WO2019041966A1 - 一种柔性显示器件 - Google Patents

一种柔性显示器件 Download PDF

Info

Publication number
WO2019041966A1
WO2019041966A1 PCT/CN2018/091301 CN2018091301W WO2019041966A1 WO 2019041966 A1 WO2019041966 A1 WO 2019041966A1 CN 2018091301 W CN2018091301 W CN 2018091301W WO 2019041966 A1 WO2019041966 A1 WO 2019041966A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic layer
trench
flexible display
display device
metal
Prior art date
Application number
PCT/CN2018/091301
Other languages
English (en)
French (fr)
Inventor
胡坤
李加伟
习王锋
李梦真
俞凤至
刘玉成
周小康
逄辉
于锋
Original Assignee
昆山工研院新型平板显示技术中心有限公司
云谷(固安)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710773085.0A external-priority patent/CN109427995B/zh
Priority claimed from CN201721112576.2U external-priority patent/CN207134070U/zh
Application filed by 昆山工研院新型平板显示技术中心有限公司, 云谷(固安)科技有限公司 filed Critical 昆山工研院新型平板显示技术中心有限公司
Publication of WO2019041966A1 publication Critical patent/WO2019041966A1/zh
Priority to US16/376,899 priority Critical patent/US20190237699A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a flexible display device.
  • the flexible display device realizes display through an organic light emitting diode (OLED) disposed on a substrate, and has a simple preparation process, high luminous efficiency, high contrast, ultra-thin and ultra-light, low power consumption, and easy formation of a flexible structure.
  • OLED organic light emitting diode
  • Other advantages have received wide attention in recent years.
  • the organic light-emitting structure in OLED devices is very sensitive to oxygen and water vapor, and even a small amount of water oxygen permeates into the interior of the device, which deteriorates the luminescence properties of the device, and leads to a decrease in the stability of the organic material and even electrochemical corrosion. This seriously affects the life of the device. Therefore, in actual use, the device needs to be packaged to isolate the device from oxygen and water vapor to extend the service life of the OLED.
  • thin film packaging can meet the requirements of lighter and thinner OLED devices, so many researchers turned their attention to thin film packaging.
  • a combination of an inorganic layer and an organic layer is usually employed.
  • the soft organic layer covers the surface of the OLED and impurities, and the hard inorganic layer blocks the invasion of water and oxygen.
  • the planar structural design is easy to generate a large strain and break when the device is bent, which leads to a decrease in barrier performance and increases the risk of package failure.
  • the present invention is directed to providing a flexible display device to solve the problem that the flexible display device in the prior art is easily broken during the bending process due to the planar structure of the inorganic barrier layer, thereby resulting in low water oxygen barrier performance and package failure.
  • the problem of high risk is due to the planar structure of the inorganic barrier layer, thereby resulting in low water oxygen barrier performance and package failure.
  • the present invention provides a flexible display device comprising: an organic light emitting structure; an organic layer covering the organic light emitting structure, the organic layer being filled with an inorganic material.
  • the organic layer includes a first organic layer and a second organic layer disposed in a layer, and the inorganic material is disposed in one or both of the first organic layer and the second organic layer.
  • the organic layer is provided with a trench in which the inorganic material is filled.
  • the trench is formed by a plurality of trench cell connections and the projection on the organic layer covers the organic layer.
  • the organic layer includes a first organic layer and a second organic layer disposed in a stack
  • the trench includes a first trench and a second trench
  • the trench cells of the first trench are distributed in the first organic layer
  • the trench cells of the second trench are distributed in the second organic layer.
  • the organic layer includes a first organic layer and a second organic layer disposed in a stack, and the plurality of trench cells of the trench are distributed in the first organic layer and the second organic layer.
  • the trench unit includes a first trench cell having a semi-circular cross section, the trench being formed by the first trench cell connection.
  • the groove unit has an elongated cross section, the groove unit includes a second groove unit respectively parallel to the organic layer, a third groove unit at an acute angle, and a fourth groove unit at an obtuse angle And a fifth groove unit at right angles, the groove being formed by alternately connecting at least two of the second groove unit, the third groove unit, the fourth groove unit, and the fifth groove unit.
  • the plurality of trench cells are connected to form a trench having a pulsed cross-section.
  • the pulse waveform is a sawtooth wave, a rectangular wave or a trapezoidal wave.
  • the flexible display device further includes a reinforcing layer covering the organic layer, the material of the reinforcing layer being an inorganic material.
  • the organic light emitting structure includes at least one metal wiring layer including a first metal line and a second metal line extending in parallel, the first metal line and the second metal line each having a first direction
  • the recesses and the protrusions are alternately disposed, and the first direction is an extending direction of the first metal wire and the second metal wire.
  • the recesses and protrusions of the first metal line respectively correspond to the protrusions and recesses of the second metal line in a second direction perpendicular to the first direction.
  • the recess of the first metal line and the recess of the second metal line each have a flat bottom surface
  • the convex portion of the first metal line and the convex portion of the second metal line each have a flat top surface
  • At least one of the convex portion of the first metal line and the convex portion of the second metal line has a rectangular, trapezoidal or curved cross section in a second direction perpendicular to the first direction.
  • the length of the bottom surface of the recess of the first metal line is equal to the length of the top surface of the convex portion of the first metal line
  • the length of the bottom surface of the concave portion of the second metal line is equal to the top of the convex portion of the second metal line
  • the length of the face, and the length of the bottom surface of the recess of the first metal wire is equal to the length of the top face of the convex portion of the second metal wire.
  • the length of the bottom surface of the concave portion of the first metal wire is greater than the length of the top surface of the convex portion of the first metal wire
  • the length of the bottom surface of the concave portion of the second metal wire is greater than the top of the convex portion of the second metal wire The length of the face.
  • the recess of the first metal line and the recess of the second metal line are at least partially overlapped.
  • the ratio of the length of the bottom surface of the recess of the first metal line to the length of the top surface of the convex portion of the first metal line is less than 10:1
  • the length of the bottom surface of the recess of the second metal line and the second metal The ratio of the length of the top surface of the convex portion of the line is less than 10:1.
  • the length of the top surface of the convex portion of the first metal line is greater than the length of the bottom surface of the concave portion of the first metal line, and the length of the top surface of the convex portion of the second metal line is greater than the concave portion of the second metal line The length of the bottom surface.
  • the flexible display device fills the inorganic layer in the organic layer, so that the inorganic material is distributed in the non-planar space to form an overlapping structure with the organic layer, and the design reduces the device while ensuring the water-oxygen barrier property.
  • the maximum strain of the inorganic material during the bending deformation process reduces the risk of breakage of the inorganic material and improves the reliability of the package.
  • at least one metal wiring layer in the organic light-emitting structure enhances the bidirectional bending resistance of the metal wire by extending at least two metal wires having alternating concave portions and convex portions in parallel, so that the flexible display device is positive When the reverse side is bent and folded, the risk of metal wire breakage is reduced.
  • FIG. 1 is a schematic structural diagram of a flexible display device according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a flexible display device according to another embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a flexible display device according to still another embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a flexible display device according to still another embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a flexible display device according to still another embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a flexible display device according to still another embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a flexible display device according to still another embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a flexible display device according to still another embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a flexible display device according to still another embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a flexible display device according to still another embodiment of the present invention.
  • FIG. 11 is a flow chart showing a method of fabricating a flexible display device according to an embodiment of the invention.
  • FIG. 12 is a flow chart showing a method of fabricating a flexible display device according to another embodiment of the present invention.
  • FIG. 13 is a flow chart showing a method of fabricating a flexible display device according to still another embodiment of the present invention.
  • FIG. 14a is a cross-sectional view showing a metal wiring layer in a flexible display device according to an embodiment of the present invention.
  • FIG. 14b is a top view of a metal wiring layer in a flexible display device according to an embodiment of the invention.
  • 15a is a cross-sectional view showing a metal wiring layer in a flexible display device according to another embodiment of the present invention.
  • FIG. 15b is a top view of a metal wiring layer in a flexible display device according to another embodiment of the present invention.
  • FIG. 16a is a cross-sectional view showing a metal wiring layer in a flexible display device according to still another embodiment of the present invention.
  • FIG. 16b is a top view of a metal wiring layer in a flexible display device according to still another embodiment of the present invention.
  • Figure 17a is a cross-sectional view showing a metal wiring layer in a flexible display device according to still another embodiment of the present invention.
  • FIG. 17b is a top view of a metal wiring layer in a flexible display device according to still another embodiment of the present invention.
  • FIG. 18a is a cross-sectional view showing a metal wiring layer in a flexible display device according to still another embodiment of the present invention.
  • FIG. 18b is a top view of a metal wiring layer in a flexible display device according to still another embodiment of the present invention.
  • FIG. 19a is a cross-sectional view showing a metal wiring layer in a flexible display device according to still another embodiment of the present invention.
  • FIG. 19b is a top plan view showing a metal wiring layer in a flexible display device according to still another embodiment of the present invention.
