the abnormality determination result by the second detection unit 28B are transmitted to the second drive unit 27B and the control unit 29.
  • the drive units 27A and 27B turn off the FETs 22A and 23A (22B and 23B) on the side where the abnormality determination is made.
  • the control unit 29 receives the detection signals from the detection units 28A and 28B and the control signal S1 from the vehicle control device 18, and controls the driving of the drive units 27A and 27B based on the detection signal and the control signal S1.
  • Power supply system 10 can be changed to first to third aspects 10A to 10C according to the connection form of first conductive path 11A, second conductive path 11B, etc. with respect to first to third terminals 21A to 21C of connection unit 20 It is assumed.
  • First aspect 10A In the first mode 10A, as shown in FIG. 1, the first conductive path 11A is connected to the third terminal 21C of the connection unit 20, and the second conductive path 11B is connected to the first terminal 21A and the second terminal 21B. Is connected.
  • the first conductive path 11A is connected to the ground via the generator 12, the starter 13 and the first power storage unit 14 connected in parallel.
  • the second conductive path 11B is connected to the ground via the second power storage unit 15 and the load 17 connected in parallel.
  • the first aspect 10A in a state in which the FETs 22A, 22B, 23A, 23B are turned on by the signals from the drive units 27A, 27B, bidirectional operation between the first conductive path 11A and the second conductive path 11B is performed. It is possible to energize.
  • the diodes 25A, 25B enable conduction from the first conductive path 11A side to the second conductive path 11B side, and from the second conductive path 11B side The energization to the first conductive path 11A side is cut off.
  • FETs 22A, 22B, 23A, and 23B of connection unit 20 are turned off, and the current from the second power storage unit 15 side to the first power storage unit 14 side is cut off. The influence of the decrease does not reach the second power storage unit 15 and the load 17 side. Further, since the FETs 22A, 22B, 23A, and 23B can be energized by a plurality of paths, the current capacity can be increased.
  • the first conductive path 11A is connected to the first terminal 21A
  • the second conductive path 11B is connected to the second terminal 21B
  • the third terminal 21C is , Not connected to the external conductive path, it is open.
  • the first conductive path 11A is connected to the ground via the generator 12, the starter 13 and the first power storage unit 14 connected in parallel.
  • the second conductive path 11B is connected to the ground via the second power storage unit 15 and the load 17 connected in parallel.
  • the second aspect 10B in a state in which the FETs 22A, 22B, 23A, 23B are turned on by the signals from the drive units 27A, 27B, bidirectional operation between the first conductive path 11A and the second conductive path 11B is performed. It is possible to energize. On the other hand, when all the FETs 22A, 22B, 23A, 23B are turned off, the diodes 25A, 25B connected in series are in the opposite direction, so that the direction between the first conductive path 11A and the second conductive path 11B is reversed. Bi-directional energization is cut off.
  • the first conductive path 11A is connected to the third terminal 21C
  • the second conductive path 11B is connected to the first terminal 21A
  • the second terminal 21B is connected.
  • the third conductive path 11C is connected.
  • the first conductive path 11A is connected to the ground via the generator 12 and the starter 13 connected in parallel.
  • the second conductive path 11B is connected in parallel to the ground via the first power storage unit 14 and the load 17.
  • the third conductive path 11C is connected to ground via the protection switch 16 and the second storage unit 15 connected in series, and the load 17 is connected in parallel to the protection switch 16 and the second storage unit 15 It is done.
  • the first conduction is performed between the first conductive path 11A and the second conductive path 11B.
  • Bidirectional conduction is possible for any of between the path 11A and the third conductive path 11C and between the second conductive path 11B and the third conductive path 11C.
  • the diodes 25A, 25B enable conduction from the first conductive path 11A side to the second conductive path 11B and the third conductive path 11C.
  • the energization from the side of the second conductive path 11B and the third conductive path 11C to the first conductive path 11A is cut off.
  • the influence of the instantaneous voltage drop at the time of engine start can be prevented from affecting the first power storage unit 14, the second power storage unit 15, and the load 17 on the second conductive path 11B and the third conductive path 11C side.
  • the diodes 25A and 25B connected in series are in the opposite direction, bidirectional conduction can be cut off when the FETs 22A, 22B, 23A and 23B are off, and the first storage of the second conductive path 11B is performed.
  • the power supply between the portion 14 and load 17 and the second power storage unit 15 of the third conductive path 11C is separated, and the influence of one side of the second conductive path 11B and the third conductive path 11C (voltage drop due to ground fault or the like It is possible to prevent the other side from being affected by the influence of an overcurrent or the like.
  • the diodes 25A and 25B are paired, so that the conduction path on the non-faulty side can be prevented from being affected by the failure. .
  • connection unit 20 is disposed between the first conductive path 11A connected to the first power source and the second conductive path 11B connected to the second power source, and is connected to the first conductive path 11A and the second conductive path 11B.
  • a connection unit 20 capable of electrically connecting between the first conductive path 11A or the second conductive path 11B, and a first terminal 21A connected to the first conductive path 11A
  • a second terminal 21B that can be connected to the second conductive path 11B in the selected state and can be connected to the second conductive path 11B in a state where the first terminal 21A is connected to the second conductive path 11B
  • a third terminal 21C connectable to the first conductive path 11A in a state where at least one of the first terminal 21A and the second terminal 21B is connected to the second conductive path 11B, and a first terminal 21A and A first terminal connected in series with the second terminal 21B
  • a second diode 25B connected in a reverse direction to the diode 25A, and the third terminal 21C is electrically connected between the series connection of the first switch portion 24A and the second switch portion 24B.
  • the third terminal 21C and the first terminal 21A are made by the first diode 25A and the second diode 25B by turning off at least one of the first switch portion 24A and the second switch portion 24B.
  • the second terminal 21B can be energized in one direction, and the energization in the direction opposite to one direction is blocked, and the first switch portion 24A In a state where the second switch unit 24B has been turned off, bidirectional current is cut off between the first diode 25A and the first terminal 21A and the second terminal 21B by a second diode 25B.
  • the combination of the first conductive path 11A or the second conductive path 11B connected to the first terminals 21A to 21D, the second terminals 21A to 21D, and the third terminals 21A to 21D is changed. Then, when at least one of the first switch portion 24A and the second switch portion 24B is turned off, the third terminal 21C, the first terminal 21A, and the second terminal 21C are formed by the first diode 25A and the second diode 25B. The first diode 25A and the second diode 25A when the first switch portion 24A and the second switch portion 24B are turned off. And the second terminal 21B are cut off in both directions by the diode 25B of the second embodiment using the common connection unit 20. It becomes possible.
  • connection unit 20 can be made common when configuring the power supply system 10 in which the direction of energization between the first conductive path 11A and the second conductive path 11B is changed, the manufacturing cost can be reduced. It becomes possible to cope with the change in the direction of energization between the 1 power storage unit 14 and the second power storage unit 15.
  • first switch portion 24A and the first diode 25A are configured by the first FETs 22A and 23A
  • the second switch portion 24B and the second diode 25B are configured by the second FETs 22B and 23B.
  • the first diode 25A and the second diode 25B are oriented such that the anode side is electrically connected to the third terminal 21C.
  • the third terminal 21C is connected to the first conductive path 11A to which the generator 12 is connected, as compared with a configuration in which the cathode side of the diode is electrically connected to the third terminal 21C.
  • the plurality of first diodes 25A, the plurality of first switches 25A, the plurality of second switches 24B, the plurality of first diodes 25A, and the plurality of second diodes 25B are provided. Are connected in parallel with one another, and the plurality of second diodes 25B are connected in parallel with one another. In this way, the current is shunted to the plurality of diodes 25A and 25B, so the current capacity that can be conducted can be increased.
  • power supply system 10 includes connection unit 20, first power storage unit 14, second power storage unit 15, first conductive path 11A, second conductive path 11B, first power storage unit 14, and second power storage unit. And 15, a load 17 capable of receiving power supply from at least one of the two. In this manner, power supply system 10 capable of changing the direction of energization between first power storage unit 14 and second power storage unit 15 using common connection unit 20 can be configured.
  • the first conductive path 11A includes a generator 12, the third terminal 21C is connected to the first conductive path 11A, and at least one of the first terminal 21A and the second terminal 21B is a second conductive. It is connected to the road 11B. In this way, the power of the generator 12 can be supplied to the second power storage unit 15.
  • the first terminal 21A and the second terminal 21B are both connected to the second conductive path 11B. In this way, the current capacity between the generator 12 and the first power storage unit 14 and the second power storage unit 15 can be increased.
  • the FETs 22A, 22B, 23A, and 23B are N-type, they are not limited to this, and may be P-type. Further, the FETs 22A, 22B, 23A, and 23B are not limited to the configuration including the switch unit and the diode, but may be configured to include the switch unit (for example, mechanical relay) and the diode as individual components.

