WO2019041124A1 - 一种电极材料的制备方法 - Google Patents

一种电极材料的制备方法 Download PDF

Info

Publication number
WO2019041124A1
WO2019041124A1 PCT/CN2017/099440 CN2017099440W WO2019041124A1 WO 2019041124 A1 WO2019041124 A1 WO 2019041124A1 CN 2017099440 W CN2017099440 W CN 2017099440W WO 2019041124 A1 WO2019041124 A1 WO 2019041124A1
Authority
WO
WIPO (PCT)
Prior art keywords
nano
magnesium
polyacrylonitrile
hours
heat
Prior art date
Application number
PCT/CN2017/099440
Other languages
English (en)
French (fr)
Inventor
韩雨来
孙茜
阮双琛
韩培刚
Original Assignee
深圳技术大学筹备办公室
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳技术大学筹备办公室 filed Critical 深圳技术大学筹备办公室
Priority to PCT/CN2017/099440 priority Critical patent/WO2019041124A1/zh
Publication of WO2019041124A1 publication Critical patent/WO2019041124A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes

Definitions

  • the invention belongs to the technical field of batteries, and in particular relates to a method for preparing an electrode material.
  • the key to improving the performance of supercapacitors is the optimization of electrode materials.
  • carbon materials frequently used in the prior art include activated carbon, carbon fibers, carbon nanotubes, graphene, and the like.
  • the electrical conductivity and specific surface area of the existing carbon materials for electrodes are low, and the pore size distribution is not uniform, resulting in further improvement of the performance of the supercapacitor.
  • the existing nanoporous carbon materials have the problems of complicated preparation process, long preparation time and high cost, which restricts their application as electrode materials in supercapacitors.
  • the invention provides a preparation method of an electrode material, which aims to solve the problem that the electrical conductivity and specific surface area of the existing carbon material for electrodes are low, and the pore size distribution is not uniform, which leads to further improvement of the performance of the supercapacitor.
  • the preparation process is complicated, the preparation time is long, and the cost is high, which restricts the application of the electrode material as an electrode material in the supercapacitor.
  • the invention provides a method for preparing an electrode, comprising:
  • the heat-treated raw silk is heated in a nitrogen atmosphere at 800-1000 ° C for 3 to 5 hours, and then washed and dried to obtain an in-situ nitrogen-doped carbon fiber/magnesia composite material, and the obtained composite material is subjected to acid treatment.
  • In situ nitrogen-doped porous nano carbon fiber electrode material
  • the nano material is at least one of nano magnesium hydroxide, nano zinc hydroxide, nano zinc carbonate, nano magnesium carbonate, nano strontium carbonate and nano calcium carbonate, the quality of the nano material in the dispersion The fraction is 5 to 15%, and the weight average molecular weight of the polyacrylonitrile is 75,000 to 90,000.
  • the invention provides a method for preparing an electrode material, and a nano-scale porous material can be obtained by adding a nano-inorganic material during the preparation process.
  • a nano-inorganic material can be controlled, the specific surface area of the material is greatly improved, and the electrical conductivity of the material is improved.
  • Polyacrylonitrile is added during the preparation to obtain an in-situ nitrogen-doped material, and the electrochemical properties of the material can be improved due to the presence of a lone pair of electrons in the material.
  • the preparation process of the material is simple, the time is short, and the raw material is cheap.
  • the material is used as an electrode material of a super capacitor, and the electrochemical performance of the super capacitor can be improved.
  • 1(a) and 1(b) are scanning electron micrographs of a nanometer magnesium hydroxide material prepared according to an embodiment of the present invention
  • FIG. 2 is an X-ray diffraction diagram of a nanometer magnesium hydroxide material prepared according to an embodiment of the present invention
  • FIG. 3 is a scanning electron micrograph of a strand obtained by electrospinning according to an embodiment of the present invention.
  • FIG. 4 is a scanning electron micrograph of an in-situ nitrogen-doped porous carbon fiber material prepared in an embodiment of the present invention.
  • the invention provides a method for preparing an electrode material, the method comprising:
  • the heat-treated raw silk is heated in a nitrogen atmosphere at 800 to 1000 ° C for 3 to 5 hours, and is washed and dried to obtain an electrode of an in-situ nitrogen-doped carbon fiber/magnesia composite material; the obtained composite material is used as an acid.
  • the in-situ nitrogen-doped porous nano carbon fiber electrode material is obtained by treatment.
