WO2015062288A1 - 复合膜及其制造方法以及包括该复合膜的封装结构 - Google Patents

复合膜及其制造方法以及包括该复合膜的封装结构 Download PDF

Info

Publication number
WO2015062288A1
WO2015062288A1 PCT/CN2014/080478 CN2014080478W WO2015062288A1 WO 2015062288 A1 WO2015062288 A1 WO 2015062288A1 CN 2014080478 W CN2014080478 W CN 2014080478W WO 2015062288 A1 WO2015062288 A1 WO 2015062288A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
matrix
water
blocking
composite
Prior art date
Application number
PCT/CN2014/080478
Other languages
English (en)
French (fr)
Inventor
孙力
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/421,533 priority Critical patent/US20160036001A1/en
Publication of WO2015062288A1 publication Critical patent/WO2015062288A1/zh
Priority to US16/987,610 priority patent/US20200365830A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • B32B9/007Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/286Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/02Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by a sequence of laminating steps, e.g. by adding new layers at consecutive laminating stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/03Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers with respect to the orientation of features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/045Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • B32B2037/243Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/08Treatment by energy or chemical effects by wave energy or particle radiation
    • B32B2310/0806Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation
    • B32B2310/0831Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2398/00Unspecified macromolecular compounds
    • B32B2398/10Thermosetting resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/206Organic displays, e.g. OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/841Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a composite film, a method of manufacturing the same, and a package structure including the composite film. Background technique
  • An organic light emitting diode (Organic C Li ght-Emi tt i ng Di ode, abbreviated as OLED) has a self-luminous characteristic, in which, when a current passes, the 0 LED emits light.
  • the 0 LED display device using 0 LED display has a large viewing angle and can save significant power. Therefore, the OLED display device has many advantages unmatched by a liquid crystal display (Liquid Crystal Di splay, abbreviated as LCD), and is in the field of display technology. Applications are becoming more widespread.
  • the organic film layer in the 0LED is easily damaged by water and oxygen erosion, so it is necessary to form an encapsulation layer capable of blocking water and oxygen above the 0LED to realize protection of the 0LED.
  • a highly water-resistant rigid package substrate such as glass or metal sheet is usually used as the encapsulation layer. Applying an encapsulant on an area outside the OLED on the substrate carrying the OLED, and bonding the OLED-carrying substrate and the hard-package substrate through the encapsulant so that water and oxygen molecules are hard to penetrate between the two substrates Confined space to protect the 0LED.
  • the rigid package substrate is a rigid device, its flexibility is poor, so it is not suitable for flexibility.
  • 0LED is packaged.
  • the water-repellent film may be a dense film such as: S iOx , but the dense film may have poor bendability; or the water-repellent film may be a film having good flexibility, for example, a polymer film, but the film having good flexibility has poor water resistance. Therefore, in the prior art, in order to obtain an encapsulation layer having better water resistance and flexibility, a film in which a film of an inorganic material and a film of an organic material are stacked in a plurality of layers is generally used as an encapsulation layer.
  • the number of layers in the encapsulation layer is large and each layer structure needs to be made according to the material using the corresponding film preparation process, so the film preparation process required in the process of manufacturing the encapsulation layer is various, the steps are many, and the manufacturing time is Long, the manufacturing process needs to be inert Protect the environment (eg vacuum or nitrogen) and use a variety of complex equipment during the manufacturing process. This increases production costs and reduces production efficiency.
  • the present invention provides a composite film, a method for producing the same, and a package structure comprising the composite film for reducing production cost and improving production efficiency.
  • the present invention provides a composite film comprising: at least one matrix film, each of which includes at least one water blocking film.
  • the number of the matrix membranes is plural, each of the matrix membranes comprises a plurality of water blocking membranes, and the water blocking membranes in the adjacent matrix membranes are alternately arranged.
  • a space is formed between any adjacent water blocking films in each of the matrix films, and a space in each of the matrix films is disposed opposite to a water blocking film in the matrix film adjacent to the matrix film.
  • a plurality of water blocking films in the same matrix film are disposed on the same plane.
  • the number of the matrix membranes is 2 to 4.
  • the number of the matrix membranes is one, the number of the water blocking membranes is plural, and the plurality of water blocking membranes are disposed in the plurality of layers, and the water blocking membranes located in the adjacent layers are Interlaced settings.
  • a space is formed between any adjacent water blocking films in each layer, and the spacing in each layer is opposite to the water blocking film in the layer adjacent to the layer.
  • the matrix film has a thickness of from 1 m to 1000 ⁇ .
  • the matrix film is a flexible film
  • the water blocking film is a rigid film
  • the present invention provides a package structure comprising: a substrate substrate, an OLED and the above composite film, the OLED being located on the base substrate, and the composite film being located on the OLED.
  • the present invention provides a method of manufacturing a composite film comprising the steps of:
  • At least one matrix film is formed, and at least one water blocking film is formed inside the matrix film during the process of forming the at least one matrix film.
  • the at least one forming a matrix film and forming at least one matrix film further comprises:
  • a curing treatment is performed to form a matrix film.
  • the method further comprises the steps of: repeating the steps a) to d) to obtain a plurality of matrix films, and subjecting the formed plurality of matrix films to a bonding process to form a plurality of substrates including the stacked layers A composite film of a film in which water blocking films in two adjacent matrix films are alternately disposed.
  • the step of forming at least one matrix film and forming at least one water blocking film inside the matrix film during the process of forming the at least one matrix film further comprises:
  • the step f) is repeatedly performed until a desired number of layers of the water blocking film are formed, wherein a water blocking film in the layer of any one of the water blocking films and a layer of the water blocking film adjacent to the layer of the water blocking film
  • the inner water blocking film is staggered
  • All of the formed matrix film precursor layer and the water blocking film layer are subjected to a curing treatment to form the matrix film, thereby obtaining a composite film including a matrix film.
  • the curing treatment comprises: curing treatment by UV curing or thermal curing.
  • the composite film comprises a matrix film and at least one water blocking film located inside the matrix film.
  • the composite film can be directly disposed on the OLED.
  • the process used in the packaging process is simple, the process steps are small, the process time is short, and the required equipment is relatively simple, thereby reducing production costs and improving production efficiency.
  • FIG. 1 is a schematic structural view of a composite film according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic plan view of a substrate film in a composite film according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic structural view of a composite film according to Embodiment 2 of the present invention
  • FIG. 4 is a schematic diagram of a package structure according to Embodiment 3 of the present invention.
  • Figure 5 is a flow chart showing a method of manufacturing a composite film according to a fourth embodiment of the present invention.
  • FIG. 6a is a schematic view showing the formation of a matrix film precursor layer in the method for producing a composite film according to Embodiment 4 of the present invention.
  • FIG. 6b is a schematic view showing the formation of a water blocking film in the method for producing a composite film according to Embodiment 4 of the present invention.
  • 6c is a schematic view showing formation of another matrix film precursor layer in the method for producing a composite film according to Embodiment 4 of the present invention.
  • Figure 6d is a schematic view showing a curing process in a method for producing a composite film according to a fourth embodiment of the present invention.
  • FIG. 7 is a flow chart of a method for manufacturing a composite film according to a fifth embodiment of the present invention
  • FIG. 8a is a schematic view showing a method for forming a matrix film precursor layer in a method for manufacturing a composite film according to a fifth embodiment of the present invention
  • Figure 8b is a schematic view showing an example of forming a water blocking film in the method for producing a composite film according to Embodiment 5 of the present invention.
  • FIG. 8c is a schematic view showing formation of another matrix film precursor layer in the method for producing a composite film according to Embodiment 5 of the present invention.
  • FIG. 8d is a schematic view showing formation of other water blocking film and matrix film precursor layer in the method for manufacturing a composite film according to Embodiment 5 of the present invention.
  • Figure 8e is a schematic view showing a curing process in a method of producing a composite film according to a fifth embodiment of the present invention. detailed description
  • a composite film comprising at least one matrix film, each matrix film comprising at least one water blocking film.
  • the number of the matrix films may be plural, that is, the composite film may include a plurality of matrix films stacked in a stack.
  • the number of the matrix films is from 2 to 4.
  • the description will be made by taking the number of matrix films as 3 as an example.
  • the three layers of the matrix film are the matrix film 11, the matrix film 12, and the matrix film 13, respectively.
  • the matrix film 11, the matrix film 12 and the matrix film 13 are laminated, wherein the matrix film 11 is located above the matrix film 12, and the matrix film 12 is positioned above the matrix film 13.