Abstract

第1の端子(21A)と、第2の端子(21B)と、第3の端子(21C)と、第1の端子(21A)と第2の端子(21B)との間に互いに直列に接続された第1のスイッチ部(24A)及び第2のスイッチ部(24B)と、第1のダイオード(25A)と、第2のダイオード(25B)と、を備え、第3の端子(21C)は、第1のスイッチ部(24A)と第2のスイッチ部(24B)との直列接続間に接続されており、第1のスイッチ部(24A)及び第2のスイッチ部(24B)の少なくとも一方がオフされることにより、第3の端子(21C)と第1の端子(21A)及び第2の端子(21B)の少なくとも一方との間の一方向の通電が可能とされ、一方向とは反対方向の通電が遮断されるとともに、第1のスイッチ部(24A)及び第2のスイッチ部(24B)がオフされることにより、第1の端子(21A)と第2の端子(21B)との間の双方向の通電が遮断される、接続ユニット(20)。

Description

接続ユニット及び電源システム
 本明細書では、複数の電源間の通電を遮断可能な技術を開示する。
 従来、負荷に電力を供給可能な複数の電源を備え、複数の電源間の通電をスイッチにより遮断可能な電源システムが知られている。特許文献1の電源システムは、発電機、スタータ及びバッテリが並列に接続されているとともに、直列に接続されたDC/DCコンバータと蓄電部とが負荷に対して並列に接続され、バッテリ側と蓄電部側とを接続する導電路には、FETが設けられる構成が開示されている。この電源システムのFETのオン時には、バッテリ側と蓄電部側との間の双方向の通電が可能とされるとともに、FETのオフ時には、FETの寄生ダイオードにより、バッテリ側から蓄電部側への通電は可能とされ、蓄電部側からバッテリ側への通電は遮断されるため、エンジン始動時の瞬時電圧の低下の影響が負荷に及ばないようになっている。
 特許文献2の電源システムは、オルタネータ、スタータ、電気負荷及び鉛蓄電池が並列に接続されているとともに、リチウム蓄電池と定電圧要求電気負荷が並列に接続されており、鉛蓄電池側とリチウム蓄電池側とを接続する導電路に一対のMOS-FETが直列に接続された構成が開示されている。この電源システムの一対のMOS-FETは、互いの寄生ダイオードが逆向きとなるように接続されており、一対のMOS-FETが共にオンされた状態では双方向の通電が可能とされ、一対のMOS-FETが共にオフされた状態では双方向の通電が遮断されるため、MOS-FETのオフ時には一方の蓄電池側の電圧低下の影響が他方の蓄電池側に及ばないようになっている。
特許第5471767号公報(図1) 特許第5494498号公報(図9)
 上記特許文献1では、FETのオフ時には複数の蓄電池間の一方向のみの通電が可能とされるのに対して、上記特許文献2では、一対のMOS-FETのオフ時には複数の蓄電池間の双方向の通電が遮断される。電源システムの用途に応じて、複数の蓄電池間の一方向のみの通電を可能としたり、複数の蓄電池間の双方向の通電が遮断されるようにすることが考えられるが、このような場合には、回路構成を変更した新たな電源システムを形成しなければならず、回路の構成が複雑化し、電源システムの製造コストが高くなるという問題があった。
 本明細書に記載された技術は、上記のような事情に基づいて完成されたものであって、製造コストを低減しつつ第1電源と第2電源との間の通電方向の変更に対応することが可能な接続ユニット及び電源システムを提供することを目的とする。
 本明細書に記載された接続ユニットは、第1電源に接続された第1導電路と第2電源に接続された第2導電路との間に配されて前記第1導電路と前記第2導電路との間を電気的に接続可能な接続ユニットであって、前記第1導電路又は前記第2導電路に接続可能な第1の端子と、前記第1の端子が前記第1導電路に接続された状態で前記第2導電路に接続可能とされ、前記第1の端子が前記第2導電路に接続された状態で前記第2導電路に接続可能とされる第2の端子と、前記第1の端子及び前記第2の端子の少なくとも一方が前記第2導電路に接続された状態で前記第1導電路に接続可能とされる第3の端子と、前記第1の端子と前記第2の端子との間に互いに直列に接続された第1のスイッチ部及び第2のスイッチ部と、前記第1のスイッチ部に対して並列に接続された第1のダイオードと、前記第2のスイッチ部に対して並列に、かつ、前記第1のダイオードとは逆向きに接続された第2のダイオードと、を備え、前記第3の端子は、前記第1のスイッチ部と前記第2のスイッチ部との直列接続間に電気的に接続されており、前記第1のスイッチ部及び前記第2のスイッチ部の少なくとも一方がオフされることにより、前記第1のダイオード及び前記第2のダイオードによって前記第3の端子と前記第1の端子及び前記第2の端子の少なくとも一方との間の一方向の通電が可能とされ、前記一方向とは反対方向の通電が遮断されるとともに、前記第1のスイッチ部及び前記第2のスイッチ部がオフされた状態で、前記第1のダイオード及び前記第2のダイオードによって前記第1の端子と前記第2の端子との間の双方向の通電が遮断される。