  • Embodiments of the present invention provide a flexible display device including a flexible substrate, an organic light emitting structure disposed on the flexible substrate, and an organic layer covering the organic light emitting structure, wherein the organic light emitting structure may include at least one metal wiring layer.
  • the organic layer is filled with an inorganic material.
  • the flexible display device provided by the embodiment of the invention fills the inorganic layer in the organic layer, so that the inorganic material is distributed in the non-planar space to form an overlapping structure with the organic layer, and the design reduces the device while ensuring the water-oxygen barrier property.
  • the maximum strain of the inorganic material during the bending deformation process reduces the risk of breakage of the inorganic material and improves the reliability of the package.
  • the organic layer it may be one layer or a plurality of layers.
  • the inorganic material may be disposed in one of the layers or in the plurality of organic layers.
  • the organic layer includes a first organic layer and a second organic layer disposed in a layer, and the inorganic material is disposed in one or both of the first organic layer and the second organic layer.
  • the organic layer includes a trench and the inorganic material is filled in the trench.
  • the trench may be formed by a plurality of trench cell connections and the projection on the organic layer covers the organic layer.
  • the grooves may be designed in one of the organic layers, or may be designed in a plurality of organic layers.
  • the organic layer includes a first organic layer and a second organic layer disposed in a stack, and the plurality of trench units of the trench are distributed in the two organic layers of the first organic layer and the second organic layer.
  • the organic layer also includes two organic layers disposed in a stack, each of the organic layers including a trench, respectively a first trench and a second trench, wherein the trench of the first trench The cells are distributed in the first organic layer, and the trench cells of the second trench are distributed in the second organic layer.
  • the cross section may specifically be a long strip or a bent strip shape, wherein the cross section is a plane perpendicular to the organic layer, and the strip shape specifically refers to the surface thereof. Projected as a rectangle or similar rectangle with a large length and width (such as two opposite long sides are zigzag, etc.).
  • the bent long strip shape such as a semicircular ring shape, a semicircular ring shape, a semi-elliptical ring shape, etc., the present invention does not specifically limit this.
  • a semicircular ring shape will be taken as an example to specifically describe a groove structure formed when the cross section of the groove unit is a bent long strip shape.
  • the groove unit having a semicircular cross section is a first groove unit, wherein the cross section is a plane perpendicular to the organic layer, and the groove is formed by the connection of the first groove unit.
  • the first groove unit For the bending direction of the first groove unit, it may be bent downward to form a semicircular ring shape with an opening upward, or may be bent upward to form a semicircular ring shape with an opening downward, which is not limited in the present invention.
  • the flexible display device comprises a flexible substrate 6, an organic light emitting structure 3 disposed on the flexible substrate 6, and an organic layer 2a covering the organic light emitting structure 3, the trench 1a being opened upward
  • the first trench unit 111 is connected and formed.
  • the trench 1b is formed by the connection of the first trench unit 112 having an opening downward.
  • these first trench units 111 are disposed in one organic layer 2a (or 2b) and joined to form a trench 1a whose projection can cover the organic layer 2a (or 2b) ( Or 1b), the inorganic layer 4a (or 4b) covering the organic layer 2a (or 2b) may be formed by filling the trench 1a (or 1b) with an inorganic material.
  • the device structure provided in this embodiment only needs to fill the inorganic layer 4a (or 4b) with a curved structure by filling the inorganic material into an organic layer, thereby reducing the possibility of occurrence of fracture, which improves the water-oxygen barrier property. At the same time, material costs are also saved.
  • the trench 1c is formed by alternately connecting a plurality of first trench cells 111 having openings upward and a plurality of first trench cells 112 having openings downward, which requires distributing the trench cells at least In two organic layers.
  • the two groove units are alternately connected one by one, that is, a groove 1c similar in shape to a sine wave is formed.
  • the first organic layer 21c is first prepared on the organic light-emitting structure 3, and a plurality of first trench units 111 having openings are opened inwardly on the first organic layer 21c, and then on the first organic layer 21c.
  • the second organic layer 22c is further prepared, and a plurality of first trench units 112 opening downward are opened inwardly on the second organic layer 22c to form a continuous connection with the first trench unit 111.
  • the projection may cover the trench 1c of the second organic layer 22c, and then fill the trench 1c with an inorganic material, thereby forming an inorganic layer 4c covering the organic layer.
  • the number of the above two types of trench units may be alternately connected to any number.
  • the widths of the openings of the trench units may be the same or different, and the present invention does not specifically limit this.
  • first trench unit 111 in any of the above embodiments may be disposed in a plurality of organic layers to form trenches of a plurality of structures, as long as the trenches formed by connecting them are formed.
  • the projection can cover the organic layer, and the distribution form of the groove unit is not limited in the present invention.
  • the groove unit having an elongated cross section may include a second groove unit 12 respectively parallel to the organic layer, a third groove unit 13 having an acute angle, and a fourth groove having an obtuse angle.
  • the groove unit 14 and the fifth groove unit 15 at right angles. Taking FIG.
  • the acute angle refers to an angle formed by the third groove unit 13 and the bottom surface of the organic layer 2d on the right side of the intersection point 61, and the intersection point 61 is a point at which the third groove unit 13 intersects the bottom surface of the organic layer 2d;
  • the obtuse angle refers to the angle formed by the fourth groove unit 14 and the bottom surface of the organic layer 2d on the right side of the intersection 62, which is the point at which the fourth groove unit 14 intersects the bottom surface of the organic layer 2d.
  • the trench may be formed by alternately connecting at least two of the second trench unit 12, the third trench unit 13, the fourth trench unit 14, and the fifth trench unit 15 described above.
  • the trench unit needs to be distributed in a plurality of organic layers, such as The third trench unit 13, the second trench unit 12, and the fourth trench unit 14 are alternately connected by alternately connecting the second trench unit 12 and the fifth trench unit 15, or the third trench unit 13
  • the second trench unit 12 and the fifth trench unit 15 are alternately connected.
  • the third trench unit 13 and the fourth trench unit 14 are alternately connected, and the groove formed by the trench unit may be located inside an organic layer when the cross section of the trench unit is elongated.
  • the third trench unit 13 and the fourth trench unit 14 alternate to form a trench 1d composed of a plurality of V-shaped structures, and the inorganic material is filled inside the trench 1d to form a projection covering organic layer. 2d inorganic layer 4d.
  • the inorganic layer by setting the inorganic layer into a bent structure, the water and oxygen are effectively blocked, and the release of stress is more favorable, thereby reducing the risk of breakage of the inorganic layer and ensuring the reliability of the package.
  • the single layer of the organic layer and the inorganic material overlap each other, and the structure is simple, and the cost is also saved.
  • the flexible display device includes two organic layers disposed in a stack, wherein the first organic layer 21e covers the organic light emitting structure 3, and the second organic layer 22e covers the first organic layer 21e.
  • the two organic layers 21e and 22e are provided with grooves having the same structure, which are continuous V-shaped structure grooves, wherein the projection of the first groove 11e covers the first organic layer 21e, and the projection of the second groove 12e covers the first Two organic layers 22e.
  • This allows the inorganic layers 41e and 42e inside the two trenches to have the same shape while their projections cover the respective organic layers.
  • the trenches in the upper and lower layers may be disposed in different shapes, such as opening a plurality of first trench units 111 with openings in the lower organic layer to form trenches 1a on the upper layer.
  • a trench 1d in which the third trench unit 13 and the fourth trench unit 14 are alternately connected is formed in the organic layer to form a structure as shown in FIG.
  • the arrangement of multiple trenches allows the device to be more resistant to water and oxygen barriers, further reducing the likelihood of package failure and extending the life of the device.
  • the flexible display device further includes a reinforcing layer covering the organic layer, the reinforcing layer being composed of an inorganic material.
  • a reinforcing layer 5 is provided above the second organic layer 22e so as to cover the lower first organic layer 21e and the second organic layer 22e.
  • the reinforcing layer 5 may be composed of an inorganic material, and specifically, the material may be one of alumina, zirconia, silicon oxide, gallium oxide, tin oxide, silicon nitride, aluminum nitride, titanium nitride, and tantalum nitride. kind or more.
  • the reinforcing layer 5 can further ensure that the organic layer and the inorganic material underneath are not attacked by water and oxygen, thereby further increasing the reliability of the device package.
  • groove units need to be distributed in at least two organic layers when the cross section of the groove unit is elongated is specifically described below.
  • the second trench unit 12 and the fifth trench unit 15 are alternately connected to form a rectangular shape with an upper opening and a rectangular alternating groove 1f of the lower opening, which are filled inside the groove 1f.
  • An inorganic material 4f projecting to cover the second organic layer 22f can be formed with an inorganic material.
  • the fifth trench unit 15 is formed in the second organic layer 22f, and the second trench unit 12 needs to be formed in the two organic layers of the first organic layer 21f and the second organic layer 22f.
  • the third trench unit 13, the second trench unit 12, and the fourth trench unit 14 are alternately connected to form an upper open trapezoid and an open lower trapezoidal alternating groove.
  • an inorganic material 4g which is projected to cover the second organic layer 22g is formed by filling the inside of the groove 1g with an inorganic material.
  • the first organic layer 21g may be prepared on the organic light-emitting structure 3, the second trench unit 12 is opened at a predetermined position of the first organic layer 21g, and then continued on the first organic layer 21g. Preparing the second organic layer 22g, and then disposing the third trench unit 13, the second trench unit 12 and the fourth trench unit 14 at a predetermined position on the second organic layer 22g to be opposite to the upper portion of the first organic layer 21g The second trench unit 12 is connected to form a trench 1g projecting to cover the second organic layer 22g, and finally the inorganic material 4g covering the second organic layer 22g is formed by filling the trench 1g with an inorganic material.