  • the thickness of the matrix film is ⁇ ⁇ to 1000 ⁇ ⁇ .
  • the thickness of the matrix film is lm to ⁇ ⁇ , which can effectively avoid the problem of poor mechanical properties and poor water resistance caused by the thickness of the matrix film being too thin, and the poor bending property caused by avoiding the thickness of the matrix film being too thick.
  • the problem of poor light transmittance ensures that the matrix film has good mechanical properties and water blocking properties, and the matrix film has good bending property and light transmittance.
  • each of the matrix films has the same thickness.
  • Each substrate film is of the same thickness for ease of manufacture.
  • the matrix film is a flexible film, and the material of the matrix film can be selected from the group consisting of: polyimide, polyacrylate, polyethylene, polypropylene, styrene, polyethylene terephthalate , polysulfone ether, polyethylene naphthalate, polycarbonate, polyvinyl chloride, polymethyl methacrylate, polybutylene terephthalate and polyparaphenylene sulfone.
  • the water blocking film is a rigid film, and the material of the water blocking film can be selected from the group consisting of the following materials:
  • the materials of the matrix film and the water blocking film are not limited to the materials listed above.
  • the number of water blocking membranes in each matrix membrane may be plural, and the water blocking membrane can block water oxygen molecules.
  • the water-repellent film in the matrix film will be described by taking the matrix film 11 as an example.
  • 2 is a schematic plan view of the matrix film 11, in which the number of the water blocking films in the matrix film 11 is plural.
  • Three water blocking films 111, a water blocking film 112, and a water blocking film 113 which are located inside the matrix film 11 are shown in Figs. 1 and 2. It should be understood that the number of the water blocking film in the matrix film 11 shown in Fig. 2 is merely an example, and the present invention is not limited thereto.
  • a plurality of water blocking films inside the same matrix film are disposed on the same plane. As shown in FIG.
  • the water blocking film 111, the water blocking film 112, and the water blocking film 113 inside the matrix film 11 are disposed on the same plane. Multiple water blocking films are located The manufacturing process of the water blocking film on the same plane is simple and easy to implement.
  • the structure of the water-blocking film in the matrix film 12 and the matrix film 13 can be referred to the description of the matrix film 11 and will not be described herein.
  • the water blocking film in each of the matrix films is disposed at even intervals.
  • the water blocking films inside the adjacent matrix film are staggered. As shown in FIGS. 1 and 2, the water blocking film inside the matrix film 1 and the water blocking film inside the matrix film 12 are alternately arranged, and the matrix film 12 and the water blocking film inside the matrix film 13 are alternately arranged. Specifically, a space is formed between adjacent water blocking films inside each of the matrix films, and an interval between adjacent water blocking films inside the matrix film is opposite to a water blocking film in the matrix film adjacent to the matrix film Settings.
  • each interval i.e., the distance between any two adjacent water blocking films inside the same matrix film
  • the inside of the matrix film is covered by a water blocking film in the adjacent matrix film.
  • a water barrier film 11 1 inside the matrix film 1 1 and a water blocking film 12 are formed with a space 1 14 and a gap 1 14 and an adjacent matrix film 12 .
  • the water film 121 is disposed oppositely such that the projection of the space 1 14 on the plane of the bottom surface of the matrix film 1 1 is within the range of the projection of the water blocking film 121 on the plane of the bottom surface of the matrix film 1 1 .
  • the spacing between the water blocking films allows the entire composite film to be bent to a certain extent, thereby ensuring that the composite film has good flexibility, thereby enabling the composite film to Suitable for flexible 0LEDs.
  • the flexibility of the composite film is related to the size and arrangement position of the water blocking film, so that the size and arrangement position of the water blocking film can be set according to the required flexibility in practical applications. Since the water oxygen molecules are permeable to the space between the water blocking films, in the present embodiment, the spacing in one of the matrix films is opposite to the water blocking film in the matrix film adjacent to the matrix film so as to be transparent.
  • the spacer water-oxygen molecules of the matrix film are blocked by a water-blocking film in the matrix film adjacent to the matrix film.
  • the dotted arrow in Figure 1 is the permeation path of water oxygen molecules in the composite membrane.
  • the water-oxygen molecules are blocked by the water-blocking film inside the matrix film 12 after passing through the space inside the matrix film 1 1 to delay the infiltration process.
  • the water oxygen molecules are further blocked by the water blocking film in the matrix film 13 after being spaced through the inside of the matrix film 12 to further delay the infiltration process.
  • the interval between adjacent water blocking films in each matrix film is opposite to that of the adjacent water blocking film inside the matrix film, which prolongs the permeation path of water and oxygen molecules.
  • the composite film provided in this embodiment includes a plurality of matrix films, and each of the matrix films includes at least one water blocking film.
  • the composite film can be directly disposed on the OLED.
  • the process used in the packaging process is simple, the process steps are small, the process time is short, and the required equipment is relatively simple, thereby reducing production costs and improving production efficiency.
  • FIG. 3 is a schematic view showing an exemplary structure of a composite film according to Embodiment 2 of the present invention.
  • the composite film includes a matrix film 31, and the matrix film 31 includes at least one water blocking film 31 1-319.
  • the number of the matrix films 31 is one.
  • the thickness of the matrix film is ⁇ ⁇ ⁇ to 1000 ⁇ ⁇ .
  • the thickness of the matrix film is ⁇ to 1000 ⁇ m, which can effectively avoid the problem of poor mechanical properties and poor water resistance caused by the thickness of the matrix film being too thin, and avoiding the thickness of the matrix film being too thick.
  • the problem of poor bending property and poor light transmittance ensures that the matrix film has good mechanical properties and water blocking performance, and the matrix film has good bending property and light transmittance.
  • the matrix film is a flexible film, and the material of the matrix film can be selected from the group consisting of: polyimide, polyacrylate, polyethylene, polypropylene, styrene, polyethylene terephthalate , polysulfone ether, polyethylene naphthalate, polycarbonate, polyvinyl chloride, polymethyl methacrylate, polybutylene terephthalate and polyparaphenylene sulfone.
  • the water blocking film is a rigid film, and the material of the water blocking film can be selected from the group consisting of: S i0x, S iNx, A1203, Al, Ag, gold, ultra-thin glass, diamond, graphene, Zn0,
  • the materials of the matrix film and the water blocking film are not limited to the materials listed above.
  • the number of water blocking membranes is plural, and the water blocking membrane can block water and oxygen molecules. Multiple water blocking membranes are layered. In this embodiment, three layers of water blocking film are disposed inside the matrix film 31 as an example for description. As shown in FIG. 3, the water blocking film located in the first layer includes: a water blocking film 31 1 , a water blocking film 312 and a water blocking film 313 , and the water blocking film located in the second layer includes: a water blocking film 314 , a water blocking film
  • the water blocking film on the third layer includes: water blocking film 317, water blocking film 318 and water blocking film 319.
  • a plurality of water blocking films located in the same layer are disposed on the same plane.
  • the water blocking film is disposed at even intervals.
  • the water blocking films in adjacent layers are staggered.
  • the water blocking film on the first layer and the water blocking film on the second layer are staggered, and the water blocking film on the second layer is The water blocking film on the third layer is staggered.
  • a space is formed between adjacent water blocking films of the same layer, and a space between adjacent water blocking films in one layer is opposite to a water blocking film in a layer adjacent to the layer. Since the lateral width of each interval (ie, the distance between any two adjacent water blocking films in the same layer) is smaller than the lateral width of the water blocking film disposed opposite the interval, the water blocking film in the layer The spacing between them is covered by a water blocking film in an adjacent layer. As shown in FIG.
  • a space 320 is formed between the water blocking film 31 1 and the water blocking film 312 of the first layer, and the space 320 is disposed opposite to the water blocking film 314 of the second layer, so that the space 320 is in the matrix film.
  • the projection on the plane in which the bottom surface of the substrate 31 is located is within the range of the projection of the water blocking film 314 on the plane on which the bottom surface of the matrix film 31 is located. Since the matrix membrane is a flexible membrane and the water-blocking membrane is a rigid membrane, the spacing between the water-blocking membranes enables the entire composite membrane to be bent to a certain extent, thereby ensuring that the composite membrane has good flexibility, thereby enabling the composite membrane to Suitable for flexible 0LEDs.
  • the flexibility of the composite film is related to the size and arrangement position of the water blocking film, so that the size and arrangement position of the water blocking film can be set according to the required flexibility in practical applications.
  • the water oxygen molecules can pass through the space between the water blocking films, so in the present embodiment, the interval between adjacent water blocking films in one layer is opposite to the water blocking film in the layer adjacent to the layer. So that the water oxygen molecules passing through the spaces in the layer are blocked by the water blocking film in the layer adjacent to the layer.
  • the dotted arrow in Figure 3 is the permeation path of water oxygen molecules in the composite membrane.
  • the water oxygen molecules are blocked by the second layer of water blocking film after being separated by the interval between the water blocking films of the first layer to delay the infiltration process.
  • the water oxygen molecules are further blocked by the water blocking film located in the third layer through the interval between the water blocking films located in the second layer to further delay the infiltration process.