 本構成によれば、第1の端子、第2の端子及び第3の端子に接続される第1導電路又は第2導電路の組み合わせを変えることで、第1のスイッチ部及び第2のスイッチ部の少なくとも一方がオフされることにより第1のダイオード及び第2のダイオードによって第3の端子と第1の端子及び第2の端子の少なくとも一方との間の一方向のみの通電を可能とする態様と、第1のスイッチ部及び第2のスイッチ部がオフされた状態で、第1のダイオード及び第2のダイオードによって第1の端子と第2の端子との間の双方向の通電を遮断する態様と、を共通の接続ユニットを用いて行うことが可能になる。これにより、第1導電路と第2導電路との間の通電方向を変更した電源システムを構成する際に接続ユニットを共通化することができるため、製造コストを低減しつつ第1電源と第2電源との間の通電方向の変更に対応することが可能となる。
 本明細書に記載された技術の実施態様としては以下の態様が好ましい。
 前記第1のスイッチ部及び前記第1のダイオードは第1のFETにより構成され、前記第2のスイッチ部及び前記第2のダイオードは第2のFETにより構成されており、前記第1のダイオード及び前記第2のダイオードは、アノード側が前記第3の端子に電気的に接続される向きとされている。
 このようにすれば、第3の端子にダイオードのカソード側が電気的に接続される構成と比較して、例えば発電機が接続された第1導電路に第3の端子が接続された状況において、発電機側の地絡故障が発生した際に、ダイオードに大電流が通電することによるFETの故障を抑制することができる。
 複数の前記第1のスイッチ部と、複数の前記第2のスイッチ部と、複数の前記第1のダイオードと、複数の前記第2のダイオードと、を備え、前記複数の第1のダイオードは、互いに並列に接続され、前記複数の第2のダイオードは、互いに並列に接続されている。
 このようにすれば、複数の経路に電流が分流するため、通電可能な電流容量を大きくすることができる。
 前記接続ユニットと、前記第1電源と、前記第2電源と、前記第1導電路と、前記第2導電路と、前記第1電源及び前記第2電源の少なくとも一方から電力の供給を受けることが可能な負荷と、を備える電源システムとする。
 このようにすれば、共通の接続ユニットを用いて第1電源と第2電源との間の通電方向を変更可能な電源システムを構成することができる。
 前記第1の端子と前記第2の端子とは、共に前記第2導電路に接続されている。
 このようにすれば、第1導電路と第2導電路との間の電流容量を大きくすることができる。
 前記第1の端子は、前記第1導電路に接続され、前記第2の端子は、前記第2導電路に接続され、前記第3の端子は開放されている。
 前記負荷は、電動式パワーステアリング装置である。
 本明細書に記載された技術によれば、製造コストを低減しつつ第1電源と第2電源との間の通電方向の変更に対応することが可能になる。
実施形態の電源システムの第1の態様を示す図 接続ユニットの電気的構成を示す図 電源システムの第2の態様を示す図 電源システムの第3の態様を示す図
 <実施形態>
 実施形態の電源システム10は、例えば電気自動車等の車両に搭載することができるものである。
(電源システム10)
 電源システム10は、図1に示すように、発電機12(「第1電源」の一例)と、スタータ13と、第1蓄電部14(「第1電源」の一例)と、第2蓄電部15(「第2電源」の一例)と、負荷17と、車両制御装置18と、発電機12及び第1蓄電部14と第2蓄電部15との間に接続される接続ユニット20(図1では接続ユニット20の内部は一部省略)とを備える。
 発電機12は、例えばオルタネータと整流装置とを備え、オルタネータが発電した交流が直流に変換されて出力される。スタータ13は、第1蓄電部14から電力の供給を受けてエンジンを始動させる。
 第1蓄電部14は、例えば鉛バッテリとすることができる。第2蓄電部15は、例えばリチウムイオン蓄電池や電気二重層キャパシタとすることができる。第2蓄電部15には、異常時に接続を遮断して第2蓄電部15を保護するための保護スイッチ16が接続されている。保護スイッチ16は、コイルと接点部とを有する電磁スイッチが用いられている。
 負荷17は、車両の種々の電装品等とすることができるが、本実施形態では、例えば電動式パワーステアリング装置とされている。負荷17は、発電機12、第1蓄電部14及び第2蓄電部15の少なくとも一つから電力の供給を受けることで負荷17のモータ等の電気部品が動作する。発電機12とスタータ13と第1蓄電部14とは、第1導電路11Aとグランドとの間に並列に接続されており、第2蓄電部15と負荷17とは、第2導電路11Bとグランドとの間に並列に接続されている。第1導電路11A及び第2導電路11Bは、電線等からなり、接続ユニット20に接続されている。
 車両制御装置18は、例えば車両のECU(Electronic Control Unit)に備えられている。ECUは、電子部品が実装された回路基板を有する回路部と、外部と接続するためのコネクタ部とを備えており、第1蓄電部14及び第2蓄電部15の電圧の検知や充放電コントロール、負荷17への電力の供給の制御等を行うことができる。本実施形態の車両制御装置18は、接続ユニット20の外部信号用端子21Dに接続されており、制御信号S1を出力してFET22A,22B,23A,23Bのオンオフを制御し、第1導電路11Aと第2導電路11Bとの間の通電を制御する。なお、ECUに後述する接続ユニット20を設けてもよいが、ECUの外部に接続ユニット20を設けてもよい。