  • the third trench unit 13, the second trench unit 12, and the fourth trench unit 14 may be disposed in two or more organic layers to form a trench of a plurality of structures, as long as they are connected.
  • the groove projection formed later can cover the uppermost organic layer, and the distribution form of the groove unit is not limited in the present invention.
  • the trench cells are disposed on the upper portion of the organic layer, and the trench cells are connected to form a trench having a pulse waveform in cross section, wherein the cross section is a plane perpendicular to the organic layer.
  • the pulse waveform may be, for example, a sawtooth wave, a rectangular wave or a trapezoidal wave. That is, these groove units are formed on the upper surface of the organic layer, which are connected to form a curved structure having a high and low undulation, thereby forming a pulse waveform having a cross-section that fluctuates up and down or a groove similar to a pulse waveform.
  • the organic layer 2h is disposed on the organic light emitting structure 3, and a plurality of trench units 16 are formed in an upper portion thereof, and the plurality of trench units 16 are connected to form a sawtooth covering the organic layer 2h.
  • the inorganic layer 4h covering the organic layer 2h is formed by filling the trench 1g with an inorganic material. That is to say, in the present embodiment, by designing the contact faces of the organic layer and the inorganic layer into a staggered curved surface structure, the stress accumulated in the inorganic layer is released, reducing the risk of fracture.
  • the upper surface of the inorganic layer may be further disposed as a structure in which a plurality of grooves or a plurality of protrusions are connected, and may be further superposed thereon.
  • the organic layer and the inorganic layer are provided, and the design can further ensure the reliability of the package.
  • the trench unit in the above embodiment can be formed by a laser method or an etching method.
  • the first trench unit 111 (or 112) and the second trench unit 12 may be formed by laser firing; for the trench unit 16, an etching method may be employed.
  • the inorganic layer it can be formed by chemical vapor deposition or atomic layer deposition, and the material thereof can be alumina, zirconia, silicon oxide, gallium oxide, tin oxide, silicon nitride, aluminum nitride, titanium nitride, and the like.
  • the material thereof can be alumina, zirconia, silicon oxide, gallium oxide, tin oxide, silicon nitride, aluminum nitride, titanium nitride, and the like.
  • tantalum nitride One or more of tantalum nitride.
  • the material may be epoxy resin, polymethyl methacrylate, polyacrylate, parylene, polyurea, polyethylene terephthalate, polyethylene naphthalate, and One or more of polystyrene.
  • the embodiment of the invention further provides a method for preparing a flexible display device, as shown in FIG. 11, the method includes:
  • Step 101 Prepare an organic layer over the organic light emitting structure and cover the organic light emitting structure.
  • Step 102 Prepare a trench in the organic layer.
  • the trench may be formed by a plurality of trench cell connections and the projection on the organic layer covers the organic layer.
  • Step 103 Fill the trench with an inorganic material.
  • the inorganic material is distributed in the non-planar space formed by the trench to form an overlapping structure with the organic layer.
  • the design ensures the water-oxygen barrier property while facilitating the release of stress in the inorganic material during bending, thereby reducing the risk of structural fracture of the inorganic material and improving the reliability of the package.
  • the method specifically includes:
  • Step 201 Prepare a first organic layer over the organic light emitting structure and cover the organic light emitting structure with the first organic layer.
  • Step 202 Open a plurality of trench units at the preset position of the first organic layer.
  • Step 203 Prepare a second organic layer on the upper surface of the first organic layer and cover the first organic layer with the second organic layer.
  • Step 204 Opening a plurality of trench cells at a predetermined position of the second organic layer, and connecting the second trench cells to the trench cells in the first organic layer to form a trench, so that the trench is in the second organic
  • the projection on the layer covers the second organic layer.
  • Step 205 filling the trench with an inorganic material.
  • the groove unit can be directionally fired by a laser method.
  • the inorganic material may be, for example, one or more of alumina, zirconia, silica, gallium oxide, tin oxide, silicon nitride, aluminum nitride, titanium nitride, and tantalum nitride.
  • the material may be epoxy resin, polymethyl methacrylate, polyacrylate, parylene, polyurea, polyethylene terephthalate, polyethylene naphthalate, and One or more of polystyrene.
  • the preparation method provided in this embodiment is suitable for the case where the trench needs to be formed on two organic layers.
  • the third trench unit 13, the second trench unit 12, and the fourth trench unit 14 are alternately connected to form a trench. 1g structure.
  • the inorganic material is designed to be distributed in the upper and lower organic layers, which promotes the release of stress in the brittle inorganic material, ensures the water-oxygen barrier property, and reduces the fracture. The possibility extends the life of the device.
  • the method specifically includes:
  • Step 301 Prepare a first organic layer over the organic light emitting structure and cover the first organic layer with the organic light emitting structure.
  • Step 302 Opening a plurality of trench units at a preset position of the first organic layer, and connecting the trench units to form a first trench such that a projection on the first organic layer covers the first organic layer.
  • Step 303 filling the first trench with an inorganic material.
  • Step 304 Prepare a second organic layer on the upper surface of the first organic layer and cover the first organic layer with the second organic layer.
  • Step 305 Opening a plurality of trench units at a preset position of the second organic layer, and connecting the trench units to form a second trench such that a projection on the second organic layer covers the second organic layer.
  • Step 306 filling the second trench with an inorganic material.
  • the preparation method provided in this embodiment is suitable for the case where the trench can be formed inside one organic layer, and the third trench unit 13 and the fourth trench unit 14 are alternately connected to form the structure of the trench 1d as in the foregoing embodiment.
  • two inorganic material structures respectively disposed inside the upper and lower organic layers can be formed, thereby further improving the water and oxygen barrier capability and enhancing the reliability of the device package.
  • the flexible display device needs to flex a certain radius of curvature during use, and even the front and back sides are frequently bent.
  • the stress generated when the flexible display device is deformed is applied to the metal wires in the metal wiring layer, posing a risk of the metal wires being broken.
  • the metal wire In order to provide the reliability of the flexible display device and prolong its service life, it is possible to consider the design of the metal wire, such as providing holes in the metal wire, using a thinner or more flexible wire material, or using protrusions and bends alternately.
  • the structure releases stress and extends the life of the wire.
  • these methods can release the stress accumulated on the metal wire to a certain extent, these methods are relatively high in requirements for the lithographic apparatus, which increases the difficulty of the process and the operation, or the material or processing equipment used is relatively expensive. .
  • the metal wires are prone to multiple micro-connections, and the resistance of the metal wires changes greatly, resulting in the flexible display device not being able to display normally.
  • FIG. 14a and FIG. 14b are respectively a cross-sectional view of a metal wiring layer in a flexible display device according to an embodiment of the present invention. Top view. As shown in FIGS.
  • the metal wiring layer includes: a first metal line 31a and a second metal line 32a extending in parallel and having the same or similar extending directions, wherein the first metal line 31a has the first direction
  • the recessed portion 33a and the convex portion 34a are alternately disposed
  • the second metal wire 32a has a concave portion 35a and a convex portion 36a which are alternately disposed in the first direction
  • the first direction may be an extending direction of the first metal wire and the second metal wire.
  • the first direction may be a direction extending in the longitudinal direction of the display panel of the flexible display device.
  • first metal line and the second metal line may be arranged side by side in the same layer (ie, the first metal line and the second metal line in the same layer are not interlaced), or may be arranged up and down in the same layer, or It is also possible to connect the two ends of the first metal wire to the two ends of the second metal wire, which is not limited in the present invention.
  • at least two metal wires are required to be disposed in the metal wiring layer of the present invention.
  • the number of the metal wires may be three, four, five, etc., which is not limited in the present invention.
  • At least one metal wiring layer extends two metal wires having alternating concave portions and convex portions in parallel, thereby improving the bidirectional bending resistance of the metal wires and enabling flexible display.
  • the device reduces the risk of wire breakage when bent on the front and back sides.
  • the concave portion 33a and the convex portion 34a of the first metal wire 31a may respectively correspond to the convex portion 36a and the concave portion 35a of the second metal wire 32a in the second direction perpendicular to the first direction, that is,
  • the concave portion 33a and the convex portion 34a of the first metal wire 31a are offset from the convex portion 36a and the concave portion 35a of the second metal wire 32a, that is, the concave portion 33a of the first metal wire 31a corresponds to the convex portion 36a of the second metal wire 32a.
  • the convex portion 34a of the first metal wire 31a is disposed corresponding to the concave portion 35a of the second metal wire 32a.
  • the second direction may be a direction perpendicular to the extending direction of the first metal line and the second metal line, for example, the second direction may be a direction in which the display panel of the flexible display device extends laterally, that is, a display with the flexible display device The vertical direction of the panel.
  • the concave portion 33a of the first metal wire 31a and the concave portion 35a of the second metal wire 32a each have a flat bottom surface
  • the convex portion 34a of the first metal wire 31a and the convex portion 36a of the second metal wire 32a Both have a flat top surface.
  • the convex portion 34a of the first metal wire 31a may have a rectangular or trapezoidal or arcuate cross section in a second direction perpendicular to the first direction.
  • the convex portion 36a of the second metal wire 32a may also have a rectangular or trapezoidal or arcuate cross section in a second direction perpendicular to the first direction.