  • the interval between adjacent water blocking films in one layer is opposite to the water blocking film in the layer adjacent to the layer, which prolongs the permeation path of water oxygen molecules. The length, which greatly delays the penetration process of water and oxygen molecules, thereby ensuring that the composite membrane has good water resistance.
  • the composite membrane provided in this embodiment comprises a matrix membrane and at least one water blocking membrane located inside the matrix membrane.
  • the composite film can be directly disposed on the 0LED.
  • the process used in the packaging process is simple, the process steps are small, the process time is short, and the required equipment is relatively simple, thereby reducing production costs and improving production efficiency.
  • the package structure includes: a base substrate 1, an OLED 2, and a composite film 3, the 0LED 2 is located on the base substrate 1, and the composite film 3 is located on the OLED 2.
  • the composite film 3 can adopt the composite film described in the first embodiment or the second embodiment, and will not be described in detail herein.
  • the composite film 3 can function as a water barrier to the 0LED 2. Alternatively, the composite film 3 covers the entire base substrate 1.
  • the package structure may further include: a buffer layer 4 between the 0LED 2 and the composite film 3, and the buffer layer 4 covers the entire substrate substrate 1.
  • the composite film includes a matrix film and at least one water blocking film located inside the matrix film.
  • the composite film can be directly disposed on the 0LED.
  • the process used in the packaging process is simple, the process steps are small, the process time is short, and the required equipment is relatively simple, thereby reducing production costs and improving production efficiency.
  • a method of producing a composite film comprising the steps of: forming a matrix film, and forming at least one water blocking film inside the matrix film during the process of forming the matrix film.
  • the composite film produced by the method for producing a composite film provided by the present invention comprises a matrix film, and at least one water blocking film is formed in the matrix film.
  • the composite film can be directly disposed on the 0LED.
  • the process used in the packaging process is simple, the process steps are small, the process time is short, and the required equipment is relatively simple, thereby reducing production costs and improving production efficiency.
  • FIG. 5 is a flow chart of a method for manufacturing a composite film according to Embodiment 4 of the present invention. As shown in FIG. 5, the method includes:
  • Step 101 Form a matrix film precursor layer.
  • Fig. 6a is a schematic view showing the formation of a matrix film precursor layer in the method for producing a composite film according to a fourth embodiment of the present invention.
  • a base film precursor layer 61 is formed by spin coating, doctor coating or spraying.
  • the matrix film precursor layer 61 may be formed of a flexible material.
  • Step 102 Form at least one water blocking film on the matrix film precursor layer.
  • FIG. 6b is a schematic view showing the formation of a water blocking film in the method for producing a composite film according to Embodiment 4 of the present invention.
  • a water blocking film 62 is formed on the precursor film 61 of the substrate film by placement, physical deposition or chemical deposition.
  • the water blocking film 62 may be plural, and two adjacent water blocking There may be a space between the membranes 62.
  • the spacing between adjacent two water blocking films 62 may have an equal size (i.e., the length in the horizontal direction shown in Fig. 6b).
  • the water blocking film 62 may be formed of a rigid material.
  • Step 103 forming another matrix film precursor layer on the water blocking film.
  • Fig. 6c is a schematic view showing the formation of another matrix film precursor layer in the method for producing a composite film according to the fourth embodiment of the present invention.
  • a matrix film precursor layer 63 is formed on the water blocking film 62 by spin coating, blade coating or spraying.
  • the matrix film precursor layer 63 can be formed of a flexible material.
  • Step 104 The structure obtained by the step 103 is subjected to a curing treatment to form a matrix film.
  • FIG. 6d is a schematic view showing a curing process in a method for producing a composite film according to a fourth embodiment of the present invention. As shown in FIG. 6d, the structure obtained by the step 103 is cured by UV curing or heat curing to form a matrix film 64. .
  • Step 105 Repeat steps 101 to 104 to prepare a plurality of matrix films.
  • Step 106 Perform a bonding process on the plurality of formed matrix films.
  • the formed plurality of matrix films may be subjected to a bonding treatment by an attaching device to form a composite film in which water blocking films in adjacent two matrix films are alternately disposed. Gp, each water blocking film in a matrix film is disposed opposite to each of the spaces included in the matrix film adjacent to the matrix film.
  • the method for manufacturing the composite film provided in this embodiment can be used to manufacture the composite film of the above-mentioned first embodiment. Therefore, for the specific description of the substrate film and the water blocking film, refer to the above-mentioned first embodiment, and details are not described herein again.
  • the composite film produced by the method for producing a composite film provided in this embodiment comprises a matrix film and at least one water blocking film located inside the matrix film.
  • the composite film can be directly disposed on the 0LED.
  • the process used in the packaging process is simple, the process steps are small, the process time is short, and the required equipment is relatively simple, thereby reducing production costs and improving production efficiency.
  • FIG. 7 is a flowchart of a method for manufacturing a composite film according to Embodiment 5 of the present invention. As shown in FIG. 7, the method includes: Step 201, forming a matrix film precursor layer.
  • Fig. 8a is a schematic view showing the formation of a matrix film precursor layer in the method for producing a composite film according to the fifth embodiment of the present invention.
  • a base film precursor layer 81 is formed by spin coating, blade coating or spray coating.
  • the matrix film precursor layer 81 may be formed of a flexible material.
  • Step 202 Form at least one water blocking film on the matrix film precursor layer.
  • Fig. 8b is a schematic view showing the formation of a water blocking film in the method for producing a composite film according to a fifth embodiment of the present invention.
  • a water blocking film 82 is formed on the precursor film 81 of the substrate film by placement, physical deposition or chemical deposition.
  • the water blocking film 82 may be plural, and the adjacent two water blocking films 82 may have a space therebetween.
  • the interval between adjacent two water blocking films 82 may have an equal size (i.e., the length in the horizontal direction shown in Fig. 6b).
  • the water blocking film 82 may be formed of a rigid material.
  • Step 203 forming another matrix film precursor layer on the water blocking film.
  • FIG. 8c is a schematic view showing the formation of another precursor film layer in the composite film manufacturing method according to the fifth embodiment of the present invention.
  • a matrix film precursor is formed on the water blocking film 82 by spin coating, blade coating or spraying.
  • Layer 83 is formed of a flexible material.
  • Step 204, step 202 and step 203 are repeated until a desired number of layers of water blocking film are formed.
  • FIG. 8d is a schematic view showing the formation of a three-layer water blocking film and a matrix film precursor layer in the fifth embodiment.
  • a plurality of water blocking films 84 are formed on the matrix film precursor layer 83 by placement, physical deposition or chemical deposition, so that the interval between the adjacent two water blocking films 84 and the resistance formed by the step 202 are formed.
  • the water film 82 is disposed oppositely such that the water blocking film 82 in the front layer and the water blocking film 84 in the latter layer are formed in a staggered arrangement.
  • a matrix film precursor layer 85 is formed on the water blocking film 84 by spin coating, blade coating or spraying, and a water blocking film 86 is formed on the matrix film precursor layer 85 by placement, physical deposition or chemical deposition, The interval between the adjacent two water blocking films 86 is disposed opposite to each of the water blocking films 84. Subsequently, a matrix film precursor layer 87 is formed on the water blocking film 86 by spin coating, blade coating or spraying.
  • a matrix film precursor layer 81 including a sequential arrangement, a first layer water blocking film 82, a matrix film precursor layer 83, a second water blocking film 84, a matrix film precursor layer 85, a third layer water blocking film 86, and Matrix membrane front The laminated structure of the drive layer 87.
  • Step 205 curing the structure obtained in step 204 to form a matrix film.
  • Figure 8e is a schematic view showing a curing process in a method of producing a composite film according to a fifth embodiment of the present invention.
  • the structure obtained in step 204 is cured by UV curing or heat curing to form a matrix film 8, wherein the water blocking films in the adjacent two layers are alternately disposed. That is, each of the water blocking films in one layer is disposed opposite to the space contained in the layer adjacent to the layer.
  • the composite film produced by the method for producing a composite film provided by the present embodiment comprises a matrix film and a plurality of water blocking films, and a plurality of water blocking films are layered.
  • the method for manufacturing the composite film provided in this embodiment can be used to manufacture the composite film of the above-mentioned second embodiment. Therefore, for the detailed description of the substrate film and the water blocking film, refer to the above embodiment 2, and details are not described herein again.
  • the composite film produced by the method for producing a composite film provided in this embodiment comprises a matrix film and at least one water blocking film located inside the matrix film.
  • the composite film can be directly disposed on the 0LED.
  • the process used in the packaging process is simple, the process steps are small, the process time is short, and the required equipment is relatively simple, thereby reducing production costs and improving production efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明公开了一种复合膜及其制造方法以及包括该复合膜的封装结构。该复合膜包括至少一个基质膜,每个所述基质膜内包括至少一个阻水膜。本发明的技术方案中,复合膜包括基质膜,基质膜内包括至少一个阻水膜,采用该复合膜对OLED进行封装时可直接将该复合膜设置于OLED之上。封装工艺过程中所采用的工艺简单,工艺步骤少,工艺时间短,且所需设备较为简单,从而降低了生产成本,提高了生产效率。