  • the nano material is at least one of nano magnesium hydroxide, nano zinc hydroxide, nano zinc carbonate, nano magnesium carbonate, nano strontium carbonate and nano calcium carbonate, and the mass fraction of the nano material in the dispersion is 5 to 15%.
  • the polyacrylonitrile has a weight average molecular weight of 75,000 to 90,000.
  • the electrode material preparation method provided by the present invention in the preparation process, the nanometer magnesium hydroxide material, as shown in FIG. 1(a) and FIG. 1(b), FIG. 2, FIG. 1(a) and FIG. 1(b) respectively
  • FIG. 2 is an X-ray diffraction diagram of a nanometer magnesium hydroxide material.
  • the material shown in Fig. 1(a) and Fig. 1(b) and Fig. 2 is nanometer-sized magnesium hydroxide particles, and a nanoporous material can be finally obtained by adding a nanometer magnesium hydroxide material during preparation.
  • the number of nanopores in the material can be controlled, the specific surface area of the material is greatly improved, and the electrical conductivity of the material is improved.
  • the mass fraction of the nanometer magnesium hydroxide material is larger. The larger the number of nanopores, the higher the specific surface area.
  • Polyacrylonitrile is added during the preparation to obtain an in-situ nitrogen-doped material, and the electrochemical properties of the material can be improved due to the presence of a lone pair of electrons in the material. As shown in FIG. 4, FIG. 4 shows a scanning electron micrograph of the prepared in-situ nitrogen-doped porous carbon fiber material.
  • the prepared in-situ nitrogen-doped porous carbon fiber material was electrochemically tested at a current density of 1.0.
  • the specific capacitance of the material can be as high as 327.3F/g, and after 10,000 charge and discharge cycles, there is only 7% loss, and the material exhibits high cycle stability.
  • the preparation process of the material is simple, the time is short, and the raw materials are cheap.
  • the material is used as an electrode material of the supercapacitor, and the electrochemical performance of the supercapacitor can be remarkably improved.
  • a method of preparing nanometer magnesium hydroxide includes:
  • the alkaline solution is slowly added dropwise to the magnesium salt solution to carry out the reaction, and the obtained turbid solution is heated in a water bath, stirred, refluxed, cooled to room temperature, and centrifuged to obtain a nanometer magnesium hydroxide material.
  • the water-soluble magnesium salt may be a magnesium salt such as magnesium sulfate, magnesium chloride or magnesium nitrate.
  • the basic compound may be potassium hydroxide, sodium hydroxide, sodium hydrogencarbonate, potassium hydrogencarbonate or the like.
  • the nanometer magnesium hydroxide material comprises 10% of the mass fraction of the dispersion.
  • the larger the mass fraction of nanometer magnesium hydroxide the larger the specific surface area of the in situ nitrogen-doped porous carbon fiber material.
  • the polyacrylonitrile had a weight average molecular weight of 85,000. After adding polyacrylonitrile to the dispersion, it was heated at 70 ° C for 2 hours to obtain a mixed mucilage. The heat treatment temperature was 280 ° C, and the heat treatment time was 1 hour.
  • the electrospinning process parameters are: the electrospinning temperature is 25 ° C, the electrospinning voltage is 11 to 15 kV, and the humidity is 30 to 50%. Preferably, the electrospinning voltage is 12 kV and the humidity is 40%. Among them, the higher the voltage of the electrospinning, the finer the diameter of the spun yarn.
  • the diameter of the spun filament can be controlled by controlling the voltage of the electrospinning.
  • the heat treatment temperature is 270 to 280 ° C, and the heat treatment time is 1 hour.
  • the heating temperature of the heat-treated raw yarn was 900 ° C, and the heating time was 4 hours.
  • the washed material is dried at 50 to 70 °C.
  • the heat treated raw silk is heated in a nitrogen atmosphere at 900 ° C for 4 hours, and the heated material is immersed in hydrochloric acid, and washed with deionized water, and the washed material is dried at 60 ° C to obtain the original.
  • a nitrogen-doped porous carbon fiber electrode material is
  • the heat treated raw silk is heated in a nitrogen atmosphere at 900 ° C for 4 hours, and the heated material is immersed in hydrochloric acid, and washed with deionized water, and the washed material is dried at 60 ° C to obtain the original.
  • a nitrogen-doped porous carbon fiber electrode material is
  • the heat-treated raw silk is heated in a nitrogen atmosphere at 900 ° C for 4 hours, and the heated material is immersed in hydrochloric acid, washed with deionized water, and the washed material is dried at 60 ° C to obtain a porous body. Carbon fiber electrode material.