 車両制御装置18は、接続ユニット20,発電機12,スタータ13のスイッチ,保護スイッチ16の動作を制御するための制御信号S1~S4を出力する。例えば車両のイグニッションキー(操作部)の操作等に応じて車両制御装置18は、接続ユニット20,発電機12,スタータ13のスイッチ,保護スイッチ16等に制御信号S1~S4を出力する。また、車両制御装置18には、第1蓄電部14及び第2蓄電部15から送信された充電状態を示す電圧等の信号が入力される。
(接続ユニット20)
 接続ユニット20は、例えば回路基板(図示しない)に複数の電子部品と複数のコネクタ部とが実装されて構成されており、図2に示すように、複数のコネクタ部に配される4つの端子21A~21Dと、4つのFET(Field effect transistor)22A,22B,23A,23Bと、複数の駆動部27A,27Bと、複数の検出部28A,28Bと、制御部29とを備えている。4つの端子21A~21Dは、第1導電路11Aや第2導電路11Bの端末部の端子に接続可能な第1~第3の端子21A~21Cと、車両制御装置18に接続された信号線の端末部の端子に接続される外部信号用端子21Dとを備える。外部信号用端子21Dは、制御部29との間で信号の入出力を行う。
 第1~第3の端子21A~21Cは、後述する電源システム10の態様に応じて第1導電路11Aと第2導電路11Bとのいずれかの端末部の端子に接続可能とされている。第1の端子21Aと第2の端子21Bとの間には、直並列に接続された4つのFET22A,22B,23A,23Bが接続されている。
 4つ(複数)のFET22A,22B,23A,23Bは、例えばN型のMOSFETであって、並列接続された第1のFET22A,23Aと、並列接続された第2のFET22B,23Bとからなり、第1のFET22A,23Aと第2のFET22B,23Bとが直列に接続されている。直列に接続された第1のFET22Aと第2のFET22Bとの間、及び、第1のFET23Aと第2のFET23Bとの間の導電路26には、第3の端子21Cが電気的に接続されている。
 第1のFET22A,23Aは、共に第1のスイッチ部24Aと、第1のダイオード25Aとを備え、第2のFET22B,23Bは、共に第2のスイッチ部24Bと、第2のダイオード25Bとを備えている。第1のダイオード25Aと第2のダイオード25Bとは、FET22A,22B,23A,23Bの寄生ダイオードであって、直列に接続されたダイオード25A,25B間の通電方向が逆向きとなるように接続されており、各ダイオード25A,25Bのアノード側同士が導電路26に接続されて第3の端子21Cに接続されている。一方、並列な一対の第1のダイオード25Aのカソードは、共に第1の端子21Aに電気的に接続され、並列な一対の第2のダイオード25Bのカソードは、共に第2の端子21Bに電気的に接続されている。各FET22A,22B,23A,23Bのゲートは、複数の駆動部27A,27Bに接続されている。
 複数の駆動部27A,27Bは、第1駆動部27Aと第2駆動部27Bとからなり、第1駆動部27Aは、制御部29及び第1検出部28Aからの信号を受けており、第1のFET22A,23Aのゲートに駆動信号を出力し、第1のFET22A,23Aをオンオフ駆動する。第2駆動部27Bは、制御部29及び第2検出部28Bからの信号を受けており、
第2のFET22B,23Bのゲートに信号を出力し、第2のスイッチをオンオフ駆動する。
 複数の検出部28A,28Bは、第1検出部28Aと第2検出部28Bとからなり、第1検出部28Aは、第1のFET22A,23Aのドレイン側の電流及び電圧の少なくとも一方を検出し、低電圧や過電流などの異常判定を行う。第2検出部28Bは、第2のFET22B,23Bのドレイン側の電流及び電圧を検出し、低電圧や過電流などの異常判定を行う。
 第1検出部28Aによる検出結果及び異常判定結果は、第1駆動部27A及び制御部29に送信される。第2検出部28Bによる検出結果及び異常判定結果は、第2駆動部27B及び制御部29に送信される。例えば、第1検出部28Aや第2検出部28Bで異常判定があった場合には、駆動部27A,27Bは、異常判定がされた側のFET22A,23A(22B,23B)をオフする。制御部29は、検出部28A,28Bからの検出信号及び車両制御装置18からの制御信号S1を受けており、検出信号及び制御信号S1に基づいて駆動部27A,27Bの駆動を制御する。
(電源システム10の態様)
 接続ユニット20の第1~第3の端子21A~21Cに対する第1導電路11A,第2導電路11B等の接続形態により、電源システム10は、第1~第3の態様10A~10Cに変更可能とされている。
(第1の態様10A)
 第1の態様10Aは、図1に示すように、接続ユニット20の第3の端子21Cに第1導電路11Aが接続され、第1の端子21A及び第2の端子21Bに第2導電路11Bが接続されている。第1導電路11Aは、並列接続された発電機12とスタータ13と第1蓄電部14とを介してグランドに接続されている。第2導電路11Bは、並列接続された第2蓄電部15と負荷17とを介してグランドに接続されている。