  • the cross section of the convex portion 34a of the first metal wire 31a and/or the convex portion 36a of the second metal wire 32a in the second direction perpendicular to the first direction may also have other shapes, such as an irregular shape. The invention is not limited thereto.
  • the length of the bottom surface of the concave portion 33a of the first metal wire 31a is equal to the length of the top surface of the convex portion 34a of the first metal wire 31a
  • the length of the bottom surface of the concave portion 35a of the second metal wire 32a is equal to
  • the length of the top surface of the convex portion 36a of the second metal wire 32a, and the length of the bottom surface of the concave portion 33a of the first metal wire 31a is also equal to the length of the top surface of the convex portion 36a of the second metal wire 32a.
  • the ratio of the length of the bottom surface of the concave portion 33a of the first metal wire 31a to the length of the top surface of the convex portion 34a of the first metal wire 31a is 1:1, and the length of the bottom surface of the concave portion 35a of the second metal wire 32a
  • the ratio of the length of the top surface of the convex portion 36a of the second metal wire 32a is 1:1, and the length of the bottom surface of the concave portion 33a of the first metal wire 31a and the length of the top surface of the convex portion 36a of the second metal wire 32a.
  • the ratio is also 1:1.
  • the width of the convex portion 34a of the first metal wire 31a and the width of the convex portion 36a of the second metal wire 32a may be set as needed.
  • the width of the convex portion 34a of the first metal wire 31a may be equal to the width of the convex portion 36a of the second metal wire 32a, or the width of the convex portion 34a of the first metal wire 31a may be larger than the convex portion 36a of the second metal wire 32a.
  • the width of the convex portion 34a of the first metal wire 31a may be smaller than the width of the convex portion 36a of the second metal wire 32a, which is not limited in the present invention.
  • the first metal wire 31a of the embodiment may be made of one of aluminum, titanium, molybdenum or aluminum alloy, titanium alloy, and molybdenum alloy
  • the second metal wire 32a may be aluminum, titanium, molybdenum or aluminum alloy, titanium alloy, Made of a material in a molybdenum alloy.
  • the density of the first metal wire 31a and the density of the second metal wire 32a may be the same or different, and the present invention is not limited thereto.
  • At least one metal wiring layer extends two metal wires having alternating concave portions and convex portions in parallel, and displaces the concave portions and the convex portions of the two metal wires.
  • the two-way bending resistance of the metal wire is improved, and the flexible display device reduces the risk of metal fracture when the front and back surfaces are bent and folded.
  • the resistance of the metal wire does not change too much in the case where the metal wire is bent a plurality of times, the display effect and performance of the flexible display device are improved.
  • the metal wiring layer provided in this embodiment is substantially the same as that of FIG. 14a and FIG. 14b, except that the length of the bottom surface of the concave portion 33b of the first metal wire 31b of the present embodiment is greater than that of the first metal.
  • the length of the top surface of the convex portion 34b of the line 31b, and the length of the bottom surface of the concave portion 35b of the second metal wire 32b are larger than the length of the top surface of the convex portion 36b of the second metal wire 32b.
  • the length of the bottom surface of the concave portion 33b of the first metal wire 31b may be smaller than the length of the top surface of the convex portion 34b of the first metal wire 31b by less than 10:1, and the length of the bottom surface of the concave portion 35b of the second metal wire 32b.
  • the ratio of the length of the top surface of the convex portion 36b of the second metal wire 32b may be less than 10:1.
  • the ratio of the length of the bottom surface of the concave portion 33b of the first metal wire 31b to the length of the top surface of the convex portion 34b of the first metal wire 31b is 3:2
  • the length of the bottom surface of the concave portion 35b of the second metal wire 32b is 3:2.
  • the length of the bottom surface of the concave portion of the metal wire is increased, and the length of the metal wire distributed in the longitudinal direction of the space is prolonged, thereby enhancing the bidirectional bending resistance of the metal wire.
  • the recess 33b of the first metal line 31b and the recess 35b of the second metal line 32b are at least partially overlapped, that is, a portion of the bottom surface of the recess 33b of the first metal line 31b and the second metal line 32b. A part of the bottom surface of the recess 35b is directly connected.
  • the width of the bottom surface of the concave portion of the metal wire can be increased, and the flexible display device can be bent in multiple directions. When the metal wire is not easily broken, the bending resistance of the metal wire is enhanced.
  • 16a and 16b are respectively a cross-sectional view and a plan view of a metal wiring layer in a flexible display device according to still another embodiment of the present invention.
  • the length of the bottom surface of the concave portion 33c of the first metal wire 31c of the present embodiment is longer than that of the second embodiment.
  • the length of the bottom surface of the recess 33c of the first metal wire 31c is longer.
  • the ratio of the length of the bottom surface of the concave portion 33c of the first metal wire 31c to the length of the top surface of the convex portion 34c of the first metal wire 31c is 3:1
  • the length of the bottom surface of the concave portion 35c of the second metal wire 32c is 3:1.
  • the metal wiring layer provided in this embodiment is substantially the same as that of FIG. 14a and FIG. 14b, except that the length of the top surface of the convex portion 34d of the first metal wire 31d of the present embodiment is greater than that of the first embodiment.
  • the length of the bottom surface of the concave portion 33d of one metal wire 31d, the length of the top surface of the convex portion 36d of the second metal wire 32d is larger than the length of the bottom surface of the concave portion 35d of the second metal wire 32d.
  • the ratio of the length of the top surface of the convex portion 34d of the first metal wire 31d to the length of the bottom surface of the concave portion 33d of the first metal wire 31d is less than 10:1, and the top surface of the convex portion 36d of the second metal wire 32d
  • the length may be less than the ratio of the length of the bottom surface of the recess 35d of the second metal wire 32d to less than 10:1.
  • the ratio of the length of the top surface of the convex portion 34d of the first metal wire 31d to the length of the bottom surface of the concave portion 33d of the first metal wire 31d is 3:2, and the top surface of the convex portion 36d of the second metal wire 32d
  • the ratio of the length to the length of the bottom surface of the recess 35d of the second metal wire 32d is 3:2.
  • the flexible display device provided by the embodiment of the invention increases the length of the top surface of the convex portion of the metal wire, and prolongs the length of the metal wire distributed in the longitudinal direction of the space, thereby enhancing the bidirectional bending resistance of the metal wire.
  • the first metal wire and the second metal wire may be metal wires having the same structure as described above, or may be metal wires having different structures as described below.
  • FIGS. 18a and 18b are a cross-sectional view and a plan view, respectively, of a metal wiring layer in a flexible display device according to an embodiment of the present invention.
  • the concave portion 33e of the first metal wire 31e of the present embodiment may be provided corresponding to one concave portion 35e and two convex portions 36e of the second metal wire 32e.
  • the length of the bottom surface of the concave portion 33e of the first metal wire 31e may be smaller than the length of the top surface of the convex portion 34e of the first metal wire 31e by less than 5:1, and the length of the bottom surface of the concave portion 35e of the second metal wire 32e.
  • the ratio of the length of the top surface of the convex portion 36e of the second metal wire 32e may be less than 3:2.
  • the ratio of the length of the bottom surface of the concave portion 33e of the first metal wire 31e to the length of the bottom surface of the concave portion 35e of the second metal wire 32e is 3:1, and the length of the top surface of the convex portion 34e of the first metal wire 31e is The ratio of the lengths of the top faces of the convex portions 36e of the second metal wires 32e is 1:1.
  • the flexible display device provided by the embodiment of the present invention increases the length of the bottom surface of the concave portion of the first metal wire and the length of the top surface of the convex portion of the second metal wire, respectively, and extends the first metal wire and the second metal wire in the space longitudinal direction.
  • the length of the distribution therefore, enhances the biaxial resistance to bending of the wire.
  • FIGS. 19a and 19b are respectively a cross-sectional view and a plan view of a metal wiring layer in a flexible display device according to another embodiment of the present invention.
  • the convex portion 34f of the first metal wire 31f of the present embodiment and the two concave portions 35f and one of the second metal wire 32f may be The convex portion 36f is provided correspondingly.
  • the ratio of the length of the top surface of the convex portion 34f of the first metal wire 31f to the length of the bottom surface of the concave portion 33f of the first metal wire 31f is less than 5:1, and the top surface of the convex portion 36f of the second metal wire 32f
  • the length may be less than the ratio of the length of the bottom surface of the recess 35f of the second metal wire 32f to less than 3:2.
  • the ratio of the length of the top surface of the convex portion 34f of the first metal wire 31f to the length of the top surface of the convex portion 36f of the second metal wire 32f is 3:1, and the bottom surface of the concave portion 33f of the first metal wire 31f
  • the ratio of the length to the length of the bottom surface of the recess 35f of the second metal wire 32f is 1:1.
  • the flexible display device provided by the embodiment of the present invention increases the length of the top surface of the convex portion of the first metal line and the length of the bottom surface of the concave portion of the second metal wire, respectively, and extends the first metal wire and the second metal wire in the space longitudinal direction.
  • the length of the distribution therefore, enhances the biaxial resistance to bending of the wire.
  • the inorganic material is distributed in the non-planar space to form an overlapping structure with the organic layer, and the design ensures the water-oxygen barrier property while ensuring the water-oxygen barrier property.
  • the maximum strain of the inorganic material during the bending deformation process of the device is reduced, thereby reducing the risk of breakage of the inorganic material and improving the reliability of the package.
  • at least one metal wiring layer in the organic light-emitting structure enhances the bidirectional bending resistance of the metal wires by extending two metal wires having alternating concave portions and convex portions in parallel, so that the flexible display device is on the front and back sides. When bent and folded, the risk of broken metal wires is reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本发明公开了一种柔性显示器件,解决了现有技术中的柔性显示器件因无机阻隔层的平面结构使其在弯折过程中易断裂,从而导致水氧阻隔性能低、封装失效风险大的问题。本发明提供的柔性显示器件包括:有机发光结构;覆盖有机发光结构的有机层,有机层中填充有无机材料。