Abstract

一种电极材料的制备方法,涉及电池技术领域。该方法包括:将纳米无机材料分散于N,N-二甲基甲酰胺中,得到分散液,再加入聚丙烯腈,并在70℃下加热1小时,得到混合粘液,所得混合粘液中聚丙烯腈的质量分数为15%,对混合粘液进行静电纺丝,并将得到的原丝在空气氛围、250℃的条件下热处理0.5小时,将热处理后的原丝在氮气气氛、800℃的条件下加热3小时,并进行清洗、烘干得到原位氮掺杂碳纤维/氧化镁复合材料,将所得复合材料作酸处理,可得到原位氮掺杂的纳米多孔碳纤维电极材料。上述方法工艺简单,制备过程环保,原料廉价,通过加入纳米材料可以提高材料的比表面积,以及加入聚丙烯腈得到原位氮掺杂材料可以提高材料的电化学性能。

Description

一种电极材料的制备方法 技术领域
本发明属于电池技术领域,尤其涉及一种电极材料的制备方法。
背景技术
超级电容器由于其较高的能量密度、快充放电速率及较好的循环稳定性,作为电化学储能器件引起了极大的关注。
提升超级电容器性能的关键是对电极材料的优化。目前,现有技术中,经常使用的碳材料包括活性炭、碳纤维、碳纳米管和石墨烯等。但是现有的电极用碳材料的电导率和比表面积偏低,且孔径分布不均匀,导致超级电容器的性能有待进一步提升。另外,由于现有的纳米多孔碳材料尚有制备工艺复杂,制备时间较长,成本较高的问题,这些都制约着其作为电极材料在超级电容器上的应用。
技术问题
本发明提供一种电极材料的制备方法,旨在解决现有的电极用碳材料的电导率和比表面积偏低,且孔径分布不均匀,导致超级电容器的性能有待进一步提高的问题。以及由于现有的纳米多孔碳材料还有制备工艺复杂,制备时间较长,成本较高等制约着其作为电极材料在超级电容器应用的问题。
技术解决方案
本发明提供一种电极的制备方法,包括:
将纳米材料分散于N,N-二甲基甲酰胺中,得到分散液,再加入聚丙烯腈,在50~80℃下加热1~4小时,得到混合粘液,所得混合粘液中聚丙烯腈的质量分数为5-15%;
对所述混合粘液进行静电纺丝,并将得到的原丝在空气氛围、250~300℃的条件下热处理0.5~2小时;
将热处理后的原丝在氮气气氛、800~1000℃的条件下加热3~5小时,并进行清洗、烘干得到原位氮掺杂碳纤维/氧化镁复合材料将所得复合材料作酸处理,得到原位氮掺杂多孔纳米碳纤维电极材料;
其中,所述纳米材料为纳米氢氧化镁、纳米氢氧化锌、纳米碳酸锌、纳米碳酸镁、纳米碳酸钡和纳米碳酸钙中的至少一种,所述纳米材料在所述分散液中的质量分数为5~15%,所述聚丙烯腈的重均分子量为75000~90000。
有益效果
本发明提供的一种电极材料的制备方法,在制备过程中加入纳米无机材料可以得到纳米级的多孔材料。如此,通过控制纳米无机材料的加入量可以控制材料中纳米孔数量,极大提高了材料的比表面积,提高了材料的电导率。在制备过程中加入聚丙烯腈,得到原位氮掺杂材料,由于该材料中存在氮的孤对电子,可以提高材料的电化学性能。此外,该材料的制备过程简单,时间短,原料便宜,将该材料用作超级电容的电极材料,可以提高超级电容的电化学性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例。