Description

复合膜及其制造方法以及包括该复合膜的封装结构 技术领域
本发明涉及显示技术领域, 特别涉及一种复合膜及其制造方法、 以及包括该复合膜的封装结构。 背景技术
有机发光二极管(Organi c Li ght- Emi tt i ng Di ode , 简称: OLED ) 具有自发光的特性, 其中, 当有电流通过时, 0LED 就会发光。 采用 0LED进行显示的 0LED显示装置可视角度大, 且能够显著节省电能, 因此 0LED显示装置具备了液晶显示器 (Li qui d Crystal Di splay , 简称: LCD ) 不可比拟的许多优势, 在显示技术领域的应用越来越广 泛。
0LED中的有机膜层易受水氧侵蚀而失效,因此需要在 0LED上方 形成能够阻隔水氧的封装层以实现对 0LED的保护。 通常采用高阻水 性的硬质封装基板, 例如玻璃或金属片, 作为封装层。 在承载 0LED 的基板上的位于 0LED外侧的区域上涂覆封装胶, 并且通过封装胶将 承载 0LED的基板和硬质封装基板贴合起来, 以便在两片基板之间形 成水氧分子难以渗透的密闭空间, 从而实现对 0LED的保护。 但是, 由于硬质封装基板属于刚性器件, 其柔性较差, 因此不适于对柔性
0LED进行封装。
为解决上述硬质封装基板不适于对柔性 0LED进行封装的问题, 现有技术中提出了采用阻水性薄膜作为封装层的技术方案。阻水性薄 膜可采用致密的薄膜, 例如: S iOx , 但是致密的薄膜弯曲性差; 或者, 阻水性薄膜可采用弯曲性好的薄膜, 例如: 聚合物膜, 但弯曲性好的 薄膜阻水性差。 因此, 现有技术中为获得具有较好的阻水性和弯曲性 的封装层,通常采用无机材料的薄膜和有机材料的薄膜多层交叠设置 的结构作为封装层。但是此种封装层中的膜层数多且每一层结构均需 要根据材料采用相应的膜制备工艺制成,因此制造封装层的过程中所 需的膜制备工艺种类多、步骤多且制造时间长, 制造过程需要在惰性 保护环境 (例如: 真空或者氮气环境) 中, 且制造过程中需要采用多 种复杂设备。 因而提高了生产成本, 降低了生产效率。 发明内容
本发明提供一种复合膜及其制造方法、 以及包括该复合膜的封 装结构, 用于降低生产成本, 提高生产效率。
为实现上述目的, 本发明提供了一种复合膜, 包括: 至少一个 基质膜, 每个所述基质膜内包括至少一个阻水膜。
可选地, 所述基质膜的数量为多个, 每个所述基质膜内包括多 个阻水膜, 并且相邻的基质膜内的阻水膜交错设置。
可选地, 每个基质膜内的任意相邻阻水膜之间形成有间隔, 每 个所述基质膜内的间隔和与该基质膜相邻的基质膜内的阻水膜相对 设置。
可选地, 同一个基质膜内的多个阻水膜设置于同一平面上。 可选地, 所述基质膜的数量为 2至 4个。
可选地, 所述基质膜的数量为一个, 所述阻水膜的数量为多个, 多个所述阻水膜被设置在多个层内,并且位于相邻层的所述阻水膜交 错设置。
可选地, 每一层内的任意相邻阻水膜之间形成有间隔, 每一层 内的间隔和与该层相邻的层内的阻水膜相对设置。
可选地, 所述基质膜的厚度为 l m至 1000 μ ηι。
可选地, 所述基质膜为柔性膜, 所述阻水膜为刚性膜。
为实现上述目的, 本发明提供了一种封装结构, 包括: 衬底基 板、 0LED和上述复合膜, 所述 0LED位于所述衬底基板上, 所述复合 膜位于所述 0LED上。
为实现上述目的, 本发明提供了一种复合膜的制造方法, 包括 步骤:
形成至少一个基质膜, 且在形成至少一个基质膜的工艺过程中 在所述基质膜内部形成至少一个阻水膜。
可选地, 所述至少一个形成基质膜且在形成至少一个基质膜的 工艺过程中在所述基质膜内部形成至少一个阻水膜的步骤进一步包 括:
a)形成一个基质膜前驱层;
b)在所述基质膜前驱层上形成至少一个阻水膜;
c)在所述阻水膜上形成另一基质膜前驱层; 以及
d)进行固化处理, 以形成一个基质膜。
可选地, 所述方法还包括步骤: 重复所述步骤 a)至 d), 以得到 多个基质膜, 并且将形成的多个基质膜进行贴合处理, 以形成包括层 叠设置的多个基质膜的复合膜, 其中, 相邻两个基质膜中的阻水膜交 错设置。
可选地, 所述形成至少一个基质膜且在形成至少一个基质膜的 工艺过程中在所述基质膜内部形成至少一个阻水膜的步骤进一步包 括:
e)形成一个基质膜前驱层;
f)在所述基质膜前驱层上形成包括至少一个阻水膜的一个阻水 膜的层, 并在所述阻水膜的层上形成另一基质膜前驱层;
重复执行所述步骤 f), 直至形成所需数量的阻水膜的层, 其中, 任一个阻水膜的层内的阻水膜和与该阻水膜的层相邻的阻水膜的层 内的阻水膜交错设置; 以及
对形成的所有基质膜前驱层和阻水膜的层进行固化处理, 以形 成所述基质膜, 从而得到包括一个基质膜的复合膜。
可选地, 所述进行固化处理包括: 通过 UV固化或者热固化的方 式实现固化处理。
本发明具有以下有益效果:
本发明提供的复合膜及其制造方法和封装结构的技术方案中, 复合膜包括基质膜和位于基质膜内部的至少一个阻水膜。采用该复合 膜对 0LED进行封装时可直接将该复合膜设置于 0LED之上。封装工艺 过程中所采用的工艺简单, 工艺步骤少, 工艺时间短, 且所需设备较 为简单, 从而降低了生产成本, 提高了生产效率。 附图说明
图 1为本发明实施例一提供的复合膜的结构示意图;
图 2为本发明实施例一的复合膜中的基质膜的平面示意图; 图 3为本发明实施例二提供的复合膜的结构示意图;
图 4为本发明实施例三提供的封装结构的示意图;
图 5为本发明实施例四的复合膜制造方法的流程图;
图 6a为本发明实施例四的复合膜制造方法中形成一个基质膜前 驱层的示意图;
图 6b为本发明实施例四的复合膜制造方法中形成阻水膜的示意 图;
图 6c为本发明实施例四的复合膜制造方法中形成另一基质膜前 驱层的示意图;
图 6d为本发明实施例四的复合膜制造方法中的固化处理的示意 图;
图 7为本发明实施例五提供的复合膜制造方法的流程图; 图 8a为本发明实施例五的复合膜制造方法中形成一个基质膜前 驱层的示意图;
图 8b为本发明实施例五的复合膜制造方法中形成阻水膜的一个 示例的示意图;
图 8c为本发明实施例五的复合膜制造方法中形成另一基质膜前 驱层的示意图;
图 8d为本发明实施例五的复合膜制造方法中形成其他阻水膜和 基质膜前驱层的示意图;
图 8e为本发明实施例五的复合膜制造方法中的固化处理的示意 图。 具体实施方式
为使本领域的技术人员更好地理解本发明的技术方案, 下面结 合附图对本发明提供的复合膜及其制造方法和封装结构进行详细描 述。 根据本发明的一个方面, 提供了一种复合膜, 其包括至少一个 基质膜, 每个基质膜内包括至少一个阻水膜。
图 1为本发明实施例一提供的复合膜的一个示例结构的示意图。 如图 1所示, 基质膜的数量可以为多个, 即复合膜可以包括层叠设置 的多个基质膜。 优选地, 所述基质膜的数量为 2至 4。 本实施例中, 以基质膜的数量为 3为例进行描述。 3层基质膜分别为基质膜 11、基 质膜 12和基质膜 13。 基质膜 11、 基质膜 12和基质膜 13层叠设置, 其中基质膜 11位于基质膜 12的上方, 并且基质膜 12位于基质膜 13 的上方。
优选地, 基质膜的厚度为 Ιμ ηι至 1000μ ηι。 本实施例中, 基质 膜的厚度采用 l m至 ΙΟΟΟμ ηι, 可有效避免基质膜的厚度太薄而导 致的机械性能差和阻水性差的问题以及避免基质膜的厚度太厚而导 致的弯折性差和透光性差的问题,从而既保证了基质膜具备良好的机 械性能和阻水性能, 又保证了基质膜具备良好的弯折性和透光性。优 选地,每个基质膜的厚度相同。每个基质膜采用相同的厚度便于制造。