Description

一种柔性显示器件 技术领域
本发明涉及显示技术领域,具体涉及一种柔性显示器件。
发明背景
柔性显示器件通过设置在基板上的有机发光二极管(OLED,Organic Light Emitting Diode)实现显示,由于其具有制备工艺简单、发光效率高、对比度高、超薄超轻、功耗低、易形成柔性结构等优点,近年来已受到广泛关注。然而,OLED器件中的有机发光结构对氧气和水蒸气非常敏感,即使很少量的水氧渗入到器件内部也会使器件的发光性能劣化,并且导致有机材料稳定性降低甚至发生电化学腐蚀,从而严重影响器件的使用寿命。因此在实际使用中需要对器件加以封装使器件与氧气和水蒸气隔绝以延长OLED的使用寿命。
薄膜封装作为OLED器件封装中常用的一种封装方式,能够满足OLED器件更轻更薄的要求,所以众多的研究人员将目光转向了薄膜封装。在薄膜封装中,为了限制或防止水氧的入侵,通常采用无机层和有机层相叠加的方式。柔软的有机层用以覆盖OLED表面台阶及杂质,坚硬的无机层用以阻隔水氧的入侵。但是由于无机层的断裂应变较低,其平面的结构设计很容易在器件弯折时产生较大的应变而发生断裂,进而导致阻隔性能的下降,增加了封装失效的风险。
发明内容
有鉴于此,本发明致力于提供一种柔性显示器件,以解决现有技术中的柔性显示器件因无机阻隔层的平面结构在弯折过程中易断裂,从而导致水氧阻隔性能低、封装失效风险大的问题。
本发明提供了一种柔性显示器件,包括:有机发光结构;覆盖有机发光结构的有机层,有机层中填充有无机材料。
在一个实施例中,有机层包括层叠设置的第一有机层和第二有机层,无机材料设置于第一有机层和第二有机层中的一层或两层中。
在一个实施例中,有机层设置有沟槽,无机材料填充于沟槽中。
在一个实施例中,沟槽由多个沟槽单元连接形成且在有机层上的投影覆盖有机层。
在一个实施例中,有机层包括层叠设置的第一有机层和第二有机层,沟槽包括第一沟槽和第二沟槽,第一沟槽的沟槽单元分布于第一有机层中,第二沟槽的沟槽单元分布于第二有机层中。
在一个实施例中,有机层包括层叠设置的第一有机层和第二有机层,沟槽的多个沟槽单元分布于第一有机层和第二有机层中。
在一个实施例中,沟槽单元包括横断面为半圆环形的第一沟槽单元,沟槽由第一沟槽单元连接形成。
在一个实施例中,沟槽单元的横断面为长条形,沟槽单元包括分别与有机层平行的第二沟槽单元、 成锐角的第三沟槽单元、成钝角的第四沟槽单元以及成直角的第五沟槽单元,沟槽由第二沟槽单元、第三沟槽单元、第四沟槽单元和第五沟槽单元中的至少两种交替连接形成。
在一个实施例中,多个沟槽单元连接形成横断面为脉冲波形的沟槽。
在一个实施例中,脉冲波形为锯齿波、矩形波或梯形波。
在一个实施例中,柔性显示器件还包括覆盖有机层的加强层,加强层的材料为无机材料。
在一个实施例中,有机发光结构包括至少一层金属布线层,金属布线层包括并行延伸的第一金属线和第二金属线,第一金属线和第二金属线均具有在第一方向上交替设置的凹部和凸部,第一方向是第一金属线和第二金属线的延伸方向。
在一个实施例中,第一金属线的凹部和凸部在与第一方向垂直的第二方向上分别对应第二金属线的凸部和凹部。
在一个实施例中,第一金属线的凹部和第二金属线的凹部均具有平坦的底面,第一金属线的凸部和第二金属线的凸部均具有平坦的顶面。
在一个实施例中,第一金属线的凸部和第二金属线的凸部中的至少一个在与第一方向垂直的第二方向上的剖面呈矩形、梯形或弧形。
在一个实施例中,第一金属线的凹部的底面的长度等于第一金属线的凸部的顶面的长度,第二金属线的凹部的底面的长度等于第二金属线的凸部的顶面的长度,并且第一金属线的凹部的底面的长度等于第二金属线的凸部的顶面的长度。
在一个实施例中,第一金属线的凹部的底面的长度大于第一金属线的凸部的顶面的长度,第二金属线的凹部的底面的长度大于第二金属线的凸部的顶面的长度。
在一个实施例中,第一金属线的凹部与第二金属线的凹部至少部分重叠设置。
在一个实施例中,第一金属线的凹部的底面的长度与第一金属线的凸部的顶面的长度的比值小于10:1,第二金属线的凹部的底面的长度与第二金属线的凸部的顶面的长度的比值小于10:1。
在一个实施例中,第一金属线的凸部的顶面的长度大于第一金属线的凹部的底面的长度,第二金属线的凸部的顶面的长度大于第二金属线的凹部的底面的长度。
本发明实施例提供的柔性显示器件通过在有机层中填充无机材料,使得无机材料分布于非平面空间内与有机层形成交叠结构,此设计在保证了水氧阻隔性能的同时,降低了器件在弯折变形过程中无机材料所受最大应变,从而减小无机材料断裂的风险,提高了封装的可靠性。另一方面,有机发光结构中的至少一层金属布线层通过并行延伸至少两条具有交替设置的凹部和凸部的金属线,提高了金属线的双向耐弯折能力,使柔性显示器件在正反面弯曲折叠时,减少了金属线断裂的危险。
附图简要说明
图1所示为本发明一实施例提供的一种柔性显示器件的结构示意图。
图2所示为本发明另一实施例提供的一种柔性显示器件的结构示意图。
图3所示为本发明再一实施例提供的一种柔性显示器件的结构示意图。
图4所示为本发明再一实施例提供的一种柔性显示器件的结构示意图。
图5所示为本发明再一实施例提供的一种柔性显示器件的结构示意图。
图6所示为本发明再一实施例提供的一种柔性显示器件的结构示意图。
图7所示为本发明再一实施例提供的一种柔性显示器件的结构示意图。
图8所示为本发明再一实施例提供的一种柔性显示器件的结构示意图。
图9所示为本发明再一实施例提供的一种柔性显示器件的结构示意图。
图10所示为本发明再一实施例提供的一种柔性显示器件的结构示意图。
图11所示为本发明一实施例提供的一种柔性显示器件的制备方法的流程图。
图12所示为本发明另一实施例提供的一种柔性显示器件的制备方法的流程图。
图13所示为本发明再一实施例提供的一种柔性显示器件的制备方法的流程图。
图14a所示为本发明一实施例提供的一种柔性显示器件中的金属布线层的剖视图。
图14b所示为本发明一实施例提供的一种柔性显示器件中的金属布线层的俯视图。
图15a所示为本发明另一实施例提供的一种柔性显示器件中的金属布线层的剖视图。
图15b所示为本发明另一实施例提供的一种柔性显示器件中的金属布线层的俯视图。
图16a所示为本发明再一实施例提供的一种柔性显示器件中的金属布线层的剖视图。
图16b所示为本发明再一实施例提供的一种柔性显示器件中的金属布线层的俯视图。
图17a所示为本发明再一实施例提供的一种柔性显示器件中的金属布线层的剖视图。
图17b所示为本发明再一实施例提供的一种柔性显示器件中的金属布线层的俯视图。
图18a所示为本发明再一实施例提供的一种柔性显示器件中的金属布线层的剖视图。
图18b所示为本发明再一实施例提供的一种柔性显示器件中的金属布线层的俯视图。
图19a所示为本发明再一实施例提供的一种柔性显示器件中的金属布线层的剖视图。
图19b所示为本发明再一实施例提供的一种柔性显示器件中的金属布线层的俯视图。
实施本发明的方式
为使本发明的目的、技术手段和优点更加清楚明白,以下结合附图对本发明作进一步详细说明。
本发明实施例提供了一种柔性显示器件,包括柔性衬底、设置于柔性衬底上的有机发光结构和覆盖有机发光结构的有机层,其中该有机发光结构可包括至少一层金属布线层,该有机层中填充有无机材料。
本发明实施例提供的柔性显示器件通过在有机层中填充无机材料,使得无机材料分布于非平面空间内与有机层形成交叠结构,此设计在保证了水氧阻隔性能的同时,降低了器件在弯折变形过程中无机材料所受最大应变,从而减小无机材料断裂的风险,提高了封装的可靠性。
对于有机层,其既可为一层也可为层叠的多层。对于有机层为多层的情况,无机材料既可设置于其中的一层中,也可设置于多层有机层中。在一个实施例中,有机层包括层叠设置的第一有机层和第二有机层,无机材料设置于第一有机层和第二有机层中的一层或两层中。
在一个实施例中,有机层包括沟槽,无机材料则填充于沟槽中。具体地,沟槽可由多个沟槽单元连接形成且在有机层上的投影覆盖有机层。对于有机层为多层的情况,既可在其中一个有机层中设计沟槽,也可在多个有机层中都设计沟槽。
对于构成沟槽的多个沟槽单元,其既可分布于一个有机层中,也可分布于多个有机层中,只要使沟槽的投影能够覆盖有机层即可,本发明对此都不做具体限定。例如,在一个实施例中,有机层包括层叠设置的第一有机层和第二有机层,沟槽的多个沟槽单元则分布于第一有机层和第二有机层两层有机层中。在另一个实施例中,有机层也包括层叠设置的两个有机层,每个有机层中各包括一个沟槽,分别为第一沟槽和第二沟槽,其中第一沟槽的沟槽单元分布于第一有机层中,第二沟槽的沟槽单元则分布于第二有机层中。
对于沟槽单元的形状,其横断面具体可为长条形或弯折的长条形,其中该横断面为垂直于有机层所剖切的面,长条形具体指其在该面上的投影为长宽比较大的长方形或类似长方形(如两相对长边为锯齿形等)。对于弯折的长条形,如可弯折形成半圆环形、类似半圆环形、半椭圆环形等,本发明对此不做具体限定。
下面将以半圆环形为例,具体介绍当沟槽单元的横断面为弯折的长条形时其形成的沟槽结构。
在本发明一实施例中,横断面呈半圆环形的沟槽单元为第一沟槽单元,其中横断面为垂直于有机层所剖切的面,沟槽由该第一沟槽单元连接形成。对于第一沟槽单元的弯折方向,其既可向下弯折形成开口向上的半圆环形,也可向上弯折形成开口向下的半圆环形,本发明对此不做限定。
在一实施例中,如图1所示,柔性显示器件包括柔性衬底6、设置于柔性衬底6上的有机发光结构3以及覆盖有机发光结构3的有机层2a,沟槽1a由开口向上的第一沟槽单元111连接形成。在另一实施例中,如图2所示,沟槽1b由开口向下的第一沟槽单元112连接形成。可以看出,只要将这些第一沟槽单元111(或112)设置于一个有机层2a(或2b)中并将其连接形成一个其投影可覆盖有机层2a(或2b)的沟槽1a(或1b),再在沟槽1a(或1b)中填充无机材料即可形成覆盖有机层2a(或2b)的无机层4a(或4b)。本实施例提供的器件结构只需要将无机材料填充于一个有机层中即可形成弯曲结构的无机层4a(或4b),减小了断裂发生的可能性,其在提升了水氧阻隔性能的同时,也节省了材料成本。
在本发明另一实施例中,沟槽1c由若干开口向上的第一沟槽单元111和若干开口向下的第一沟槽单元112交替连接形成,这就需要将这些沟槽单元分布于至少两个有机层中。在一个实施例中,如图3所示,两种沟槽单元交替连接的数量各为一个,即形成类似于正弦波形状的沟槽1c。则需要先在有机发光结构3上制备第一有机层21c,在该第一有机层21c上预设位置向内开设多个开口向上的第一沟槽单元111,然后在第一有机层21c上继续制备第二有机层22c,在该第二有机层22c上预设位置再向内开设多个开口向下的第一沟槽单元112,使其与第一沟槽单元111连接形成一个连续的投影可覆盖第二有机层22c的沟槽1c,然后在沟槽1c中填充无机材料,也就形成了可覆盖有机层的无机层4c。