图1(a)和图1(b)是本发明实施例制备得到的纳米氢氧化镁材料的扫描电镜图;
图2是本发明实施例制备得到的纳米氢氧化镁材料X射线衍射图;
图3是本发明实施例静电纺丝得到的原丝的扫描电镜图;
图4是本发明实施例制备得到的原位氮掺杂多孔碳纤维材料的扫描电镜图。
本发明的实施方式
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而非全部实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供一种电极材料的制备方法,该方法包括:
将含镁离子的溶液与含氢氧根离子的溶液混合,过滤、分离,得到纳米氢氧化镁材料;
将纳米材料分散于N,N-二甲基甲酰胺中,得到分散液,再加入聚丙烯腈,在50~80℃下加热1~4小时,得到混合粘液,所得混合粘液中聚丙烯腈的质量分数为5-15%;
对混合粘液进行静电纺丝,并将得到的原丝在空气氛围、250~300℃的条件下热处理0.5~2小时;
将热处理后的原丝在氮气气氛、800~1000℃的条件下加热3~5小时,并进行清洗、烘干得到原位氮掺杂碳纤维/氧化镁复合材料的电极;将所得复合材料作酸处理,得到原位氮掺杂多孔纳米碳纤维电极材料。
其中,纳米材料为纳米氢氧化镁、纳米氢氧化锌、纳米碳酸锌、纳米碳酸镁、纳米碳酸钡和纳米碳酸钙中的至少一种,纳米材料在分散液中的质量分数为5~15%,,聚丙烯腈的重均分子量为75000~90000。
本发明提供的电极材料制备方法,在制备过程中将纳米氢氧化镁材料,如图1(a)和图1(b)、图2所示,图1(a)和图1(b)分别是纳米氢氧化镁材料的扫描电镜图,图2为纳米氢氧化镁材料的X射线衍射图。图1(a)和图1(b)、图2示出的材料为纳米级氢氧化镁颗粒,在制备过程中加入纳米氢氧化镁材料最终可以得到纳米多孔的材料。如此,通过控制纳米氢氧化镁材料的加入量可以控制材料中纳米孔的数量,极大提高了材料的比表面积,提高了材料的电导率,其中,纳米氢氧化镁材料的质量分数越大,纳米孔个数越大,比表面积越高。在制备过程中加入聚丙烯腈,得到原位氮掺杂材料,由于该材料中存在氮的孤对电子,可以提高材料的电化学性能。如图4所示,图4示出了制备得到的原位氮掺杂多孔碳纤维材料的扫描电镜图,由图中可以看出,纳米碳纤维上存在均匀分布的纳米孔。将制备得到的原位氮掺杂多孔碳纤维材料进行电化学测试,在电流密度为1.0 A/g时,该材料的比电容可高达327.3F/g,在经过10000次充放电循环后,仅有7%的损耗,材料显示出高的循环稳定性。此外,该材料的制备过程简单,时间短,原料便宜,将该材料用作超级电容器的电极材料,可以显著提高超级电容器的电化学性能。
进一步地,制备纳米氢氧化镁的方法包括:
将水溶性镁盐和碱性化合物分别溶于去离子水中,得到镁盐溶液和碱性溶液;
将碱性溶液缓慢滴加到镁盐溶液中进行反应,将得到的浑浊溶液水浴加热、搅拌、回流、冷却到室温后进行离心分离,得到纳米氢氧化镁材料。
可选地,水溶性镁盐可以为硫酸镁、氯化镁或硝酸镁等镁盐。碱性化合物可以为氢氧化钾、氢氧化钠、碳酸氢钠,碳酸氢钾等。