 第1の態様10Aによれば、駆動部27A,27Bからの信号により、FET22A,22B,23A,23Bがオンした状態では、第1導電路11Aと第2導電路11Bとの間の双方向の通電が可能とされる。一方、FET22A,22B,23A,23Bの全てがオフした状態では、ダイオード25A,25Bにより、第1導電路11A側から第2導電路11B側への通電が可能となり、第2導電路11B側から第1導電路11A側への通電が遮断される。エンジン始動時には、接続ユニット20のFET22A,22B,23A,23Bがオフされた状態となり、第2蓄電部15側から第1蓄電部14側への通電が遮断されるため、エンジン始動時の瞬時電圧低下の影響が第2蓄電部15及び負荷17側に及ばないようになっている。また、FET22A,22B,23A,23Bの通電が複数の経路により可能となるため、電流容量を大きくすることができる。
(第2の態様10B)
 第2の態様10Bでは、図3に示すように、第1の端子21Aに第1導電路11Aが接続され、第2の端子21Bに第2導電路11Bが接続され、第3の端子21Cは、外部の導電路に接続されず、開放されている。第1導電路11Aは、並列接続された発電機12とスタータ13と第1蓄電部14とを介してグランドに接続されている。第2導電路11Bは、並列接続された第2蓄電部15と負荷17とを介してグランドに接続されている。
 第2の態様10Bによれば、駆動部27A,27Bからの信号により、FET22A,22B,23A,23Bがオンした状態では、第1導電路11Aと第2導電路11Bとの間の双方向の通電が可能とされる。一方、FET22A,22B,23A,23Bの全てがオフした状態では、直列に接続されたダイオード25A,25Bの方向が逆方向であることにより第1導電路11Aと第2導電路11Bとの間の双方向の通電が遮断される。これにより、FET22A,22B,23A,23Bの全てがオフした状態では、第1蓄電部14及び発電機12と、第2蓄電部15及び負荷17との間の電源が分離されるため、第1導電路11Aと第2導電路11Bとの間の一方側の影響(電圧低下等)を他方側が受けないようにすることができる。なお、制御部29からの信号により駆動部27A,27Bの一方から駆動信号を出力し、第1のFET22A,23Aと第2のFET22B,23Bとの一方をオンし、他方をオフすることにより、第1導電路11Aと第2導電路11Bとの間の一方向の通電を可能とし、反対方向の通電を遮断するようにしてもよい。
(第3の態様10C)
 第3の態様10Cでは、図4に示すように、第3の端子21Cに第1導電路11Aが接続され、第1の端子21Aに第2導電路11Bが接続され、第2の端子21Bに第3導電路11Cが接続されている。第1導電路11Aは、並列接続された発電機12とスタータ13を介してグランドに接続されている。第2導電路11Bは、並列接続されたと第1蓄電部14と負荷17とを介してグランドに接続されている。第3導電路11Cは、直列接続された保護スイッチ16と第2蓄電部15とを介してグランドに接続されているとともに、保護スイッチ16及び第2蓄電部15に対して負荷17が並列に接続されている。
 第3の態様10Cによれば、駆動部27A,27Bからの信号により、FET22A,22B,23A,23Bがオンした状態では、第1導電路11Aと第2導電路11Bとの間、第1導電路11Aと第3導電路11Cとの間、第2導電路11Bと第3導電路11Cとの間のいずれについても双方向の通電が可能とされる。一方、FET22A,22B,23A,23Bの全てがオフした状態では、ダイオード25A,25Bにより、第1導電路11A側から第2導電路11B及び第3導電路11C側への通電が可能となり、第2導電路11B及び第3導電路11C側から第1導電路11A側への通電が遮断される。これにより、エンジン始動時の瞬時電圧低下の影響が第2導電路11B及び第3導電路11C側の第1蓄電部14、第2蓄電部15及び負荷17に及ばないようにすることができる。また、直列に接続されたダイオード25A,25Bの方向が逆方向とされているため、FET22A,22B,23A,23Bのオフ時には、双方向の通電を遮断でき、第2導電路11Bの第1蓄電部14及び負荷17と、第3導電路11Cの第2蓄電部15間の電源を分離して、第2導電路11Bと第3導電路11Cとの一方側の影響(地絡等による電圧低下や過電流等の影響)を他方側が受けないようにすることができる。例えば第2伝導路11B又は第3伝導路11Cが故障した場合、ダイオード25A,25Bが対になっているので、故障していない側の伝導路に故障の影響が生じないようにすることができる。
 本実施形態によれば、以下の作用、効果を奏する。
 接続ユニット20は、第1電源に接続された第1導電路11Aと第2電源に接続された第2導電路11Bとの間に配されて第1導電路11Aと第2導電路11Bとの間を電気的に接続可能な接続ユニット20であって、第1導電路11A又は第2導電路11Bに接続可能な第1の端子21Aと、第1の端子21Aが第1導電路11Aに接続された状態で第2導電路11Bに接続可能とされ、第1の端子21Aが第2導電路11Bに接続された状態で第2導電路11Bに接続可能とされる第2の端子21Bと、第1の端子21A及び第2の端子21Bの少なくとも一方が第2導電路11Bに接続された状態で第1導電路11Aに接続可能とされる第3の端子21Cと、第1の端子21Aと第2の端子21Bとの間に互いに直列に接続された第1のスイッチ部24A及び第2のスイッチ部24Bと、第1のスイッチ部24Aに対して並列に接続された第1のダイオード25Aと、第2のスイッチ部24Bに対して並列に、かつ、第1のダイオード25Aとは逆向きに接続された第2のダイオード25Bと、を備え、第3の端子21Cは、第1のスイッチ部24Aと第2のスイッチ部24Bとの直列接続間に電気的に接続されており、第1のスイッチ部24A及び第2のスイッチ部24Bの少なくとも一方がオフされることにより、第1のダイオード25A及び第2のダイオード25Bによって第3の端子21Cと第1の端子21A及び第2の端子21Bの少なくとも一方との間の一方向の通電が可能とされ、一方向とは反対方向の通電が遮断されるとともに、第1のスイッチ部24A及び第2のスイッチ部24Bがオフされた状態で、第1のダイオード25A及び第2のダイオード25Bによって第1の端子21Aと第2の端子21Bとの間の双方向の通電が遮断される。