当然也可将上述两种沟槽单元交替连接的数量设置成任意多个,各沟槽单元开口的宽度可相同,也可不同,本发明对此都不做具体限定。
另外,也可将上述任一实施例中的第一沟槽单元111(或112)设置于更多个有机层中使其构成更 多种结构的沟槽,只要使它们连接后形成的沟槽的投影能够覆盖有机层即可,本发明对沟槽单元的分布形式不做限定。
下面将具体介绍当沟槽单元的横断面为长条形时其形成的沟槽的结构。
参考图4至图8所示,横断面为长条形的沟槽单元可包括分别与有机层平行的第二沟槽单元12、成锐角的第三沟槽单元13、成钝角的第四沟槽单元14以及成直角的第五沟槽单元15。以图4为例,锐角指第三沟槽单元13与交点61右侧的有机层2d底面所成的角度,该交点61即为第三沟槽单元13与有机层2d的底面相交的点;钝角指第四沟槽单元14与交点62右侧的有机层2d底面所成的角度,该交点62即为第四沟槽单元14与有机层2d的底面相交的点。沟槽则可由上述第二沟槽单元12、第三沟槽单元13、第四沟槽单元14和第五沟槽单元15中的至少两种交替连接形成。例如,对于一个沟槽中的多个沟槽单元可分布于一个有机层中的结构,如可通过将第三沟槽单元13和第四沟槽单元14交替连接,将第三沟槽单元13和第五沟槽单元15交替连接,或将第四沟槽单元14和第五沟槽单元15交替连接实现;对于一个沟槽的沟槽单元需要分布于多个有机层中的结构,如可通过将第二沟槽单元12和第五沟槽单元15交替连接,将第三沟槽单元13、第二沟槽单元12及第四沟槽单元14交替连接,或将第三沟槽单元13、第二沟槽单元12及第五沟槽单元15交替连接实现。
下面将以第三沟槽单元13和第四沟槽单元14交替连接为例,具体介绍当沟槽单元的横断面为长条形时其形成的沟槽可位于一个有机层内部的情形。如图4所示,第三沟槽单元13和第四沟槽单元14交替,形成由多个V形结构构成的沟槽1d,在沟槽1d内部填充有无机材料即形成了投影覆盖有机层2d的无机层4d。本实施例通过将无机层设置成弯折的结构,有效地阻隔了水氧的同时,更利于应力的释放,从而减小了无机层断裂的风险,保证了封装的可靠性。此种单层的有机层和无机材料相交叠的方式,其结构简单,也节约了成本。
为了进一步提高无机材料阻隔水氧的性能,使封装的可靠性更高,完全可设置两个以上的沟槽,然后在每个沟槽中填充无机材料,从而形成多个无机层。以图4所示的实施例为例,可继续在有机层上方制备另一有机层,然后再在该有机层中开设沟槽单元形成如图5所示的沟槽结构。参见图5,该柔性显示器件包括叠层设置的两个有机层,其中第一有机层21e覆盖有机发光结构3,第二有机层22e覆盖第一有机层21e。两个有机层21e和22e中设置有结构相同的沟槽,都是连续的V形结构沟槽,其中第一沟槽11e的投影覆盖第一有机层21e,第二沟槽12e的投影覆盖第二有机层22e。这就使得两个沟槽内部的无机层41e和42e具有相同的形状,同时其投影可覆盖各自所在的有机层。
当然在其他实施例中,也可将上、下层中的沟槽设置成不同的形状,如在下层的有机层中开设多个开口向上的第一沟槽单元111,形成沟槽1a,在上层的有机层中开设第三沟槽单元13和第四沟槽单元14交替连接的沟槽1d,形成如图6所示的结构。多个沟槽(即多层无机层)的设置使得器件对水氧阻隔的能力更强,进一步减小了封装失效的可能性,延长了器件的使用寿命。
在本发明一实施例中,柔性显示器件进一步包括覆盖有机层的加强层,该加强层由无机材料构成。如图7所示,第二有机层22e的上方设有加强层5,能够覆盖下方的第一有机层21e和第二有机层22e。该加强层5可以由无机材料构成,具体地,其材料可为氧化铝、氧化锆、氧化硅、氧化镓、氧化锡、氮化硅、氮化铝、氮化钛和氮化钽中的一种或多种。该加强层5能够进一步保证其下方的有机层和无 机材料不被水氧侵袭,从而进一步增加器件封装的可靠性。
下面将具体介绍当沟槽单元的横断面为长条形时,这些沟槽单元需要分布于至少两个有机层中的情形。
在一个实施例中,如图8所示,第二沟槽单元12和第五沟槽单元15交替连接形成上方开口的矩形和下方开口的矩形相交替的沟槽1f,在沟槽1f内部填充有无机材料即可形成投影覆盖第二有机层22f的无机层4f。其中,第五沟槽单元15形成于第二有机层22f中,第二沟槽单元12需要形成于第一有机层21f和第二有机层22f两个有机层中。
在另一个实施例中,如图9所示,第三沟槽单元13、第二沟槽单元12及第四沟槽单元14交替连接则形成上方开口的梯形和下方开口的梯形相交替的沟槽1g,在沟槽1g内部填充有无机材料即可形成投影覆盖第二有机层22g的无机层4g。
对于无机层4g的形成过程,可先在有机发光结构3上制备第一有机层21g,在该第一有机层21g预设位置开设第二沟槽单元12,然后在第一有机层21g上继续制备第二有机层22g,再在该第二有机层22g上预设位置设置第三沟槽单元13、第二沟槽单元12和第四沟槽单元14,使其与第一有机层21g上部的第二沟槽单元12连接形成投影覆盖第二有机层22g的沟槽1g,最后在沟槽1g中填充无机材料即可形成覆盖第二有机层22g的无机层4g。
当然,也可将上述第三沟槽单元13、第二沟槽单元12及第四沟槽单元14设置于两个以上的有机层中使其构成更多种结构的沟槽,只要使其连接后形成的沟槽投影能够覆盖最上层的有机层即可,本发明对沟槽单元的分布形式不做限定。
在本发明一实施例中,沟槽单元设置于有机层的上部,这些沟槽单元连接形成横断面为脉冲波形的沟槽,其中该横断面为垂直于有机层所剖切的面。该脉冲波形如可为锯齿波、矩形波或梯形波等。即这些沟槽单元形成于有机层的上表面,其连接形成高低起伏的曲面结构,也就形成了横断面为上下波动的脉冲波形或类似于脉冲波形的沟槽。
在一个实施例中,如图10所示,有机层2h设置于有机发光结构3上,其上部开设有多个沟槽单元16,该多个沟槽单元16连接形成一个覆盖有机层2h的锯齿形沟槽1h。在该沟槽1g中填充无机材料即可形成覆盖有机层2h的无机层4h。也就是说,本实施例通过将有机层和无机层的接触面设计成交错配合的曲面结构,使累积在无机层中的应力得以释放,减小了其断裂的风险。
在另一实施例中,为了进一步促进无机层中应力的释放,也可进一步将无机层的上表面也设置成多个沟槽或多个凸起相连接的结构,并且可在其上进一步叠加设置有机层和无机层,这样的设计能够进一步保证封装的可靠性。
对于上述实施例中的沟槽单元,可通过激光法或刻蚀法制成。如对于第一沟槽单元111(或112)、第二沟槽单元12可采用激光法烧制形成;对于沟槽单元16,可采用刻蚀法制成。
对于无机层,其可通过化学气相沉积法或原子层沉积法形成,其材料如可为氧化铝、氧化锆、氧化硅、氧化镓、氧化锡、氮化硅、氮化铝、氮化钛和氮化钽中的一种或多种。
对于有机层,其材料可为环氧树脂、聚甲基丙烯酸甲酯、聚丙烯酸酯、聚对二甲苯、聚脲、聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯和聚苯乙烯中的一种或多种。
本发明实施例还提供了一种柔性显示器件的制备方法,如图11所示,该方法包括:
步骤101:在有机发光结构的上方制备有机层并使该有机层覆盖有机发光结构。
步骤102:在该有机层中制备沟槽。
具体地,沟槽可由多个沟槽单元连接形成且在有机层上的投影覆盖有机层。
步骤103:在沟槽中填充无机材料。
在本发明实施例提供的制备方法中,通过在有机层中设置沟槽并在沟槽中填充无机材料,使得无机材料分布于沟槽所形成的非平面空间内与有机层形成交叠结构,此设计在保证了水氧阻隔性能的同时,有利于器件在弯折时无机材料中应力的释放,从而减小无机材料结构断裂的风险,提高了封装的可靠性。
在本发明一实施例中,如图12所示,该方法具体包括:
步骤201:在有机发光结构的上方制备第一有机层并使第一有机层覆盖该有机发光结构。
步骤202:在该第一有机层预设位置开设多个沟槽单元。
步骤203:在第一有机层的上表面制备第二有机层并使该第二有机层覆盖第一有机层。
步骤204:在该第二有机层预设位置上开设多个沟槽单元,并将这些第二沟槽单元与第一有机层中的沟槽单元连接形成沟槽,使沟槽在第二有机层上的投影覆盖第二有机层。
步骤205:在沟槽中填充无机材料。
其中,沟槽单元如可通过激光法进行定向烧制而成。无机材料如可为氧化铝、氧化锆、氧化硅、氧化镓、氧化锡、氮化硅、氮化铝、氮化钛和氮化钽中的一种或多种。
对于有机层,其材料可为环氧树脂、聚甲基丙烯酸甲酯、聚丙烯酸酯、聚对二甲苯、聚脲、聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯和聚苯乙烯中的一种或多种。
本实施例提供的制备方法适合沟槽需要形成于两个有机层的情况,如前述实施例中第三沟槽单元13、第二沟槽单元12及第四沟槽单元14交替连接形成沟槽1g的结构。利用本实施例提供的方法将无机材料设计成弯折结构分布于上、下两层有机层中,促进了脆性无机材料中应力的释放,保证了水氧阻隔性能的同时,减小了断裂的可能性,延长了器件的使用寿命。
在本发明另一实施例中,如图13所示,该方法具体包括:
步骤301:在有机发光结构的上方制备第一有机层并使第一有机层覆盖有机发光结构。
步骤302:在第一有机层预设位置开设多个沟槽单元,并将这些沟槽单元连接形成第一沟槽使其在第一有机层上的投影覆盖该第一有机层。
步骤303:在第一沟槽中填充无机材料。
步骤304:在第一有机层的上表面制备第二有机层并使该第二有机层覆盖第一有机层。
步骤305:在第二有机层预设位置开设多个沟槽单元,并将这些沟槽单元连接形成第二沟槽使其在第二有机层上的投影覆盖该第二有机层。
步骤306:在第二沟槽中填充无机材料。
本实施例提供的制备方法适合沟槽可形成于一个有机层内部的情况,如前述实施例中第三沟槽单元13和第四沟槽单元14交替连接形成沟槽1d的结构。同时,利用本实施例提供的方法可形成分别分 布于上、下两层有机层内部的两个无机材料结构,进一步提高了水氧阻隔能力,增强了器件封装的可靠性。
另一方面,柔性显示器件在使用时需要挠曲一定曲率半径,甚至正反面频繁弯折。柔性显示器件发生形变时产生的应力会施加于金属布线层中的金属线,使金属线面临断裂的危险。
为了提供柔性显示器件的可靠性,延长其使用寿命,可以考虑对金属线的设计加以改进,比如在金属线上设置孔洞、使用较细或柔性较好的导线材料、或者使用突起与弯折交替的结构来释放应力,从而延长金属线的使用寿命。上述方法虽然在一定程度上能够释放累积在金属线上的应力,但是这些方法要么对于光刻设备的要求比较高,加大了工艺和操作的难度,要么所使用的材料或加工设备成本较高。另外,随着弯折次数的增加,金属线容易出现多处微连接,并且金属线的电阻会发生巨大变化,导致柔性显示器件无法正常显示。