优选地,纳米氢氧化镁材料占分散液的质量分数的10%。在实际应用中,纳米氢氧化镁的质量分数越大,制得的原位氮掺杂多孔碳纤维材料的比表面积越大。聚丙烯腈的重均分子量为85000。将聚丙烯腈加入分散液后,在在70℃下加热2小时,得到混合粘液。热处理的温度为280℃,热处理的时间为1小时。
具体的,静电纺丝的工艺参数为,静电纺丝的温度为25℃,静电纺丝的电压为11~15千伏,湿度为30~50%。优选地,静电纺丝的电压为12千伏,湿度为40%。其中,静电纺丝的电压越高,纺出的原丝的直径越细。可以通过控制静电纺丝的电压来控制纺出的原丝的直径。
优选地,热处理的温度为270~280℃,热处理的时间为1小时。将热处理后的原丝的加热温度为900℃,加热时间为4小时。
进一步地,将加热后的原丝进行清洗、烘干的步骤为:
将加热后的材料浸泡于质量分数为1%~5%的盐酸中,并用去离子水清洗;
将清洗后的材料在50~70℃下干燥。
实施例1
1、将六水合硝酸镁和氢氧化钠分别溶于去离子水中,得到硝酸镁溶液和氢氧化钠溶液;
2、在搅拌的同时将氢氧化钠溶液缓慢滴加到硝酸镁溶液中进行反应,将得到的浑浊溶液水浴加热至100℃、搅拌、回流3小时、冷却到室温后进行离心分离,得到纳米氢氧化镁材料;
3、将得到的10g纳米氢氧化镁材料分散于90gN,N-二甲基甲酰胺中,得到分散液,并将35g聚丙烯腈加入分散液中,在70℃下加热3小时,得到混合粘液;
4、对混合粘液在温度为25℃,电压为12千伏,湿度为40%的条件下进行静电纺丝,并将得到的原丝在空气氛围、280℃的条件下热处理1小时;
5、将热处理后的原丝在氮气气氛、900℃的条件下加热4小时,并将加热后的材料浸泡于盐酸中,并用去离子水清洗,将清洗后的材料在60℃下干燥得到原位氮掺杂多孔碳纤维电极材料。
实施例2
1、取10g纳米氢氧化镁粉末分散于90g N,N-二甲基甲酰胺中,得到分散液,并将35g聚丙烯腈加入分散液中,在70℃下加热3小时,得到混合粘液;
2、对混合粘液在温度为25℃,电压为12千伏,湿度为40%的条件下进行静电纺丝,并将得到的原丝在空气氛围、280℃的条件下热处理1小时;
3、将热处理后的原丝在氮气气氛、900℃的条件下加热4小时,并将加热后的材料浸泡于盐酸中,并用去离子水清洗,将清洗后的材料在60℃下干燥得到原位氮掺杂多孔碳纤维电极材料。
实施例3
1、将氯化锌和氢氧化钠分别溶于去离子水中,得到氯化锌溶液和氢氧化钠溶液;
2、在搅拌的同时将氢氧化钠溶液缓慢滴加到氯化锌溶液中进行反应,将得到的浑浊溶液水浴加热至90℃、搅拌、回流2.5小时、冷却到室温后进行离心分离,得到纳米氢氧化锌材料;
3、将得到的15g纳米氢氧化锌材料分散于85g N,N-二甲基甲酰胺中,得到分散液,并将45g聚丙烯腈加入分散液中,在65℃下加热3小时,得到混合粘液;
4、对混合粘液在温度为25℃,电压为15千伏,湿度为45%的条件下进行静电纺丝,并将得到的原丝在空气氛围、270℃的条件下热处理1小时;