优选地, 基质膜为柔性膜, 基质膜的材料可从包括以下材料的 组中选择: 聚亚酰胺、 聚丙烯酸酯、 聚乙烯, 聚丙烯、 基苯乙烯、 聚 对苯二甲酸乙二醇酯、 聚砜醚、 聚对萘二甲酸乙二酯醇、 聚碳酸酯、 聚氯乙烯、聚甲基丙烯酸甲酯、聚对苯二甲酸丁二醇酯和聚对苯二乙 基砜。阻水膜为刚性膜,阻水膜的材料可从包括以下材料的组中选择:
Si0x、 SiNx、 A1203、 Al、 Ag、 金、 超薄玻璃、 金刚石、 石墨烯、 Zn0、 ZrO和 Ti02。 然而, 基质膜和阻水膜的材料不限于上述列举的材料。
每个基质膜内的阻水膜的数量可为多个, 阻水膜能够阻隔水氧 分子。 下面以基质膜 11为例对基质膜内的阻水膜进行说明。 图 2为 基质膜 11的平面示意图, 其中基质膜 11 内的阻水膜的数量为多个。 图 1和图 2中示出了位于基质膜 11 内部的 3个阻水膜 111、 阻水膜 112和阻水膜 113。应当理解的是, 图 2所示的基质膜 11中的阻水膜 的数量仅为示例, 本发明不限于此。 优选地, 同一个基质膜内部的多 个阻水膜设置于同一平面上。 如图 2所示, 基质膜 11 内部的阻水膜 111、 阻水膜 112和阻水膜 113设置于同一平面上。 多个阻水膜位于 同一平面上使得阻水膜的制造过程简单且易于实现。 基质膜 12和基 质膜 13内的阻水膜的结构可参见对基质膜 1 1的描述,此处不再赘述。 优选地, 每个基质膜内的阻水膜以均匀的间隔设置。
优选地, 相邻基质膜内部的阻水膜交错设置。 如图 1和图 2所 示, 基质膜 1 1 内部的阻水膜和基质膜 12内部的阻水膜交错设置, 基 质膜 12和基质膜 13内部的阻水膜交错设置。具体地, 每个基质膜内 部的相邻阻水膜之间形成有间隔,该基质膜内部的相邻阻水膜之间的 间隔与和该基质膜相邻的基质膜内的阻水膜相对设置。由于每个间隔 的横向宽度 (即同一个基质膜内部的任意两个相邻阻水膜之间的距 离)均小于与该间隔相对设置的阻水膜的横向宽度, 因此, 该基质膜 内部的阻水膜之间的间隔被相邻基质膜内的阻水膜覆盖。如图 1和图 2所示, 例如: 基质膜 1 1 内部的阻水膜 1 1 1和阻水膜 1 12之间形成 有间隔 1 14, 间隔 1 14与相邻的基质膜 12内的阻水膜 121相对设置, 使得间隔 1 14 在基质膜 1 1 的底面所在的平面上的投影处于阻水膜 121在基质膜 1 1 的底面所在的平面上的投影的范围内。 由于基质膜 是柔性膜, 而阻水膜是刚性膜, 因此阻水膜之间设置的间隔使得整个 复合膜能够进行一定程度的弯曲, 保证了复合膜具有良好的弯曲性, 从而使得复合膜能够适用于柔性 0LED。 本实施例中, 复合膜的弯曲 性与阻水膜的尺寸和排布位置相关,因此在实际应用中可根据所需的 弯曲性设置阻水膜的尺寸和排布位置。由于水氧分子可透过阻水膜之 间的间隔,因此在本实施例中将一个基质膜内的间隔和与该基质膜相 邻的基质膜内的阻水膜相对设置,以使得透过该基质膜的间隔的水氧 分子受到与该基质膜相邻的基质膜中的阻水膜的阻挡。 具体地, 图 1 中的虚线箭头为水氧分子在复合膜中的渗透路径。水氧分子透过基质 膜 1 1 内部的间隔后被基质膜 12 内部的阻水膜阻挡而延缓了渗透过 程。水氧分子进一步透过基质膜 12内部的间隔后被基质膜 13内的阻 水膜阻挡而进一步延缓了渗透过程。 综上所述, 在本实施例中, 每个 基质膜内的相邻阻水膜之间的间隔均与相邻的基质膜内部的阻水膜 相对设置, 这延长了水氧分子的渗透路径的长度, 由此极大的延缓了 水氧分子的渗透过程, 从而保证了复合膜具有良好的阻水性。 本实施例提供的复合膜包括多个基质膜, 并且每个基质膜内包 括至少一个阻水膜。 采用该复合膜对 0LED进行封装时可直接将该复 合膜设置于 0LED之上。 封装工艺过程中所采用的工艺简单, 工艺步 骤少, 工艺时间短, 且所需设备较为简单, 从而降低了生产成本, 提 高了生产效率。
图 3为本发明实施例二提供的复合膜的一个示例结构的示意图。 如图 3所示, 该复合膜包括一个基质膜 31, 并且该基质膜 31 内包括 至少一个阻水膜 31 1-319。
在本实施例中, 基质膜 31的数量为一个。 优选地, 基质膜的厚 度为 Ι μ ηι至 1000 μ ηι。本实施例中, 基质膜的厚度采用 Ι μ ηι至 1000 μ m, 可有效避免基质膜的厚度太薄而导致的机械性能差和阻水性差 的问题以及避免基质膜的厚度太厚而导致的弯折性差和透光性差的 问题, 从而既保证了基质膜具备良好的机械性能和阻水性能, 又保证 了基质膜具备良好的弯折性和透光性。
优选地, 基质膜为柔性膜, 基质膜的材料可从包括以下材料的 组中选择: 聚亚酰胺、 聚丙烯酸酯、 聚乙烯, 聚丙烯、 基苯乙烯、 聚 对苯二甲酸乙二醇酯、 聚砜醚、 聚对萘二甲酸乙二酯醇、 聚碳酸酯、 聚氯乙烯、聚甲基丙烯酸甲酯、聚对苯二甲酸丁二醇酯和聚对苯二乙 基砜。阻水膜为刚性膜,阻水膜的材料可从包括以下材料的组中选择: S i0x、 S iNx、 A1203、 Al、 Ag、 金、 超薄玻璃、 金刚石、 石墨烯、 Zn0、
ZrO和 Ti02。 然而, 基质膜和阻水膜的材料不限于上述列举的材料。
阻水膜的数量为多个, 阻水膜能够阻隔水氧分子。 多个阻水膜 分层设置。 本实施例中, 以基质膜 31 内部设置 3层阻水膜为例进行 描述。 如图 3所示, 位于第一层的阻水膜包括: 阻水膜 31 1、 阻水膜 312和阻水膜 313, 位于第二层的阻水膜包括: 阻水膜 314、 阻水膜
315和阻水膜 316, 位于第三层的阻水膜包括: 阻水膜 317、 阻水膜 318和阻水膜 319。 优选地, 位于同一层的多个阻水膜设置于同一平 面上。 优选地, 阻水膜以均匀的间隔设置。
优选地, 相邻层中的阻水膜交错设置。 如图 3 所示, 位于第一 层的阻水膜和位于第二层的阻水膜交错设置,位于第二层的阻水膜和 位于第三层的阻水膜交错设置。具体地, 同一层的相邻阻水膜之间形 成有间隔,一层中的相邻阻水膜之间的间隔和与该层相邻的层中的阻 水膜相对设置。 由于每个间隔的横向宽度(即同一层中的任意两个相 邻阻水膜之间的距离) 均小于与该间隔相对设置的阻水膜的横向宽 度, 因此, 该层中的阻水膜之间的间隔被相邻层中的阻水膜覆盖。 如 图 3所示, 例如: 位于第一层的阻水膜 31 1和阻水膜 312之间形成有 间隔 320, 间隔 320与第二层的阻水膜 314相对设置, 使得间隔 320 在基质膜 31的底面所在的平面上的投影处于阻水膜 314在基质膜 31 的底面所在的平面上的投影的范围内。 由于基质膜是柔性膜, 而阻水 膜是刚性膜,因此阻水膜之间设置的间隔使得整个复合膜能够进行一 定程度的弯曲, 保证了复合膜具有良好的弯曲性, 从而使得复合膜能 够适用于柔性 0LED。 本实施例中, 复合膜的弯曲性与阻水膜的尺寸 和排布位置相关,因此在实际应用中可根据所需的弯曲性设置阻水膜 的尺寸和排布位置。水氧分子可透过阻水膜之间的间隔, 因此在本实 施例中,将一个层中的相邻阻水膜之间的间隔和与该层相邻的层中的 阻水膜相对设置,以使得透过该层中的间隔的水氧分子受到与该层相 邻的层中的阻水膜的阻挡。具体地, 图 3中的虚线箭头为水氧分子在 复合膜中的渗透路径。水氧分子透过位于第一层的阻水膜之间的间隔 后被位于第二层阻水膜阻挡而延缓了渗透过程。水氧分子进一步透过 位于第二层的阻水膜之间的间隔后被位于第三层的阻水膜阻挡而进 一步延缓了渗透过程。 综上所述, 在本实施例中, 一层中的相邻阻水 膜之间的间隔和与该层相邻的层中的阻水膜相对设置,这延长了水氧 分子的渗透路径的长度, 由此极大的延缓了水氧分子的渗透过程, 从 而保证了复合膜具有良好的阻水性。