基于此,本发明实施例对柔性显示器件中的至少一层金属布线层做了改进,图14a和图14b分别是本发明一实施例提供的一种柔性显示器件中的金属布线层的剖视图和俯视图。如图14a和图14b所示,该金属布线层包括:并行延伸且具有相同或相近延伸方向的第一金属线31a和第二金属线32a,其中,第一金属线31a具有在第一方向上交替设置的凹部33a和凸部34a,第二金属线32a具有在第一方向上交替设置的凹部35a和凸部36a,第一方向可以是第一金属线和第二金属线的延伸方向。例如,第一方向可以是沿柔性显示器件的显示面板的纵向延伸的方向。
需要说明的是,第一金属线和第二金属线可以并排布置在同一层内(即同一层内的第一金属线与第二金属线不交织),也可以在同一层内上下布置,或者还可以将第一金属线的两端分别与第二金属线的两端连接,本发明对此不作限制。另外,本发明的金属布线层中至少需要布置两条金属线,当然,金属线的数量也可以是三条、四条、五条等,本发明对此不作限制。
在本发明实施例提供的柔性显示器件中,其至少一层金属布线层通过并行延伸两条具有交替设置的凹部和凸部的金属线,提高了金属线的双向耐弯折能力,使柔性显示器件在正反面弯曲折叠时,减少了金属线断裂的危险。
在本发明一实施例中,第一金属线31a的凹部33a和凸部34a可以在与第一方向垂直的第二方向上分别对应第二金属线32a的凸部36a和凹部35a,也就是说,第一金属线31a的凹部33a和凸部34a与第二金属线32a的凸部36a和凹部35a错位设置,即,第一金属线31a的凹部33a对应于第二金属线32a的凸部36a设置,第一金属线31a的凸部34a对应于第二金属线32a的凹部35a设置。这里,第二方向可以是与第一金属线和第二金属线的延伸方向垂直的方向,例如,第二方向可以是柔性显示器件的显示面板的横向延伸的方向,即与柔性显示器件的显示面板垂直的方向。在本实施例中,通过将第一金属线的凹部和凸部分别与第二金属线的凸部和凹部对应设置,可以更好地应对内弯折和外弯折的复杂折叠情况,因此,增强了金属线的抗弯折能力。
在本发明一实施例中,第一金属线31a的凹部33a和第二金属线32a的凹部35a均具有平坦的底面,第一金属线31a的凸部34a和第二金属线32a的凸部36a均具有平坦的顶面。
此外,第一金属线31a的凸部34a可在与第一方向垂直的第二方向上的剖面呈矩形或梯形或弧形。第二金属线32a的凸部36a也可在与第一方向垂直的第二方向上的剖面呈矩形或梯形或弧形。需要说 明的是,第一金属线31a的凸部34a和/或第二金属线32a的凸部36a在与第一方向垂直的第二方向上的剖面也可以呈其它形状,例如不规则形状,本发明对此不作限制。
进一步地,在一个实施例中,第一金属线31a的凹部33a的底面的长度等于第一金属线31a的凸部34a的顶面的长度,第二金属线32a的凹部35a的底面的长度等于第二金属线32a的凸部36a的顶面的长度,并且第一金属线31a的凹部33a的底面的长度也等于第二金属线32a的凸部36a的顶面的长度。也就是说,第一金属线31a的凹部33a的底面的长度与第一金属线31a的凸部34a的顶面的长度的比值为1:1,第二金属线32a的凹部35a的底面的长度和第二金属线32a的凸部36a的顶面的长度的比值为1:1,并且第一金属线31a的凹部33a的底面的长度和第二金属线32a的凸部36a的顶面的长度比值也为1:1。
此外,第一金属线31a的凸部34a的宽度和第二金属线32a的凸部36a的宽度可以根据需要设置。例如,第一金属线31a的凸部34a的宽度可以等于第二金属线32a的凸部36a的宽度,或者第一金属线31a的凸部34a的宽度可以大于第二金属线32a的凸部36a的宽度,或者第一金属线31a的凸部34a的宽度还可以小于第二金属线32a的凸部36a的宽度,本发明对此不作限制。
本实施例的第一金属线31a可由铝、钛、钼或者铝合金、钛合金、钼合金中的一种材料制成,第二金属线32a可由铝、钛、钼或者铝合金、钛合金、钼合金中的一种材料制成。进一步地,第一金属线31a的密度和第二金属线32a的密度可以相同,也可以不同,本发明对此不作限制。
在本发明实施例提供的柔性显示器件中,其至少一层金属布线层通过并行延伸两条具有交替设置的凹部和凸部的金属线,并使两条金属线的凹部和凸部错位设置,提高了金属线的双向耐弯折能力,使柔性显示器件在正反面弯曲折叠时,减少了金属性发生断裂的危险。
另外,由于在金属线多次弯折的情况下,金属线的阻值也不会发生太大变化,因此,提升了柔性显示器件的显示效果和性能。
图15a和图15b分别是本发明另一实施例提供的一种柔性显示器件中的金属布线层的剖视图和俯视图。如图15a和图15b所示,本实施例提供的金属布线层与图14a和图14b基本相同,不同的是,本实施例的第一金属线31b的凹部33b的底面的长度大于第一金属线31b的凸部34b的顶面的长度,第二金属线32b的凹部35b的底面的长度大于第二金属线32b的凸部36b的顶面的长度。
具体地,第一金属线31b的凹部33b的底面的长度可与第一金属线31b的凸部34b的顶面的长度的比值小于10:1,第二金属线32b的凹部35b的底面的长度可与第二金属线32b的凸部36b的顶面的长度的比值小于10:1。优选地,第一金属线31b的凹部33b的底面的长度与第一金属线31b的凸部34b的顶面的长度的比值为3:2,第二金属线32b的凹部35b的底面的长度与第二金属线32b的凸部36b的顶面的长度的比值为3:2。
在本发明实施例提供的柔性显示器件中,增加了金属线的凹部的底面的长度,延长了在空间纵向分布的金属线的长度,因此,增强了金属线的双向抗弯折能力。
在一个实施例中,第一金属线31b的凹部33b与第二金属线32b的凹部35b至少部分重叠设置,也就是说,第一金属线31b的凹部33b的底面的一部分与第二金属线32b的凹部35b的底面的一部分直接相连。在本实施例中,通过将第一金属线的凹部的底面与第二金属线的凹部的底面部分重叠设置, 能够增加金属线的凹部的底面的宽度,使柔性显示器件在多次双向弯折时,金属线不易发生断裂,因此,增强了金属线的抗弯折能力。
图16a和图16b分别是本发明再一实施例提供的一种柔性显示器件中的金属布线层的剖视图和俯视图。如图16a和图16b所示,在与图15a和图15b所示实施例的金属布线层相同的基础上,本实施例的第一金属线31c的凹部33c的底面的长度比第二实施例的第一金属线31c的凹部33c的底面的长度更长。
具体地,第一金属线31c的凹部33c的底面的长度与第一金属线31c的凸部34c的顶面的长度的比值为3:1,第二金属线32c的凹部35c的底面的长度与第二金属线32c的凸部36c的顶面的长度的比值为3:1。
图17a和图17b分别是本发明再一实施例提供的一种柔性显示器件中的金属布线层的剖视图和俯视图。如图17a和图17b所示,本实施例提供的金属布线层与图14a和图14b基本相同,不同的是,本实施例的第一金属线31d的凸部34d的顶面的长度大于第一金属线31d的凹部33d的底面的长度,第二金属线32d的凸部36d的顶面的长度大于第二金属线32d的凹部35d的底面的长度。
具体地,第一金属线31d的凸部34d的顶面的长度可与第一金属线31d的凹部33d的底面的长度的比值小于10:1,第二金属线32d的凸部36d的顶面的长度可与第二金属线32d的凹部35d的底面的长度的比值小于10:1。优选地,第一金属线31d的凸部34d的顶面的长度与第一金属线31d的凹部33d的底面的长度的比值为3:2,第二金属线32d的凸部36d的顶面的长度与第二金属线32d的凹部35d的底面的长度的比值为3:2。
本发明实施例提供的柔性显示器件增加了金属线的凸部的顶面的长度,延长了在空间纵向分布的金属线的长度,因此,增强了金属线的双向抗弯折能力。
在本发明实施例中,第一金属线和第二金属线可以是如上述的具有相同结构的金属线,也可以是如下文所述的具有不同结构的金属线。
图18a和图18b分别是本发明一实施例提供的一种柔性显示器件中的金属布线层的剖视图和俯视图。如图18a和图18b所示,与上述实施例不同的是,本实施例的第一金属线31e的凹部33e可以与第二金属线32e的一个凹部35e和两个凸部36e对应设置。
具体地,第一金属线31e的凹部33e的底面的长度可与第一金属线31e的凸部34e的顶面的长度的比值小于5:1,第二金属线32e的凹部35e的底面的长度可与第二金属线32e的凸部36e的顶面的长度的比值小于3:2。优选地,第一金属线31e的凹部33e的底面的长度与第二金属线32e的凹部35e的底面的长度的比值为3:1,第一金属线31e的凸部34e的顶面的长度与第二金属线32e的凸部36e的顶面的长度的比值为1:1。
本发明实施例提供的柔性显示器件分别增加了第一金属线的凹部的底面的长度和第二金属线的凸部的顶面的长度,延长了第一金属线和第二金属线在空间纵向分布的长度,因此,增强了金属线的双向抗弯折能力。
图19a和图19b分别是本发明另一实施例提供的一种柔性显示器件中的金属布线层的剖视图和俯视图。如图19a和图19b所示,与图18a和图18b所示实施例不同的是,本实施例的第一金属线31f 的凸部34f可以与第二金属线32f的两个凹部35f和一个凸部36f对应设置。
具体地,第一金属线31f的凸部34f的顶面的长度可与第一金属线31f的凹部33f的底面的长度的比值小于5:1,第二金属线32f的凸部36f的顶面的长度可与第二金属线32f的凹部35f的底面的长度的比值小于3:2。优选地,第一金属线31f的凸部34f的顶面的长度与第二金属线32f的凸部36f的顶面的长度的比值为3:1,第一金属线31f的凹部33f的底面的长度与第二金属线32f的凹部35f的底面的长度的比值为1:1。
本发明实施例提供的柔性显示器件分别增加了第一金属线的凸部的顶面的长度和第二金属线的凹部的底面的长度,延长了第一金属线和第二金属线在空间纵向分布的长度,因此,增强了金属线的双向抗弯折能力。
在本发明实施例提供的柔性显示器件中,通过在有机层中填充无机材料,使得无机材料分布于非平面空间内与有机层形成交叠结构,此设计在保证了水氧阻隔性能的同时,降低了器件在弯折变形过程中无机材料所受最大应变,从而减小无机材料断裂的风险,提高了封装的可靠性。另一方面,有机发光结构中的至少一层金属布线层通过并行延伸两条具有交替设置的凹部和凸部的金属线,提高了金属线的双向耐弯折能力,使柔性显示器件在正反面弯曲折叠时,减少了金属线断裂的危险。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换等,均应包含在本发明的保护范围之内。