5、将热处理后的原丝在氮气气氛、900℃的条件下加热4小时,并将加热后的材料浸泡于盐酸中,并用去离子水清洗,将清洗后的材料在60℃下干燥得到多孔碳纤维电极材料。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种电极材料的制备方法,其特征在于,所述方法包括如下步骤:
    将纳米材料分散于N,N-二甲基甲酰胺中,得到分散液,再加入聚丙烯腈,在50~80℃下加热1~4小时,得到混合粘液,所得混合粘液中聚丙烯腈的质量分数为5-15%;
    对所述混合粘液进行静电纺丝,并将得到的原丝在空气氛围、250~300℃的条件下热处理0.5~2小时;
    将热处理后的原丝在氮气气氛、800~1000℃的条件下加热3~5小时,并进行清洗、烘干得到原位氮掺杂碳纤维/氧化镁复合材料将所得复合材料作酸处理,得到原位氮掺杂多孔纳米碳纤维电极材料;
    其中,所述纳米材料为纳米氢氧化镁、纳米氢氧化锌、纳米碳酸锌、纳米碳酸镁、纳米碳酸钡和纳米碳酸钙中的至少一种,所述纳米材料在所述分散液中的质量分数为5~15%,所述聚丙烯腈的重均分子量为75000~90000。
  2. 根据权利要求1所述的方法,其特征在于,制备纳米氢氧化镁的方法包括:
    将水溶性镁盐和碱性化合物分别溶于水中,得到镁盐溶液和碱性溶液;
    将所述碱性溶液滴加到所述镁盐溶液中进行反应,将得到的浑浊溶液水浴加热、搅拌、回流、冷却到室温后进行离心分离,得到所述纳米材料。
  3. 根据权利要求2所述的方法,其特征在于,所述水溶性镁盐为硝酸镁、硫酸镁和氯化镁中的至少一种;所述碱性化合物为氢氧化钠、氢氧化钾、碳酸氢钠和碳酸氢钾中的至少一种。
  4. 根据权利要求1所述的方法,其特征在于,所述纳米氢氧化镁材料在所述分散液中的质量分数为10%。
  5. 根据权利要求1所述的方法,其特征在于,所述聚丙烯腈的重均分子量为85000。
  6. 根据权利要求1所述的方法,其特征在于,静电纺丝的温度为25℃,静电纺丝的电压为11~15千伏;湿度为30~50%。
  7. 根据权利要求1所述的方法,其特征在于,热处理的温度为270~280℃的条件下热处理1小时。
  8. 根据权利要求1所述的方法,其特征在于,将热处理后的原丝在900℃的条件下加热4小时。
  9. 根据权利要求1所述的方法,其特征在于,将热处理后的原丝进行清洗、烘干的步骤为:
    将加热后的材料浸泡于盐酸中,并用水清洗;
    将清洗后的材料在50~70℃下干燥。
PCT/CN2017/099440 2017-08-29 2017-08-29 一种电极材料的制备方法 WO2019041124A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/099440 WO2019041124A1 (zh) 2017-08-29 2017-08-29 一种电极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/099440 WO2019041124A1 (zh) 2017-08-29 2017-08-29 一种电极材料的制备方法