本实施例提供的复合膜包括基质膜和位于基质膜内部的至少一 个阻水膜。 采用该复合膜对 0LED进行封装时可直接将该复合膜设置 于 0LED之上。 封装工艺过程中所采用的工艺简单, 工艺步骤少, 工 艺时间短, 且所需设备较为简单, 从而降低了生产成本, 提高了生产 效率。
图 4为本发明实施例三提供的封装结构的示意图。 如图 4所示, 该封装结构包括: 衬底基板 1、 0LED 2和复合膜 3, 0LED 2位于衬底 基板 1上, 复合膜 3位于 0LED 2上。 其中, 复合膜 3可采用上述实 施例一或者实施例二中所述的复合膜, 此处不再详细描述。
复合膜 3能够对 0LED 2起到阻水的作用。 可选地, 复合膜 3覆 盖整个衬底基板 1。
可选地, 该封装结构还可包括: 缓冲层 4, 该缓冲层 4位于 0LED 2和复合膜 3之间, 且该缓冲层 4覆盖整个衬底基板 1。
本实施例提供的封装结构中, 复合膜包括基质膜和位于基质膜 内部的至少一个阻水膜。 采用该复合膜对 0LED进行封装时可直接将 该复合膜设置于 0LED之上。 封装工艺过程中所采用的工艺简单, 工 艺步骤少,工艺时间短,且所需设备较为简单,从而降低了生产成本, 提高了生产效率。
根据本发明的另一方面, 提供了一种复合膜的制造方法, 该方 法包括步骤: 形成基质膜, 且在形成基质膜的工艺过程中在基质膜内 部形成至少一个阻水膜。
本发明提供的复合膜的制造方法制成的复合膜包括基质膜, 并 且在该基质膜内形成了至少一个阻水膜。 采用该复合膜对 0LED进行 封装时可直接将该复合膜设置于 0LED之上。 封装工艺过程中所采用 的工艺简单, 工艺步骤少, 工艺时间短, 且所需设备较为简单, 从而 降低了生产成本, 提高了生产效率。
图 5为本发明实施例四的复合膜制造方法的流程图, 如图 5所 示, 该方法包括:
步骤 101、 形成一基质膜前驱层。
图 6a为本发明实施例四的复合膜制造方法中形成一个基质膜前 驱层的示意图。 如图 6a所示, 通过旋涂、 刮涂或者喷涂形成一层基 质膜前驱层 61。 基质膜前驱层 61可以由柔性材料形成。
步骤 102、 在基质膜前驱层上形成至少一个阻水膜。
图 6b为本发明实施例四的复合膜制造方法中形成阻水膜的示意 图, 如图 6b所示, 通过放置、 物理沉积或者化学沉积在基质膜前驱 层 61上形成阻水膜 62。 阻水膜 62可以为多个, 并且相邻两个阻水 膜 62之间可以具有间隔。优选地, 相邻两个阻水膜 62之间的间隔可 以具有相等的尺寸 (即图 6b中所示的水平方向上的长度) 。 阻水膜 62可以由刚性材料形成。
步骤 103、 在阻水膜上形成另一基质膜前驱层。
图 6c为本发明实施例四的复合膜制造方法中形成另一基质膜前 驱层的示意图。 如图 6c所示, 通过旋涂、 刮涂或者喷涂在阻水膜 62 上形成一层基质膜前驱层 63。 同样地, 基质膜前驱层 63可以由柔性 材料形成。 经过步骤 103之后, 得到包括基质膜前驱层 61、 基质膜 前驱层 63以及夹在它们之间的多个阻水膜 62的层叠结构。
步骤 104、对通过步骤 103得到的结构进行固化处理, 以形成基 质膜。
图 6d为本发明实施例四的复合膜制造方法中的固化处理的示意 图, 如图 6d所示, 通过 UV 固化或者热固化的方式对通过步骤 103 得到的结构进行固化处理, 以形成基质膜 64。
步骤 105、 重复执行步骤 101至步骤 104, 制备出多个基质膜。 步骤 106、 将形成的多个基质膜进行贴合处理。
具体地, 可通过贴附设备对形成的多个基质膜进行贴合处理, 以形成复合膜, 其中, 相邻两个基质膜中的阻水膜交错设置。 gp, 一 个基质膜中的各阻水膜被设置为与同该基质膜相邻的基质膜中包括 的各间隔相对。
本实施例提供的复合膜的制造方法可用于制造上述实施例一所 述的复合膜,因此对于基质膜和阻水膜的具体描述可参见上述实施例 一, 此处不再赘述。
本实施例提供的复合膜的制造方法制成的复合膜包括基质膜和 位于基质膜内部的至少一个阻水膜。 采用该复合膜对 0LED进行封装 时可直接将该复合膜设置于 0LED之上。 封装工艺过程中所采用的工 艺简单, 工艺步骤少, 工艺时间短, 且所需设备较为简单, 从而降低 了生产成本, 提高了生产效率。
图 7为本发明实施例五提供的复合膜制造方法的流程图,如图 7 所示, 该方法包括: 步骤 201、 形成一基质膜前驱层。
图 8a为本发明实施例五的复合膜制造方法中形成一个基质膜前 驱层的示意图, 如图 8a所示, 通过旋涂、 刮涂或者喷涂形成一层基 质膜前驱层 81。 基质膜前驱层 81可以由柔性材料形成。
步骤 202、 在基质膜前驱层上形成至少一个阻水膜。
图 8b为本发明实施例五的复合膜制造方法中形成阻水膜的示意 图, 如图 8b所示, 通过放置、 物理沉积或者化学沉积在基质膜前驱 层 81上形成一层阻水膜 82。 阻水膜 82可以为多个, 并且相邻两个 阻水膜 82之间可以具有间隔。优选地, 相邻两个阻水膜 82之间的间 隔可以具有相等的尺寸 (即图 6b中所示的水平方向上的长度) 。 阻 水膜 82可以由刚性材料形成。
步骤 203、 在阻水膜上形成另一基质膜前驱层。
图 8c为本发明实施例五的复合膜制造方法中形成另一基质膜前 驱层的示意图, 如图 8c所示, 通过旋涂、 刮涂或者喷涂在阻水膜 82 上形成一层基质膜前驱层 83。 同样地, 基质膜前驱层 83可以由柔性 材料形成。
步骤 204、 重复执行步骤 202和步骤 203, 直至形成所需层数的 阻水膜。
在本实施例中以形成三层阻水膜为例进行说明。 图 8d为实施例 五中形成三层阻水膜和基质膜前驱层的示意图。 如图 8d所示, 通过 放置、 物理沉积或者化学沉积在基质膜前驱层 83上形成多个阻水膜 84, 使得相邻两个阻水膜 84之间的间隔与通过步骤 202形成的各阻 水膜 82相对地设置,从而前一层中的阻水膜 82与后一层中的阻水膜 84 被形成为交错设置。 然后, 类似地, 通过旋涂、 刮涂或者喷涂在 阻水膜 84上形成一层基质膜前驱层 85, 并且通过放置、 物理沉积或 者化学沉积在基质膜前驱层 85上形成阻水膜 86, 使得相邻两个阻水 膜 86之间的间隔与各阻水膜 84相对地设置。 随后, 通过旋涂、 刮涂 或者喷涂在阻水膜 86上形成一层基质膜前驱层 87。 因此, 形成了包 括顺序设置的基质膜前驱层 81、第一层阻水膜 82、基质膜前驱层 83、 第二层阻水膜 84、基质膜前驱层 85、第三层阻水膜 86以及基质膜前 驱层 87的层叠结构。
步骤 205、对通过步骤 204得到的结构进行固化处理, 以形成基 质膜。
图 8e为本发明实施例五的复合膜制造方法中的固化处理的示意 图。 如图 8e 所示, 通过 UV 固化或者热固化的方式对通过步骤 204 得到的结构进行固化处理, 以形成基质膜 8, 其中, 相邻两层中的阻 水膜交错设置。 即, 一层中的各阻水膜被设置为与同该层相邻的层中 包含的间隔相对。
采用本实施例提供的复合膜的制造方法制成的复合膜中, 包括 一个基质膜和多个阻水膜, 且多个阻水膜分层设置。
本实施例提供的复合膜的制造方法可用于制造上述实施例二所 述的复合膜,因此对于基质膜和阻水膜的具体描述可参见上述实施例 二, 此处不再赘述。
本实施例提供的复合膜的制造方法制成的复合膜包括基质膜和 位于基质膜内部的至少一个阻水膜。 采用该复合膜对 0LED进行封装 时可直接将该复合膜设置于 0LED之上。 封装工艺过程中所采用的工 艺简单, 工艺步骤少, 工艺时间短, 且所需设备较为简单, 从而降低 了生产成本, 提高了生产效率。
可以理解的是, 以上实施方式仅仅是为了说明本发明的原理而 采用的示例性实施方式, 然而本发明并不局限于此。对于本领域内的 普通技术人员而言, 在不脱离本发明的精神和实质的情况下, 可以做 出各种变型和改进, 这些变型和改进也视为本发明的保护范围。