 本実施形態によれば、第1の端子21A~21D、第2の端子21A~21D及び第3の端子21A~21Dに接続される第1導電路11A又は第2導電路11Bの組み合わせを変えることで、第1のスイッチ部24A及び第2のスイッチ部24Bの少なくとも一方がオフされることにより第1のダイオード25A及び第2のダイオード25Bによって第3の端子21Cと第1の端子21A及び第2の端子21Bの少なくとも一方との間の一方向のみの通電を可能とする態様と、第1のスイッチ部24A及び第2のスイッチ部24Bがオフされた状態で、第1のダイオード25A及び第2のダイオード25Bによって第1の端子21Aと第2の端子21Bとの間の双方向の通電を遮断する態様と、を共通の接続ユニット20を用いて行うことが可能になる。これにより、第1導電路11Aと第2導電路11Bとの間の通電方向を変更した電源システム10を構成する際に接続ユニット20を共通化することができるため、製造コストを低減しつつ第1蓄電部14と第2蓄電部15との間の通電方向の変更に対応することが可能となる。
 また、第1のスイッチ部24A及び第1のダイオード25Aは第1のFET22A,23Aにより構成され、第2のスイッチ部24B及び第2のダイオード25Bは第2のFET22B,23Bにより構成されており、第1のダイオード25A及び第2のダイオード25Bは、アノード側が第3の端子21Cに電気的に接続される向きとされている。
 このようにすれば、第3の端子21Cにダイオードのカソード側が電気的に接続される構成と比較して、例えば発電機12が接続された第1導電路11Aに第3の端子21Cが接続された状況において、発電機12側の地絡故障が発生した際に、ダイオードに大電流が通電することによるFET22A,22B,23A,23Bの故障を抑制することができる。
 また、複数の第1のスイッチ部24Aと、複数の第2のスイッチ部24Bと、複数の第1のダイオード25Aと、複数の第2のダイオード25Bと、を備え、複数の第1のダイオード25Aは、互いに並列に接続され、複数の第2のダイオード25Bは、互いに並列に接続されている。
 このようにすれば、複数のダイオード25A,25Bに電流が分流するため、通電可能な電流容量を大きくすることができる。
 また、電源システム10は、接続ユニット20と、第1蓄電部14と、第2蓄電部15と、第1導電路11Aと、第2導電路11Bと、第1蓄電部14及び第2蓄電部15の少なくとも一方から電力の供給を受けることが可能な負荷17とを備える。
 このようにすれば、共通の接続ユニット20を用いて第1蓄電部14と第2蓄電部15との間の通電方向を変更可能な電源システム10を構成することができる。
 第1導電路11Aは、発電機12を備え、第3の端子21Cは、第1導電路11Aに接続されており、第1の端子21A及び第2の端子21Bの少なくとも一方は、第2導電路11Bに接続されている。
 このようにすれば、発電機12の電力を第2蓄電部15に供給することができる。
 第1の端子21Aと第2の端子21Bとは、共に第2導電路11Bに接続されている。
 このようにすれば、発電機12及び第1蓄電部14と第2蓄電部15との間の電流容量を大きくすることができる。
 <他の実施形態>
 本明細書に記載された技術は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本明細書に記載された技術の技術的範囲に含まれる。
 (1)FET22A,22B,23A,23Bは、蓄電池の容量に応じて2つ並列に接続したが、これに限られず、蓄電池の容量に応じて3つ以上に並列に接続してもよい。また、複数のFETを並列に接続せず、複数のFET22A,22B(23A,23B)を直列接続のみで構成してもよい。
 (2)FET22A,22B,23A,23B(スイッチ部)は、N型としたが、これに限られず、P型としてもよい。また、FET22A,22B,23A,23Bがスイッチ部とダイオードとを備える構成に限られず、個別の部品としてのスイッチ部(例えば機械式リレー)とダイオードとを備える構成としてもよい。
10: 電源システム
11A: 第1導電路
11B: 第2導電路
12: 発電機(第1電源)
13: スタータ
14: 第1蓄電部(第1電源)
15: 第2蓄電部(第2電源)
17: 負荷
18: 車両制御装置
20: 接続ユニット
21A: 第1の端子
21B: 第2の端子
21C: 第3の端子
21D: 外部信号用端子
22A,23A: 第1のFET
22B,23B: 第2のFET
24A: 第1のスイッチ部
24B: 第2のスイッチ部
25A: 第1のダイオード
25B: 第2のダイオード
27A: 第1駆動部
27B: 第2駆動部
28A: 第1検出部
28B: 第2検出部
29: 制御部