Claims (20)

  1. 一种柔性显示器件,包括:
    有机发光结构;
    覆盖所述有机发光结构的有机层,所述有机层中填充有无机材料。
  2. 根据权利要求1所述的柔性显示器件,其中,所述有机层为一层或多层,所述无机材料设置于所述一层或多层有机层中的至少一层中。
  3. 根据权利要求2所述的柔性显示器件,其中,所述有机层包括层叠设置的第一有机层和第二有机层,所述无机材料设置于所述第一有机层和所述第二有机层中的一层或两层中。
  4. 根据权利要求2所述的柔性显示器件,其中,所述设置有无机材料的有机层设置有沟槽,所述无机材料填充于所述沟槽中。
  5. 根据权利要求4所述的柔性显示器件,其中,所述沟槽由多个沟槽单元连接形成且在所述有机层上的投影覆盖所述有机层。
  6. 根据权利要求5所述的柔性显示器件,其中,所述有机层包括层叠设置的第一有机层和第二有机层,所述沟槽包括第一沟槽和第二沟槽,所述第一沟槽的沟槽单元分布于所述第一有机层中,所述第二沟槽的沟槽单元分布于所述第二有机层中。
  7. 根据权利要求5所述的柔性显示器件,其中,所述有机层包括层叠设置的第一有机层和第二有机层,所述沟槽的所述多个沟槽单元分布于所述第一有机层和所述第二有机层中。
  8. 根据权利要求5至7任意一项所述的柔性显示器件,其中,所述沟槽单元包括横断面为半圆环形的第一沟槽单元,所述沟槽由所述第一沟槽单元连接形成。
  9. 根据权利要求5至7任意一项所述的柔性显示器件,其中,所述沟槽单元的横断面为长条形,所述沟槽单元包括分别与所述有机层平行的第二沟槽单元、成锐角的第三沟槽单元、成钝角的第四沟槽单元以及成直角的第五沟槽单元,所述沟槽由所述第二沟槽单元、所述第三沟槽单元、所述第四沟槽单元和所述第五沟槽单元中的至少两种交替连接形成。
  10. 根据权利要求5所述的柔性显示器件,其中,所述多个沟槽单元连接形成横断面为脉冲波形的沟槽。
  11. 根据权利要求10所述的柔性显示器件,其中,所述脉冲波形为锯齿波或矩形波或梯形波,
    所述柔性显示器件还包括覆盖所述有机层的加强层,所述加强层的材料为无机材料。
  12. 一种柔性显示器件,包括至少一层金属布线层,所述金属布线层包括并行延伸的至少两条金属线,所述至少两条金属线具有在第一方向上交替设置的凹部和凸部。
  13. 根据权利要求12所述的柔性显示器件,其中,所述金属布线层包括第一金属线和第二金属线两条金属线。
  14. 如权利要求13所述的柔性显示器,其中,所述第一方向是所述第一金属线和所述第二金属线的延伸方向。
  15. 根据权利要求13所述的柔性显示器件,其中,所述第一金属线的凹部和凸部在与所述第一方向垂直的第二方向上分别对应所述第二金属线的凸部和凹部。
  16. 根据权利要求13所述的柔性显示器件,其中,所述第一金属线的凹部和所述第二金属线的凹部均具有平坦的底面,所述第一金属线的凸部和所述第二金属线的凸部均具有平坦的顶面。
  17. 根据权利要求13所述的柔性显示器件,其中,所述第一金属线的凸部和所述第二金属线的凸部中的至少一个在与所述第一方向垂直的第二方向上的剖面呈矩形或梯形或弧形。
  18. 根据权利要求13所述的柔性显示器件,其中,所述第一金属线的凹部的底面的长度大于或等于所述第一金属线的凸部的顶面的长度,所述第二金属线的凹部的底面的长度大于或等于所述第二金属线的凸部的顶面的长度,并且所述第一金属线的凹部的底面的长度等于所述第二金属线的凸部的顶面的长度。
  19. 根据权利要求13所述的柔性显示器件,其特征在于,所述第一金属线的凹部与所述第二金属线的凹部至少部分重叠设置。
  20. 一种柔性显示器的制备方法,包括:
    在有机发光结构的上方制备有机层并使该有机层覆盖有机发光结构;
    在所述有机层中制备沟槽;
    在所述沟槽中填充无机材料。
PCT/CN2018/091301 2017-08-31 2018-06-14 一种柔性显示器件 WO2019041966A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/376,899 US20190237699A1 (en) 2017-08-31 2019-04-05 Flexible display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201721112576.2 2017-08-31
CN201710773085.0 2017-08-31
CN201710773085.0A CN109427995B (zh) 2017-08-31 2017-08-31 一种柔性显示器件
CN201721112576.2U CN207134070U (zh) 2017-08-31 2017-08-31 一种显示面板及柔性显示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/376,899 Continuation US20190237699A1 (en) 2017-08-31 2019-04-05 Flexible display device

Publications (1)

Publication Number Publication Date
WO2019041966A1 true WO2019041966A1 (zh) 2019-03-07

Family

ID=65524814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091301 WO2019041966A1 (zh) 2017-08-31 2018-06-14 一种柔性显示器件

Country Status (3)

Country Link
US (1) US20190237699A1 (zh)
TW (1) TWI670847B (zh)
WO (1) WO2019041966A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110444578A (zh) * 2019-08-14 2019-11-12 京东方科技集团股份有限公司 柔性显示面板及其制造方法
CN115000020A (zh) * 2022-05-30 2022-09-02 福建华佳彩有限公司 一种可拉伸阵列基板制作方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208753371U (zh) * 2018-11-02 2019-04-16 京东方科技集团股份有限公司 柔性显示面板及显示装置
CN109817097A (zh) 2019-01-31 2019-05-28 武汉华星光电半导体显示技术有限公司 柔性显示面板
CN111129348A (zh) * 2019-12-24 2020-05-08 武汉华星光电半导体显示技术有限公司 显示面板及其制造方法
CN117204983A (zh) * 2023-11-07 2023-12-12 上海汇禾医疗器械有限公司 一种夹持单元和心脏瓣膜夹合装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1870315A (zh) * 2005-05-27 2006-11-29 悠景科技股份有限公司 有机发光二极管显示器的电极引线布设结构
CN104078601A (zh) * 2013-03-29 2014-10-01 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
CN207134070U (zh) * 2017-08-31 2018-03-23 云谷(固安)科技有限公司 一种显示面板及柔性显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4555258B2 (ja) * 2006-01-26 2010-09-29 三星モバイルディスプレイ株式會社 有機電界発光表示装置
KR100841369B1 (ko) * 2006-12-18 2008-06-26 삼성에스디아이 주식회사 유기전계발광표시장치 및 그의 제조방법
KR101201720B1 (ko) * 2010-07-29 2012-11-15 삼성디스플레이 주식회사 표시 장치 및 유기 발광 표시 장치
JP6074597B2 (ja) * 2013-03-29 2017-02-08 株式会社Joled 有機el表示装置および電子機器
US9425728B2 (en) * 2013-06-12 2016-08-23 V Square/R Llc Dynamic power control for induction motors
TWI552321B (zh) * 2014-09-30 2016-10-01 群創光電股份有限公司 顯示面板及顯示裝置
KR20160110597A (ko) * 2015-03-09 2016-09-22 삼성디스플레이 주식회사 유기발광표시장치 및 그 제조방법
KR102424597B1 (ko) * 2015-06-30 2022-07-25 엘지디스플레이 주식회사 플렉서블 유기발광다이오드 표시장치 및 그 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1870315A (zh) * 2005-05-27 2006-11-29 悠景科技股份有限公司 有机发光二极管显示器的电极引线布设结构
CN104078601A (zh) * 2013-03-29 2014-10-01 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
CN207134070U (zh) * 2017-08-31 2018-03-23 云谷(固安)科技有限公司 一种显示面板及柔性显示装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110444578A (zh) * 2019-08-14 2019-11-12 京东方科技集团股份有限公司 柔性显示面板及其制造方法
CN110444578B (zh) * 2019-08-14 2021-11-09 京东方科技集团股份有限公司 柔性显示面板及其制造方法
CN115000020A (zh) * 2022-05-30 2022-09-02 福建华佳彩有限公司 一种可拉伸阵列基板制作方法
CN115000020B (zh) * 2022-05-30 2024-05-14 福建华佳彩有限公司 一种可拉伸阵列基板制作方法

Also Published As

Publication number Publication date
US20190237699A1 (en) 2019-08-01
TWI670847B (zh) 2019-09-01
TW201914002A (zh) 2019-04-01

Similar Documents

Publication Publication Date Title
WO2019041966A1 (zh) 一种柔性显示器件
US11374201B2 (en) Thin film package structure, thin film package method, and display panel
CN108461648B (zh) 薄膜封装体及显示面板
CN108615821B (zh) 显示面板的柔性盖板
EP3223326B1 (en) Display apparatus
US10186683B2 (en) Flexible organic light emitting diode display panel
JP6126681B2 (ja) 発光素子
CN104538425A (zh) 一种阻挡膜及其制作方法、显示装置
CN109256481B (zh) 显示面板和显示装置
JP6024352B2 (ja) 発光装置およびその製造方法
CN106384742A (zh) 有机发光显示面板及其制造方法
JP2012009606A5 (zh)
WO2019214183A1 (zh) 薄膜封装结构及显示装置
JP5991065B2 (ja) 発光装置
KR20140029199A (ko) 측면 발광다이오드 및 그 제작방법
JP2021033240A5 (zh)
CN110429107B (zh) 一种柔性显示面板及其制备方法
CN109427995B (zh) 一种柔性显示器件
TWI578582B (zh) 發光二極體載板及其製造方法
JP2011023447A (ja) 発光装置
CN111833742B (zh) 一种显示装置
US20230194766A1 (en) Light-emitting module
CN109449305B (zh) 复合薄膜、柔性显示面板及其制备方法
TWI677110B (zh) 微型發光二極體及發光裝置
WO2015062288A1 (zh) 复合膜及其制造方法以及包括该复合膜的封装结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18852693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18852693

Country of ref document: EP

Kind code of ref document: A1