Claims

权利要求
1. 一种复合膜, 其特征在于, 包括: 至少一个基质膜, 每个所 述基质膜内包括至少一个阻水膜。
2. 根据权利要求 1所述的复合膜, 其特征在于, 所述基质膜的 数量为多个, 每个所述基质膜内包括多个阻水膜, 并且相邻的基质膜 内的阻水膜交错设置。
3. 根据权利要求 2所述的复合膜, 其特征在于, 每个所述基质 膜内的任意相邻阻水膜之间形成有间隔,每个所述基质膜内的间隔和 与该基质膜相邻的基质膜内的阻水膜相对设置。
4. 根据权利要求 2或 3所述的复合膜, 其特征在于, 同一个基 质膜内的多个阻水膜设置于同一平面上。
5. 根据权利要求 2或 3所述的复合膜, 其特征在于, 所述基质 膜的数量为 2至 4个。
6. 根据权利要求 1所述的复合膜, 其特征在于, 所述基质膜的 数量为一个, 所述阻水膜的数量为多个, 多个所述阻水膜被设置在多 个层内, 并且位于相邻层的所述阻水膜交错设置。
7. 根据权利要求 6所述的复合膜, 其特征在于, 每一层内的任 意相邻阻水膜之间形成有间隔,每一层内的所述间隔和与该层相邻的 层内的阻水膜相对设置。
8. 根据权利要求 1至 7任一所述的复合膜, 其特征在于, 所述 基质膜的厚度为 l m至 1000 μ ηι。
9. 根据权利要求 1至 7任一所述的复合膜, 其特征在于, 所述 基质膜为柔性膜, 所述阻水膜为刚性膜。
10. 一种封装结构, 其特征在于, 包括: 衬底基板、 有机发光 二极管和根据上述权利要求 1至 8任一所述的复合膜,所述有机发光 二极管位于所述衬底基板上, 所述复合膜位于所述有机发光二极管 上。
1 1. 一种复合膜的制造方法, 其特征在于, 包括步骤: 形成至少一个基质膜, 且在形成至少一个基质膜的工艺过程中 在所述基质膜内部形成至少一个阻水膜。
12. 根据权利要求 1 1所述的复合膜的制造方法, 其特征在于, 所述形成至少一个基质膜且在形成至少一个基质膜的工艺过程中在 所述基质膜内部形成至少一个阻水膜的步骤进一步包括:
a)形成一个基质膜前驱层;
b)在所述基质膜前驱层上形成至少一个阻水膜;
c)在所述阻水膜上形成另一基质膜前驱层; 以及
d)进行固化处理, 以形成一个基质膜。
13. 根据权利要求 12所述的复合膜的制造方法, 其特征在于, 所述方法还包括步骤:
重复所述步骤 a)至 d), 以得到多个基质膜, 并且将形成的多个 基质膜进行贴合处理, 以形成包括层叠设置的多个基质膜的复合膜, 其中, 相邻两个基质膜中的阻水膜交错设置。
14. 根据权利要求 1 1所述的复合膜的制造方法, 其特征在于, 所述形成至少一个基质膜且在形成至少一个基质膜的工艺过程中在 所述基质膜内部形成至少一个阻水膜的步骤进一步包括:
e)形成一个基质膜前驱层; f)在所述基质膜前驱层上形成包括至少一个阻水膜的一个阻水 膜的层, 并在所述阻水膜的层上形成另一基质膜前驱层;
重复执行所述步骤 f), 直至形成所需数量的阻水膜的层, 其中, 任一个阻水膜的层内的阻水膜和与该阻水膜的层相邻的阻水膜的层 内的阻水膜交错设置; 以及
对形成的所有基质膜前驱层和阻水膜的层进行固化处理, 以形 成所述基质膜, 从而得到包括一个基质膜的复合膜。
15. 根据权利要求 12至 14任一所述的复合膜的制造方法, 其 特征在于, 所述进行固化处理包括: 通过 UV固化或者热固化的方式 实现固化处理。
PCT/CN2014/080478 2013-10-31 2014-06-23 复合膜及其制造方法以及包括该复合膜的封装结构 WO2015062288A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/421,533 US20160036001A1 (en) 2013-10-31 2014-06-23 Composite film and manufacturing method thereof, and encapsulation structure including the composite film
US16/987,610 US20200365830A1 (en) 2013-10-31 2020-08-07 Composite film and manufacturing method thereof, and encapsulation structure including the composite film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310529205.4A CN103647025A (zh) 2013-10-31 2013-10-31 复合膜及其制造方法和封装结构
CN201310529205.4 2013-10-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/421,533 A-371-Of-International US20160036001A1 (en) 2013-10-31 2014-06-23 Composite film and manufacturing method thereof, and encapsulation structure including the composite film
US16/987,610 Division US20200365830A1 (en) 2013-10-31 2020-08-07 Composite film and manufacturing method thereof, and encapsulation structure including the composite film