Claims (7)

  1. 第1電源に接続された第1導電路と第2電源に接続された第2導電路との間に配されて前記第1導電路と前記第2導電路との間を電気的に接続可能な接続ユニットであって、
     前記第1導電路又は前記第2導電路に接続可能な第1の端子と、
     前記第1の端子が前記第1導電路に接続された状態で前記第2導電路に接続可能とされ、前記第1の端子が前記第2導電路に接続された状態で前記第2導電路に接続可能とされる第2の端子と、
     前記第1の端子及び前記第2の端子の少なくとも一方が前記第2導電路に接続された状態で前記第1導電路に接続可能とされる第3の端子と、
     前記第1の端子と前記第2の端子との間に互いに直列に接続された第1のスイッチ部及び第2のスイッチ部と、
     前記第1のスイッチ部に対して並列に接続された第1のダイオードと、
     前記第2のスイッチ部に対して並列に、かつ、前記第1のダイオードとは逆向きに接続された第2のダイオードと、を備え、
     前記第3の端子は、前記第1のスイッチ部と前記第2のスイッチ部との直列接続間に電気的に接続されており、
     前記第1のスイッチ部及び前記第2のスイッチ部の少なくとも一方がオフされることにより、前記第1のダイオード及び前記第2のダイオードによって前記第3の端子と前記第1の端子及び前記第2の端子の少なくとも一方との間の一方向の通電が可能とされ、前記一方向とは反対方向の通電が遮断されるとともに、
     前記第1のスイッチ部及び前記第2のスイッチ部がオフされた状態で、前記第1のダイオード及び前記第2のダイオードによって前記第1の端子と前記第2の端子との間の双方向の通電が遮断される、接続ユニット。
  2. 前記第1のスイッチ部及び前記第1のダイオードは第1のFETにより構成され、前記第2のスイッチ部及び前記第2のダイオードは第2のFETにより構成されており、
     前記第1のダイオード及び前記第2のダイオードは、アノード側が前記第3の端子に電気的に接続される向きとされている請求項1に記載の接続ユニット。
  3. 複数の前記第1のスイッチ部と、複数の前記第2のスイッチ部と、複数の前記第1のダイオードと、複数の前記第2のダイオードと、を備え、
     前記複数の第1のダイオードは、互いに並列に接続され、前記複数の第2のダイオードは、互いに並列に接続されている請求項1又は請求項2に記載の接続ユニット。
  4. 請求項1から請求項3のいずれか一項に記載の接続ユニットと、前記第1電源と、前記第2電源と、前記第1導電路と、前記第2導電路と、前記第1電源及び前記第2電源の少なくとも一方から電力の供給を受けることが可能な負荷と、を備える電源システム。
  5. 前記第1の端子と前記第2の端子とは、共に前記第2導電路に接続されている請求項4に記載の電源システム。
  6. 前記第1の端子は、前記第1導電路に接続され、前記第2の端子は、前記第2導電路に接続され、前記第3の端子は開放されている請求項4又は請求項5に記載の電源システム。
  7. 前記負荷は、電動式パワーステアリング装置である請求項4から請求項6のいずれか一項に記載の電源システム。
PCT/JP2018/030729 2017-08-31 2018-08-21 接続ユニット及び電源システム WO2019044573A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112018004777.6T DE112018004777T5 (de) 2017-08-31 2018-08-21 Verbindungseinheit und Stromversorgungssystem
US16/630,636 US11091107B2 (en) 2017-08-31 2018-08-21 Connection unit and power supply system
CN201880052186.1A CN111034046A (zh) 2017-08-31 2018-08-21 连接单元及电源系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017166863A JP6951662B2 (ja) 2017-08-31 2017-08-31 電源システム
JP2017-166863 2017-08-31