Publications (1)

Publication Number Publication Date
WO2019041124A1 true WO2019041124A1 (zh) 2019-03-07

Family

ID=65524554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099440 WO2019041124A1 (zh) 2017-08-29 2017-08-29 一种电极材料的制备方法

Country Status (1)

Country Link
WO (1) WO2019041124A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101376511A (zh) * 2007-11-23 2009-03-04 清华大学深圳研究生院 纳米氢氧化镁的制备方法
CN103225135A (zh) * 2013-05-09 2013-07-31 中国科学院化学研究所 多孔碳纤维及其制备方法与应用
CN104724734A (zh) * 2013-12-18 2015-06-24 中国科学院福建物质结构研究所 一种制造轻质、高比表面积、花球型纳米氢氧化镁的方法
CN106521717A (zh) * 2015-09-11 2017-03-22 五邑大学 一种高比表面积多孔碳纤维的制备方法
CN106757538A (zh) * 2016-11-14 2017-05-31 天津工业大学 一种电纺丝方法制备多孔炭纤维制备方法
CN107083584A (zh) * 2017-04-28 2017-08-22 浙江理工大学 一种可折叠柔性纯净纳米碳纤维的静电纺丝‑碳化制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101376511A (zh) * 2007-11-23 2009-03-04 清华大学深圳研究生院 纳米氢氧化镁的制备方法
CN103225135A (zh) * 2013-05-09 2013-07-31 中国科学院化学研究所 多孔碳纤维及其制备方法与应用
CN104724734A (zh) * 2013-12-18 2015-06-24 中国科学院福建物质结构研究所 一种制造轻质、高比表面积、花球型纳米氢氧化镁的方法
CN106521717A (zh) * 2015-09-11 2017-03-22 五邑大学 一种高比表面积多孔碳纤维的制备方法
CN106757538A (zh) * 2016-11-14 2017-05-31 天津工业大学 一种电纺丝方法制备多孔炭纤维制备方法
CN107083584A (zh) * 2017-04-28 2017-08-22 浙江理工大学 一种可折叠柔性纯净纳米碳纤维的静电纺丝‑碳化制备方法

Similar Documents

Publication Publication Date Title
CN104241661B (zh) 一种全钒液流电池用复合电极的制备方法
CN104733700B (zh) 一种锂硒电池柔性正极的制备方法
CN104332640B (zh) 全钒液流电池用热还原氧化石墨烯/纳米碳纤维复合电极制备方法
KR101326448B1 (ko) 다공성 활성탄소섬유의 제조방법 및 그 다공성 활성탄소섬유를 포함하는 전기화학 캐패시터용 cnf 전극
WO2017022900A1 (ko) 산소환원 전극용 촉매 및 그 제조 방법
CN105734725B (zh) 一种“囊泡串”结构纯碳纤维材料及其制备方法
CN106040277A (zh) 一种负载Pt的“囊泡串”结构碳纤维复合材料及其制备方法
CN108682802A (zh) 一种制备锂电负极用壳-核结构纳米纤维的方法
CN107633959A (zh) 一种电极材料的制备方法
CN108109855B (zh) 一种基于复合纱线的柔性超级电容器的制备方法
CN109037618A (zh) 一种纳米二氧化钛复合氮掺杂碳纳米纤维及其制备方法和应用
CN109920955A (zh) 一种应用于锂硫电池隔层的碳化铁复合纳米碳纤维膜及其制备方法
CN109411713A (zh) 含硅基材料的改性复合材料的机械共包覆方法、改性复合材料及锂离子电池
Wu et al. Fabrication of nickel boride-coated carbon nanotube films by electrophoresis and electroless deposition for electrochemical hydrogen storage
CN110364371B (zh) 一种活性多孔碳框架/石墨烯复合纤维及其制备方法
WO2022241663A1 (zh) 一种金属有机骨架与纳米纤维衍生的碳基复合电极材料及其制备方法
Wang et al. Hierarchical and core-shell structured CuCo2O4@ NiMn-LDH composites as supercapacitor electrode materials with high specific capacitance
WO2019041124A1 (zh) 一种电极材料的制备方法
CN114506841B (zh) 一种层间结构可控的生物质-石墨烯复合电极材料及其制备方法和应用
CN109860476B (zh) 锂硫电池用二氧化钛胶体改性隔膜及其制备方法和锂硫电池
CN1679184A (zh) 隔板、具有隔板的电池和隔板的制作方法
TW201341304A (zh) 石墨烯複合材料的製備方法
WO2022236843A1 (zh) 复合多孔碳材料及其制备方法
CN113981673A (zh) 一种碳纤维上生长1T相MoS2@rGO的复合材料的制备方法及其用途
CN113690435A (zh) 一种锂离子二次电池极片及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17923523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17923523

Country of ref document: EP

Kind code of ref document: A1