Publications (1)

Publication Number Publication Date
WO2015062288A1 true WO2015062288A1 (zh) 2015-05-07

Family

ID=50252217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/080478 WO2015062288A1 (zh) 2013-10-31 2014-06-23 复合膜及其制造方法以及包括该复合膜的封装结构

Country Status (3)

Country Link
US (2) US20160036001A1 (zh)
CN (2) CN107910451A (zh)
WO (1) WO2015062288A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107910451A (zh) * 2013-10-31 2018-04-13 京东方科技集团股份有限公司 复合膜及其制造方法和封装结构
CN104347820A (zh) * 2014-10-10 2015-02-11 信利(惠州)智能显示有限公司 Amoled器件及制备方法
CN105990531A (zh) * 2015-02-16 2016-10-05 上海和辉光电有限公司 Oled的封装材料结构层及其布局方法
CN114714646A (zh) * 2021-01-04 2022-07-08 洛阳兴瑞新材料科技有限公司 一种印刷光油复合膜的生产方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020140347A1 (en) * 2001-03-29 2002-10-03 Weaver Michael Stuart Methods and structures for reducing lateral diffusion through cooperative barrier layers
CN1524301A (zh) * 2001-07-06 2004-08-25 ��˹��ŵ�� 用于有机发光装置的透明载体
US20070184292A1 (en) * 2006-02-03 2007-08-09 Samsung Electronics Co., Ltd Flat panel display device and manufacturing method for the same
US7781034B2 (en) * 2004-05-04 2010-08-24 Sigma Laboratories Of Arizona, Llc Composite modular barrier structures and packages
CN202523728U (zh) * 2012-01-12 2012-11-07 乐金华奥斯(天津)有限公司 太阳能电池背板膜及太阳能电池模块
CN103647025A (zh) * 2013-10-31 2014-03-19 京东方科技集团股份有限公司 复合膜及其制造方法和封装结构

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1176565C (zh) * 2002-11-25 2004-11-17 清华大学 一种有机电致发光器件的封装层及其制备方法和应用
DE602006007015D1 (de) * 2005-08-19 2009-07-09 Cryovac Inc Folie, umfassend aus phospholipid-interkaliertem schichtsilikat exfolierte silikatplättchen
US8673070B2 (en) * 2008-08-29 2014-03-18 National Institute Of Advanced Industrial Science And Technology Process for producing silicon oxide thin film or silicon oxynitride compound thin film and thin film obtained by the process
US8097297B2 (en) * 2010-01-15 2012-01-17 Korea Advanced Institute Of Science And Technology (Kaist) Method of manufacturing flexible display substrate having reduced moisture and reduced oxygen permeability
TWI429526B (zh) * 2011-12-15 2014-03-11 Ind Tech Res Inst 水氣阻障複合膜及封裝結構
CN102593371A (zh) * 2012-03-16 2012-07-18 四川长虹电器股份有限公司 有机电致发光器件的封装结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020140347A1 (en) * 2001-03-29 2002-10-03 Weaver Michael Stuart Methods and structures for reducing lateral diffusion through cooperative barrier layers
CN1524301A (zh) * 2001-07-06 2004-08-25 ��˹��ŵ�� 用于有机发光装置的透明载体
US7781034B2 (en) * 2004-05-04 2010-08-24 Sigma Laboratories Of Arizona, Llc Composite modular barrier structures and packages
US20070184292A1 (en) * 2006-02-03 2007-08-09 Samsung Electronics Co., Ltd Flat panel display device and manufacturing method for the same
CN202523728U (zh) * 2012-01-12 2012-11-07 乐金华奥斯(天津)有限公司 太阳能电池背板膜及太阳能电池模块
CN103647025A (zh) * 2013-10-31 2014-03-19 京东方科技集团股份有限公司 复合膜及其制造方法和封装结构

Also Published As

Publication number Publication date
US20200365830A1 (en) 2020-11-19
US20160036001A1 (en) 2016-02-04
CN103647025A (zh) 2014-03-19
CN107910451A (zh) 2018-04-13

Similar Documents

Publication Publication Date Title
KR102290118B1 (ko) Oled 디스플레이 및 그 제작 방법
CN107958924B (zh) 具有柔性基板的有机发光显示装置
EP3340330B1 (en) Organic light-emitting diode device, manufacturing method, and display apparatus
TWI627742B (zh) 有機發光二極體顯示器,包含彼之電子裝置,以及製造該有機發光二極體顯示器之方法
WO2015089998A1 (zh) Oled用薄膜封装结构、oled器件以及显示装置
US20200365830A1 (en) Composite film and manufacturing method thereof, and encapsulation structure including the composite film
WO2018086191A1 (zh) Oled显示器及其制作方法
KR102159792B1 (ko) 가요성 표시 장치 및 그 제조 방법
TWI610433B (zh) 平板顯示器及其可撓性基板和製作方法
WO2019104838A1 (zh) 显示面板及其制作方法
TWI610431B (zh) 柔性封裝襯底及其製造方法和使用該襯底的oled封裝方法
JP2009003434A5 (zh)
WO2014101814A1 (zh) 一种柔性衬底
US10734607B2 (en) Organic light emitting diode display panel and method for encapsulating same
WO2021012547A1 (zh) 柔性oled显示面板及其制作方法
TW201113147A (en) Process for producing flexible glass substrate, and flexible glass substrate
KR102116035B1 (ko) 유기 발광 표시 장치 제조 방법
TWI262036B (en) Method for producing flexible organic electro-luminescent faceplate and display module thereof
JP2017529572A (ja) 基板レスフレキシブルディスプレイおよびその製造方法
WO2020029351A1 (zh) 一种复合膜层及制作方法、oled显示面板的制作方法
KR101261456B1 (ko) 보호막 및 이를 포함하는 전자 소자
WO2015043064A1 (zh) 显示面板、显示装置及显示面板的制作方法
WO2021031322A1 (zh) Oled显示面板及其制备方法
WO2017033823A1 (ja) 電子装置
WO2016177267A1 (zh) 封装胶、封装方法、显示面板及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14421533

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14859245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 07.07.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14859245

Country of ref document: EP

Kind code of ref document: A1