Publications (1)

Publication Number Publication Date
WO2019044573A1 true WO2019044573A1 (ja) 2019-03-07

Family

ID=65525335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030729 WO2019044573A1 (ja) 2017-08-31 2018-08-21 接続ユニット及び電源システム

Country Status (5)

Country Link
US (1) US11091107B2 (ja)
JP (1) JP6951662B2 (ja)
CN (1) CN111034046A (ja)
DE (1) DE112018004777T5 (ja)
WO (1) WO2019044573A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113258146B (zh) * 2021-03-29 2022-12-30 华为数字能源技术有限公司 一种电池系统、驱动系统及储能集装箱
EP4098493B1 (en) * 2021-06-04 2024-02-14 Aptiv Technologies Limited Control device and vehicle power distribution architecture incorporating the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011114985A (ja) * 2009-11-27 2011-06-09 Sanyo Electric Co Ltd 電池内蔵機器と充電台
JP2011178384A (ja) * 2010-02-03 2011-09-15 Denso Corp 車載電源装置
JP2011229353A (ja) * 2010-04-23 2011-11-10 Panasonic Corp 電源装置
JP2014027345A (ja) * 2012-07-24 2014-02-06 Denso Corp 半導体素子駆動回路
JP2016140135A (ja) * 2015-01-26 2016-08-04 トヨタ自動車株式会社 双方向dc−dcコンバータ
JP2017084623A (ja) * 2015-10-28 2017-05-18 パナソニックIpマネジメント株式会社 調光装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105075094B (zh) * 2013-02-22 2018-02-23 富士机械制造株式会社 交流电源装置
JP5502216B1 (ja) * 2013-02-28 2014-05-28 三菱電機株式会社 電気負荷の分岐給電制御装置及び分岐給電制御方法
JP6154705B2 (ja) * 2013-09-24 2017-06-28 株式会社 日立パワーデバイス 半導体スイッチ回路、信号処理装置、および、超音波診断装置
JP2015162887A (ja) * 2014-02-28 2015-09-07 オムロンオートモーティブエレクトロニクス株式会社 アンテナ駆動装置
JP6201969B2 (ja) * 2014-11-28 2017-09-27 トヨタ自動車株式会社 車両用電源システム
US9793260B2 (en) * 2015-08-10 2017-10-17 Infineon Technologies Austria Ag System and method for a switch having a normally-on transistor and a normally-off transistor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011114985A (ja) * 2009-11-27 2011-06-09 Sanyo Electric Co Ltd 電池内蔵機器と充電台
JP2011178384A (ja) * 2010-02-03 2011-09-15 Denso Corp 車載電源装置
JP2011229353A (ja) * 2010-04-23 2011-11-10 Panasonic Corp 電源装置
JP2014027345A (ja) * 2012-07-24 2014-02-06 Denso Corp 半導体素子駆動回路
JP2016140135A (ja) * 2015-01-26 2016-08-04 トヨタ自動車株式会社 双方向dc−dcコンバータ
JP2017084623A (ja) * 2015-10-28 2017-05-18 パナソニックIpマネジメント株式会社 調光装置

Also Published As

Publication number Publication date
DE112018004777T5 (de) 2020-06-18
US20200207296A1 (en) 2020-07-02
JP6951662B2 (ja) 2021-10-20
JP2019047247A (ja) 2019-03-22
US11091107B2 (en) 2021-08-17
CN111034046A (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
CN108886266B (zh) 继电器装置及车载系统
US9893511B2 (en) Protective circuit assemblage for a multi-voltage electrical system
WO2017208750A1 (ja) リレー装置及び電源装置
JP6291899B2 (ja) 回転電機制御装置
JP5039437B2 (ja) 車両用電源装置
WO2017208751A1 (ja) リレー装置及び電源装置
JP6460875B2 (ja) バッテリシステム制御装置
US10855271B2 (en) Control device for semiconductor switch, and electrical power system
JP2019195249A (ja) 車両用電源システム
JP6903951B2 (ja) 電源システム
US20130140884A1 (en) Signal output circuit
WO2019044573A1 (ja) 接続ユニット及び電源システム
JP6750558B2 (ja) 電源ボックス
JP6794944B2 (ja) 電源制御装置及び電池ユニット
JP2003092874A (ja) 車両用電源装置
JP6673179B2 (ja) 電池ユニット、及び電源システム
WO2019044657A1 (ja) 通電制御装置
JP6541414B2 (ja) 電源供給装置
US11012021B2 (en) Inverter device and control circuit therefor, and motor driving system
CA2609040C (en) Method and apparatus for providing a remedial strategy for an electrical circuit
JP2019088085A (ja) 電源システム
JP7221098B2 (ja) 電源供給回路
WO2020217780A1 (ja) 負荷駆動装置
JP5016425B2 (ja) 電気回路
US20230370057A1 (en) Drive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850443

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18850443

Country of ref document: EP

Kind code of ref document: A1